helfcyl reference sheet,

Institut für Mathematik, Universität Oldenburg, alexander.meiners@uol.de, hannes.uecker@uol.de

In [MU25] we consider the constrained L^2 -gradient flow

$$\begin{pmatrix} V_t(t) \\ 0 \end{pmatrix} = \begin{pmatrix} G(X(t), \Lambda(t)) \\ q(X(t)) \end{pmatrix}$$
(1)

associated to the Helfrich energy

$$E(X) = \int_{X} (H - c_0)^2 \,\mathrm{d}S,$$
(2)

where X = X(t) is a 2D manifold embedded in \mathbb{R}^3 with mean curvature H, and where the parameter $c_0 \in \mathbb{R}$ models an energetically favorable spontaneous (or preferred) curvature. In (1), $V_t(t)$ is the normal velocity of X, $q_1(X) = \mathcal{A}(X) - \mathcal{A}_0$ and $q_2(X) = \mathcal{V}(X) - \mathcal{V}_0$ are area and volume constraints, and $\Lambda = \Lambda(t) = (\lambda_1(t), \lambda_2(t))$ are Lagrange multipliers for these constraints. We consider manifolds X of cylindrical topology, with a "trivial" branch (parameterized by $\lambda_2 \in \mathbb{R}$) of steady states is given by the straight cylinders \mathcal{C}_L with radius 1 and length L and $\lambda_1 = \frac{1}{2} \left(\frac{1}{2r^2} - 2r\lambda_2 - 2c_0^2 \right)$. Via $X = X_0 + uN$ with u the normal displacement of X and N the (here inner) normal, (1) can be expressed as a quasilinear parabolic constrained problem

$$\eta(u)\partial_t u = G(u,\Lambda),\tag{3a}$$

$$0 = q(u), \tag{3b}$$

where $\eta(u) = g^{-1/2}(1+u)$ with $g = \det(g_{ij}) = (r+u)^2(1+u_x^2) + u_{\varphi}^2$. In [MU25] we in particular study the bifurcations from \mathcal{C}_L , with periodic BCs for u along the cylindrical axis x, leading to four basic classes of branches: pearling, wrinkling, buckling and coiling. In the numerics we focus on three particular values of c_0 , namely

(a)
$$c_0 = 0$$
, (b) $c_0 = -1$, (c) $c_0 = 0.48$,

and present basic bifurcation diagrams BDs of steady states, including some secondary bifurcations, and also some numerical flows.

Here we comment on the associated pde2path implementation in the folder helfcyl/, available at [pde25], essentially listing the purpose of the script files cmds*.m and what Figures from [MU25] they produce, and giving some comments on "special" files for (3). See also aaa.m included in helfcyl/ for similar (and slightly more detailed and possibly more up-to-date) information. For background and usage of pde2path we refer to [Uec21] and the tutorials at [pde25], and to [MU24] for further applications of pde2path in the geometric setting.

- [MU24] A. Meiners and H. Uecker. Numerical continuation and bifurcation for differential geometric PDEs. Numerical Mathematics – Theory Methods Applications, OA-2024:0005, 2024.
- [MU25] A. Meiners and H. Uecker. Helfrich cylinders bifurcation analysis and numerics, 2025. Preprint, https://arxiv.org/abs/2502.21137.
- [pde25] pde2path. https://pde2path.uol.de/, 2025.
- [Uec21] H. Uecker. Numerical continuation and bifurcation in Nonlinear PDEs. SIAM, Philadelphia, PA, 2021.

Table 1: Scripts and functions in helfcyl; all figure numbers refer to [MU25]. First two blocks: Main scripts; 3rd block: Problem describing functions, incl. overloads of pde2path library functions and convenience functions; 4th block: Further auxiliary scripts.

cmds0 $c_0 = 0, L = 10$, output to "0/", Fig.4 and 5 (plotting in cmds0plot.m).cmds0f1Flows from (perturbations of) selected states computed in cmds0, Fig.6.cmdsm1 $c_0 = -1, L = 10$, output to "m1/", Fig.7 (plotting in cmdsm1plot.m). Flows from (perturbations of) selected $c_0 = -1$ states in cmdsm1fl, Fig.8.cmds05 $c_0 = 0.48, L = 10$, output to "05/", Fig.9 (plotting in cmds05plot.m). Flows from (perturbations of) selected states in cmds05fl, results not in paper.cmds05b $c_0 = 0.48, L = 15$ (natural length for primary pearling branch), output to "05b/" Fig.10 (plotting in cmds05bplot.m). Flows from (perturbations of) selected states in cmds05bfl, Fig.11.cmds05c $c_0 = 0.48, L = 22.5,$ output to "05c/", Fig.12 (plotting in cmds05cplot.m)Flows from (perturbations of) selected states in cmds05cfl.cylinitinitialization of struct p with standard parameter values incl. X-cont setting; cal of stanpdeo2D to generate a 2D PDE mesh subsequently mapped to cylinder idenfication of left/right boundary faces for periodicity, call of oosetfemops to generate "fill" matrices.oosetfemopshere only identification of boundaries, no FEM matrices generated.	ds0plot.m). cmds0, Fig.6. dsm1plot.m). Flows 1, Fig.8. ds05plot.m). Flows a not in paper. h), output to "05b/", ons of) selected states in cmds05cplot.m).
cmds0f1Flows from (perturbations of) selected states computed in cmds0, Fig.6.cmdsm1 $c_0 = -1, L = 10, $ output to "m1/", Fig.7 (plotting in cmdsm1plot.m). Flows from (perturbations of) selected $c_0 = -1$ states in cmdsm1fl, Fig.8.cmds05 $c_0 = 0.48, L = 10, $ output to "05/", Fig.9 (plotting in cmds05plot.m). Flows from (perturbations of) selected states in cmds05fl, results not in paper.cmds05b $c_0 = 0.48, L = 15$ (natural length for primary pearling branch), output to "05b/" Fig.10 (plotting in cmds05bplot.m). Flows from (perturbations of) selected states in cmds05bfl, Fig.11.cmds05c $c_0 = 0.48, L = 22.5, $ output to "05c/", Fig.12 (plotting in cmds05cplot.m) Flows from (perturbations of) selected states in cmds05cfl.cylinitinitialization of struct p with standard parameter values incl. X-cont setting; cal of stanpdeo2D to generate a 2D PDE mesh subsequently mapped to cylinder idenfication of left/right boundary faces for periodicity, call of oosetfemops to generate "fill" matrices.oosetfemopshere only identification of boundaries, no FEM matrices generated.	cmds0, Fig.6. dsm1plot.m). Flows 1, Fig.8. ds05plot.m). Flows s not in paper. h), output to "05b/", ons of) selected states in cmds05cplot.m).
cmdsm1 $c_0 = -1, L = 10$, output to "m1/", Fig.7 (plotting in cmdsm1plot.m). Flow: from (perturbations of) selected $c_0 = -1$ states in cmdsm1fl, Fig.8.cmds05 $c_0 = 0.48, L = 10$, output to "05/", Fig.9 (plotting in cmds05plot.m). Flow: from (perturbations of) selected states in cmds05fl, results not in paper. $c_0 = 0.48, L = 15$ (natural length for primary pearling branch), output to "05b/" Fig.10 (plotting in cmds05bplot.m). Flows from (perturbations of) selected states in cmds05bfl, Fig.11. cmds05c $c_0 = 0.48, L = 22.5, $ output to "05c/", Fig.12 (plotting in cmds05cplot.m) Flows from (perturbations of) selected states in cmds05cfl.cylinitinitialization of struct p with standard parameter values incl. X-cont setting; cal of stanpdeo2D to generate a 2D PDE mesh subsequently mapped to cylinder idenfication of left/right boundary faces for periodicity, call of oosetfemops to generate "fill" matrices.oosetfemopshere only identification of boundaries, no FEM matrices generated.	dsm1plot.m). Flows 1, Fig.8. ds05plot.m). Flows a not in paper. h), output to "05b/", ons of) selected states in cmds05cplot.m).
from (perturbations of) selected $c_0 = -1$ states in cmdsm1fl, Fig.8.cmds05 $c_0 = 0.48, L = 10$, output to "05/", Fig.9 (plotting in cmds05plot.m). Flow, from (perturbations of) selected states in cmds05fl, results not in paper.cmds05b $c_0 = 0.48, L = 15$ (natural length for primary pearling branch), output to "05b/" Fig.10 (plotting in cmds05bplot.m). Flows from (perturbations of) selected states in cmds05bfl, Fig.11.cmds05c $c_0 = 0.48, L = 22.5, $ output to "05c/", Fig.12 (plotting in cmds05cplot.m) Flows from (perturbations of) selected states in cmds05cfl.cylinitinitialization of struct p with standard parameter values incl. X-cont setting; cal of stanpdeo2D to generate a 2D PDE mesh subsequently mapped to cylinder idenfication of left/right boundary faces for periodicity, call of oosetfemops to generate "fill" matrices.oosetfemopshere only identification of boundaries, no FEM matrices generated.	1, Fig.8. ds05plot.m). Flows a not in paper. h), output to "05b/", ons of) selected states in cmds05cplot.m).
cmds05 $c_0 = 0.48, L = 10$, output to "05/", Fig.9 (plotting in cmds05plot.m). Flow: from (perturbations of) selected states in cmds05fl, results not in paper. $c_0 = 0.48, L = 15$ (natural length for primary pearling branch), output to "05b/" Fig.10 (plotting in cmds05bplot.m). Flows from (perturbations of) selected states in cmds05bfl, Fig.11. $c_0 = 0.48, L = 22.5$, output to "05c/", Fig.12 (plotting in cmds05cplot.m) Flows from (perturbations of) selected states in cmds05cfl.cylinitinitialization of struct p with standard parameter values incl. X-cont setting; cal of stanpdeo2D to generate a 2D PDE mesh subsequently mapped to cylinder idenfication of left/right boundary faces for periodicity, call of oosetfemops to generate "fill" matrices.oosetfemopshere only identification of boundaries, no FEM matrices generated.	ds05plot.m). Flows s not in paper. h), output to "05b/", ons of) selected states in cmds05cplot.m). . X-cont setting; call mapped to cylinder; all of oosetfemops to nerated. m $\eta(u)\partial_t u = G(u, \Lambda)$ urvature of $X + uN$. oranch the respective
cmds05bfrom (perturbations of) selected states in cmds05fl, results not in paper. $c_0 = 0.48, L = 15$ (natural length for primary pearling branch), output to "05b/" Fig.10 (plotting in cmds05bplot.m). Flows from (perturbations of) selected states in cmds05bfl, Fig.11.cmds05c $c_0 = 0.48, L = 22.5,$ output to "05c/", Fig.12 (plotting in cmds05cplot.m) Flows from (perturbations of) selected states in cmds05cfl.cylinitinitialization of struct p with standard parameter values incl. X-cont setting; cal of stanpdeo2D to generate a 2D PDE mesh subsequently mapped to cylinder idenfication of left/right boundary faces for periodicity, call of oosetfemops to generate "fill" matrices.oosetfemopshere only identification of boundaries, no FEM matrices generated.	s not in paper. h), output to "05b/", ons of) selected states in cmds05cplot.m).
cmds05b $c_0 = 0.48, L = 15$ (natural length for primary pearling branch), output to "05b/" Fig.10 (plotting in cmds05bplot.m). Flows from (perturbations of) selected states in cmds05bf1, Fig.11. $c_0 = 0.48, L = 22.5$, output to "05c/", Fig.12 (plotting in cmds05cplot.m) Flows from (perturbations of) selected states in cmds05cf1.cylinitinitialization of struct p with standard parameter values incl. X-cont setting; cal of stanpdeo2D to generate a 2D PDE mesh subsequently mapped to cylinder idenfication of left/right boundary faces for periodicity, call of oosetfemops to generate "fill" matrices.oosetfemopshere only identification of boundaries, no FEM matrices generated.	h), output to "05b/", ons of) selected states in cmds05cplot.m). . X-cont setting; call mapped to cylinder; all of oosetfemops to nerated. m $\eta(u)\partial_t u = G(u, \Lambda)$ urvature of $X + uN$). oranch the respective
Fig.10 (plotting in cmds05bplot.m). Flows from (perturbations of) selected states in cmds05bfl, Fig.11.cmds05c $c_0 = 0.48, L = 22.5,$ output to "05c/", Fig.12 (plotting in cmds05cplot.m) Flows from (perturbations of) selected states in cmds05cfl.cylinitinitialization of struct p with standard parameter values incl. X-cont setting; cal of stanpdeo2D to generate a 2D PDE mesh subsequently mapped to cylinder idenfication of left/right boundary faces for periodicity, call of oosetfemops to generate "fill" matrices.oosetfemopshere only identification of boundaries, no FEM matrices generated.	ons of) selected states in cmds05cplot.m). . X-cont setting; call mapped to cylinder; all of oosetfemops to merated. m $\eta(u)\partial_t u = G(u, \Lambda)$ urvature of $X + uN$. oranch the respective
in cmds05bf1, Fig.11.cmds05c $c_0 = 0.48, L = 22.5,$ output to "05c/", Fig.12 (plotting in cmds05cplot.m) Flows from (perturbations of) selected states in cmds05cf1.cylinitinitialization of struct p with standard parameter values incl. X-cont setting; cal of stanpdeo2D to generate a 2D PDE mesh subsequently mapped to cylinder idenfication of left/right boundary faces for periodicity, call of oosetfemops to generate "fill" matrices.oosetfemopshere only identification of boundaries, no FEM matrices generated.	in cmds05cplot.m). . X-cont setting; call mapped to cylinder; all of oosetfemops to merated. m $\eta(u)\partial_t u = G(u, \Lambda)$ urvature of $X + uN$. branch the respective
cmds05c $c_0 = 0.48, L = 22.5,$ output to "05c/", Fig.12 (plotting in cmds05cplot.m) Flows from (perturbations of) selected states in cmds05cfl.cylinitinitialization of struct p with standard parameter values incl. X-cont setting; cal of stanpdeo2D to generate a 2D PDE mesh subsequently mapped to cylinder idenfication of left/right boundary faces for periodicity, call of oosetfemops to generate "fill" matrices.oosetfemopshere only identification of boundaries, no FEM matrices generated.	in cmds05cplot.m). . X-cont setting; call mapped to cylinder; all of oosetfemops to merated. m $\eta(u)\partial_t u = G(u, \Lambda)$ urvature of $X + uN$). branch the respective
Flows from (perturbations of) selected states in cmds05cfl.cylinitinitialization of struct p with standard parameter values incl. X-cont setting; cal of stanpdeo2D to generate a 2D PDE mesh subsequently mapped to cylinder idenfication of left/right boundary faces for periodicity, call of oosetfemops to generate "fill" matrices.oosetfemopshere only identification of boundaries, no FEM matrices generated.	. X-cont setting; call mapped to cylinder; all of oosetfemops to merated. m $\eta(u)\partial_t u = G(u, \Lambda)$ urvature of $X + uN$. branch the respective
cylinitinitialization of struct p with standard parameter values incl. X-cont setting; cal of stanpdeo2D to generate a 2D PDE mesh subsequently mapped to cylinder idenfication of left/right boundary faces for periodicity, call of oosetfemops to generate "fill" matrices.oosetfemopshere only identification of boundaries, no FEM matrices generated.	. X-cont setting; call mapped to cylinder; all of oosetfemops to merated. m $\eta(u)\partial_t u = G(u, \Lambda)$ urvature of $X + uN$. oranch the respective
of stanpdeo2D to generate a 2D PDE mesh subsequently mapped to cylinder idenfication of left/right boundary faces for periodicity, call of oosetfemops to generate "fill" matrices.oosetfemopshere only identification of boundaries, no FEM matrices generated.	mapped to cylinder; all of oosetfemops to nerated. In $\eta(u)\partial_t u = G(u, \Lambda)$ urvature of $X + uN$. oranch the respective
idenfication of left/right boundary faces for periodicity, call of oosetfemops to generate "fill" matrices.here only identification of boundaries, no FEM matrices generated.	all of oosetfemops to nerated. In $\eta(u)\partial_t u = G(u, \Lambda)$ urvature of $X + uN$. oranch the respective
generate "fill" matrices.oosetfemopshere only identification of boundaries, no FEM matrices generated.	nerated. m $\eta(u)\partial_t u = G(u, \Lambda)$ urvature of $X + uN$. branch the respective
oosetfemops here only identification of boundaries, no FEM matrices generated.	nerated. Im $\eta(u)\partial_t u = G(u, \Lambda)$ urvature of $X + uN$. branch the respective
	m $\eta(u)\partial_t u = G(u, \Lambda)$ urvature of $X + uN$.
sG.sGiac rhs G in (3), and Jacobian: note that the 4th order problem $n(u)\partial_t u = G(u, \Lambda)$	urvature of $X + uN$). branch the respective
is written as two 2nd order problems with $u_2 = H$ (mean curvature of $X + uN$)	branch the respective
Additionally, depending on the symmetry of the current branch the respective	1
terms for phase conditions (PCs) are computed.	
qAV, qAVder area \mathcal{A} and volume \mathcal{V} constraints, and their <i>u</i> -derivatives; versions without fur-	versions without fur-
ther constraints, i.e., for continuation of straight cylinder, and for numerical flows	d for numerical flows.
$qAVxtr$ \mathcal{A} and \mathcal{V} constraints together with x-translational PC (used for pearling and coil-	for pearling and coil-
ing branches). <i>u</i> -derivative in qAVxtrder . Switched on via stanxtr . Similarly	a stanxtr. Similarly,
qAVxro, qAVxroder, stanxrot for rotational PC (for wrinkling branches), and	nkling branches), and
qAVxtrro, qAVxtrroder, stanxtrrot for translational and rotational PC (used	d rotational PC (used
for buckling branches).	× ×
hvesbra branch output, inter alia the bending energy (2) computed in benE.	
getA, getV area and volume of X; the latter is somewhat special since here we do not have	in benE.
a closed X and hence need to apply Gauss with care, see [MU25, App.A.2].	in benE . here we do not have
getN normal N to X, controlled by p.ncurv. For robustness it is convenient to average	in benE . here we do not have MU25, App.A.2].
N between left and right boundary, and to keep N at boundary in the $y-z$ plane	in benE . here we do not have MU25, App.A.2]. convenient to average
(done if p.ncurv=1).	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the $y-z$ plane
getM FEM mass matrix; here directly in system form and with filltrafo to identify	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the $y-z$ plane
periodic boundaries.	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the $y-z$ plane
getbdnn helper function to identify BooundaryNearestNeighbor indizes p.bdnn, which are	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the $y-z$ plane filltrafo to identify
used in derivative of volume constraint, e.g., qAVder.	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the $y-z$ plane filltrafo to identify we p.bdnn, which are
refufu REFinementUserFUnction, mod of stanufu and linked into p.fuha.ufu; refines	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the $y-z$ plane filltrafo to identify wes p.bdnn, which are
and coarsens the mesh controlled by p.nc.qbound (mesh-quality bound) and	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the $y-z$ plane filltrafo to identify wes p.bdnn, which are p.fuha.ufu; refines
p.nc.Ab (area bound).	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the $y-z$ plane filltrafo to identify wes p.bdnn, which are p.fuha.ufu; refines -quality bound) and
upX overload of library update-X function taking care of periodic boundaries.	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the $y-z$ plane filltrafo to identify wes p.bdnn, which are p.fuha.ufu; refines -quality bound) and
imdnsX IMplicitDirectNum.Sim.X-setting. see [MU25, App.A.2]; mod of library imdnsX	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the $y-z$ plane filltrafo to identify wes p.bdnn, which are p.fuha.ufu; refines -quality bound) and ic boundaries.
r · · · · · · · · · · · · · · · · · · ·	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the $y-z$ plane filltrafo to identify we p.bdnn, which are p.fuha.ufu; refines -quality bound) and ic boundaries. and of library imdnsX
with control of E decay.	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the $y-z$ plane filltrafo to identify wes p.bdnn, which are p.fuha.ufu; refines -quality bound) and ic boundaries. and of library imdnsX
XflplotXflplot	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the $y-z$ plane filltrafo to identify we p.bdnn, which are p.fuha.ufu; refines -quality bound) and ic boundaries. and of library imdnsX computed in imdnsX.
Xflplotwith control of E decay. minor convenience mod of library version to plot flows of X computed in imdnsX stanxtrstanxtrconvenience function to switch on translational x PC; similar stanxrot,	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the <i>y</i> - <i>z</i> plane filltrafo to identify wes p.bdnn, which are o p.fuha.ufu; refines -quality bound) and ic boundaries. and of library imdnsX. computed in imdnsX.
Xflplotwith control of E decay.Xflplotminor convenience mod of library version to plot flows of X computed in imdnsXstanxtrconvenience function to switch on translational x PC; similar stanxrot, stanxtrrot.	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the $y-z$ plane filltrafo to identify we p.bdnn, which are p.fuha.ufu; refines -quality bound) and ic boundaries. and of library imdnsX computed in imdnsX. similar stanxrot,
Xflplotwith control of E decay. minor convenience mod of library version to plot flows of X computed in imdnsX stanxtrstanxtrconvenience function to switch on translational x PC; similar stanxrot, stanxtrrot.cmdsstabscript to plot stability ranges, Fig.2(a-c).	in benE. here we do not have MU25, App.A.2]. convenient to average dary in the <i>y</i> - <i>z</i> plane filltrafo to identify we p.bdnn, which are p.fuha.ufu; refines -quality bound) and ic boundaries. and of library imdnsX computed in imdnsX. g similar stanxrot,