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In
kuy21
[KUY21] we discuss the bifurcation of jumping oscillons (JOs) as modulated traveling waves

(MTWs) from traveling waves (TWs) in the 3–component FHN type model,

∂tu = k1 + k2u− u3 − k3v − k4w +Du∇2u+ s∂xu,

τ∂tv = u− v +Dv∇2v + τs∂xv, (1)
bm0bm0

ϑ∂tw = u− w +Dw∇2w + ϑs∂xw,

following
YZE06
[YZE06], where k1,2,3,4 ∈ R are parameters, Du,v,w > 0 are diffusion constants,

τ, ϑ > 0 are timescales, u = u(t, x) is an activator variable while v = v(t, x) and w = w(t, x)
are inhibitors. The term s∂xU , U = (u, v, w) in (

bm0
1) comes from going into a frame moving

with speed s, such that we can compute TWs and MTWs as relative equiibria. The system
has a unique uniform steady state U∗ ≡ (u∗, v∗, w∗)

T, and we mostly study bifurcations from
U∗ in Ω = (−40, 40) with periodic boundary conditions (BCs), though for some computations
of standing waves (SWs) and localized SWs (LSWs) (not discussed in

kuy21
[KUY21]) we consider

(
bm0
1) in Ω = (−40, 40) with Neumann BCs. We refer to

kuy21
[KUY21] and the references therein

for further discussion of the model, and to
p2pbook
[Uec21] and the tutorials at

p2phome
[pde25] for general

background and usage of pde2path, and here only comment on the implementation of (
bm0
1) in

pde2path underlying the results in
kuy21
[KUY21]. Table

tab1
1 lists the pertinent files.

Remarks. The JO1D folder contains some somewhat advanced and experimental pde2path
usage; most importantly, we use a quadratic finite element method (P2FEM, see assem1d2),
which is in particular helpful to obtain a smooth behavior of the comoving frame speed s during
continuation of TWs as relative equilibria with a non–small stepsize. Moreover, starting points
for continuation of traveling pulses (TPs), aka localized traveling waves (LTWs), are obtained
from first “chopping–off” TWs (i.e., replacing the spatially periodic TWs by U∗ in parts of
the domain) and then running numerical time integration, aka direct numerical simulation
(DNS), to converge to TPs. A similar “chopping–off” is also used for SWs to obtain initial
guesses for Newton–loops converging to localized standing waves (LSWs), which then yield
snaking branches of LSWs (not shown in

kuy21
[KUY21]). However, in particular the convergence

to LSWs after chopping–off SWs depends rather sensitively on the exact way of chopping–
off. Finally, we also use chopping off and DNS to obtain convergence to TP–JO mixed mode
bound states

kuy21
[KUY21, Fig.1], which again depends sensitively on the chop–off details. Thus,

though the continuation and bifurcation methods in JO1D are standard, the folder contains
some somewhat experimental (or “trial–and–error” and “trial–and–success”) procedures to
obtain initial points for continuation. c

Table 1: Scripts and functions in JO1D. Associated to some cmds*–scripts are cmds*plot scripts

for plotting; all figure numbers refer to
kuy21
[KUY21]. 1st block: scripts; 2nd block: problem describing

functions and overloads of pde2path library functions; 3rd block: convenience functions.
tab1

file purpose, remarks

cmdsTW Main script for TWs, localized TWs (LTWs) and mTWs, i.e., JOs, over Ω =
(−40, 40) with periodic BCs. First we continue the trivial branch U∗ in k1 (output
to b/0pbc) and then use twswibra to switch to (spatially periodic) TWs, with
the speed s as a secondary parameter, using the standard phase condition (PC)
q(u) =

∫
(∂xUold)U dx

kuy21
[KUY21, (3)], where Uold is the solution from the last step.
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We then obtain “localized” TWs (LTWs, aka traveling pulses, TPs) by “chopping
off” TWs, i.e., replacing by U∗ all but one of the waves in a periodic TW and
runing DNS. After convergence, we can then continue the LTWs again as relative
equilibria, with some snaking behavior as additional pulses are added to the initial
1–pulse, and on the resulting branch there are Hopf points (HPs) to MTWs.
After hoswibra from the HPs on the LTW branch, we switch to the average PC
kuy21
[KUY21, (4)]; the resulting MTW branch turns into a branch of stable 1–peak
JOs after a first fold, and subsequently shows some further snaking behavior
where the 1–peak JOs turn into m–peak JOs (m ≥ 2).

cmdsTWplot plotting of results from cmdsTW, Figs.1–2.
cmdsSW compute the trivial branch with Neumann BCs (output to b/0, and then use

hoswibra to switch to SWs (no PC needed due to the Neumann BCs). Then
use some cut–off SW as an initial guess for a Newton loop which converges to a
LSW. Continuing this in k1 yields a snaking LSW branch which adds/takes away
another wave in every second folds. Plotting of this directly at the end of cmdsSW
(not shown in

kuy21
[KUY21]).

cmdsdisp plot dispersion relations for linearization of (
bm0
1) around U∗

kuy21
[KUY21, Fig.S1]. In-

dependent of domain, hence using a small domain.
cmdsdns1 DNS from various initial guesses, yielding various nTP–mJO bound states as in

Fig.1.
dns2hopf sample script how to use DNS to generate time periodic states (JOs) for contin-

uation.

yzeinit initialization of problem struct p with standard parameter values, call of
stanpdeo1D to generate a 1D PDE object (interval, with mesh), initialization
of u with u∗, call of assem1d2 to generate a P2–FEM mesh from the original
(P1) mesh and from the P2–mesh generate the stiffness matrix K, the mass ma-
trix M and the convection matrix Kx, and finally resetting of some pde2path

parameters to problem adapted values.
oosetfemops assemble the mass matrix M , and the (1-component) Neumann-Laplacian K and

the (1–component) convection matrix Kx. For the case of periodic BCs, these
are then also converted via filltrafo, and then stored in p.mat. oosetfemops

is called after loading a point since p.mat is not saved to disk.
sG,sGjac rhs of (

bm0
1), and Jacobian; these here have a simple standard structure.

nodalf “nonlinearity”, i.e., terms without spatial derivatives, called in hotintxs.
nodaljac Jacobian of “nonlinearity”, called in sGjac.
hobra,

hobratw

mods of respective library functions.

assem1d2 quadratic FEM

bdmovJO Tsss
bdmovSW
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