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Abstract

We show the existence and stability of modulating multi—pulse solutions for a class
of bifurcation problems given by a dispersive Swift—-Hohenberg type of equation with
a spatially periodic forcing. Equations of this type arise as model problems for pat-
tern formation over unbounded weakly oscillating domains and, more specifically,
in laser optics. As associated modulation equation one obtains a nonsymmetric
Ginzburg-Landau equation which has exponentially stable stationary n—pulse solu-
tions. The modulating multi—pulse solutions of the original equation then consist of
a traveling pulse-like envelope modulating a spatially oscillating wave train. They
are constructed by means of spatial dynamics and center manifold theory. In order
to show their stability we use Floquet—theory and combine the validity of the mod-
ulation equation with the exponential stability of the n—pulses in the modulation
equation. The analysis is supplemented by a few numerical computations.

In addition we also show, in a different parameter-regime, the existence of exponen-
tially stable stationary periodic solutions for the class of systems under consideration.

1 Introduction

As a model problem for the pattern formation in systems with a spatially
periodic forcing we consider parabolic partial differential equations of type

Ou = L(0p)u + g(z)u + f(u, uy). (1.1)

Here u = u(t, z)€R, t>0, z€R, L is a dissipative constant coefficient differen-
tial operator, ¢ is a smooth spatially periodic function and f is a smooth non-
linear function with | f(u, O,u)| < C(|u*+|0,u|?) for small |ul, |0,u|. Below we
choose L of Swift-Hohenberg type, and for this reason we call (1.1) a periodic
Swift-Hohenberg equation (pSHe). Equations of type (1.1) arise in hydrody-
namic bifurcation problems over oscillating domains, see e.g. [EK97, DS98].
Other interesting applications are electromagnetic waves in periodic media,
see Remark 1.9.

For certain L,g and f we construct exponentially stable modulating n—
pulse solutions wpy , to (1.1). These consist of a traveling n—pulse-like envelope
modulating a spatially oscillating wave train, see figure 1. The method is
inspired by [Sch99]. The first step consists in the derivation and justification
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Figure 1: A modulating 2-pulse, traveling at speed ¢

of a non-symmetric Ginzburg-Landau equation (nsGLe) as the modulation
equation associated to (1.1). For suitable choice of parameters the nsGLe has
exponentially stable n—pulse—solutions [KS98]. This suggests the existence of
Upy,n, in (1.1) and will be used later to show their stability. The construction
of upy, Will be done via a spatial dynamics formulation and center manifold
theory.

Our particular choice of L and g is as follows. We take

Lu = [—(1+ 82)* — e*nag + p10, + B392]u,

with 81,83 € R, ag,n > 0 and 0 < €2 < 1. The operator —(1 + 9%)? — 2nay
is the linear part of, e.g., the (subcritical) Swift-Hohenberg equation, where
the small bifurcation parameter £ measures the distance from the onset of
instability of the trivial solution u = 0, see [SH77, Man92]. The terms 3;0,u+
B30%u account for dispersion. For g we make the rather specific choice

g(x) = 2e’n0y cos(22) (1.2)

with @; > 0. Later we assume that a;,ap = O(1) and take n as additional
small parameter, introduced for convenience.

ikz+A(k)t

The equation u; = Lu possesses solutions e where

A(k) = —(1 — k%)% —’nag +i(Bik — Bsk). (1.3)

We call k. = 1 the critical wavenumber and consider 0 < €2 < 1 as the main
small bifurcation parameter. Moreover, we assume that the phase velocity of
the critical mode €'* is of order O(g?), i.e.

Wy = ﬁg — ﬁl = V0€2 with 0 < vy = 0(1) (14)

Together with (1.2) this means that the periodic amplification g(z)u is in
spatial and temporal resonance with the critical wave €'® of L(9,). For slightly
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non-resonant forcings see Remarks 2.1 and 2.2. Note that by (1.4) we could
express, e.g., /1 through €2,y and f5. However, we keep all four parameters
since this makes the analysis more transparent.

By the multiple scaling ansatz

u(t, ) = Ya(t,z) = eA(T, X)e'® + c.c. + h.o.t., (1.5)

where X = ¢(x — nit),T = €%t,v; = 385 — 31, c.c. means complex conjugate,
and h.o.t. denotes higher order terms, we formally obtain the non-symmetric
complex Ginzburg-Landau equation

Ap = ;0% A — (nag +ivg) A + nay A + c3| AP A, (1.6)

as the modulation equation for the complex envelope A = A(T, X) € C, where
¢; = ¢jr +icj; € C,j = 1,3. Because of the term na; A the usual §' symmetry
A — €A of the Ginzburg-Landau equation is broken. Due to the special
choice g(z) = 2e’na; cos(2x) the derivation of (1.6) is straightforward, see
section 2. In Remark 1.3 below we preview the coefficients ¢; and ¢z in (1.6)
and comment on the peculiar choice of parameters in the model.

The next step is to show that solutions of (1.1) may be well approximated
over an O(1/¢?%) timescale by the ansatz (1.5) if A solves (1.6), see Theorem 2.6.
Here we use the uniformly local Sobolev spaces H["(R), [MS95]. These Banach
spaces contain all kinds of bounded functions and are defined as follows: fix
the weight function p(z) = 1/cosh(z) and let

Jull, = sup [ w*(@hp(e +y)da, LA(R) = {u € Lio(R) : uly, < o)
Y

L2 ([R) = {u e L%(R) : |Tyu—ullL2 — 0 as y — 0}, where (T,u)(z) = u(z—y).
Then

H™R) :={u € L} : &u € L} for 0 < j < k}. (1.7)

Since the spaces H"(R) are based on L*(R) the global existence of solutions
for typical dissipative systems can be shown via Fourier transform methods
and weighted energy estimates, see [MS95, Mie97a).

In the nonlinear Schrodinger limit with anomalous dispersion, that is for
C1r, c3r=0 and ¢y, c3;>0, the nsGLe (1.6) is called the parametrically forced
Schrodinger equation (pfNLSe). This equation models the propagation of
pulses in a nonlinear optical fiber with linear loss (—nay < 0), compensated by
phase sensitive amplifiers (na; > 0) with non zero phase mismatch (v > 0),
see [KK96] and references therein.



In [KS98] it is shown that for small  and a suitable choice of g, oy the
pfNLSe has exponentially stable pulse solutions in the form ++/b;sech (y/byx)e?
with some fixed by,by,0 > 0. Adding small dissipation ¢;, > 0 there exist
stationary n—pulse solutions of the pfNLSe. These n-pulses resemble n widely
spaced concatenated single pulses of the form 4+/b;sech(v/boz)e®. Moreover,
n—pulses of type up—down are exponentially orbitally stable while all other
n—pulses are unstable. Here "up” means ”+” and ”-” means down, and ”type
up-down” means an n—pulse with alternating up and down. In section 3 we
give a brief review of the analysis from [KS98]. Here we summarize the result
as follows.

Theorem 1.1 [KS98, Corollary 7.4, Theorem 7.5] Fiz n > 0 small, vy > 0
and n > 1. There ezists a set P = P(n,vg,n) C R® of parameters such that
for (cir, €14, Cary €34, g, 1) € P there exists a one parameter family

Man = {Apun = Apun(- — Xo) : Xo € R}

of n—pulse solutions to (1.6) of type up-down. This family is exponentially
orbitally stable. This means that there exist Ci,Cy, by > 0 such that if

”AO(') - Apu,n(' - XO)”Hllu <Gy
for some Xy € R, then there exists an X; € R such that
||A(T, ) - Apu,n(' - Xl)HH]l“ < CQe_bOT.

Remark 1.2 In [KS98|] the above theorem is proved for c; = 0. However,
it is clear that the results extend to small c3. # 0, see section 3. Moreover,
in [KS98| the analysis is done in L?(R). The generalization to H},(R) is no
problem since the linearization around an n-—pulse A, , possesses exactly one
simple eigenvalue 0 from the translation invariance of (1.6) and the rest of the
spectrum is bounded away from the imaginary axis.

Remark 1.3 From (1.3) we obtain ¢; = 4+ 3if; in (1.6), see section 2, while
c3 depends on (3 and the specific choice of f. We assume the nonlinearity f
in (1.1) to be of the form f(u,u;) = fiu® + fouu, with fi, f, € R. This gives

f1+if2>

9+ 6if; (18)

cs = (2fi +1if2) <2f1 +

cf. (2.3), and hence we have sufficient degrees of freedom to obtain any c; we
like. Higher order terms could be easily included into f. In [KS98] the analysis
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is done with the normalization c;;=1 and c3;=4. Clearly this can be achieved
in (1.6) by rescaling

4 ~

AT, X) =] —A(T, X/\/c1),

C3i
which could also be included directly into the ansatz (1.5). Small ¢;, then
means 1 > n > c,./c; = 4/(303) > 0, see [KS98, section 7.2], and hence
Bs > 1/n, which together with (1.4) also implies that the group velocity of

e*? has to be large, i.e.

V1:3ﬂ3—ﬂ1>>1/7]. (19)

Similarly, 83 > 1/n implies c3 ~ 4f2 + 2ifif, and hence small c3, means
1> n>2f/f, >0, giving fo > f1/n. Finally, another basic assumption for
our analysis is

vy — nay > 0, (1.10)

i.e, the phase mismatch has to be greater than the parametric gain. Thus,
alltogether we need a rather specific choice of parameters, taking into account
the three different scales 1 > n > ¢ > 0, the resonance conditions (1.2) and
(1.4), and the set P from Theorem 1.1, in particular the smallness of ¢, c3,
discussed above. However, in numerical simulations it turns out that modu-
lating multi-pulses can be found numerically in a wide range of parameters,
see section 6 for some specific examples.

We may now state our existence theorem for the modulating n—pulse solutions
for the original equation (1.1). They are constructed in section 4 by means of
spatial dynamics and center manifold theory.

Theorem 1.4 Fizn > 0 small, vy > 0 and n > 1. Assume that og, aq, B, B3
and f are chosen in such a way that in (1.6) we have (ciy, c14, Car, C3i, Q, Q1) €
P(n,vy,n) with P(n,ve,n) from Theorem 1.1. Then there exists an gy > 0
such that for all € < gy there exist a ¢ = v, + O(e) € R and a one dimensional
family of modulating up—down n—pulse-solutions of the pSHe (1.1) in the form

Mauyn ={u(t,z) = upyn(x, & — ct — ) : k9 € R},
Upun (D, &) = 5Apu,n(€§)eip + c.c. + O(e?),
Upu,n (P, &) =Upun(p + 27, ), Eginoo Upun (P, §) = 0.

with Apyn from Theorem 1.1.



In a moving frame the modulating n—pulses are time periodic. Thus we use
Floquet theory to prove the stability of the family M, ,. In section 5 we
combine the validity of (1.6) as a modulation equation for (1.1) with the expo-
nential orbital stability of the n—pulses for the nsGLe to obtain the following
result.

Theorem 1.5 For each n, vy, n,aqy, a1, 1,83 and f from Theorem 1.4 there
exist Cp,Co, b,e9 > 0 such that for all € € (0,&¢) the following holds. Let

”uo() - upu,n('; = $0)||H11u < Cie

for some zy € R, and let u be the solution (1.1) with u|;—g = ug. Then u exists
for allt > 0, and there exists an x; € R such that

[ut, ) = Upun (- — ct — 21)|| g < Coee " as ¢ — oo, (1.11)

Remark 1.6 In Theorem 1.4, we may construct modulating n—pulses with
any combinations of ups and downs. Here we focus on modulating up—down
n—pulses since they inherit the stability of the up—down n—pulse solutions of the
nsGLe, and from section 5 it will be clear, that all other modulating n—pulses
inherit the instability of the other n—pulses. The difference between, e.g., a
modulating up—down 2-pulse and a modulating up—up 2—pulse is of course
less clear than for the 2—pulses in the nsGLe itself. Here the point is, that
also for the multi—pulses in the nsGLe, it is rather the way that the individual
humps are linked together in between the humps that decides on the stability
of the multi—pulse solutions, not the signs of the humps themselves, see the
discussion in [SJA97, section 2.3].

However, for the evolution from, e.g., an up—up pulse in the nsGLe and a
modulating up—up pulse in the pSHe we conjecture two rather different sce-
narios: for the up—up pulse in the nsGLe, numerical simulations reveal that
generically the flat region in between the two humps raises up and the solu-
tion converges to a one—pulse. For the modulating up—up pulse in the pSHe
we expect that the solution only slightly changes the shape of the tails of the
humps and rearranges in phase at the humps, thus converging to a modulating
up—down 2-pulse.

Remark 1.7 In the nsGLe there exist n—pulses for various n in overlapping
parameter regimes, cf. [KS98]. Thus, by Theorems 1.4 and 1.5 we have asymp-
totically stable modulating n—pulses for various n, and hence the coexistence
of multiple attractors in the pSHe. A numerical example for this is given in
section 6.



Remark 1.8 In a different parameter regime, the nsGLe has nontrivial expo-
nentially stable homogenous fixed points, see Appendix C. These provide ex-
ponentially stable stationary periodic solutions for (1.1), so called rolls. This
behaviour is quite different from, e.g., the diffusive stability of rolls in the
classical Swift-Hohenberg equation, see [Sch96, Uec99]. This shows again the
significant influence of the spatially periodic forcing g(z)u in the resonant case.

Remark 1.9 Pulse-like modulations of electromagnetic waves are used to
transport digital information in nonlinear optics. In an optical fiber we have
dissipation and dispersion of energy. Recently, see [MS99] and the references
therein, it was proposed to use a supporting periodic structure of the wave-
length of light in the fiber to compensate for loss an jitter. In this sense (1.1)
may be considered as a phenomenological model of such a device. See also,
e.g., [LMNO95] for the derivation of equations of Swift-Hohenberg type from
the Maxwell-Bloch equations.

The plan of the paper is as follows. In section 2 we derive the nsGLe (1.6) as
the modulation for the pSHe (1.1), comment on the existence of solutions to the
(time—dependent) nsGLe, Lemma 2.4, and show the approximation property
Theorem 2.6. In section 3 we review the results from [KS98| concerning the
existence and stability of stationary n—pulses for the pfNLSe. This also shows
how these results extend to the nsGLe. The proof of Theorem 1.4, i.e. the
construction of the modulating n-pulses upy, for the pSHe (1.1) is done in
section 4. The stability of the n-—pulses up,,, is shown in section 5. In section
6 we give a few numerical results confirming and illustrating our analysis.

In Appendix A we calculate the spectrum of the spatially periodic operator
L + g(z). Strictly speaking, this and the calculation of the linearly most
unstable waves should be the first step in the derivation of the modulation
equation for (1.1). However, due to our special choice of g this derivation is
straightforward as given in section 2. The spectrum of L + g(x) is needed in
the proof of Theorem 1.5.

In Appendix B we show an attractivity result for the set of modulated
patterns for the linearization of (1.1) around an n-—pulse upy,. This is also
needed in the proof of Theorem 1.5. From the proof of Lemma B.2 it will be
clear that a similar result also holds for (1.1). This, together with the approx-
imation property shows the so called validity of the nsGLe as the modulation
equation for (1.1).



2 Derivation and justification of the nsGLe as the modu-
lation equation for the pSHe

2.1 Derivation

We use multiple scaling analysis to formally derive (1.6) as a modulation equa-
tion for (1.1). In order to keep the calculations simple we consider the par-
ticular spatially—periodic function g(z) = 2%, cos(2z) in (1.1). Moreover
we assume that f is in the form f(u,u;) = fiu? + fouu,. It is well known
[Sch94a], that in the nondegenerated case only the quadratic and cubic terms
in the nonlinearity of the original equation determine the coefficients of the
cubic term in the associated modulation equation. Moreover, for the question
of validity cubic terms in f are no problem, see [KMS92]. Therefore we restrict
ourselves to quadratic f.

As noted in the Introduction, the equation u; = Lu possesses solutions
ek AR where A\(k) = —(1 — k?)? — 209 +i(B1k — B3k®). Expanding \ around
k. = 1 we obtain

A1 +eK) = —(ap + ivg)e? — e K — (\g + ip)e? K2 + O(?) (2.1)

where 11=301 — 1, \o=4, 1,=3033. The derivation of the modulation equation
now proceeds in the usual way, see for instance [Sch94c, MS96]. We let

2
u(t,z) = %AO(T, X)eo + cA(T, X)er + £2A5(T, X)es + c.c. + hot.,  (2.2)

where X = e(z — v1t), e; = €. Inserting this into (1.1), using f(u,u,) =
fiu? + fouug, and equating coefficients in front of e/e; we obtain the closed
system of equations

ey : 0=—Ay+2fi|A]?
6262 . 0= —9A2 + (fl + lfz)A2 + I(Qﬁl - 8/83)142
ler:  Ar = (4+3i83)05 A — (nag + (B3 — f1) /) A +nen A

+ (2f1 +if2)(AgA + Ay A).

Eliminating Ay and A, and using wy=0£3— 31=¢vy we obtain the nsGLe (1.6),
ie. Ar = c10%A — (nag + ivy) A + nar A + c3]| A2 A, with

01:4+3i133 and C3 = (2f1 + lfg) <2f1 + gl%(;gz) . (23)

Remark 2.1 This straightforward formal derivation of the nsGLe is due to
our special choice of g(z) = 2e?nagcos(2z) = e?nag(ez + e_). For more
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general 27 /p-periodic functions g(z) = v, hje’?* with |h;| < 1 for all 7,
the derivation of the modulation equation is more complicated. Interesting
phenomena occur in case that the resonance condition p ~ nk. for some n € N
holds, see [DS98], where in particular relations between 7 and n for which one
obtains the nsGLe as the modulation equation are analyzed in detail.

Remark 2.2 If the phase velocity wy = 83 — 81 of €' is of order O(£2+?) for
some 0 > 0 then it obviously drops out of the modulation equation, i.e. we
obtain 1y=0 in (1.6). In this case there may exist n—pulse-solutions to (1.6),
but if they do, we do not know whether or not they are stable, see section 3.
In case that wy = 1pe27 we basically obtain a symmetric Ginzburg-Landau
equation. This can be seen from inserting the ansatz u(t, z) = e B(T, X)é; with
T =&, X =¢(x — vit) and &; = €7@=%0!) into (1.1). Comparing coefficients
at order €3¢, we obtain

Br = ¢,0% B — nayB + nay Be***! + 3| B*B. (2.4)

Substituting B(T, X) = A(T, X)e“t = A(T, X)e™T/s into (2.4) we obtain
Ap = ;0% A — (nag + i) A + ay A + ¢3]|A|>A and this limits to the nsGLe
(1.6) as 6 — 0. However, for 6 > 0 it is more instructive to consider directly
(2.4). Since wot = v,T /e’ the term na; Ae?“ot is highly oscillatory and may
be averaged out, thus giving a symmetric Ginzburg-Landau equation for B.

2.2 The approximation property

To show that a solution A of the nsGLe gives a good approximation of a solu-
tion u of (1.1) via (1.5), we have to bound the error R(¢,z) = u(t, ) —¥a(t, x)
over an O(1/e?) timescale in the original equation. This timescale is neces-
sary in order to see interesting modulations. This question was first treated
in [CE90] for the Swift—-Hohenberg equation, see also [vH91]. In [KMS92] a
simple proof for the cubic case was given.

Here we adopt the method presented in [Sch94c] to handle the quadratic
nonlinearity and the spatially periodic part. The analysis is done in the spaces
H™(R), see (1.7). We do not distinguish real spaces H{"(R) = H/"(R,R) and
complex spaces H'(R,C) = H*(R) + iH["(R). However, in the following we
write Z™ = H[™(R) for the phase space for (1.1), and Y™ = H[*(R) +iH["(R)
for the function space for the Ginzburg-Landau equation. Thus, we consider
A 14 in (1.5) as a mapping from Y™ into Z™. For this mapping we have
the estimates

[ballee < 2el|Allzee,  [[Yallzo < 2VEl|Allyo,  and [[¢pallzm < Cel|Allyn
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for m > 1. In the second estimate a factor /¢ is lost by scaling. The third
estimate holds since ||Al|z~®) < C|A|ly: by Sobolev’s imbedding theorem,
and since 0, A(ex) = edx A(X), i.e., each derivative generates a factor ¢.

Remark 2.3 Strictly speaking, the subsequent results in this subsection are
not used in our further analysis. In fact, to prove the stability of the modulat-
ing n—pulses we only need a linear variant of the approximation property The-
orem 2.6 below, i.e., the approximation property for the linearization around a
modulating pulse, see section 5. However, we think that it is helpful to realize
the general nonlinear case, and also to see (very briefly) the (local) existence
theory for solutions to the nsGLe.

We obtain the following result concerning the existence of solutions to (1.6).
Lemma 2.4 For all Ay € Y there exist a Ty > 0 and a unique local solution
AeC(0,Ty), YHNnC((0,Ty), Y*) nC'((0,Ty), Y?)

to (1.6) with A(0,X) = Ap(X).

Proof. We only sketch the main steps. Letting A(T, X) = U(T, X)+iV (T, X)
we obtain

orW = L% (0x)W + F(W), (2.5)

where W = (U, V)T and

LGL(aX) _ ( 77(@1 — a()) -+ 01703( —cli8§( —+ IZ0) ) ’

c1;0% — 1 —n(ay + ) + ¢1,0%

F(W) = (U? +V?) ( f”_ _CC:"“‘ ) ( g ) .

The linear operator L (dx) is sectorial with the spectrum given as two curves

Al,g(k) = —nagy — Clrkz + i\/(ClikQ + 1/0)2 - 77201%, k eR (26)

Note that we assume vy > nay, cf. (1.10), such that the root is real for all k.
Therefore LE(dx) generates a holomorphic semigroup

eLCROX)T 0y ym iy ”eLGL(ax)T”YO_)Ym < Ce*naoT(l + T*m/Q)‘

Since Y! < L™ the nonlinearity F is locally Lipschitz from Y into Y° and
we obtain the local existence using standard theory for parabolic equations,
see, e.g., [Hen81]. O
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Remark 2.5 Since the origin is exponentially stable in (2.5), it is easy to see,
that there exists an R > 0 such that for all 4y € Y with ||Ap|lyr < R the
solution exists globally in time and satisfies ||A(T')||y: < R for all times.

Theorem 2.6 Let A € C([0,Ty], YY) be a solution of the nsGLe. Then for all
d > 0 there exist €9, D > 0 such that for all ¢ € (0,9) the following holds.
For |Jug(+) — %4(0, )|z < de®* there exist a solution u to the pSHe (1.1) for
0 <t <Ty/e* such that u|—o = uy and
sup  |[u(t,-) — Ya(t, )|z < D4 (2.7)
0<t<Tp /e?
Proof. We write f(u,u;) as symmetric bilinear form N(u,u) = f(u, us).
Letting u(t, 2) = ea(t, z) + £¥/*R(t, z) we obtain
R =LR+ g(x)R+ 2eN (s, R) + *N(R, R) + e */*Res(e)4), (2.8)
where Res(1) = —y + Ly + g(x) + f(, 1)) is called the residuum. From
(2.8) we need to bound the error R(¢) by some kind of Gronwall estimate.

The linear operator £ = L + g(z) generates a (weakly) exponentially damped
holomorphic semigroup e*, i.e.

lle“tul| zm < Ce "m0t (1 + ¢~ =1/2) ||y 4n, (2.9)

cf. (A.2). However, because of the term e N (1, R), and since moreover
e Res(ev)) = £"/*na, Aes + c.c. + O(*)

this does not allow to bound R by O(1) on an O(1/£?) timescale via naive
integration of (2.8).

This problem can be solved by using so called mode filters which are defined
via smooth cut—off functions in Fourier space. The idea is to write u as

u= sﬁj + 621/154 + 4R, + "*R;,

where 1/~Jf4 and R, correspond to critical Fourier modes, and 'sz and R contain
stable modes. In the proof of Theorem 2.6 the only substantial difference
compared to, e.g., [Sch94c] is the term e3na; Aes + c.c. in

Res(e9)4) = e3na, Aes + c.c. + O(e?).

But Aes only contributes to the stable part R, of the error. Therefore the
proof of Theorem 2.6 works as in the case «; = 0 and we refer to [Sch94c] for
the details. O

Remark 2.7 Due to the smoothing properties of the pSHe we may replace
Z'in (2.7) by Z* for t > 0, see again [Sch94c].
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3 The pulses for the pfNLSe and the nsGLe

This section reviews the results from [KS98] concerning the existence and sta-
bility of stationary n—pulse solutions for the pfNLSe ((1.6) with ¢;,=c3,=0 and
¢1i, ¢3; > 0). This also shows how they extend to the nsGLe. Without loss of
generality we assume ci; = 1, c3; = 4, see Remark 1.3. Letting A = U +1iV the
stationary problem written as a first order equation for W = (U, U’,V, V') € R?
reads

OxW = MW + N(W), where (3.1)
0 1 0 0 0
0 W-
M= w0 mlartao) NW) = —aW2+w2) [ !
0 0 0 1
7’](C¥1 — Ck()) 0 1Z0) 0 Wg

The (primary) 1-pulse solution Agu is explicitly given by

A (X) = V/bisech(V0, X)e¥, by = by/2,

by = (1o + naysin(20)), cos(20) = ap/ay.

For sin(260)>0 and 7 sufficiently small the pulse is stable. The spectrum of the
linearization L3 of the pfNLSe around AJ, as obtained in [KS98] is sketched
in figure 2. The spectrum is symmetric to the line ReA = —nay and the

A Im

—nag + 11 — nPad

Four eigenvalues O(n)

o

Figure 2: The spectrum of the linearization of the pfNLSe around AJ

essential spectrum is given by the lines —nay iy/(k2 + v9)2 — n2a2, cf. (2.6).
There is one simple eigenvalue A\; = 0 with associated eigenfunction GXAgu,
one eigenvalue Ay = —2n0y and a pair of complex conjugate eigenvalues Az 4

12



with ReA = —noy and imaginary part of order O(n). These four eigenvalues
bifurcate out of the fourfold eigenvalue 0 for the linearization around the pulse
ANYS = \/14y/2 sech(y/1gz) in the nonlinear Schrédinger equation (1 = 0).

Moreover, for n sufficiently small, only two additional eigenvalues pop out of
the essential spectrum. They are O(n?) close to the points —nay+iy/v3 — n2a?.

Combining this spectral analysis for the primary pulse Agu with additional
resolvent estimates one finds that Agu is exponentially orbitally stable.

These results extend to the nsGLe (cy,, c3, # 0) as follows. The stationary
problem (3.1) is reversible under RW = (W, —W,, W5, —W),). Since we have
a simple eigenvalue 0 it follows that Agu is an elementary homoclinic orbit,
see, e.g., [FV92]. Therefore it persists under small reversible perturbations of
(3.1). Hence, for ¢y, csr = o(n) there exists a pulse Ay, which approaches A9,
for ¢y, c3r — 0. Obviously the pulse A, is stable for ¢;, > 0.

The stationary nsGLe (and hence (3.1)) is equivariant under the transfor-
mation A — —A (W — —W). The eigenvalues of the matrix M are given

by
Arx = i\/Vo /ol —of = 4/ £ nay sin(26),

where cos(26) = ag/a;, i.e., the primary pulse Agu is contained in the strong
stable manifold of 0. These are the basic conditions for the occurrence of
a so called orbit—flip bifurcation [SJA97]| creating n—pulses that resemble n
widely—spaced copies of £A40 . In [KS98] it is shown that for c3, = 0 and small
cir > 0 these n—pulses Ay, , indeed exist. The n—pulses Ay, , of the form up-
down (+—) are stable and all other n—pulses are unstable. For stable A, , we
again have one isolated eigenvalue 0 and now 6n—1 eigenvalues with negative
realparts. Therefore, A, , again persists for sufficiently small c3, # 0.

4 Existence of the modulating multi-pulses

In order to construct modulating multi-pulse—solutions to (1.1) we use a spa-
tial dynamics formulation and center manifold theory for elliptic systems as
introduced in [Kir82]. This method has also been used in a variety of similar
problems, see, e.g., [EW91, IM91, HCS98, Sch99]. The idea is as follows. Let

u(t,z) = v(z,z — ct) = v(p, &) (4.1)

with p € 75, and £ € R. Here 7, is the one dimensional torus of length «, and
¢ = vy + ¢ where ¢ is a priori unknown. Inserting this into (1.1) we obtain
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the elliptic problem

—cOgv = — (1 — (8, + 8¢)%) v — enagv + B1 (0, + O¢)v + Bs(0, + 0¢)*v
+ 2enay cos(2p)v + f (v, (O, + O¢)v) (4.2)

on the infinite cylinder (p, &) € 7o, x R. Writing (4.2) as first order equation
in £, the linearization around the trivial solution v = 0 has four eigenvalues
O(e) close to the origin with the rest of the spectrum bounded away from
the imaginary axis. This gives a four dimensional center manifold M,.. The
reduced equation on M, is given in lowest order by the stationary nsGLe in
a frame moving with velocity e¢;. Thus, for ¢ = 0 we have n—pulses for the
reduced equation. We then show that these pulses persist for the higher order
perturbations for suitable & = O(1), and this will prove Theorem 1.4.

4.1 The spatial dynamics formulation

Letting V = (Vo, V1, Vo, V)" = (v, 0gv, v, 0¢v)" we write (4.2) as first order
system

0V = MV + na,®PV + N (V), where (4.3)
0100
M 0010 PV =(000,(e?"+e*)Vy)"
000 1 ["NW) =(0,0,0,f(Vo, Vo + W)
a b c d

a=—naee’ — (1+82)° + (B + B502),
b=—40,(1+82) + B1 + 3630, + ¢,
c=—602 —2+3B50,, d=—40,+ Bs.

Expanding V(p,§) = 3 _,.cz V(€)™ with Vi, (€) € C*, Vo (€) = Vin(€) we
obtain

OcVin = My Vi + naie? P (V) + Ny (V), (4.4)
where V = (Vi) mez,

0O 1 0 O 0
0O 0 1 0 0
M, = ) Pm(V) = )
0O 0 0 1 0
A bm Cm dm Vm72,0 + Vm—|—2,0
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N(V) = (0,0,0,5, 1o Voo (1 Vo + fo (Vg +1aVi0))) " and

U = —nage® — (1 —m?)? + Biim — ifsm?,
by = —4im(1 —m?) + B, — 3Bsm?® + ¢,
Cm = 6m? — 2+ 3iBsm, d,, = —4im + fs.

The main difference to previous work is the linear coupling P,,(V') coming from
the spatial periodic forcing. We finally write (4.4) as

0V = (M + na,e?D)V + N(V) (4.5)
where M = dlag( .. ,M,l,Mo,Ml, . ..), N(V) = ( .. ,N,l,N(),Nl,. ..)T,

(e \

AR

and in D empty places and 0 both denote the 4 X 4 zero matrix.

S

S

Il

o
o o
o o o
o o n
o

)

Il
_ o o o
o O O O
o o o o
o O O O

4.2 The construction of the center manifold

In order to construct a center manifold M, for (4.5) we introduce the Hilbert
spaces

={V = Vi)mez : Vo R, V;,, € C* for m € Z\ {0}, V., = Vi,
Vlla=Y_ Y [Vamgl’ (1 +m*)¥* < oo},

méeZj=0,...,3

Then V(€) € ! means V() € H*(Tzr) x H3(Ton) X H*(T2r) x H'(T3r) and
V(€) € E° corresponds to V € [L?(T3,)]*. Starting with the linear problem we
show that for small € and ¢ = v;+O(g) the operator M +na,e?D : ' — Y has
four eigenvalues O(e) close to zero while the rest of the spectrum is bounded
away from the imaginary axis. Here we basically recall the analysis from
[Sch99] for M, since obviously D is a compact perturbation of M with

D10 < 2. (4.6)

The operator M decouples into the 4 x 4 blocks M,,. For all m € Z the four
eigenvalues A = A\, ;, 7 =1,...,4, of M, fulfill

—ch=—(1+ (im+ N2 — e2nag + B (im + X) + Bs(im + N)®. (4.7)
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Figure 3: The spectrum of the operator M

Figure 3 shows a plot of A, ; for m = —10,...,10, j =1,... ,4. To calculate
the central part of the spectrum of M, we substitute A = ik and [=m+k in
(4.7) to obtain

—ick = —(1 - Z2)2 - 6204() + ’L,Bll — ’i,Bng.

For ¢ = 0 the real part gives [ = £1. From the imaginary part we obtain
¢(m — 1) = 0 and hence the conditions | = m = 1 or Il = m = —1. Here
we used the assumption that 8; — 83 = vpe? while ¢ = vy + O(g) with v, =
303 — 1 # 0. In summary, it is easy to see that for e = 0 and m = +1 we have
an algebraically double eigenvalues 0 for M,, corresponding to a Jordan block
of size 2. The associated eigenvector is ¢,,; = (1,0,0,0)” and the generalized
eigenvector is ¢, 2 = (0,1,0,0)", such that M1 = 0 and My,drm2 = dum.1-
Using perturbation analysis as in [EW91] we obtain that for ¢ # 0 we have
four distinct eigenvalues Ay 1, Aiq 2 of order O(e).

The hyperbolic part of the spectrum of the matrices M,, can be estimated
using the scaling A = p|m/|'/*—im. This gives u* = ic+O(|m|~/*) as m — oo,
and thus A = m'/4(ic)'/* — im + O(1). Combining these results with (4.6) we
obtain the following lemma.

Lemma 4.1 There ezist Cy,Cq,e9 > 0 such that for all e € (0,&q) the operator
M + naie?2D has four central eigenvalues Ar11, Az, of size O(e). All other
eigenvalues Ay, j, m € Z, j = 1,...,4 satisfy [ReA,, ;| > C1 + Co|m|Y/4.

Now the center manifold can be contructed in a standard way, see, e.g., [[V92].
By & = E.(¢) = span{¢1.1(€), dr12(€), d_1.1(€), d_12(¢)} C E° we denote the
center subspace associated to the eigenvalues with realpart of order O(g). We
may identify £ with C?. The associated projection on &, is denoted by P,.(¢) :
&Y — &, and we write &, for the hyperbolic subspace (Id — P.(¢))E°. We
choose a smooth cut—off function x € C*(R,[0,1]) with x(z) =1 for |z| < 1
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and x(z) = 0 for |z| > 2. Then by a version of Sobolev’s imbedding theorem
the modified nonlinearity N, : £/4 — £° N, (V) = N(u x(||ull¢/r)) is smooth
and globally Lipschitz. From this we obtain the following theorem.

Theorem 4.2 For each k € N there exist r,eq > 0 such that for all € € (0,¢0)
there exists a unique global center manifold M. for the modified equation

OV = (m + e’nay D)V + N,.(V),

which is tangential to &.. This means that there exist a C*~function hy : €, —
EnNEL he(Vo)ller = O((|Vell +€%)?), such that the manifold

MCZ{V:%_Fhk(‘/vC)‘/vcegc}

contains all small bounded solutions of (4.5). Moreover, every solution of the
reduced equation

O Ve = (M + e’noy D)V, + PN, (V. + by (V2)) (4.8)
gives a solution of (4.5) via

V(&) = Ve(&) + hn(Ve(€)). (4.9)

4.3 The reduced equation

The reduced equation (4.8) is related to the stationary nsGLe in a frame
moving with velocity £¢; as follows. For € = 0 the operator M+¢&%na; D has
the four central eigenvectors

6-13(0) = (- 016151 0 [0...)", 1= (-] O |6n;1000]...)",

j=1,2,where0 = 0 € C*, and ¢4, is the eigenvector respectively generalized
eigenvector associated to the Jordan block of M. Fore > 0 we choose 141 ;(¢)
as basis for £, where 14, ;(¢) = P.(¢)¢41,4(0). Thus we write

Vo(€) = A(€)tbr1 + B(€)wro + AE)W_11 + B(E)_1 5.

The vectors 41,1 are of the form

Yoia = (- 10()] (0(1), O(e), O(?), O()) |0(e7)|O()]-..)",

Vv~ o T

2 2 " 2 m§0 2 T (4'10)
Y = (.- |00 (0(1), O(e), O(€?), O(e?)) |O(e?)] ... ),




and similarly for 41, 5. Scaling A(¢) = A(X), B(£) = e>B(X) where X = &¢
we obtain
OxA =B+ 0(e),

_ 4.11
c10xB = €&, B + (nag + ivg) A — nay A — c3|A2PA + O(e), (4.11)

where ¢, c3 are the Ginzburg-Landau coefficients obtained in section 2. This
can be seen from inserting the infinite Ginzburg-Landau ansatz

0(p:8) = D Vo)™ = D_ e Am(€)e™

with o, = 1+ |1 — |m|| into (4.2). Equating coefficients in front of 7™
as usual we see that A; has to satisfy the stationary nsGLe with a drift term
e¢10x Ay and additional terms of formal higher order O(g). These terms are
of order O(e) since Vy ;(€) = €2 9x Ap(X) and since V = (Vi) lies on the
center manifold. Due to the form of the eigenvectors 1., ; given in (4.10), the
coordinates A, B have to satisfy the reduced equation (4.11).

4.4 Existence of n—pulses for the reduced equation

For notational simplicity we take n = 1. For =0 and (¢, ¢1;, €3y, €34, 0, 011 )EP
the reduced equation (4.11) has exponentially stable stationary pulse solutions
Apu(-—Xo), Xo € R. It remains to show that these pulses persist for € > 0 and
suitable ¢ = O(1). This will be done via a Liapunov—Schmidt type argument.

We apply the implicit function theorem to the first equation in (4.11) to
obtain B=0,A+0O(e). Inserting this into the second equation in (4.11) we
obtain

LA — £6,0x A+ Ny (A) + L1 (e) A+ Ny(g, A) = 0, (4.12)
where
LA = 0% A — (nag +ivg) A +nas A, N (A) = 3] A]PA,
and where L (¢) and Ny (e, -) fulfill
L1 m2@y-r2m) = O),  INi(e, Allrewy = Ol Al gy)-

These estimates are the essential consequence of the spatial dynamics ansatz
and the center manifold reduction we use here. Letting A = Ay, +U we obtain

[LSJ“ —e¢0x + I~/2(€)]U + No(U) + NQ(S, U)+r(e) —e610xApy =0, (4.13)
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where L3 is the linearization around A, in the unperturbed nsGLe and

3

(U) = Ni(Apu + U) — Ni(Apu) — Ni(Apa)U,
Ly(e)U = Ly (e)U + Nj(e, Ap)U,

() = Ll( ) pu+N1(5 Apu),

No(g,U) = Ni(g, Apy + U) — Ny (g, Apu) — Ni(g, Apa)U.

(4.14)

<

From section 3 we know that L has one simple eigenvalue 0 with associated
eigenfunction A}, = OxApy, Whlle the rest of the spectrum of L3 has O(n)
distance to 0. Moreover, LSy - H*(R) — L*(R) is Fredholm with index 0 since
it is a compact perturbation of L. Let P be the orthogonal projection from
L*(R) onto the critical eigenspace span{Af, } of L. Then (4.13) is equivalent
to

P[(LSF—e&0x+La(e))U + No(U) + No(e,U) + 1(e) — e&1 AL, =0, (4.15)
(Id—P) [(LSY —ee10x+La(e))U + No(U) + No(e,U) + ()] =0, (4.16)
where we already used that (Id — P)A], = 0. For ¢ suffiently small and
¢1 = O(1) the operator
(Id — P)(LSF — £¢,0x + La(e)) : (Id — P)H*(R) — (Id — P)L*(R)
is invertible. Therefore (4.16) may be solved for U = U(g, é;) € (Id—P)H?*(R)

due to the implicit function theorem, with ||U||gz = O(¢). Inserting this into
the scalar equation (4.15) we obtain

P[’I‘(E) — 85114;)“] = —P[(—5618X + fzg(é"))U + NQ(U) + NQ(E’, U)], (417)

where we used PLSU = 0. This equation has a unique solution ¢, = O(1) due
to the fact that PA, = A} and that the left hand side is O(¢) and moreover
linear in ¢, while the right hand side is of higher order in ¢ and ec.

Hence we obtain a family of pulse like solutions

Apue(- = Xo) = Apu(- — Xo) + U(e, &) = Apu(- — Xo) + O(e)
of (4.12). This gives the desired family of modulating (n—)pulse-solutions

Upy (T, — et — xg) =v(x,2 — ct — xp)
=eApuc(e(x — ct — 19))e” + c.c.
— —
+ [h’k (EAPU e € 2‘4;)u € APU,E’ EQAPU,E)] ‘WZOJZO’

=eApu(e(z — ct — mp))e™ + c.c. + O(e?)

o (1.1) via (4.9) and (4.1). Thus the proof of Theorem 1.4 is complete. O
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5 Stability of the modulating n—pulses

For notational simplicity we continue to take n = 1. The solutions uy, of (1.1)
are time periodic in a frame moving with velocity c¢. To prove their stability
we proceed as in [Sch99]. Inserting v(¢,y) = u(t, y + ct) into (1.1) we obtain

vi(t,y) = Lo(t,y) + cOyv(t,y) + 2e’nay cos(y + ct)v(t,y) + N(v)(t,y), (5.1)
where N(v)(t,y) = f(v(t,y), Oyv(t,y)). Welet v(t,y) = vpu(t, y) +w(t,y), with
vpu(t, ¥) = Upu(y + ct,y) = eApu(ey)el¥T) + c.c. + O(e?).

Then the perturbation w satisfies

0w = Lyyw + Ny(w), where (5.2)
Lpww = (L + &*nay cos(2y + ct) + cd, + DN (vpy))w,
Ni(w) = N(vpy +w) — N(vpy) — DN (vpy)w,

and DN (vpy)w = 2 f1vpyw + fo(vpuOyw + (0yvpu)w) for our choice of f. Since
Ly, and Ny are 27 /c periodic in ¢ we use Floquet theory to show the stability
of w = 0 in (5.2) and hence the stability of v,,. We define the linear flow
Vs : HL(R) — H} (R) by the solution w(t) = t; swo of the linear problem

wy = Lpyw,  wli=s = wp. (5.3)

The stability of w will follow from the following lemma concerning the eigen-
values of the associated Floquet (time 27 /c) operator.

Lemma 5.1 The operator A = /0 has one simple eigenvalue py = 1.
There exist £9,b > 0 such that for all ¢ € (0,&0) the rest of the spectrum of A
is contained in {z € C: |z| < e *°}.

Proof. The function w*(t,y) = Owpu(t,y) — cOyvpy solves wy = Lyy,w which
gives the Floquet multiplier p; = 1.

The continuous Floquet spectrum o.(A) is determined by the continuous
spectrum of £* = L+2&*na; cos(2(y+ct))+cd, since the compact perturbation
DN (vpy) does not change the essential spectrum. Since c¢d, does not contribute
to the real part, by (A.2) we obtain

UC(A) C {Z eC: |Z‘ < 6_52770‘02”/5'1‘0(54)} C {Z cC: |Z‘ < e—szna(ﬁr/c}

for € sufficiently small.
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To control the rest of the Floquet spectrum we use the Ginzburg-Landau
formalism and the exponential stability of Ap,,. As a consequence of Theorem
B.1 we find that every eigenfunction of A can be written as

w(y) = A (ey)e? + c.c. + eR(y) (5.4)

with [|Ay|g , [[R|[ sy < 1. This is the so called attractivity of the set of modu-
lated patterns, here for the linear equation (5.3). Moreover, the approximation
property Theorem 2.6 holds in an analogous way for (5.3), since this is basically
a linear result, cf. the proof of Theorem 2.6. This means that the dynamics
of the eigenfunctions w can be approximated by the solutions of the lineariza-
tion Ar = LA of the nsGLe around Ay,. In detail, let A € C([0, T, Hy,),
T, = O(1), be the solution to Ay = L3 A with Alp—g = A; from (5.4). Then
there exists e, C' > 0 such that for all £ € (0,&9) we have
sup  |lw(t,-) — Palt, M, < Ce, Dalt,y) = A, ey)e@r) 4 c.c..
0<t<T /&2

Now let p2 # 1 be in specy(A) and let ty = 2 /c and T} = mTy = me*ty = O(1)
for some m € N with m = O(1/£?). Then

0 = [Jw(mto) — u™wollm, = [Ya(Tr) — p"Ya(0)llm, + Ole)
= (€ — ™M) Arllm, + O(e)

where A € specy (LSHL) Since Re(\) < —by except for the one simple eigenvalue

A =0, we find |p|™ < e®"t + Ce < e~ 3T for ¢ sufficiently small. Thus
defining b = min{nayn/c, boty/2} the proof of Lemma 5.1 is complete. O

Proof of Theorem 1.5. We define the nonlinear flow ¢, , : H} (R) — H] (R)
by the solution w(t) = ¢ swp of (5.2) with w|;—s = wp. The long time dynamics
of (5.2) for small w|;—y can be described by iteration of the nonlinear Floquet
operator I' = ¢or/c0 : U — Hi, (R), where U is a neighborhood of 0 in Hj, (R).
The mapping I' exists for U sufficiently small since L is sectorial and hence (5.2)
defines a local semigroup in H} (R). Thus we consider the discrete dynamical
system

w™ W (y) = Tw™(y). (5.5)

The linearization of T is given by w(™+Y) = Aw™. From Lemma 5.1 it follows
that there exists a one-dimensional center manifold M, of size O(e) for (5.5).
This manifold is tangential to span{w*} and contains all small solutions of
(5.5). Hence it coincides with the family

{upu(+s - = Z0) = upu(+-) : 70 € R}
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of fixed points of T' and the flow on M, is trivial. Now assume that ||w(©(-) —
Upu (- -—:vo)||Hllu < (e for some C > 0 sufficiently small. Then for t = m2x/c
and some z; € R we obtain

w0t () = (upu(- + ct,- = 21) = tpu(- + ¢t, )|y, < Coze™
for m — oc. Hence [|v(t, - +ct) —upu(- +ct, - —21)||m. < Chee’t which gives
[ut, ) = upu (-, - = et = z1) || < Coee™, (5.6)

Since (5.2) defines a local semigroup in Hi, (R) we obtain (5.6) for all t€[m2x /¢,
(m+ 1)27/c) and all meN and the proof of Theorem 1.5 is complete. O

6 A few numerical results

In order to calculate modulating multi—pulse solutions of (1.1) numerically we
proceed similar to their analytic construction. First we integrate numerically
(1.6) to obtain stationary n—pulse solutions of the nsGLe. Using (1.5) these
are taken as initial conditions for the pSHe, which we integrate in the moving
frame y = z + ct, see (5.1). Here we first choose ¢ = vy = 383 — (1, thus
ignoring the O(e) correction of ¢. This leads to modulating multi—pulse with
a small drift. Choosing different ¢ we calculate the correction coefficient ¢; .

6.1 Results for the nsGLe

For the numerical integration of the nsGLe we use finite differences in space,
projection boundary conditions [LPSS99], and the implicit NAG-routine d02ebf
for time integration. The strategy to obtain n—pulse solutions is as follows. We
fix (vo, 7, ap, a1, €1, ¢3;) which we choose as (1,1,0.7,0.8,9,4). As system-size
we take X € (=L, L) with L = 50 for 1-pulse solutions and L = 75 for 2-pulse
solutions. These values have been chosen after a few test—runs with different
values of L with no essential changes of the shapes of the pulses obtained. We
start with ¢;, = c3, = 0 by placing n—copies of the analytical solution

Apui(er, =0,¢3, = 0)(X) = \/ljlsech(\/gX)eie,

6.1
COS(29) = 010/0[1, b2 = (1/0 + noy Sin(29))/61i, b1 = QClibz/Cgi. ( )

at X1,...,X,. We then successively increase (cy,, c3,) and integrate the nsGLe
until a stationary n—pulse is reached.

Figure 4 shows the result for the 1-pulse obtained for (¢, c3-) = (4,0.5).
This solution will be used as the first initial condition for the pSHe.
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0.8 | Re Apu,l (Clra C3r) ] 03¢ Im Apu,l (Clra C37‘)
04| 0.15
(Clra C3r)
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= (4,0.5) 0 :
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Figure 4: The 1-pulses Ay, 1(+) for (¢, c3.) = (0,0) and (c1p, c3,) = (4,0.5).

Next we consider 2-pulses for the nsGLe. Here we let L = 75 and place as
initial condition one pulse at X; = —7.5 and one pulse at X, = +7.5. A priori
these values are arbitrary. As expected (cf. [SJA97] for similar results), in case
up—up the solution converges to the 1-pulse centered at Xy = 0. In case down—
up the real part of the solution at times 7" = 0,500, ... ,6000 is presented in
figure 5. Here ¢y, c3, were slowly increased to (ci.,c3,) = (4,0.5) at 7' = 100
and then kept fixed. Initially the two humps are too close to each other. They
separate at speed O(e™"") and get stuck at X; o &~ £22.5. Similarly, starting
with a down—up-—pulse with too widely spaced humps, the two humps approach
each other and in the limit we obtain the same final position as in figure 5.

ReApu,g (T, )

Figure 5: Separation of the humps when starting with a too narrow 2-pulse:
(c1r,c3,) = (0.5,4), T =0,500,...,6000, X € (=75,75) all in all.
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6.2 Results for the pSHe

We integrate the pSHe (5.1) using a semi-implicit Fourier—-Galerkin pseudo-
spectral code [CHQZ88| with 2000/¢ Fourier modes and periodic boundary
conditions. First we take upy 1(0,y) = eApy1(cir = 4,3 = 0.5)(ey)e? + c.c.
as initial condition, y € (—50/¢,50/¢) and let ¢ = 385 — 81 = v, and

(777 Qp, O, f17 f27 537 /61) = (]—7 07: 087 047 47 3: /83 - 52)‘ (62)

These values correspond to
(C1ry €14y C3ry €33y M, Q0 1, V) = (4,9, 0.504889,4.00356,1,0.7,0.8,1)  (6.3)

in the nsGLe. Therefore uy,1(0) is an O(¢?) approximation of a modulating
1-pulse in the pSHe. Figure 6 shows the O(1/¢%) time scale evolution for
e = 0.2. For t > 0 only the envelope Env(uyp, (%)) is plotted which is obtained
from all local maxima of uyy, 1(¢). Due to the missing O(e) correction of ¢ we
obtain a drift and an asymmetric shape of the modulating pulse. Defining
y1(t) = max, Env(up,1(t,y)) we obtain, e.g., y;(500) ~ —235, from which
we may refine ¢ to the value ¢ = v; + 41(500)/500 ~ 5.57. Restarting the
integration with this ¢ we obtain an envelope which is almost stationary (thus
giving a time periodic modulating 1-pulse) and symmetric.

t=120
u=0.3

80

Figure 6: Numerical integration of the pSHe with € = 0.2, ¢ = v, parameters
from (6.2), and initial condition up, 1 (0,y) = €Apu1(4,0.5)(ey)e” + c.c.: drift
and asymmetric shape of the envelope due to missing O(g)—correction of c.

In order to calculate the coefficient ¢ we keep the initial condition w, 1(0)
and the parameters from (6.2) fixed and integrate (5.1) with different € and
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c=v,. Fore =1/3,1/4,1/5,1/6,1/7 we obtain y,(1000)/(1000 &) = —2.7, —2.44,
—2.35,—2.31, —2.3. From this we may conclude that for the given parameters
we have ¢; ~ —2.3.

Finally, figure 7 shows the numerical integration of the pSHe with pa-
rameters from (6.2), initial condition up,2(0,y) = €Apu2(4,0.5)(ey)e” + c.c.,
e = 0.2, and ¢ = 5.56 which is slightly below the ¢ calculated above for the
1-pulse.

4 - - : - :
300 200 -100 O 100 200 300

Figure 7: Numerical integration of the modulating 2-pulse, parameters from
(6.2), e = 0.2, ¢ = 5.56: initial condition, and envelope for ¢ = 1000, 2000.

A The spectrum of the operator £ = L(9,) + g(z).
We calculate the spectrum of the operator £ : H;: (R) — L2 (R) with
Lu=[—(1+02) —e’nay + B10, + B302]u + 26> nay cos(2z)u. (A.1)
In particular we show that
specL C {\ € C: ReA < —®nap + O(e)}, (A.2)

which was used in the proof of Lemma 5.1. This is done in a way similar
to [DS98], however, we rather adopt the setup from [Mie97b]. There, the
spectrum of the linearization around a spatially periodic stationary solution of
the Swift-Hohenberg equation is calculated by Liapunov-Schmidt reduction
in Bloch wave space.

Bloch transform has its origin in Quantum mechanics. It is a generalization
of Fourier transform which is adapted to spatially periodic operators. The
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setup is as follows. The periodicity of £ is characterized by the lattice group
G={leR:T,L=LT} =77 where (Tju)(z) = u(x—I). We continue to write
T, for the one dimensional torus of length «, and define the periodicity domain
T =R/G = Ty, the dual lattice group G* ={h € R: h-l € 20Z VIl € G} = 27Z
and the wave number domain 7* = R/G* = T;. The space L*(T*,L*(T))
is called Bloch space, and a function u given in the form u(z) = **U(x)
with £ € 7* and U € L?(T) is called a Bloch wave. The Bloch transform
D: LA(T*,L*(T)) — L*(R), defined as

u(z) = DU)(x) = / &F U (k, z) d,
keT*
is an isomorphism, its inverse given by means of Fourier—transform as

Uk,z) =D "(u)(k,z) = > ek + j).

jEG*=2Z
The Bloch operators B(e, k) : H*(T;) — L?*(T,) are defined by

B(e, k)U(k,z) :=e **L(e, k)[e**U(k, )]
=L(0, + ik)U(k,z) + e’nay(ex + e_2)U(k, ),

and we have the identity [Mie97b, Theorem 2.1]

L? —spec(L) = L*-spec(L) = closure( U spec(B(e, k)))
keT™

For every fixed k € T, the operator B(e, k) has a discrete set of eigenvalues
{1;(e, k) : j € Z}. We now use the fact that B(e, k) is a small perturbation of
B(0, k), i.e.

||B(8, k) - B(O, k)||H4(T2,r)—)L2(T2,r) S 28277a1. (A?))
For B(0, k) we have B(0,k)e; = 1;(0, k)ej, j € 2Z where ej(z) = €% and
pi(0,k) = A0, k+j) = (1= (i + k)°)* +iBu(k + 5) — iBs(k + 5)°.  (A4)

This basically means that {y,(0,k) : j € 2Z} is obtained from rolling up
{A0,k) : k£ € R} on a cylinder, see figure 8. We define the set of non-
critical wavenumbers k as G5 = {k € [0,2] : |k — k] > 6}. Choosing

d =ey/n(ag + ay1)/2 using (A.3) and (A.4) we obtain

spec(B(e, k) C {p € C:Re u < —e’nag + O(e*)} for k € Gs.
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ReA(k) = Repo(0, k)
ke=1 2

L

ReT/\(k —2) = Rep_4(0,k)

RA(k+2)

Figure 8: ReA(0, k + j), logarithmic y—axis

In order to prove (A.2) it remains to calculate g _o(c, k) for k € G, =
[0,2] \ Gs. This is done by Liapunov—Schmidt reduction, and is also the first
step in the derivation of the modulation equation for (1.1) with arbitrary (7—
periodic) g, see [DS98]. We let

™

1 ™ ™
P : L*(T;) — span{eg,e_s}, PU(x) == (/ Udx +/ Udee_g(x)>
0 0
be the orthogonal projection of L?(7,) onto the critical eigenfunctions of
B(0,k) at k = k. and write
U(k,z) = yo(k)eo + v-2(k)e—2 + V(k, z)

with V(k,-)€(Id—P)L*(T;). Then the eigenvalue problem [B(e, k) — uId]U=0
is equivalent to

P[B(e,k) — pld)lU =0 and (Id — P)[B(e, k) — pId)U = 0. (A.5)

(
Since B(e,k) : (Id — P)H*(T;) — (Id — P)L*(T,) is invertible the second
equation can be solved uniquely for V(k,) = O(g?|y]) due to the implicit
function theorem, where v = (k) = (7(k), 7—2(k)). Inserting this into the
first equation in (A.5) we obtain the reduced eigenvalue problem

[L((?w + lk') - /,L] (’}/060 + 7_26_2) + 8277051 (’706_2 + 7_260) + 0(84"7‘) = 0.

From this we obtain the algebraic eigenvalue problem M (g, k, u)y(k)T = 0
where M (g, k,u) = My(e, k, u) + O(e*) € C*2 with

O,k _ =2 _ 2
My, ) = #UH) emeo N +0(").
ernay p—2(0,k) — e*nao — p
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With [ = k£ — 1 the condition det My = 0 gives

pe(e, 14+ 1) = — e’nag £ ie?y /1 — n2a? — viil

+ (—4 + 3ifsvp/1/ Ve — 77201%) >+ O(P) + 0" (A.6)
and hence Reps < —e?nagy + O(e*) which proves (A.2).

B The attractivity property

We prove that every eigenfunction of A in Lemma 5.1 is of the form (5.4). This
follows from the attractivity of the set of modulated patterns

MP = {w(y) = ¢a(y) : |Allm, <1}, valy) = cA(ey)e” +c.c.,
for the linear equation (5.3), i.e.
wy = Lyyw = (L + e*nay cos(2y + ct) + ¢dy + DN (vpy))w. (B.1)

For consistency with the usual nonlinear case we consider initial conditions of
order ¢.

Theorem B.1 There exist ey, C,T7 > 0 such that for all € € (0,e0) and all
wo € HL(R) with |wollg < e there exist an A € H}(R) with |All g, = O(1)
such that for the solution w of (B.1) we have

[w(T3/e%, ) — (), < C2

The basic idea is that the solution w of (5.3) develops peaks of width O(e) in
Fourier space, i.e., w(j) = O(%) for j € Z, v; = |1 — j|, and @(k) ~ 0 in be-
tween the peaks, see figure 9a). Results of this type have been shown in differ-
ent function spaces for the classical Swift-Hohenberg/Kuramoto—Shivashinsky
equation and similar translation invariant system, see [Eck93, BvHS95] for an
L'—version and [Sch94b] for the result in local uniform spaces. In [Sch95] the
stronger result of the analyticity of the function A (and of higher order modes)
is shown.

To explain the mechanism, here we show a somewhat simplified version of
Theorem B.1, namely the peak formation for initial conditions wy such that the
Fourier transform of wy is in L!. Since the only difference to earlier work are the
terms coming from DN (v,,) and from the periodic term 2e?nay cos(2(y + ct)),
we mainly want to show how to treat these terms. One key feature of the usual
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Figure 9: a) Mode distribution in Fourier space, b) Two consecutive weights

O(e) /\
k

9ms Im+1

translational invariant case is that the quadratic interaction of critical modes
gives stable modes. In our case we find that the terms (FDN(vpy,)) * @ and
F(2cos(2(y + ct))w) preserve the mode structure in a similar way.

Finally, we have a linear problem which makes the proof more simple. For
the nonlinear problem attractivity is a local result, i.e., it holds for suffiently
small initial conditions, while for the linear problem the size of wy is arbitrary.
However, for the sake of consistency with previous work we assume below that
[[do][+ = O(e).

Following [BvHS95] we introduce for m > 1 the weights

Gm (k) = e/ {2, (e + [k — g[)m/zeei2,

(6 -+ |k|)1/2—m/2, (8 + |k . l|)‘”/2*m/2*1/2}’

maXx
j=1,4£21=23,....tm

and let h,,(k) = 1/gm(k), see figure 9b). Then ||wh,,||; = O(1) means that w
has a mode distribution similar to the one shown in figure 9a). We now show
the following result:

Lemma B.2 For all meN there exists C,,, Ty, e0>0 such that for 0<e<eq
and |||z < € the solution w of (B.1) fulfills || (T /%, ) hmll1 < Crn-

Proof. The modulating pulse v, (¢, y) is given as

vpultiy) = D& TIAR ey t e
JEZ

with ||A§)ju)||H11u = O(1). From the proof it will be clear that we can ignore the
higher modes AI()J;J), j # %1 in the proof of Lemma B.2. Using this simplification
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and writing A, for Ag,u) , in Fourier space equation (B.1) for @ = w(t, k) reads

for
(1, k) = (\(k) + cik)d(t, k) + oL () (1, k) + 221 () (¢, k), where  (B.2)
B@)(R) = (1 + k) (A (/2 * @) (8 k= e+ e ),

IZ('UA)) (t, k) = oqn <’UA}(1';, k— 2)€2ict + ’(f](t, k+ 2)6—2ict>’

and c.c.f stands for (A pu( /e)x ) (¢, k+1)e7 . Clearly ||I(w)]]; = 2cun||d||1,
and

1. ) 1. ) N
||EA(/5) *abf)y < ||gA(/5)||1||w||1 < [|AlJ1||@]]4, (B.3)

by Young’s inequality. Thus we have ||I;(w)|1 = O(||®w|]1) and a priori we
obtain ||w(t)||s = O(e) only for t = O(1/e¢).

The proof now proceeds in two steps. First we show that || (T} /e2)hy || <Cy
for some T1,C; > 0. Second we show that ||W(T},/e*)hn|i < Cp, implies
|0(Trs1/€*) Al < Cppyr for some Tp,0q > Ty

We call I, = [-5/4,—3/4]U[3/4, 5/4] the set of critical wavenumbers since
in I, we have ReA(k) = O(¢?). Its complement is the set of stable wavenumbers
I, where Re\; < —o for some o > 0 independent of €. By x. = xz, we denote
the characteristic function of I. and by x, the one of I,. We then have the
following elementary estimates,

sup |€()\(k)+cik)t| < efaonezt’ sup |€()\(k)+dk)tk‘ < 0(1 + t71/4), and

keR keR (B.A)
sup [eAB AR < o=t with ¢ > 0 independent of €.
kel

Step 1 itself consist of a preliminary step followed by two parts: in the
Preliminary step we first note that obviously supg<,<.-1 [|@(t)|ls < Ce. Next
we have ||[w(e=*)ho|ly < C where hg = 1/(X. + 2x,). This holds since

Ixcw (€™ holl = lIxcd(e™*) /el < C, and

e—1/4

st (e Yholl < e~ e (e %) ey + C / =) ds < O

0

for ¢ < gy with 5_16_"551/4 <1.

Step 1, Part 1: In (B.2) we start again with @, = w(¢~/*) and show that
there exist 71,1 > 0 such that sup,cr, 2 [|(s)hol[s < C1. Therefore we let
S;(t) = sup, < |x;@(7)hol|1, j = ¢, 5. Then using

Xe max{ o (k) /ho(k + 1), ho(k) /ho(k — 1))} = €,

e mas{ho(k),/ho(k + 2), ho (k) ok — 2))} < 1, (B:5)
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and (B.4) we obtain

t ) ]’L
Se(t) < |Ixcohollr + / | eAEFARED (k) olk) ————(fi +ifok)
0 ho(k — 1)
(Apu(-/€) % W) (1, k — 1)ho(k — 1) + c.c.f) + e2Iy(T, k>”1} dr
t
< ||1f]0h0||1 +/ (Sup‘e()\(k)-l—cik)(t—ﬂ(fl + lfzk)‘ + 1) 62”717(7')]10“1 dr
0 kel
t
<C+ 062/ S.(1) + Ss(7) dr.
0

Similarly we obtain

¢
S, (t) < e x50kl + / (e‘”(t_T)(| fil + [ fot71?) + 52) (S, + S,)dr,
0
where we used

sup ho(k)/ho(k £1) =1/e, supho(k)/ho(k £2) =1/e. (B.6)

kel kels
Thus, for S(t) = S.(t) + Ss(t) we have
t
S(t) < [[doholl +/ (€2 + eI (fil + | foltTH2)S(r) dr (B.7)
0

and hence sup,; ||w(s)holl1 < S(t) < C for t = Ty /€.

Step 1, Part 2: We show that ||@(T1/e?)hi|l; < Cy for some C; > 0. We
have

Xchi(k)/ho(k) = 1+ |[k| = 1|/e,  xsha(k)/ho(k) = 1,

Xe max{hy (k)/ho(k — 1), ha(k)/ho(k + 1)} = & + [[k| — 1],

Xe maxthy(k)/ho(k — 2), hi(k)/ho(k +2)} = 1 + [[k] — 1]/e, (B-8)
Xs max{hy (k) /ho(k — 1), ha(k) /ho(k + 1)} = 1/e,

Xs max{hy (k) /ho(k — 2), hi(k) /ho(k +2)} = 1/e.
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Using these identities, for ¢, = T3/ £? we obtain
[xcw(t)halli < 0211?\6” IHA by (k) /ho (k)| || (te)hol |1
€l

tx
4 / sup |e()\(lc +cik)(ts—7 (fl lkfz) hy (k)
0

———| gl|lw(T)hol| dT
bz Sl

+/t Sup|e(/\(k +cik)(ts—T) h’l(k) |82||’UAJ(7')h || dr

< C(L+ T )|t ) kol + S (¢ )/Ot*(1+71/2)d7

<C,

ha (k)
ho(k)

t*
s (te) b < Csup \e*"t* | ll@ohol| + S(t )/ e—a“’(t*w)(t* _ ) Ydr
0

<C.

Step 2: The step from (T, hy) to (Thns1, A1) works as Part 1 and Part 2
in Step 1. We only have to replace (B.5), (B.6) and (B.8) by slightly weaker
estimates of the form

h(k) — hm(K)

D) k=D~ c Tk

X max{

which gives

t
/ sup|e
0 kel.

and similarly

him () hun ()
hon(k = 1) hy(k + 1)

(A(k)+cik)t

Hdt < C(et +t7%),  (B.9)

max{

hon(K) on (k) (k)
<1 =1 | < g3
sup [ (ki2)| . sup - (ki1)| /e sup = (ki2)| °
(B.10)
P (k) 1 P (), _
— 1 k _1 /2 < 1/2
sup |hm+71()\ - supe(l + [|k| — 1] /)%,
kel, h‘ (k:l:l) ke
) (B.11)
m+1 _ 1/2
22}2'7}1 (kﬂ)\ ;fu?(HHk' 1|/e)™/=,
hm+1(k) hTrH-l(k) -3
—m+lA\R) V) =
Ay LA e L

Using (B.9) and (B.10) we obtain supy, j.2cicr, ., /e2 |0()Amll1 < Crni1 and
from (B.11) we get |[w0(Trni1/€%) hmst]lt < Crny1- 0.
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C Further solutions of the nsGLe and rolls for (1.1)

The stabilizing effect of a resonant spatially periodic forcing for certain spa-
tially periodic solutions of systems of the form (1.1) is well known in the physics
literature, see for instance [Wal97] and the references therein. Here we briefly
comment on the existence and stability of spatially periodic solutions to (1.1)
stated in Remark 1.8. These correspond to spatially homogenous equilibria A
of the nsGLe (1.6) and may be constructed using the method of section 4, i.e.,
they are obtained as constant solutions of the reduced equation (4.11).

Here we first ignore the O(g) terms. Letting A(T) = U(T) + iV(T) and
W(T) = (U(T),V(T))T we obtain the Landau equation

OorW = LW + F(W), where (C.1)

JLan _ n(en — o) Yo
— (o + ) )

F(W) = (U?+V?) ( oo ) ( g ) .

For c3,c3; = 0 the equilibria of (C.1) may be easily calculated. For c3, = 0 we
obtain four nontrivial fixed points W) = (U;,V;), j = 1,... ,4, where

(05} + (7)) \/7 a1 — Qg
U, . Vi) = 2 _ 2 2 _ 2
(Ui, V1) (\/ Sy (vo +my/od 040),\/ Sy (vo +ny/oi ao)),
a1+ \/7 a1 — Q
Uz Va) = — 2 _ 12\ _ _ 2 _ A2
(Us, V3) (\/ Deno, (1o —m/ai — ag), \/ Denan (o —my/ o 040)) ;

and W@ = —Ww® W® = —W®_ From the linearization of (C.1) around
W) we obtain the eigenvalues

)\1,2 = —NQy + 1")/1 at W(1’2) and
)\1,2 = :|:27’]O£1 + 0(773) + 1’)/2 at W(3’4),

where 7,2 € R but we omit the lengthy formulas. Thus, we have two sinks
W2 and two saddles W®4 for (C.1). Since the nullclines in the fixed
points intersect transversely these equilibria persist for small ¢z, # 0, and
moreover, for more general small perturbations of (C.1), that is, for the O(e)—
perturbations in (4.11). Note however that the condition a; > ¢ > 0 is crucial
for U;, V; to be real, i.e., for the existence of W), j =1..4. Figure 10 shows
the phase portrait for (C.1) with ag = 1,7 = 0.1,y = 1, ¢3; = 4, ¢3, = 0.1 and
a; =01in a) and a3 =2 in b).
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Figure 10: The phase portrait of (C.1) with ag=1,7=0.1, vy=1, c3;=4, ¢3,=0.1
and @; = 0 in a) and ag = 2 in b). The nullclines of (C.1) are shown as dotted
lines.

In summary, from each non-trivial fixed point WU of (C.1) we obtain a
spatially 2r—periodic stationary solution uge)r of (1.1), a so called roll, via

ufo () = e(Uj +1Vj)e'” + c.c. + O(e?).

per

Due to standard center manifold theory the rolls u&,’f) are stable in the space

H'(T3:) of 2r-periodic functions, while of course the rolls ug,)r, j = 3,4, cor-
responding to the saddle points W &% are unstable.

For the stability of the rolls u%,le’f) in H. (R) we need to exclude the possibil-
ity of so called side-band instabilities. The spectrum of the linearization £* of
(1.1) around ul(,le’f) can again be calculated by Bloch transform and Liapunov—
Schmidt reduction as in Appendix A. However, here we rather give a heuristic
discussion in terms of the Ginzburg-Landau formalism. Therefore we consider
the stability of the equilibria W12 by linearizing the full nsGLe (2.5), which

gives
OrW = (L (9x) + DE(WI)W. (C.2)

The constant matrix DF (W) € C?*2 only perturbs the essential spectrum
of L%L(0x) as given in (2.6) and does not generate eigenvalues. Here we
do not present these algebraic calculations. Instead, in figure 11 we show
the results obtained for the linearization of (C.2) around W) with fixed
ag = l,aqg =2, = 0.1,y = 1,¢c3, = 0.1,¢3; = 4,¢c;; = 1, and ¢, = 0.1
in a) and ¢;, = 2 in b). This figure shows the real-parts of the eigenvalues
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Figure 11: The real part of A, 2(K) plotted over K: a) with small dissipation
c1r = 0.1, b) with large dissipation ¢;, = 2. Note that in both cases we have
Re)\l,g(O) = —noy < 0.

Mao(K) of LS:(iK) + DF(WW®) over the Fourier wavenumber K. For small
¢1, > 0 the fixed point W is unstable with respect to Fourier-modes with
wave—number K in a band around K = 1. Note that small ¢y, > 0 corresponds
to the parameter region where stable n—pulse solutions to the nsGLe exist, see
section 3.

For larger c;,, where the analysis of section 3 for the pulse solutions is not
valid, by dissipation A(K) gets pushed below the K-axes for all K. Thus, for
ci, sufficiently large we obtain stationary solutions W52 to the nsGLe that
are exponentially stable in H..

In the critical parts ||k|—1] < O(g) for the Bloch wavenumber £, the largest
eigenvalue p;(k) of the linearization £* of (1.1) around the roll u&l is given
by ui(1 +eK) = 2\ (K) + O(e?), |K| ~ 1. Thus, for small c;, we have a
so called detached sideband-instability, while for ¢;, = O(1) and ¢ sufficiently
small we obtain

specL* C {z € C: Rez < —&’nag + O(s*) < 0}.

Therefore, in the latter case the equilibria W@ correspond to roll solutions
of the original equation (1.1) which are exponentially stable in H},(R). This
concludes the discussion of Remark 1.8.
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