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Abstract We show the nonlinear stability of small bifurcating stationary rolls
U i, for the Swift-Hohenberg—equation on the domain R?. In Bloch wave representa-
tion the linearization around a marginal stable roll u. , has continuous spectrum up
to 0 with a locally parabolic shape at the critical Bloch vector 0. Using an abstract
renormalization theorem we show that small spatially localized integrable pertur-
bations decay diffusively to zero. Moreover we estimate the size of the domain of
attraction of a roll u, , in terms of its modulus and Fourier wavenumber. To explain
the method we also treat the nonlinear stability of stationary rolls for the complex
Swift-Hohenberg equation on R?.

1 Introduction

We investigate the nonlinear stability of stationary rolls u. , for the Swift—
Hohenberg—equation (SHE)

ou=—-1+ANu+eu—u® t>0, 1eR, u=ult,z)eR (1)
and of stationary rolls A, , for the complex Swift-Hohenberg equation (cSHE)
A= -1+ AV A+e%A—|APA t>0, 2 €R®, A= A(t,z) €C. (2)

In this introduction we first focus on the SHE, which is a phenomenologi-
cal model for Bénard’s problem at the onset of thermal convection, where u
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measures an averaged flow. See [Man92, chapter 8] for some modeling back-
ground and [Mie97b] for a partial linear stability analysis for the rolls in the
full Bénard problem. For small € > 0 there exist stationary roll solutions u,
of (1), k € (—¢,¢), which bifurcate from (¢, u) = (0,0). These rolls are of mod-
ulus r &~ 1/4(¢2 — k2) /3 and independent of z5 and periodic in x; with period
27 /k, where k = /k + 1. Letting u(t, ) = u. (1) +v(t, z), the perturbations
v have to satisfy

O = Lv+ F(v), (3)

where L is a linear operator, F' contains the nonlinear terms, and £ and F
depend on ¢, k via u, ., and have coefficients which are 27 /k—periodic in z;.

The spectral stability analysis of the rolls is carried out in great detail in
[Mie97a], extending the principle of reduced instability as stated in [Mie95]
to provide stability results too, giving necessary and sufficient conditions on
the amplitude and wavenumber of the rolls. The analysis is done in Bloch
wave space and gives marginal stability, i.e., for spectrally stable rolls the
spectrum of the operator L lies entirely in left complex half plane but extends
continuously up to 0.

We recall these results and also the setup of Bloch waves in section 5.
In our case, a Bloch wave is a function in the form v(z) = €7V (x;) with
V € H*(Tsr/k), where T, = R/(aZ) is the one dimensional torus of length «,
and o € T x R is called the Bloch wave vector. Inserting a Bloch wave into
the eigenvalue problem Lv = Av we obtain

Ble,k,0)VE —(1+ (8, +i01)% — 02)*V + (2 — 3uZ )V =AV.  (4)

For every fixed o € T; xR the eigenvalue problem (4) is self adjoint in L2(75 k).
This gives a discrete set of real eigenvalues {\;j(c) € R: j € N}, \;(0) >
Aj+1(o) = —oo for j — co. The main point is the identity

L? — spec(L) = closure( U specB(g, k, 0)) .

o€TL xR

As we will see, the stability of u, , is then determined from the behavior of the
smooth function o — A (o) for o close to 0. In fact, we always have A;(0) = 0.
This eigenvalue 0 comes from the translational invariance of the SHE. The
associated (generalized) eigenvector is Oy, U .

For a marginally stable roll w,. , the surface o — A;(0) has a parabolic
shape for o close to 0, i.e.

M(0) = —c107 — ceo5 + O(|o]*)  with ¢j =cj(e,5) >0, j=1,2.  (5)

This shape suggests that solutions to the linear problem v; = Lv decay like
solutions to the 2-dimensional linear diffusion equation u; = Au, z € R%,¢ > 0,



u(t,z) € R, u(0,z) = ug(x). For this equation, respectively for the general d—
dimensional case z € R, it is well known, that for integrable spatially localized
initial conditions the solutions fulfill

U

—|.12 —
|u(t,-) — (47rt)d/2e Il /(4t)||Loo < Ct (d+1)/2, (6)

where U = [ ug(xz)dz. This behavior is called the diffusive stability of the
trivial solution u = 0. The renormalized solution (47t)%?u(t,/tx) converges
towards the fixed point Ue~1#/*/4,

By means of renormalization theory [BK92, BKL94], the asymptotics (6),
with U now given by some function U of the initial condition ug, can be shown
also for solutions of the d-dimensional nonlinear diffusion equation

up = Au+uP (0g,u)?,t > 0, z € RY, (7)
provided that

d(pi +p2— 1) +p2 > 2, (8)

and the initial condition is sufficiently small. Therefore, nonlinearities for
which (8) holds are called asymptotically irrelevant. The renormalization
group approach converts the problem of large time asymptotics for (7) into
the iterative process of solving (7) on a fixed time interval, followed by rescal-
ing. We thus obtain a map in the space of initial data: the renormalization
map. An estimate like (6) then becomes the problem of existence and stability
of a fixed point for the renormalization map. As pointed out in [BKL94], see
also [Gal94], the main advantage of this method is, that it works for a wide
class of equations and systems and does not depend on special properties like
the maximum principle.

Using renormalization theory, the nonlinear stability of the marginal stable
rolls for the Swift-Hohenberg equation on R (d = 1) is proved in [Sch96].
The method has been further developed in [Sch97] to prove the nonlinear
stability of Eckhaus—stable Taylor vortices in the Taylor Couette problem over
an infinite cylinder. Higher order asymptotics for perturbations of rolls in
the one-dimensional SHE were derived in [EWW97] using a time-continuous
renormalization approach based on [Way97| to construct invariant manifolds.

In the present work we gather the ideas of [BK92, BKL94] and [Sch96] into
the abstract Theorem 1, which we then apply to the stability problem for rolls
in the SHE and the ¢SHE in two dimensions. For the real case we prove that
perturbations v of a spectrally stable roll u, ., that are sufficiently small in a
suitable Banach space, converge diffusively to zero, i.e.

A S 3
|v(t, z) — \/@te dert o2t O ()| pooqry < O3/ (9)



with ¢, ¢ from (5). The constant C' > 0 depends only on the roll ., i.e.
on (¢,k), and o* € R is a function of (¢,x) and v(0,-). The precise result is
stated in Theorem 20. With a slight abuse of notation, we occasionally write
||u(x)|| o for the L* norm of functions u :  — u(x).

For the nonlinear diffusion equation (7) it is an important point that the
condition (8) is sharp. In fact, for d(p; — 1) < 2 positive but arbitrarily
small initial condition to (7) can blow up in finite time in L'(R?), see for
example [Wei81]. Condition (8) shows that a higher space dimension gives a
lower minimal order for irrelevant nonlinearities. Formally one can see, that
the same happens for the SHE where in two dimensions cubic terms become
irrelevant. This better behavior of nonlinear diffusion equations in higher
dimensions together with its consequences for the diffusive stability method is
also discussed in [Sch98|.

However, taking a roll u, , as new origin for the SHE we obtain quadratic
terms in the nonlinearity. But these quadratic terms can be controlled using
the special structure of the equation, namely the translational invariance of
the original problem. Condition (8) also shows, that nonlinear terms with
derivatives, corresponding in Fourier space via F(0,,u)(0) = io;(Fu)(o) to
vanishing coefficients at the Fourier wave vector o = 0, are "more irrelevant”
than nonlinear terms without derivatives. Although the nonlinearity F'(v)
in (3) does not contain derivatives, the diffusive stability method works for
the SHE, because the projection of the quadratic interaction of the critical
modes onto the eigenspace associated to the critical eigenvalue A (o) vanishes
at the Bloch wave vector ¢ = 0. This crucial observation from [Sch96] for
the one—dimensional case does not depend on the dimension, but only on the
translational invariance of the original problem.

In fact, for the SHE and for similar translational invariant problems this
vanishing of the projection of the critical nonlinear terms onto the critical
eigenspace at ¢ = 0 can be seen by an abstract argument, relating the pro-
jection with the center manifold in case of a space of periodic functions, see
Remark 27 and [Sch96, EWW97].

These arguments heuristically show that the nonlinearity vanishes up to a
sufficiently high order. However, the arguments are formal. It is by means of
the renormalization approach that we are able to prove the asymptotic irrele-
vance of the nonlinear terms rigorously and to obtain precise decay rates.

To explain the method in a somewhat simpler setting we also treat the
nonlinear stability of stationary rolls A, , for the complex Swift-Hohenberg
equation (2). This is an instructive model problem, which nevertheless exhibits
the same difficulties as the SHE. It has, compared to the SHE, an additional
symmetry, namely the phase invariance A — €®A, «a € [0,27). Therefore the
c¢SHE has an explicitly given three parameter family of stationary solutions in



the form
A(:L‘) — T@i(a+k1m1+k2w2), (10)
k€ R* with |k| € (V1 —¢,V1+¢), r*=&>— (1— [k|*)?, a€]0,2m).

Without loss of generality we choose (k1,k2) = (k,0). By A., we denote
the unique roll with o = 0, where £ = vk + 1. We let A(t,z) = A .(z) +
e*®1 B(t, ) to obtain

8B = LB + F(B), (11)

where now £ and F' have constant coefficients. Thus (11) can be treated by
Fourier transform. The linear problem 0;B = LB has been also analyzed
in [Mie97a]. We recall these results in Section 3. In Section 4 we formulate
a renormalization process for (11) in Fourier space and apply the abstract
Theorem 1 to prove an analogous result to (9), namely that for suitably small
B(0, -) the solution B of (11) satifies

* 2 2

- e_?ifr;HLoo(Rz) < Ot 32 for t — oo, (12)

1B -
where c¢1,c,C > 0 and o € R, see Theorem 7. We remark that (12) is
completely analogous to (9). In (12) the derivative 9,, 4., = ike!*®* of the
roll does not appear because it is hidden in the ansatz A(t,z) = A..(z) +
e*®1 B(t, z), which gave the constant coefficient system (11). As a remainder
we have the factor i in (12).

For both cases, the SHE and the ¢SHE, the perturbations of the rolls have
to be small in H%(R?, 3), where

H™R? k) = {u: R = C: (0°u)p* € L*(R?) ,a € N2, |a| < m},

with p(z) = (1 + |2|?)}/2. For notational convenience we mostly drop the
domain R? and write H™(k) for H™(R?, k). Note that Fourier transform

~ 1 —io-x —1x 1 io-x z
u(o) = (Fu)(o) = o /e u(z)dz, (F u)(z)= o /e u(o) do,
is an isomorphism between H™(k) and H*(m).

Finally we remark, that although for the SHE the existence and spectral
stability of stationary rolls is established using bifurcation theory, the diffusive
stability method itself does not rely on any bifurcation arguments. However,
as in [Sch96], we want to estimate the size of the domain of attraction of a
spectrally stable roll in terms of (g, k). Therefore we need to keep track of the
bifurcation arguments from [Mie97a] for the spectral analysis of the rolls. This
makes our analysis more lengthy than it would be for a single fixed spectrally
stable roll.



2 An abstract frame

We provide the abstract Theorem 1. First however, we explain the idea of
renormalization, considering the nonlinear diffusion equation (7), i.e. u; =
Au+ uP'(0y;u)??, x € RY, under the condition (8), i.e. d(p1 +p2 — 1) +p2 > 2.

2.1 The idea of renormalization

In the introduction we indicated that if (8) holds, then for small, spatially
localized initial data the renormalized solution t%?u(t, /tx) to (7) converges
towards the fixed point Ue™1#I*/4, U = U (uy), i.e. we have the asymptotics (6).
To show this, the idea is as follows. We consider (7) in a Banach space X of
functions u : R — R, where X has to be suitably chosen, and introduce a
discrete analogue of the scaling (¢, z) = t%?u(t,\/tx): for L > 0 we define
scaling operators Ry, : X — X, (Rpu)(x) = u(Lz). Clearly we have (Rp)™' =
R1/r- For notational convenience we assume the initial condition for (7) to be
given at time ¢ = 1. We define F'(u) = u?*(0,,u)"?, and for fixed L > 1 and
n € Ny =NU{0} we let

un(L,y) = L"u(L*"T, L"y), (13)
i.e. up(T) = LR p.u(L*T). We obtain

Oru, = Lpu, + F,(uy,), where (14)
Fo(u,) = L"(2+d)F(L_"dR1/Lnun) _ Ln(2+d(1—p1—P2)_P2)qul(ayjun)Pz, (15)

and £, = A for all n, which is the scale invariance of the linear diffusion
equation u; = Au. Now we write the variation of constant formula for (14) as
sequence of equations (n € N, T € [1/L?1])

T

Uun(T) = 2TV LAR L, (1) + / eATIE, (uy (7)) dr.  (16)

1/12

This means that we consider the following process, starting with n = 1, which
is equivalent to solving (7) on the time interval (1, c0):

(16) is solved in C'([1/L? 1], X). Then LR u,(1) is taken
as initial condition for n + 1, i.e. u,11(1/L?) = LR pu,(1).

To solve (16) we proceed as usual: we consider a second Banach space XoX ,
such that on the one hand F' : X — X is well defined and continuous, and
fullfills ||F(u)||z < C|lul/% 2, which in turn gives

1o (un) | < CLMEHATPImRm2) gy B2, (17)



On the other hand, we combine this with smoothing properties of the linear
semigroup, i.e. with an estimate of the form [e“"||, ¢, < C(1 +T'/2).
Then for ||u,(1/L?)||x sufficiently small we have a unique solution for (16).

Next we want to show, that if ||ug(1)||x is small, then ||u,(1/L?)|x stays
small for all n € N, where L € [Lg, L3] for some Ly > 1, and that for some
o € R we have

[un(1) — @™l x < CL". (18)

Here () = e~"°/* is the fixed point of the map u — Ku = e20-"VI) IR 4.
The idea is, that in F},(u,) the factor L*?+4(1=P1=p2)=P2) gqes to 0 for n — oo,
provided that d(p; + p2 — 1) + po > 2. Therefore, if ||u,||x stays bounded,
the whole nonlinearity vanishes for n — oco. Then, additionally to the above
requirements, it remains to choose X in such a way, that the linear map K
contracts X to the invariant subspace span{t}.

The discrete convergence (18) gives for ¢t = L*"

lu(t, V) —

td/z Y()llx < Ot DR, (19)
This also shows, that (in an obvious sense) we only need the parabolic shape
of the spectrum of £ = A for o close to 0. In fact, assume that X is such that
Fourier transform is an isomorphism from X into a Banach space X. Then
the formula

f(,R,LU) = L_d(Rl/LfU,) (20)
and (19) give |[a(t,-/vE) — a*9()]z < Ct V2, ie., U(t,0) concentrates at
= 0.

2.2 The abstract theorem

The following abstract theorem generalizes the above ideas and is additionally
motivated as follows. We consider systems of the form u; = Lu + F(u).
Assume that u can be decomposed as u(t, z) = u®(t, ) +u*(t, ), where the so
called diffusive part u® behaves like the solution of a diffusion equation (with
irrelevant nonlinearity), and «* is linearly exponentially damped in time. Then
introducing variables u,, and v,, similar to (13) we obtain a sequence of systems
similar to (16).

In the following theorem we give assumptions on an abstract system of this
kind, under which an asymptotic behavior in the sense of (18) holds. The
results (12) and (9) will be proved as an application of the theorem to the
c¢SHE and to the SHE.



Theorem 1 Let (X;,)neny, (Yn)nen, be sequences of Banach spaces. Let Z,, =
X, xY,. For arbitrary L > 1 consider

T
un(T) = “o TV ey, (1) + / e“nT=T) B0y (1), v (1)) AT neN
1/L2 ’
T
v (T) = GE%(T_I/LZ)HSUn—l(l) +/ eﬁ%(T—T)FTf(un(T)’ V(7)) dT (21)
1/1.2

where (ug(1),v0(1)) € Zy, and Ly, Ly, Hyy, Hy Fe, F may depend on L. Define
zn(T) = (un(T),va(T)). Let (X)nen, be a sequence of Banach spaces with
X, C X, and assume that there exists a C > 0 such that for all L > 1 and all

n € N the following holds:

A1) (e5T)pso and (e“*") 5o are strongly continuous semigroups on Xy, Yy,

1657 15, x, < COL+T72) and [|e7 |y, s, < Ce™ T where a.> 0.

A2) FE € C(Zn, Xp), F2 € C(Zn,Y,), FE(0) = F2(0) =0, and for all
2,% € B{"(0) we have ||Fy;(2)=F(2)||5, < CL7"(|2]l 2, + |7l z,)ll2=7] .
and || F; (2)=F; (2)|lv,, < CL (|12l 2, + 12| z.) [|2—Z] .-

A3) || H |l x,, 1ox, < CL™ ||H, |y, 1=y, < CL™ for some m.,mg > 0.

A4) There exist I, € Lin(X,,R), ¥, € Xy, |y]luinxa,®) < C5 |[tnllx, < C,
such that 1,2, = 1 and such that V0,,_1 € X, _1 with I1,_10,,_1 = 0 we

have |50 Y HE (anpy 140, 1) —atbn|lx, < CL |0p_1|lx,_, +CL ™.

Then there exist constants 6 > 0, Ly > 1 such that for all zo(1) € Zy with
lzo(1)|lze < 0 and for all L € [Lgy, L3] there exists a unique solution (z,)nen

of (21) with z, € C([1/L*1],Z,). Moreover, there exist a C > 0 and a
continuous function o* : B{*(0) — R with |oa*(2)| < C||2||z,, such that

lun(1,-) — @ (20(1)¢on()llx, < CL™ and [[on(1,-)[ly, <CL™".  (22)

Remark 2 This rather complicated looking formulation of the theorem with
sequences (X,), (X,) and (Y;,,) of Banach spaces is due to the fact, that in
the Bloch transformed SHE the wave vector domain changes on rescaling,
see Remark 19. However, this is not essential for the theorem or for the
applications. For the ¢cSHE we can work in fixed Banach spaces X, X, Y, see
section 4. Then also the operators II,, = II (evaluation of the function at wave
vector 0 in Fourier space) and H: = H; = Ry, (rescaling in Fourier space)
are the same for all n.

As already outlined in the previous section, the idea of the theorem is
as follows. The assumptions A1) and A2) assure that we can solve (21) for



fixed n, provided that ||z,(1/L?)||z, is sufficiently small. Here we combine
the smoothing property of the diffusive semigroup e“»” with the estimate on
the nonlinearity F? in the weaker space X,. This accounts for a possible
"derivative like structure” in Fy. Note that the different scaling behavior
of the Lipschitz constants of F¢ and F; in A2) fits with the corresponding
estimates for e£»T and e“»T in Al).

By A3) we can control ||z,(1/L?)]||z, in terms of ||z, 1(1)||z,_,- Next, the
integrals on the right hand side of (21) vanish for n — oo prov1ded that
|2al|z, stays small. Then A4) means, that the linear map e£»(~/L*) H¢ has
the right contraction properties. This couples the propertles of the operators
efn-1/L%) and HE. Tt is clear that the operator e£2(-1/L*) HS is a contraction
for L sufficiently large

Remark 3 Consider (7) with po > 1 and d(p; + p2 — 1) + p2 > 2. We choose
X, = H™RY k) and X, = H™ (R k) for all n € N, where m = k =
[d/2 + 1+ §] for some 6 > 0, and [«] is the smallest integer greater than .
Define u, by (13), £& = A, H¢ = LRy, and v, = 0, i.e. ¥, = {0} for all
n € N. Then Al) is obvious. For F(u) = uP'(0y;u)P* we have F' € C(X, X)
with ||[F(u)||5 < |lul/% ™ by the Sobolev imbedding theorem. With (15) we
obtain A2). For o € Nd we find

||aa(LdRLU)”HO(Rd7k) S CLd/2+|a‘ ||aaU||HO(Rd’k), and thus

IR Lull ey < CLY*™||ul| g (e -
Hence we have A3) with m, = m + d/2. For A4) we define 4, = e~1°’/* and
IL,u = @(0) for all n € N, and consider the map u — Ku = 20~V LRy
in Fourier space. Using (20) this map becomes @ + e~ l7"0=1V/I)R, 14, and
with Fy(o) = (o) = e 1o we find K1 = 1. Next, for § € H*(R?,m) with
0(0) = 0 we have |6(c/L) — 6(0)] < Clo|L~ |01 grx (e my- This holds by the
mean value theorem since H*¥(R?, m) — C!(R?). Here we need the regularity
in Fourier space. Then

||€—|a|2(1_1/L2)731/L§||§1k(Rd7m)

k k—1
gl —219 a —l|ol2 oA

|or|=0 |a|=0

bk Y D0/ (14 o) do

la|=k
< CL_QHHH%q(Rd) + CL_ZHHH?'{k(Rd,m)

This shows A4). Thus we have (22), and from H™(R?, k) — L*°(R?) we
conclude (6).



2.3 Proof of Theorem 1

Throughout this section we use the notations from Theorem 1 and assume A1)—
A4). Moreover, we abbreviate Hy, (u,v) = (H¢u, Hév) and K¢ = e£a(-1/L) Fe,
By (21) we obtain (u,(1),v,(1)) for n € N from iterating the following process:

solve (21) on [1/L? 1], take H,1(u,(1),v,(1)) as initial condition for n + 1.

Without loss of generality we assume m. > m,. To estimate the solutions
(Un, vy) on [1/L?,1] we introduce

o) = luaDll, + [y Rai= sup 7o)
Te[1/L2,1]

Lemma 4 Let « > m,. There exist Ly,C > 1 such that for all L > Ly

and for all n € N the following holds. If r,_1(1) < L™%, then there exists

a unique solution (u,,v,) € C([1/L*1],Z,) of (21). This solution fulfills

R, < CL~%tme,

Proof. Define § = 2r,(1/L?) where L is such that 6 < CL™**™ < 1. Then it
is easy to see that the solution operator S : z, — z,, defined via the variation
of constant formula (21) by replacing z, = (un,v,) on the left hand side by

Zn = (Un, U,) and omitting HE, HS maps

Bs :={z:C([1/1%, Z,) : 2(1/L*) = Hpz, 1(1) sup ||2(T)||z, < 3}

Te[1/L12,1]

into itself and is a contraction, provided that L is sufficiently large. O

Now suppose for a moment that sup,, R, < R for some R € (0,1]. We let
un(1l) = antn + 0, with o, € R 11,0, = 0, and ¢, = v,(1). From (21) we
obtain

an =tn_1(1+ O(L™)) + O(L™ [|fn-1lx, )

1
LTI / L= ey (1), a (7)) d,
1/L2
1
gn =Kﬁ(%-1%-1 + on—l) - anwn + / eﬂg(l_T)Frf(un(T)a Un(T)) dT;
1/L?
1
e ARVl ; Sl SR / SN ES (u, (1), va (1)) dr.
1/L2?

This gives
o — an 1| < CL "oy, 1| + CL71||0n71||Xn—1 +CL "R}

n?

16nllx,, < CL™"|otn—1| + CL™ [0n-sllx,_, + CLT"Ry (24)

n?

I6nllv, < Ce™ " L™ |6y 1lly,_, + CL "R}, (25)



where in (25) we already used (23) and (24). Choosing Lg sufficiently large,
we find ||0,||x,, [|®nllv,, |on — an—1| < CL™™ for L > Ly. Thus, there exists
an o = o*(ug(1),ve(1)) € R such that |a, — *| < CL™". Hence we may
conclude assertion (22) in Theorem 1, collecting the various C' into C. The
continuity of the function o* and the estimate |a*(zo(1))| < C||20(1)||z, follow
from the continuity of the solution z, € C([1/L? 1], Z,) and from the above
estimates.

It remains to show sup, R, < R for some R € (0,1]. By Lemma 4 it is
sufficient to show that r,(1) < L=<+ for all n € N, for some v > 0, L > L
such that CL™" < 1/2. Define d,, = C|a|+||0n] x,, +||¢n ]|y, where C is chosen
such that r,,(1) < 6, and let § < L0 with By = ([m.]?+[mc])/2+ (m.+1)7.
By Lemma 4 and (23)—(25) we obtain Ry < CL~#*™ and thus

6 <8 +1o(1)CL  +CL™'R: < L™P,

where 8; = By+1—m,— for L sufficiently large. Next we have Ry, < C'L~A1+me
and hence §; < 0; + 7 (1)CL™2 + CL72R? < L%, where f, = B + 2 —
m, — v for L sufficiently large. Proceeding inductively we find §, < LP»
with 8, = Bp1+n—me—7v = By + n(n +1)/2 — n(m, + 7). Thus, for
Bo = ([m¢]?+ [mc])/2+ (m.+ 1)y we have SBf,,1>m.+7. Then the condition

0y < 01+ CL™R2+ CL™"R,, < 20[,,] gives

L pome

LT = [TImel=i=
2 A

n=[me|+1
which is fulfilled, like all the conditions above, for all L > Ly for some Ly > 1.
Defining § in Theorem 1 by § = L; 2P0 we find sup, R, < 1 and hence (22) for
all 29 € Zy with ||29||z, < ¢ and for all L € [Lgy, L3]. This completes the proof
of Theorem 1. O

3 Spectral analysis for the rolls A, , in the cSHE

We recall from [Mie97a] the spectral analysis for rolls A, , = re!*® in the ¢SHE,
r=+ve2— k2, k=k%—1. In fact, we redo the analysis in some detail since
we have a slightly different focus. In addition to characterizing the spectrally
stable rolls we are interested in the shape of the spectrum for the linearization
around these rolls.

From now on we use the coordinates = (£, ) with & = kxz; for the
original z1. Letting A(¢,z) = A, .(z) + €€ B(t, z) we obtain

8,B = LB + F(B), where (26)
LB =—(1+k (9 +i)>+08°)’B+&’B—2r’B — r’B,
F(B) = —2r|B|? - rB? — |B|*B.



By the ansatz B(t,z) = wi(t,z) +iws(t, z), w;(t,z) € R, j = 1,2 and sepa-
ration into real and imaginary part we find, for w = (wy, wy) € R?,

) ( Wi ) =L ( o ) + F(w), where (27)

wao (1)
P R e 4k20; Ly
- —4k?0¢ Ly —L5 +4K*0; + e — 1% )’
3w? + w} w
Flw) = (5550 ) e ().

with Ly = (k*0; 4+ 05, — k). We now solve the linear system 0w = Lw by
complexification and Fourier transform. Letting w = €W with constant
vector W € C? we obtain, for each o € R?, the algebraic eigenvalue problem

M(c)W = AW, where M(c) = M(z, k, o) = ( pre v ) (28

—iv  p
p=—(k+k’0? +03)* — dk*o} + K,
v = —4k*o1(k + k*07 + 03), and ¢ = —2(e® — ).
The matrix M (o) is hermitian and the matrix—entries of M (o) depend ana-

lytically on o € R2. Thus, for €2 > k2, we obtain two analytical surfaces of
real eigenvalues o — A; 9(0) with A;(0) > A2(0) for all o, explicitly given by

2
Aia(o) = p(k, o) + 6(82’ s \/0(5:‘6) + v(k,0)%
By W'(o) € C* and W?(o) € C?* we denote the associated orthonormal eigen-

vectors. We have \;j(0) = A;((—01,02)) = Aj((01,—02)),j = 1,2, and choose
W(o) in a smooth way with W/(o) = Wi(—0y,09) = WI((01, —02)). Since

o= (5 )

we have ker M (0) = span{(0,1)}, and the above convention gives
W(0) = (0,1). (29)
Expanding \; around oy = 0 we obtain
Ai(0) = —ci(e, k)07 — ca(k)os + O(|a]*), where (30)

M) and cy(k) = 2k.

ci(e,6) =2(1+ k) (2+3I€—4 R



Thus, the following conditions are necessary for the spectral stability of A, ,,

6+ 7k 3
2 " =3k - k34 Sk 4+ OK° 31
K g, = oF Ko+ oR (%),  (31)

ca(k) > 0& k> 0. (32)

ci(e, k) > 0& &2 > EY(k) =

The curves €2 = FS (k) and k = 0 are called Eckhaus— respectively zigzag—
instability curves.

The important point from [Mie97a] is, that although the O(|o|*) term in
(30) contains positive fourth order terms, there exists an £y > 0 such that for
0 < € < g¢ the conditions (31), (32) are also sufficient for the spectral stability
of A, .. Hence P={(e,r):0<e<eg k>0, e2> EY(k)}, is the parameter
region of spectrally stable rolls.

This region is shown in figure 1a). The additional line kK = Se will be
explained below, where we describe the behavior of the surface (o — Ai(0))
in dependence of (g, k) € P. To apply the diffusive stability method we need
to split the domain R? of wave vectors into two sets. In the first one, the
set of center wave vectors, o and \;(o) are close to zero, and the quadratic
terms —c; (¢, K)o? — ca(k)os in the expansion (30) dominate the shape of A;.
Its complement is the second set, called the set of stable wave vectors, where
A1(0) is below some (g, k)-dependent negative bound.

2) c= B b)
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Figure 1: a) Stability of rolls in parameter—region, b) Plot of \; for (g, k) € P

To motivate our discussion we look at figure 1b), showing a global picture
of Ai(0) for some (g,x) € P. We see that A\ (o) is close to zero near two
dangerous annuli Dy, which are centered at +07 ~ 1 and meet each other at
0 = 0. These annuli are inherited from the case (¢,k) = (k, k) where \; is
given as

A (K, k,0) = max{—(1 —k*(o1 — 1) —02)*+ K%, —(1—Kk*(01+1)*—03)* +K?},

and Aqo(k, k,0) is given by replacing max with min. Due to the symmetry
of A2, we now concentrate on positive wave vectors, i.e. on gi,09 > 0. We



define the dangerous set Sy = {0 € R% : (01 — 1)* + 0® = 1}. The matrix

M (e, k,0) is a small perturbation of M*(0) = M(k,k,0), i.e. |M(e,k,0) —

M*(o)|| = O(e? — k?). Defining dist(A B) = sup,cinfyep |a — b we find

Mg, k,0) < —(6%/2 — 1) < —(62/2 — 2¢?) for dist(o, So) > § with §% > 2x2%.

In particular, choosing § = 3¢ we find )\1( k,0) < —¢? for dist(o, Sy) > 3e.
It remains to study A (e, k, o) for dlSt(U, So) < 4. Therefore we let

Cy = {0 €[26,3] x [V4,2] : dist(c, Sp) < 6},
= {0 € [0,26] x [0,V3] : dist(o, Sp) < 6}.

In Cy, only |A (g, k,0)| is small. By Liapunov-Schmidt reduction of the
eigenvalue problem (M (o) — A(0)Id)W = 0 one finds A (¢, x,0) < —€%/2 in
(4, provided that 2 > 3x2.

In U5, both eigenvalues are small. Writing the characteristic equation for
A2 as A2+ A +ny = 0 with ny = —2p — ¢ and ng = detM (e, k,0) =
p(p+ c) — v? we have

)\1,2(0') <0 & ny=>0 and n; >0.

Since M (o) = M* (o) we have n? > 4ny. Moreover, ni (g, k,0) = e — k? > 0,
and since n; can only change sign if ng < 0, it is sufficient to study the condition

ng > 0. We have
no= Y Mmooy,
k+1<4
with p1p = 8(? — 3k?%) + 4k(5e? — 13k?) — 28k* and g = 4k(e? — k?). The
conditions p19 > 0 and pg; > 0 yield again the necessary conditions (31) and
(32). Moreover, for (¢, k) € P we have

2

2
no(e, k,0) > p100s + po105 + i lo|* for all o € O,.
From this we obtain A; < 0 in Cy, and from ny = detM (e, k,0) = A Ay we
find )\1 S —(/1;100% + /1/()10'%)/|)\2| in 02.
We now explain the line k = (e, 0 < § < 1/\/§ in figure 1a). Choosing
k = Be we obtain ¢y = 2k = 23 — 0 for ¢ — 0, but
832

4 2

1_7%(1+B5)):c‘{+0(8), cI:4—ﬁ > 0.
Analogously, uio(e, Be) = 82(1 — 38%) + O(e?) but ue (g, Be) = 4e36(1 — 7).
The dependence on (g, k) of the coefficients of the quadratic terms of \;(0)
near o = ( is crucial in order to estimate the size of the attracted neigborhood
of a spectrally stable roll. From now on we stick to the situation that xk = Se,
with 0 < 8 < 1/v/3. By this we can formulate our results in an easier way.
For the linear problem we summarize them in the following lemma.

ci(e, Be) = 2(2 + 3Pe —



Lemma 5 There exist continuous functions a; : (0,1/v/3) = R,, 7 =0,1,2
and an g9 > 0 such that for all B € (0,1/v/3) and for all ¢ € (0,g¢) the
following holds. Let k = (e, then

(o) = —ci0? — 02 + O(lo])

< —ap(B)o? —eao(B)os  for oF +eos < ax(B)e?/2,
Ai(o) < —2a1(B)e? for o} + €03 > ay(B)e?/4,
Aa(0) < —2a1(B)e? for all o € R?.

Remark 6 To apply the diffusive stability method for a fixed spectrally stable
roll it is enough, that for given ¢,k the eigenvalue \;(o) has the quadratic
expansion (30) around ¢ = 0, and that \; < —y < 0 for |o|] > § > 0 and
Ay < — for all 0. In particular, also in the region E% (k) < €2 < 3x2 the
diffusive stability (12) holds. However, it becomes much more complicated to
give estimates for the size of the domain of attraction in this region. In the
situation K = ¢ of Lemma 5 the size of the domain of attraction will depend
on ay and a;. We have the asymptotics

ao(B),a1(8) — 0 for B — 0 or § — 1/V/3. (33)

Therefore our result will be worse for 3 close to 0 or 3 close to 1/+/3, i.e. for
(g,k) close to the zigzag or the Eckhaus stability boundaries of ’5, see also
Remark 8. The factors 1/2, 1/4 and 2 are arbitrary. They are needed later in
the construction of the mode—filters and of the diffusive and stable semigroups,
see in particular figure 2.

4 Nonlinear stability of the rolls A, , in the cSHE

To prove (12) we formulate a renormalization process for (27) in Fourier space
and apply Theorem 1. We continue to use coordinates z = (£, z2) with & = kz;.

4.1 Refined scaling operators

In order to control the dependence of the constants in Theorem 1 on (g, k)
we start by rescaling Fw to obtain an e-independent size of the set of cen-
ter wave vectors. Therefore we introduce refined scaling operators R(z,,r,) :
Hm(k) — Hm(k), Ll, Loy > 0, (R(LI,L2)U) (.T) = u((L1§, LQ.TQ)). Clearly we have
(Riy,is)™" = Ry1i,1/1,)- Associated to the operator Rz, r,) in z-space, in
Fourier space we have the operator L;'Ly" R/, 1/1,) @ H¥(m) — H¥(m),
due to the rule

F(Riry,poyw) = Ly 'Ly (R1yy /1) Fu). (34)



In particular we will encounter the following two cases: first, for Ly = Ly =
L we write Ry, for Rr1/1); second, for Ly = /L; we write RY for
Ra/Ly,1/voy- This second case will occur for Ly = 1/e, due to the elliptic
shape of the set of center wave vectors. To be explicit, as particular cases of
R(l/Ll,l/Lz) we define

(Ri/zt)(0) = 4((01/L,02/L)), and (R*@)(0) = a((co1, Veos)).
Likewise we define Rf L= R(c/L,vz/1)- Straightforward calculations give
R1/01,1/L2)0 * R1y01,1/02)0 = L1LoR1)1, 1/1,) (1 * D), (35)

and, for « € N2,

a ~ maX{Ll, Lg}m oA
||a (R(I/L1,1/L2)u)||H0(m) S Cmin{Ll,LQ}W \/ L1L2||(9 U’“Ho(m)

This in particular gives R84 * Ri/p0 = L*Rq/ (4 + 9) for L > 0 and

||R1/L’&'||H3(2) S CL3||’CL||H3(2) fOI“ L Z 1. (36)

4.2 The result

We assume the initial conditions for (26) to be given at time 1/e2. We mostly
drop the arguments € and k = fe of ¢; and ¢y, and also the argument 3 of
ao, a; and ag. By P = (0,1/4/3) x (0, &0) we denote the set, of parameters (3, )
of spectrally stable rolls in Lemma 5.

Theorem 7 There exist continuous functions 6,C : (0,1//3) — R, and a
continuous function A : P x H3(2) — R such that for all (B,¢) € P the
following holds. Let k = Be, and let B(t,x) be the solution of (26) with the
ingtial condition B(1/€%,-) = By(-) € H?(3) satisfying ||R°FBy||gs(2y < 0(5).
Then we have

IA(B 9 Bo) _4E_2t_4$_%t arg
e it c c 00 (T2 < C /2t 3/2 t ) 37
Ve Amt e Tt Tt ey < C(B)e fort — oo. (37)

Remark 8 In order to understand the condition ||R*FByl||msy < 6(8) let
RBy = H. Then ||f[||H3(2) < §(j) means that By = R'/¢H has to be concen-
trated in Fourier space over an ellipse, with the length of the o;—axis given by
O(e) and the length of the oy—axis given by O(y/¢). Using (34) we obtain

1B(t,z)

By = F'RYH = 3*R°H

by inverse Fourier transform. In other words, (37) holds for all initial condi-
tions By which can be written as By(z) = e3/2H (€, \/ex2) with | H| 2@ <



d(B). This in particular means, that the domain of attraction is of diame-
ter O(¢*?) in L®(R?). For the functions A,6,C we have |A(B,¢, By)| <
C(B)||R*FBo||us(2) with C(B) independent of ¢, and

5(8) = 0 and C(B) = co for f—0or f— 1/4/3. (38)

The asymptotics (38) for 6(8) and C(p) follow from ¢;(g, Be) — 0 for g —
1/v/3 and € — 0, respectively cy(8g) — 0 for fe — 0. In both cases we have
ag(B8) — 0, and to check the assumptions in Theorem 1 we need estimates

based on ||e’a°|"‘2||L2(R2) < Clag) = V2 ao_m-

4.3 Proof of Theorem 7

In the following C' denotes a generic constant, independent of 3, £, L and n,
while C(f) denotes a generic constant which depends on 5. With u*? denoting
the p—times convolution, the Fourier transform of (27) gives

Oy (t,0) = M(o)w(t,o) + N(w)(t,0), where (39)
N — 3UA)T2 + UA);2 ~*2 ~*2 71)1
N(w)-—r( S % b — (W}* + W3*) * By )

For the one-dimensional SHE one expects from the Ginzburg-Landau formal-
ism [vH91, Sch94| and from the diffusive stability result for the associated
solutions of the Ginzburg-Landau equation [BK92] that the attracted neigh-
borhood of the rolls is of diameter O(g) in L*(R'). Yet the above approach
does not allow for a proof. Instead in [Sch96] before starting the renormal-
ization process an appropriate scaling in Bloch space is done, which gives an
e—independent size of the set of center-modes. For the real or complex 2d-
problem no Ginzburg-Landau formalism is available. But to estimate the size
of the attracted neighborhood of A, , we can proceed similar to [Sch96] and
rescale W by R?, i.e. we introduce w = R°wW. Then (39) turns into

O, = (REM)@ + R° N3 (RY*w). (40)
This in particular gives
(REA)(0) = —c1e%0? — (cy/e)e?02 + O(|(e01, VETL)[*).

Hence, remembering that ¢; = ¢* + O(¢) and ¢ = 20¢, we see that the
quadratic terms in o; and oy in (R°\;) scale identically in e. The factor &2
will vanish upon rescaling in time.

In order to decompose w into a diffusive and an exponentially stable part
we employ so called mode filters, which we define via multipliers in the wave
vector 0. Here we need the following simple lemma.



Lemma 9 Let M € C3(R?, Lin(C2, C?)). Then — (R(1/L1,1/L2)M)UAJ defines
a linear operator R/, /1M : [H?*(2)]> — [H?*(2)]*>. There exists a C > 0
such that for all Ly, Ly > 1 we have

|(Rv/L1,1/0) M)W || 132y < Cll0|| 32

Proof. This follows directly from the definition of H?(2), since (R(1/1,,1/1,)M)
is uniformly bounded for all L, Ly > 1. O

Next we define the family of projections
Pi(o) : € = span(W(0)), Pi(0)V = (V, W' (0))W'(0),
where (V, W) =V - W. We choose a cut—off function x € C$°(R?, R) with

1 for 0<|o| <az/4
x(o) =< €10,1] for ay/2<|o| <ay/2 .
0 for ay/2 < |o|

and define x'/# = (R'/¢x). Because the eigenspace associated to A, (o) smoothly
depends on o, for every fixed ¢ the function E¢ : o — xY¢(0)Pi(0) is in
C3(R?, Lin(C2, C?)). By Lemma 9 E° defines the so-called central mode fil-
ter E¢: [H*(2)]? — [H?(2)]?, (E“W)(0) = x*¢(0)Py(0)w(c). We define the
stable mode filter £° = Id — E°. Since E° and E* are not projections it is
useful to introduce auxiliary mode filters E" and E*" defined via the multi-
pliers E : g+ xY¢(c/2)Pi(c) and E*" : Id — x/¢(20)P;(0). We then have
E"E¢ = E¢ and E*"E* = E*. Finally there exist C,eq > 0, such that for all
e € (0,£9) we have |R°E* lles®2 Lin(e 2)) < C, where E* denotes E¢, Eh E*

or Esh. Thus by Lemma 9 the following holds.

Lemma 10 There exist C,eq > 0, such that for all e € (0,&¢) and all L > 1/¢
we have ||(RYEE*) 0| u32) < C||W||m22) for E* equal to E¢, E°", E* or E*".

Now we define the center (diffusive) part w., € X and the stable (linearly
exponentially damped) part ws; € Y to be the solutions of
e = AW, + N(W,, w,), We(1/e”) = (RPE)w(1/€?),

O, = N, + N*( 3,), @(1)<) = (REEB(1/eY), )

where N*(w,, w,) = REE*N(EPRYw, + E*"R'/*w,)) for * equal ¢ or s, and
A¢ and A® are defined by

REM P (o)w(o) for |o| < ag/2
REXSPy)(o)w(o) for |o| > ag/2

RE(M — M Py + XPy))(o)w(o) for |o] < ayg/4
REM)(o)w(o) for o] > ag/4

() = {
(D)) - {

N AN SN /N



Here \{ € C*°(R?,R) is a smooth continuation of \; for 0% + o3 > £%ay/2
such that X¢(o) < —ago? — eago3, and \{ is a smooth continuation of \; for
0? + e02 < €2ay/4 such \{(0) < —a,€?, see figure 2. Due to the construction
we have (REEM)w.(t) = w.(t) and (REE*")w,(t) = w,(t) for all t > 1/
Therefore, if (w,, ws) solves (41) then w = w, + w; solves (40).

2 2 2
g°a,/4 € a,/2 e“a,

A40,,0)

-aoof

INCAOR

Figure 2: Construction of A¢ and A®, partial functions A;(o1,0), A{(01,0) etc.

For n € NU{0} and L > 1 we now introduce the variables
un(T, 5) = we(L"T/e*, /L"), vn(T,X) := L"w,(L*"T/e*, B/L"),  (43)
Note that ug(1) + vo(1) = Rfw(1/e?) = O(1)c—0 in [H*(2)]2

Remark 11 a) It would be more consistent to denote u,, by u,, since u, is
the Fourier transform of the variable u,,(T) = L**R . F 'w®(L*"T/e?), living
in z-space. The same holds for v,. However, for the rest of the section we
work completely in Fourier space and therefore omit the ~.

b) The reason for the scalings (43) is that we expect the diffusive part w,. to
decay temporally like ¢t 1 = L~2?" i.e. like solutions of the nonlinear diffusion
equation in two dimensions with irrelevant nonlinearities. Therefore, because
of quadratic interactions, the linearly exponentially damped part w, should
decay like L=". Then v, = L"R, /LW, still decays like L™". The advantage
of this scaling of wj is, that in front of the mixed convolutions of w, = Rp»u,
and wy, = L™"R»v, we get an additional factor L=".

¢) We do not need normal form transformations similar to those in [Sch96,
Sch97]. There the analogue of w, measures the distance of the diffusive part
to the quadratic approximation of the (formal) center—-manifold. This removes
the quadratic terms from the nonlinearity for the diffusive part. Here we
do not need these transforms because of the faster decay of semigroup for
the diffusive part. In terms of the renormalization process in Fourier space
this better behavior in two dimensions is expressed by the factor L=2" in
RinuxRpav = LR (u*v), see (35), instead of L™" in one space dimension.



Using the scalings (43) we write the variation of constant formula for (41) as

T

(1) = MTVR yu (1/20) + [ MO DN (7))
1L
2 : (44)
v, (T) = T VIR o, (1/L2) + / M TN NS (u,, (1), v, (7)) T
1/L2

where T € [1/L?], n € N, and

Af = LZ"E’Q(’Rl/LnAC), N (up, vg) = LQ"S’QRI/LnNc(RLnun, L "Rpnvy),
A} = L *(RyypnN®),  Ni(tn,vy) = L& >Ry 1o Ns(Riaty, L"Rinavy).
The system (44) is in the form (21) with H = HS =Ry, X, = Y, = [H*(2)]?
and X,, = [H?(1)]?, independent of n. From (36) we immediately see that
assumption A3) on the operators HS, H: holds with m, = m, = 3. We define

I, =TI Vn € N, where ITu = TT(uq, u3) = Reus|s—o,

and %(E) — 67012%7(02/5)23 (Ri/LnXI/EWI)(E), (45)
and check the assumptions A1), A2) and A4) of Theorem 1.

In order to check A2) we use the following idea. The formula (35) shows,
that higher degree of nonlinearity gives higher powers of L™ upon rescaling
with Rp. Similarly, derivatives in xz—space, corresponding to vanishing coef-
ficients in Fourier space at o = 0 via F(0,,u)(0) = io;j(Fu)(c), give higher
powers in L1, cf. (15). The nonlinearity F(w) does not contain derivatives of
w, but for the projection of N(w) onto the eigenspace associated to A;(c) we
will get a vanishing coefficient at the critical wave vector 0, i.e. a ”derivative—
like structure”. To account for this, we later need the following lemma.

Lemma 12 Let K € C3(R? x R?,C) and assume |K(0,7)| < C(lo| + |7])".
For a,b € H?(2) define

(R1/K)(a,b)(0) :/ (Rl/Lf((a,a—m))a(o)b(a—m) dm.
R2
Then (R1/LK) is a bilinear mapping from [H*(2)]? into H*(2). There exists a
C > 0 such that for all L > 1 we have
I(Rs ) (@, D)lse oy < CL ™02 s [l o

Proof. The well-definedness and bilinearity of R, K is clear. For brevity we
only prove the estimate for ||(R1/LK)(a,b)| go2—,). The estimate then holds



for the derivatives of (R1,K)(a,b), using 0,, f(0/L) = 0;f(c/L)/L, where 0,
means the derivative with respect to the j-th variable. We have

|(R1/.K)(a, b)llfqoa,y)

/< Z Lo )b(a—m)dm)Q(lﬂa\?)Mda
SCL_% ( { b(o—m)|o|"(1 + |o|?) @172

2
+ b(oc—m)a(o)|lo—m|"(1 + \U—m|2)(2_7)/2} dm) do

< 011 (al 1 + 10 o)
< CL™|all3s) 1Bl 3 o)
where we used sup,cg» % <1, flax (b Q4] < lall[|b]| zo(2) and
1Bllz: < Clbllsca). -

Lemma 13 For all B € (0,1//3) there exists a constant C(3) > 0 such that
for all e € (0,g¢) the assumptions A1) and A2) hold with C = C().

Proof. Using Lemma 5, A1) follows from || u,(Z) |l < e %P7 ||u, ()|
and ||e®Tv, (2)||e < e ||u,(2)]|c2 . The well-definedness and continuity
statements in A2 are clear. We estimate || N (un, Un)|| g3(2) and || N5 (tn, vn) || #3(1)-
The Lipschitz estimates in A2) then follow completely analogous. For nota-
tional simplicity we assume (R, . E")un = uy, and (RS, . E*")v, = v,. Writ-
ing (Un,1, Upn2) and (v,1, v, 2) for the components of u,, and v,, and using the
formula (35) and r = /&2 — k2 = O(e) we obtain

s n_— c 1/e —n
N2 (i, v) 32y = L2 RS 1 BN (R1L (s + L7"00)) |l 22

=rL*e?

(1—( i/L"Xl/EPI))Ri/L"{

3(RYE (s + L ™0m 1)) + (R (s + L ™0 2))"™
( Q(RlL/f(un,1+L "p1)) * (R 1/€(un2+L ")) ) +(’)(3)}

H3(2)
n -n 2
< CV2 L ([l @) + Lol s))

where the the O(3)-term stands for the third order convolutions in N; (u,, vy,).

Estimating NS in X = H*(1) we find |[N||gsy = L2 ?||s1]lmsq) +
O(e'/2L~™), where the second term comes from estimating the mixed convolu-
tions of R1/Fu, with L-"RY v, in H3(2). The term s; contains the quadratic



terms in u,, given by

7“63/2 U U
51(%) = — o (Ri/LnXI/EPﬂ(E) ( ((zuzlli_u:;))(( )) )

= - (), (Gt i D)) o),

(2un 1% Up2)(

Now defining

S (vt (e ) )

and letting u, (T, X) = a,(T, Z)Ri/anl(E) with a,(7T,Y) € C we obtain

rs/
L2n

Here (R{,;. K1) is defined as in Lemma 12, i.e.

s1(T, %) = =5 (R5 12 K1) (au(T), au(T)) (B) RS 1o x W (B).

(RS 10 o) @ D)) = [ (RS RS, 2= M))a(S-M)aM) .

We have K; € C3(R? x R?,C) with K;(0,0) = 0, since W'(0) = (0,1)7,
confirm (29). Hence we gain a factor Ce'/2L ™™ in H3(1) using Lemma 12 with
v = 1. Thus we obtain [|s1||gsq) < Ce*L7"||uy * uy||gs(2), where again we
used r = O(e). This completes the proof of Lemma 13. O

Lemma 14 For all 8 € (0,1/v/3) there exists a constant C(B) > 0 such that
for all e € (0,e9) the assumption A4) holds with C = C () and 11,1, defined

by (45).

Proof. II € Lin([H?*(2)]*,R) and |[¢n|lm32) < C(B) is clear. It remains to
show the estimates

a) e VIR by — | sy < C(B)L™,
b) | YEIR 0] sy < C(B)L7Y|0]| a2y ¥ 0 € [H3(2)]? with T10 = 0.

a) We split the set {0 € R? : 07 + 02 < as(8)e?} of center wave vectors
into two sets @1 and Qo, defined by A\i(c) + ¢10? + ce03 < 0 for 0 € Q; and
Ai(0) 4+ c10? + cy03 > 0 for 0 € Q. The left hand side of a) is given by
(|| * ||H3 @n2) T || * ||§13(Q2)n,2))1/2, where * is the integrand, and || * || z3(q; ,.2)
means integration over Q,, := {X € R? : (eX1/L",/eXy/L") € Q;}, j = 1,2.
Using L*'e (R}, 1nM)(Z) + X + (c2/e)E3 < 0 for ¥ € Q1,, and hence
|exp((L*"e ePRE M (Z) + DT + (e2/e)53) (1 — 1/L?) — 1| < C(B)|Z|*L~2n



for ¥ € Q1,, we obtain ||eA%(1*1/L2)’R1/L1/Jn_1 — 1/Jn||§10(Q1 o) < C(B)L=?". For
|| * || z70(@2.,2) We obtain the same estimate by factorizing

€L2"5—2R§/Ln,\1(2)(1—1/L2)efclz:%/LL(@/s)zg/LZ’ _ efclsz(cz/s)E%
the other way round. Clearly, the estimates also hold with derivatives.

b) Without loss of generality we again assume that (R} /Ln,lECh)e = 0.
By the mean value theorem we have |6;(X/L)| < |S|L7"|6;]|cr(me,c) for the
components 6; of 8. This holds since 6;(0) = oW} (0) = 0 and 6,(0) = 110 = 0.

Thus

||eA%(lfl/Lz)RuLe“zS@)

3
<cf { ( > (oge! " R N ORI 2 )2, g0 L

|a|=0

2
+ 37 |aget T R IR |12, by S L2
|ae|=0

2n .—2pe c E 2 E
4 el R e AL (E) Z ‘ago(Z”ZL—G) (1+ |E‘2)2X(ﬁ)2}dz

|a|=3

< CBL2N0NEr we,c) + C(B) L2052y

The first term in the last line comes from [le=%"| . g < C(B). In the
second term we also obtain the factor L~2, because we loose L2 on substituting
Y. = ¥/L in the integral for the derivatives of 6 of order a with |a| = 2, 3.
Estimate b) now follows from ||0||c1(g2) < C||0||m3(2)- !

Thus, all the assumptions of Theorem 1 are fulfilled, and we conclude that
there exist constants 6 = §(8) > 0,C = C(8) > 0 and Ly > 1 such that for all
L € [Ly, L§] and for all z(1) = (uo(1),v0(1)) € [H?(2)]* with ||zo(1)||m32) < 6
we have ||u, (1) — o (20(1))¥nl|lm3e) < CL7", [|vn(1) || g2y < CL™™, where a* :
Px[H?(2)]* — R is continuous and fulfills |o* (3, ¢, 20(1))| < C(8)]20(1) || m3(2)-
Let A(B, e, w; + iwe) = o*(B, &, (REEF (w1, ws), REE*F (w1, ws))). Then A :
P x H3*(2) — R is continuous with |A(8,¢, By)| < C(B)||R*F Bol| r2(2)-

Next define ¢(X) = e~a1=(/9%31571(0). Then |1, — ¥|lms@) < CL™™,
and hence |[u,(1) — a*9)|| g3y < CL™™. By (34) we have for t = L*"/¢?,

L PRYEB(L, ) = Le 3P RYE (wi(t, ) + iwsl(t, )

_ f—l (un,l(l’ ) -+ L_n’l)n’l(l, ) + i(un,Z(l, ) + L_nun,Q(L )))’



2 22
and with (F1¢)(z) = N W =l /0 (0,1)T we obtain

Vei(ea/e) 4m

*

i _¢ b
||L2n5*3/2R1L/n€B(t’ x) _ Le dcy ~ 4(cy/e) ||H2(3) S C(ﬁ)[f"
01(02/8) A
o || Lan_Q Rl/&‘B(t ./E) _ Le_%_#%/e)||}[2 < C(/B) E—I/QL—TL
~—— L" ; ,—0102 An 3) > =
=t —e—3/24—1/2

Due to the embedding H*(R?) < L*(R?) this gives upon rescaling with RS ;.
(which does not change the L>®-norm) and multiplication with ¢~! = g2/L?*"

I~k 2

ia _ & _ ef _3/9,_
I1Bl1,2) = e e < CR)
This completes the proof of Theorem 7. ]

5 Existence of rolls and spectral properties for the SHE

In this section we recall from [Mie97a] the setup of Bloch waves and the results
on the existence and spectral stability of rolls in the two—dimensional SHE.

We search for stationary solutions u of (1) that bifurcate from (e, u) = (0, 0)
and are independent of xo and periodic in z; with period 27/k. Hence we
search for u in the form u(z) = U(£), where £ = kxy € Ty,. Here and in the
following we denote by 7, the one dimensional torus of length a, i.e. T, = R/ 7.
For explicity we take T, = (—a/2,a/2). In [Mie95], see also [CE90, Theorem
17.1], the problem for U,

_(1+(1+K/)8§)2U+52U_U3:07 U€H4(7'27r)7 (46)

dependent on the parameter e, is treated by Liapunov—Schmidt-reduction
around (¢,U) = (0,0). We cite Theorem 3.1 from [Mie97a]:

Theorem 15 There exists an g9 > 0 such that for all € € (0,e0] and for all
k € (—¢,¢€) there is a unique solution U, , of (46), which is even in & and
positive at &€ = 0. This solution has the expansion

U .« (€) = ay cos(€) + az cos(3€) + O(@) for (g,k) — 0,
a=a(e, k) =1/3(e*— K2, ay =a+a*/512+ O(a"), a3 = —a®/256 + O(a*).
Moreover we have U, (1 + &) = —U, . (§).

We continue to use the coordinates x = (£, x2), keeping in mind that & = kz,
for the original z;. Letting u(t, z) = U, .(§) + v(t,z) we obtain



0w = Lv+ F(v), where (47)

L=L(e,k)v=—(1+k+02,) v+e’v-3U2 v and F(v) = =3U, 0> —v’.

We need to solve the eigenvalue problem Lv = Av, where the linear operator
L has periodic coefficients due to the periodicity of u.,. In fact, the term
Uf,,€ is m—periodic in § since U, ,(§ + m) = —U, (). However, in difference
to [Mie97a|, we treat £ as 2m—periodic. Thus we can not refer directly to the
results from [Mie97a]. Instead, we give a sketch of the analysis and in Lemma
16 we summarize the results.

Hence treating £ as 2m—periodic, we now explain the Bloch decomposition
for the operator £, using the general frame from [Mie97a, section 2]. Defining
the translation operators Ty by (Tyu)(z) = u(zx — y), the periodicity of L is
characterized by the lattice group

G:={leR :T,L=LT}=21Z xR

Note that £ leaves invariant the space of functions of the form e ?W (o, )
with W(o,z + 1) = W(o,z) for all Il € G. In our problem this in particular
means that W(o,-) is independent of z5. Therefore we will drop zo below,
but for a moment we stay to the general notation. We define the periodicity
domain 7 := R?/g = T, x {0}, the dual lattice group G* :={h e R® : h-l €
277 V1 € G} = Z x {0}, and the wave number domain 7* := R? /5. = T; x R.
The space L2(T*, L*(T)) is called Bloch space, and a function u given in the
form u(z) = €°*U(z) with 0 € T* and U € L?(T) is called a Bloch wave.
The Bloch decomposition [RS78, XII1.16] D : L*(T*, L*(T)) — L*(R?),

u(z) = D(U)(z) = / (0,2 da

is an isomorphism, its inverse given by means of Fourier-transform as
1 .
U(o,z) = D (u)(o,z) = o Jezg: 70 (0 + 7).

Since in our problem 7 is one dimensional, we identify 7 = T, x {0} with
T2x, and we also identify G* = Z x {0} with Z. Then L*(T*, L*(72,)) is our
Bloch space, and the above formulas become

u(z) = D(U)(z) = / (0,9, (48)

U(o,6) = D )0, 8) = 5= Y Fal(or + o). (49

JEZ



In an obvious sense o1 € 77 is a true Bloch wavenumber, while g5 € R is a
usual Fourier wavenumber. Due to the construction we have

U((o1 + J,02),€) = € 7*U(0,€) for j € Z, and

AR (50)
U(-o0,&) = U(o, &) for real-valued u.

In the following these periodicities (50) will be stated implicitly by denoting
the domains as tori in the bounded directions. The Bloch operators B(e, k,0) :
H*(T2:) = L*(T,) are defined by

Ble, k,0)U(0,€) :==e 7L, k)[7%U (0, £)]
= — (14 k(8 +101)* — 03)°U(0,€) + (> = 3UZ,(€))U(0,€).

The main point is the identity [Mie97a, Theorem 2.1]

L?~spec(L) = closure( L spec(Be, , 0))) .

oeET*

However, here we only state and use results on the spectra of the B(e, k, 0),
since our analysis will be completely in Bloch space. For every fixed o € T*
the eigenvalue problem

B(e,k,0)U(0,") = XU(0,-), U(o) € H(Tax), (51)
is self-adjoint in L?(75,). Hence we obtain a discrete set of real eigenvalues
{Aj(0) € R: j € N} with A\j(0) > Ajt1(0) = —oo for j — oo,

with a corresponding set of eigenfunctions {f;(o,-) : 7 € N} which we nor-
malize such that || f;(o,-)||z2¢y = 1. Due to the translational invariance of
the original problem, we always have the eigenvalue A1(0) = 0 with associated
eigenfunction f1(0,7) = 0:U, x(§)/||Ue,kllL2(1)

The spectral stability problem for UE,K can be solved by again apply-
ing Liapunov—Schmidt reduction, now to the linear eigenvalue problem (51).
As in the ¢SHE one uses the fact that B(e, k,0) is a small perturbation of
B*(0) := B(k,k,0). This operator has constant coefficients. The eigen-
functions ¢, m € Z, ¢pn(€) = €™ of B*(o) form a basis of L%(73,), with
B*(0)bm = (m (K, 0) + K2, Where pig(k,0) = —(1—(1+&)(m~+01)% —02)2.
Thus, for ¢ € T* we have

[r (BY o)WV (0, )V (@0 dE < (k) IV (@ My (52)

where y(k,0) = min{(1 — (14 k)o? — 03)?, (1 - (1 + k) (o1 £1)% — 02)%} + k2.
We define the dangerous set Sy = {0 € T*: 0?+02 =1or (61 £1)*+03 = 1}.



From (52) we see that for 0 bounded away from Sy we obtain an appropriate
bound on the spectrum of B*(o). In fact, choosing a small 6 > 0 and defining
the set G5 = {o € T* : dist(o, Sg) > 0} of good wave vectors, we find y(k, o) >
§2/2 for all 0 € G5 and for all sufficiently small x. Moreover, for ¢ < gy with &,
sufficiently small we have || B(e, k,0) = B*(0)|| 1212 = ||e* = K> =302, || < @°.
Thus, for 0 € G5 we obtain

/ (B(e, r,0)V)Vdz < —(6%/2 — @)V | 2(rany-
7_.271—

In particular, choosing § = 3¢ we have §?/2 — a* > 2. So far we only needed
classical perturbation theory.

In order to decide on the stability of U, , it remains to study the small
(in modulus) eigenvalues of B(e, k,0) for o close to Sy. This can be done
by Liapunov-Schmidt reduction and gives similar but more involved algebraic
problems as in the ¢cSHE in section 3. Here we only report the results and refer
to [Mie97a] for the details.

The sharpest conditions are obtained from the case o close to 0. There,
B*(o) has two small eigenvalues. For the corresponding eigenvalues \y(0) <
Ai (o) of B(e, k,0) one obtains \y(c) < —2(e? — k%) and

(o) = —ci(e, k)0? — cy(e, k)02 + O(|o|*),  where (53)
1 =2(1+k) (2 + 3k — 4%) + O0((e? = kH?), ¢y =264+ O(e® — K?),

with c(g, k) = —3a2?/2+O(a?). These expansions follow from (4.4) in [Mie97a].
Clearly we obtain the two necessary conditions ¢ (g, k), c2(¢, k) > 0 in order to
have \i(g, k,0) < 0. Finally, the following necessary and sufficient conditions
for A\;(¢) < 0 and hence for the spectral stability of U, are calculated in
[Mie97a]: € < g for some gy > 0, and

e2>Ep(k) = 3k — k> + O(k"), and k > Ez(c) = —&'/512+ O(%).  (54)

Compare to (31) and (32). The curves e = Eg(x) and k = Ez(¢) are called
Eckhaus respectively zigzag instability curves.

Like in the cSHE, typically ¢y is much smaller than ¢;. Letting x = ¢
with B € (0,1/v/3) we find c;(e, Be) = 28¢ + O(?), but

2
i, 50) =22~ 42 (14 ) + 0(0) = 5 + O)
with ¢] > 0 independent of ¢.

We summarize our results in the following lemma, where again we stick to
the situation that k = fe with 0 < 8 < 1/\/§ By this convention we now



do not cover two small parts of the parameter region of spectrally stable rolls,
namely the sets {(¢,k) : 0 < & < eg,Ez(¢) < k < 0} and {(g,k) : 0 < e <
80,EE(K3) S 62 S 3!’62}.

Lemma 16 There eist continuous functions a; : (0,1/v/3) = Ry, 7 =0,1,2
and an gy > 0 such that for all B € (0,1/+/3) and for all € € (0,&0) the
following holds. For k = e the largest eigenvalue (o) of B(e, k,0) fulfills

(o) = —c10? — cy02 + O(lo|*)
< —ao(B)oy —eag(B)oy  for of +e03 < ax(B)e?/2,
A1(0) < —2a1(B)e? for o +c03 > ay(B)e?/4.

All other eigenvalues \j(e, k,0), j > 2, fulfill

Aj(0) < —2a,(B)e* forallo € T* =T, x R,

Remark 17 As in the ¢SHE we call {0 € 71 X R : 02 + 02 < ay(B)e?} the
set of center wave vectors, and its complement the set of stable wave vectors.
We again have the asymptotics ao(8),a1(8) — 0for 3 — Oor f — 1/4/3.
Therefore our result will be worse for 3 close to 0 or 3 close to 1/+/3, i.e. for
(¢, k) close to the zigzag or to the Eckhaus instability curve. Finally we remark,
that there exists an a3(3) > 0 such that \;(c) —Xy(0) > a3(B)e? for 02 +c02 <
as(8)e2. This will be used to define projections Py (o) : L2(T3;) — span{fi(c)},
depending smoothly on o. For 0? + 02 > ay(B)e? these projections may no
longer be well defined, since \; may intersect with As.

6 Nonlinear Stability of rolls for the SHE

To prove (9) with respect to small perturbations in H?(3) we want to apply
Theorem 1. Since the inverse Bloch transform maps H?(3) into a Bloch space
with regularity and weights, and since moreover the wave vector domain in
the renormalization process will depend on n, we first set up notations and the
functional analytic frame, and then state and prove our result Theorem 20.

6.1 Bloch spaces with regularity and weights

In section 4 we heavily relied on the fact that Fourier transform is an iso-
morphism between H™(k) and H¥(m). Bloch transform is an isomorphism
between H™ (k) and a Bloch space with regularity and weights: we define

B(k,m,b) = {V € HE(T*, H™(T52)) : IV | emp) < o0}, where
V1B gmy = D 3 NOOV)P o samanyys #(0) = (1+ o2, (55)

la|<k f<m



Note that by definition V' € H*(T*, H™(72,)) has the periodicities (50).
Clearly the weight does not affect the properties of the Bloch space with re-
spect to the bounded wave vector direction o; € 7;. Identically to Lemma 5.4
in [Sch97] one can now prove the following fundamental Lemma.

Lemma 18 The mapping D : L*(T*, L*(T2,)) — L?(R?) defined by (48) is an
isomorphism between B(k,m,m) and H™(k).

Corresponding to H?(3) in z—space, our basic space to work in will be B(3, 2, 2)
and to abbreviate we set B(b) = B(3,2,b). Due to Lemma 18 we have a well
defined operation * in B(3,2,2), associated to pointwise multiplication in z—
space. Also note that B(3,2,2) — C*(T*, H*(Tar))-

6.2 Scaling and nonlinear interaction in Bloch space

For the cSHE the renormalization process was based on rescaling in the Fourier
wave vector, corresponding to rescaling in z—space by the formula (34). Using
the same idea for the SHE the wave vector domain 7* = 7; x R changes on
rescaling in 0. Thus, for L > 0 we define the spaces

BL(k7m7 b) = Hk(’]i X Ra Hm(EW)L BL(b) = BL(3a27b)a

equipped with the norm (55) with [|-|| 12(7; xr,£2(73,)) instead of [|-]| L2 (71 xr,L2(73,.)) -
For L, L, > 0 we define the scaling operators
01 09

,R’(i Ay B(k,m,m) — By, (k,m,m), (R(i A )(G §) = ((Ll L, —),)-

1
Lq1’Ly L1’Ly

Remark 19 Note that these operators do not correspond to scaling operators
in z-space. This is the case if we define By (k,m,b) = H*(T;, x R, H™(Tox/1))
and Ry,,U(0,€) = U(o/L, LE). Then we have LD~'"Ryu = Ry, D~ 'u, and
D; ' := DR}, defines an isomorphism between H™(k) and By (k, m,m), sug-
gesting that the renormalization process which follows below could be suitably
controlled in z—space. However, the norms of D;l and Dy depend on L.
Therefore this approach fails. For this reason we use the more simple defini-
tion above. This gives the necessity to formulate Theorem 1 in sequences of
Banach spaces.

We set Ri/r, = R(i/r,1/1) and RYL = R(I/L,l/\/f)' Analogously to (35) we

obtain

maX{Ll,LQ}
< LiL
R/z1,1/2)U Bz, (ksmp) < len{L LoV o||Ul|(k,mp)-  (56)

We denote by * the operation “convolution” in B(k,m,b) that is associated to
pointwise multiplication in z—space, i.e. for U,V € B(k, m,b) we define

(U *V)(0,€) = D (DU(z)DV (z))(0,8).



By Lemma 18 this definition is reasonable for b > 3/2. We have the formula

(U xV)(0,8) = Ze“f/ ((o1+j—my, 09—m3))0(m) dm

JEL meR2

:Z / W((or+j—mi—k, o5 — mg))e VMG ((my+k, mo))e™ dm
meTi xR

JEZ k€EZ

= /m o (Z 9 0((o1—my+j, 00 — mz))) (Z eik%((m1+k,m2))) dm

jez keZ
=/’ U(o—m, &)V (m, &) dm
meT1 xR

where we used (50). Scaling of o gives

g1 O

Rojmna@ V)@ = [ UG =mi, P = ma), OV, dm

01—T~n1 02—77"02

=it [ uO T oV g am

= L7 Ly N (Ra1yza,1/80)U *10 Reiyza,1/20)V) (0, ). (57)

In the following we drop the subscript and write * for x;,. As before we write
V* for the p-times convolution. Introducing V' (¢t) = D~'v(t), equation (47)
turns into

0V (t,0,€) = Ble,k,0)V(t,0,§) + N(V)(t,0,€), where (58)
N(V)(t,0,6) = =3U:x(€)V()?(0,) = V(1)?(0,€).

Next introducing V(t) = REV (t) € Bi/:(2), equation (58) turns into
8,V = (R°B(e,k,0))V + REN(RY=V). (59)

Note that the spectrum of R°B(e, &, -) is given by the surfaces 7;/. xR 3> o —

ReAj(0), j € N, in particular RE\; (o) = c1e202+(co/e)e?02+O(| (01, /E02) [*).
Equation (59) is the analogue of (40). In fact, the analysis of section 4 for (40)

now translates in an almost automatic way to (59).

6.3 The result

We assume the initial conditions for (47) to be given at time 1/¢2. In order to
prove the nonlinear diffusive stability of a spectrally stable roll u,. g, (8,¢) €
P = (0,1/v/3) x (0,&), and in particular to estimate the size of the domain
of attraction, we will consider the rescaled problem (59). Thus we obtain
the condition (60) on the size of V(1/¢%) = RED~'v(1/¢%) in By/.(2). This
condition is interpretated in Lemma 21.



Theorem 20 There exist continuous functions §,C : (0,1/v/3) = R, and a
continuous function A : P x By).(2) — R such that for all (8,€) € P the
following holds. Let k = Be and let v = v(t, x) be the solution to (47) with the
initial conditions v(1/€2,+) = vo(-) satisfying

IR D™ wol|,,.(2) < 8(B). (60)

Then
* 2

6% Rl _ﬁ _ _
—dort 4c2tf1(0’€)||Loo(Rd) < 0(5)5 3/24 3/2, (61)

\/C1Co t
as t — oo, where o = A(B,¢€,v0) and f1(0,£) = 0cU. x(§)/||Ue.kllL2(75,) -

lo(t, z) —

Lemma 21 The condition (60) holds for initial conditions vy € H?(3) given
in the form vo(z) = /(R A,(2))e™ + c.c. with n?||An||m2) < CS(B).

Proof. By (34) we obtain ty(0) = A, ((2=2, %)+ Ac (2 —, %)), where

13 13

A¢(5) = A(—0). This shows that @y is concentrated over two ellipses, centered
at (£n,0) with the lengths of the o, and oy— axis given by O(¢) and O(1/¢),
respectively. Without loss of generality we assume supp A, C {0 : |o| < 1/2}.
Then
%(07 f) = (D_1v0) (Oa 6)
1 ~ oy —n+j 09 A 01— TN+ ] 09
il E(A (2L TS P2y, feZl T P J T2
=52 ¢ Al \/E) t A NG
JEZ
1 [ e 00 O A O] O
— —[eineq (2L 22 —ing je (U1 T2y}
27?(6 ”(s ) te "(6’\/_)>
Hence we obtain Vy(o, &) = RVy(0,€) = L (e A, (o) + e ™ AS(0)). This

)

shows that [|82Vy(a, )[|%e Ty = (L +n? + n*)(02A,(c))2. Thus we have
IV 5,.2) < On*[| An(0) | 115(2), and hence ||V |5, .(2) < 8(8) if n*[| An(0) | 13(2) <
Cs(8). 0

Remark 22 From Lemma 21 we in particular see, that the attracted neigh-
borhood of . g. is of diameter O(g%/2) in L*®(R?). It is clear, that (60) also
holds for vy given in the form

T) = 253/2An(5£, VETy)e™ + c.c., where || ZnQAnHHz(;;) < Co(B).

In this case the Fourier modes of vy are concentrated in ellipses centered at
the wave vectors (n,0),n € Z, with the o; and o9 semi-axis of order € and /.
For the functions A, §, C we have

A(B,2,v0] < C(B)IIR*D™ o]l 2 (62)
with C(B) independent of ¢, and §(8) — 0 and C(B) — oo for B — 0,1/+/3.



6.4 Proof of Theorem 20

We need to separate the eigenfunctions V(o,-) € L?*(T3,) of B(e,x,0) be-
longing to the surface {0? 4+ €02 < aye?} > 0 — Ai(o) from the linearly
exponentially damped ones. As in the cSHE this is done via mode—filters.

Lemma 23 Let M € C*(T xR, Lin(H™ (Ts,), H™(Ty))) and let Ly, Ly > 1.
Then (R yYM)V (o) = (Rgyrii/1)M(0))V (o) defines a linear operator
(R : B, (n,my,b) — Br,(n,mg,b). There exists a C > 0 such that

N
LL

LL
1Ly

I(Ra1/L1,1/) M)V || B, (nma by < CIV |81, (n,ma,1)-

—~

Proof. This directly follows from the definition of B(n, m, b) since (R, yM)

is uniformly bounded for all L,, Ly > 1.

1 1
LIy

From Lemma 16 we know, that at least for 0% + £02 < ay(8)e? the eigenvalue
M (o) of B(e, k,0) is bounded away from the rest of the spectrum. Thus for
fixed o with 02 + 02 < ay(B3)e?, through the Dunford-integral

1
— /(B(s, k,0) — sId) 'ds,
T

27

Pl(O') =

a B(e, k,0)-invariant projection from L?(75,) onto spanf; (o) is defined, where
" is a curve in C surrounding A; (o) in the resolvent set of B(e, k, o). Since the
eigenvalue problem (51) is self-adjoint in L?(73,) the projection is orthogonal
in L?(7,) and we have the explicit formula

PV () = ( [ Feave dg) fi(0,).

For 02 4+ 02 > ay(B) (where no smoothness of o — P;(0) may be guaranteed)
we continue P; in an arbitrary but smooth way. Next fix a smooth cut—off—
function

1 for 0<|o| <az/4
x(o) =< €10,1] for ay/4<|o| <ay/2 .
0 for ay/1 < |o|

Then the function B¢ = xY¢ P, € C3(7; xR, Lin (H2(T3,), H%(T35))) defines the
center mode filter E° : B(n, m,b) — B(n,m,b), where we used x'/¢ = RY/*x.
We denote the stable mode filter by £* = Id — E° and introduce auxiliary
mode filters E* and E*" defined via the multipliers E" : o — x°(c/2)Pi(0)
and E*" : 5 — 1d — x*(20) Pi(c). We then have E“*E° = E° and E*hE® = E*.
By Lemma 23 the following holds:



Lemma 24 There exists a constant C > 0 such that for all L > 1/¢ we have
|(Ri.E*)V g,y < CNVB8) for E* equal to E¢, E"| E* or E*".

Now we define the center part Vc and the stable part VS to be the solutions of

aVe = AV + N(V,, Vi), Vi(1/&%) = (REE)V(1/2%),

N N - - (63)
OV = NV, + N°(V,, Vi), Va(1/e?) = (REE")V(1/€°),

where N*(V,, V,) = REE°N(E"RYV, + EshRY/4V})) for * equal to ¢ or s, and
A¢ and A® are defined by

: RMPY@)T () lol < aa/2

(AV)(0) = { (REXP)(0)V(0) , |o| > az/2

s (RE(B(Ek, ) = MPr + APV (0) | o] < aa/4
WWe) = {(R Ble,n, )7 (0) ol > az/t

Here, \¢ is a smooth continuation of \; for 02+c02 > ¢ a2/2 such that A(o) <
—ag0? —cayo2, and \; is a smooth continuation of \; for 0?+e0? < £2ay/4 such

that A\{(0) < —a;e% Due to the construction we have (REECh)V(t) = V.(t)
and (’REES’L)V( ) = V,(t) for all t > 1/2. Therefore, if (V,,V,) solves (63),
then V =V, + Vj solves (59). Using the same scalings like in (43), i.e. defining

Un(T,E):VC(LQ”T/sZ,Z/L”), Vo(T, X)) = LV, Vo(L*"T /e, ¥/ L™)

we write the variation of constant formula for U,,V,, as

T

U, (T) :eA%(T‘l/L2)R1/LUn(1/L2)+ / AT NE(U, (1), Vi (1)) d,

1/L2

v (64)
Vo (T) = ehalT-1/17") TRy Vu(1/L%) + / 2eAi(T*ﬂN;(Un(T),Vn(T))dT,

1/L

where T € [1/L* 1], n € N, and

AS = L*"e *(RiypnA°), NE(Un, Vi) = L *Riypa N9 (RpnUp, L "R1nVy),

n

A} = L*e *(RyypaA°), NE(Un, Vi) = L *Rypn N*(RpnUn, L "R Vay).

n

Defining X, = Y, = Bpn/e(2), Xp = Brne(1), and HE = Hf = Ry/pn, the
system (64) is in the form (21). Using (56), assumption A3) in Theorem 1 is
fulfilled with m. = my; = 3. We define

I, € Lin(Xy,,R) by II,U = (U(0,-), f1(0,-))r2(75,.), and

) 65
\Iln € Xn by \Iln(z, ) = 6_612 (02/5)22X(E/Ln)f1(E/Ln ) ( )



and show the assumptions A1), A2) and A4). Here, II,, € Lin(X,, R), as well
as ||Hn||Lin(BLn/E(2),R) < C, follows from BLn/6(2) — CO('TLn/E X R, H? (75”))
and from U(-0,§) = U(0,¢) for real-valued u. The estimate ||¢,|.n,.2) <
C = C(p) is clear.

In order to show A2), the crucial point for the ¢SHE in section 4 was the
vanishing of the projection of the quadratic terms on the critical eigenspace at
wave vector 0. The key estimate was the estimate on s; in Lemma 13, which
relied on Lemma 12. In B (b) = BL(3,2,b) we have the following analogue of
Lemma 12. Using the respective spaces also the proof is completely the same.

Lemma 25 Let K € C3((T: xR)?, H*(Tzx, C)) with || K (0, 0—m) () || z2(75,) <
C(|lo| + |o—ml]|)Y. For A, B € BL(2) define

RipB)A B0 = [ (RupK(o.0-m, )A(0.€)Bo-m, ) dm.
meTr xR

Then (R1/pK) is a bilinear mapping from [Br(2)]* into Br(2). There ezists a

C > 0 such that for all L > 1 we have

(R K)(A, B)|l5y -y < CL™™™ Y[ Allg, 2| Bl s, (2)-

Lemma 26 For all B € (0,1//3) there exists a constant C(3) > 0 such that
for all e € (0,g¢) the assumptions A1) and A2) hold with C = C([).

Proof. Using Lemma 16, assumption A1) follows from ||e*»TU, (Z)| m2(7,) <
e =T U, (S) | m2(7,) and (| €T Vo (D) |27,y < € LTV ()| m2(73,)- The
well definedness and continuity statements in A2) follow from Sobolev imbed-
dings. We estimate ||N;(Un, Vi)llByn,.2) and || N5 (Un, Va)llyn, 1), the Lip-
schitz estimates in A2) then follow analogously. For notational simplicity we
assume (R, E")U, = U, and (Rf,,.E*")V, = V,. Using (56), (57) and
|IUe xllz = O(e) we obtain [N} (Un, Va)lls,n e2) < CEV2L™ (|(Un, Va)llg,., )
and ||N5(Un, Vi)llByn o) = L€ 72|51l1Bym000) + O(e'/2L~™), where the last
term comes from estimating the mixed convolution of R}/£U, with L "R}V,

in Bin/:(2). The term s; contains the quadratic terms in U,, given as follows.
For o,m € T* = T; x R we define

Ki(o,0 —m)(&) = /T Ue(6) fr(0 — m, &) f1 (m, €) fi(0,€) dEfi (0, €),

where eU. . = U, .. Then K, € C3(T* x T*, H(T3,)) with K(0,0) = 0. This
holds because U, . is even, thus fi(0) = 0¢U, ,./||Us k|| 12(73,) is odd, and hence
the integral goes over an odd function for ¢ = m = 0. See also the following



remark. We obtain ||I?1(a,o—m)||Hz(7—27r) = O(|o| + |m]), and s, is given as

363/2+1
51(%,8) = — L2" (R 1/L» E°) sn(U * Un) (2, €)

:_32222 ( { / {Un(E—M,g)Un(M,g)}dM

~E7-27r ETLn/sXR

(RS 12,8 b 4€ ) (R3 10 F(5.€)

352 % .
=) [ R R, DM @)l M) (M)

where Uy (%,¢) = an(X)(R)1. f1(%,-)) and we have one factor & from the

modulus of U, .. Using Lemma 25 with v = 1 we gain a factor ¢'/2L™" in
Binje(1), ie. |Is1llBn,.0) < 055/2+1/2L_3"||Un||%m/5(2). O

Remark 27 As pointed out in the Introduction, the fact that K;(0,0) = 0
comes from the translational invariance of the SHE. To see this, consider (47),
ie. vy = Lv + F(v), over the domain 73,, which corresponds to ¢ = 0 in
(58). Then there exist a smooth one dimensional center manifold M€, given
in the form M¢ = {~vf; + h(y) : v € (—6,0)} for some 6 > 0. Here f; =
fl(o) = 8§ue,n/”8§ue,n”L2(7§w) as before, and h(’Y) € H2(757r) \Span{fl} with
h(v) = O(7?). The function h is determined by the invariance condition. This
means that v(t) = v(t)fi1 + h(y(t)) solves (47) if and only if (¢) solves the
reduced equation ¥ f; = P°F(yfi1 + h(7)), where the projection P¢ is precisely
P;(0). Thus the right hand side of the reduced equation is given by

PF(yf1 + h(v)) = /r {(_371'5,16(5)(72]"1(5))2 +0(v%) + 0(73))f1—(§)} dé fr.

Since M° consists of fixed points we already know that PF(vfi + h(y)) =
and since the quadratic term in P°F(vf1 + h(y)) = 0 is given by K1(0,0)y
we can conclude K;(0,0) = 0 without any calculation.

0
2

Lemma 28 Let I1,, and U, be defined by (65). For all B € (0,1/+/3) there
exist a C(B) > 0 such that A4) holds with C = C(f) for all € € (0,¢y).

Proof. The estimate || (-VEIR, 1T, | — UollBpn,2) < C(B)L™™ works
the same way as in the complex case, see a) in Lemma 14. To show

|| A (1= 1/L2)R1/L®”BLn/e <CBLYOls @ if Il ,© =0 (66)

Ln— 1/



we apply the mean value theorem in Bi»/.(2) and obtain ||©(3/L, )| g2(7;,) <
ISIL Ol (T jxii2(T2r))- USIng Binje(2) < C(Tpnje, H*(Tor)) the rest
of the proof of (66) follows analogously to the proof of b) in Lemma 14. O

Thus, by Theorem 1, we conclude that there exist 6(8),C(8) > 0 and
Ly > 1 such that for L € [Ly, Lo]* and Zy(1) = (Uo(1), Vo(1)) € [Bi/c(2)]* with
1Zo(D)lls,,.(2) < & we have

||Un(1) — a*(e, K, ZO(l))\I]n”BLn/E(Q) <CL™, ”Vn(l)”BLn/s(?) <CL™, (67)

where a* : P x[By-(2)]* — R is continuous with [a* (¢, k, Z| < C(B)||Z]|5,,.(2)-
Then A(B,¢,v9) = a*(g, k, (REE*D™ vy, REE*D™11y)) is continuous and ful-
fills (62). To conclude (61), let W, (%,-) = e~a=i~(e2/a=3y (53/L7)£,(0,-) and
Ry = Un(1) + L "V,(1) — &* Wy, Then || ¥, — Wy |5, .2y < CL " and hence
| Rall5,n,.2) < CL™". The solution v of (47) fulfills

v(L*"/e?) = D(VE(L*)e?) + V*(L*/e?)) = D(Ryf(Unu) + L "V, (1))
= *DRYSU, + DRYER,,

and since

(DRLW,)(x) = / eTIR [ xe” 1 /% do f,(0, €)

T1 xR

—3/2~2n / eia-(sm/L",x/Eﬁ/L")X(U)e—CIU%—(02/5)"% do f1(0,€)
'TLn/EXR

(4r)! S

2
_& __®
e 4c1 4(ea/e)

c1(co/e)

we obtain in L>°(R?), letting ¢ = L*" /&2,

283/2L_2n( i/Ln

)f1(0,€) + O(e™*"/),

Am)la* _ &2 =3 _ e
e 0.9 i = (DRI R)(@)= + Ofe 719

=L [ NI R, (0,€) dof ey + O )
Trnye xR

[o(t,z) =

<c s [ |Rie9)do
£€Tor 'TLn/EXR

< G2t Sup 1R (5 )@+ | PMlz2(rinexmy (L4 [ ) 2273 xm)
27

< Ce Pt Ryllgyn,2) < Ce™32732,

This completes the proof of Theorem 20. O
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