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Abstract

Nonlinear coupled mode equations occur as universal modulation equations in various cir-

cumstances. It is the purpose of this paper to prove exact estimates between the approx-

imations obtained via the nonlinear coupled mode equations and solutions of the original

parabolic or hyperbolic systems. The models which we consider contain all difficulties

which have to be overcome in the general case.

1 Introduction

Nonlinear partial differential equations on spatially extended domains are very often

described by simpler models, so called amplitude or modulation equations. These

equations can be derived by formal multiple scaling perturbation analysis. Typical

examples of such universal modulation equations are the Ginzburg-Landau equation,

the Nonlinear Schrödinger equation, or the Korteweg de Vries equation.

A very long time the formal derivation has been the only connection to the orig-

inal systems. Only in the last years mathematicians started to analyze the question

whether solutions of the original systems really can be described by the formally

derived modulation equations, see [2, 7, 1, 16, 4, 10]. Interestingly it turned out

that this is in general not true. There are counterexamples [11, 5], where the orig-

inal system behaves differently than predicted by the formally derived modulation

equations.

Motivated by [6], the subject of this paper is the mathematical justification of

the so called nonlinear coupled mode equations (NLCME)

∂T A+ = +vg∂XA+ + αA+ + κA− + (γ1|A+|2 + γ2|A−|2)A+,

∂T A− = −vg∂XA− + αA− + κA+ + (γ2|A+|2 + γ1|A−|2)A−,
(1.1)
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in case of quadratic terms present in the original system. Herein, A±(X, T ) ∈ C,

0 6= vg ∈ R, T ≥ 0, X ∈ R, and α, κ, γ1, γ2 ∈ C. Solutions u of the original systems

can be described by

u(x, t) = εA+(ε2x, ε2t)ϕ+eik0x+iω0t + εA−(ε2x, ε2t)ϕ−e−ik0x+iω0t + c.c. + O(ε2)

with 0 6= k0 ∈ R, 0 6= ω0 ∈ R, x ∈ R, t ≥ 0, with ϕ± in a Hilbert space, where c.c.

means complex conjugate and where 0 < ε � 1 is a small parameter.

The NLCME appear for instance in the nonlinear propagation of light in an

optical fiber waveguide with an underlying spatially periodic structure [6]. In case

of α = 0 and κ, γ1,2 ∈ iR they possess so called gap soliton solutions which play a

big role in nonlinear optics.

As already said it is the purpose of this paper to prove exact estimates between

the approximations obtained via the NLCME and solutions of the original systems.

In order to keep the notations on a reasonable level we refrain from greatest gener-

ality and consider two special model problems as original systems which contain all

difficulties which have to be solved in the general case. This has to be understood

in the following sense. The NLCME are justified as a modulation equation if the

dynamics in the original system can be predicted by the NLCME. This means that

to solutions of the NLCME for T ∈ [0, T0] there should be solutions of the original

system for t ∈ [0, T0/ε
2] which can be approximated via the NLCME. Since these

solutions are of order O(ε), Gronwall’s inequality only gives error estimates on time

scales O(1/ε) if quadratic terms are present in the original system. If the nonlinear-

ity starts with cubic terms Gronwall’s inequality gives estimates on the right time

scale O(1/ε2). This has been used in [6], where the NLCME have already been jus-

tified as a modulation equation for the equations of nonlinear propagation of light

in an optical fiber waveguide with an underlying spatially periodic structure.

From a perturbation theoretical point of view the handling of quadratic nonlin-

earities considered in this paper is the real challenge. In this sense our methods

apply to the general case.

We have to distinguish hyperbolic and parabolic systems. In hyperbolic systems

the required time scale can be obtained with the help of a normal form transform.

See Section 2. In the parabolic case the required time scale can be obtained by using

the smoothing properties of the linear semigroup and by controlling the nonlinear

mode interactions. See Section 3.

By the results of this paper it is clear that the NLCME provide good approxi-

mations of the dynamics in the original systems and do not have to be added to the

counter examples of not useful modulation equations.
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Notation. Throughout this paper we assume 0 < ε � 1 and denote many different

constants uniformly by C if they can be chosen independent of 0 < ε � 1.

2 The nonlinear wave equation

In this section we consider the hyperbolic case. The easiest model problem with a

quadratic nonlinearity is a Klein-Fock equation with a spatially periodic potential

∂2
t u = ∂2

xu − u + 2ε2κ cos(2k0x)u − u2 (2.1)

with x, t ∈ R, u = u(x, t) ∈ R, κ, k0 ∈ R. This equation is a simplified purely

phenomenological version of a system of nonlinear partial differential equations con-

sidered in [6] describing the nonlinear propagation of light in an optical fiber waveg-

uide with an underlying spatially periodic structure. In [6] for the more complicated

system, but without quadratic terms, it already has been shown that the NLCME

provide good approximations of the solutions of the original system.

It is the purpose of this section to show that this is also true in the case of

quadratic terms present in the nonlinearity, when as explained in Section 1, an

application of Gronwall’s inequality is not sufficient to obtain the required error

estimates.

The method we use goes back to [7], where the validity question for the Nonlinear

Schrödinger equation has been handled using averaging methods. A similar problem

has been solved in [12] with the help of a normal form transform. By this method

all quadratic terms can be eliminated such that after the transformation the proof

for the cubic nonlinearities becomes applicable. In order to get rid of the quadratic

terms the original system has to satisfy some non–resonance condition, see (2.13)

below. In the same way we proceed for the validity question of the NLCME.

In the Nonlinear Schrödinger case there are no terms for the interaction of the

counter propagating wave packets in lowest order. See [9]. For the NLCME the

interaction term for the counter propagating spatially localized wave packets is of

leading order and has to be included into the NLCME.

2.1 Derivation of the NLCME

In order to derive the NLCME we let X = ε2x, T = ε2t and make the (preliminary)

ansatz u(x, t) = εΨ1(x, t, ε) with

εΨ1(x, t, ε) = εA1(X, T )EF + ε2A2(X, T )E2F2 + 1
2
ε2A0(X, T )E0F0

+εB1(X, T )E−1F + ε2B2(X, T )E−2F2

+ε2E2(X, T )E2 + ε2F2(X, T )F2 + c.c.,

(2.2)
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where E = eik0x such that 2 cos(2k0x) = E2 +E−2, and F = eiω0t with ω0 =
√

k2
0 + 1

determined by the linear dispersion relation for (2.1). Inserting (2.2) into (2.1) gives

0 = ε2[4(ω2
0−k2

0)A2−A2−A2
1]E

2F2 + ε2[4(ω2
0−k2

0)B2−B2−B2
1 ]E

−2F2 (2.3)

+ε2[−A0 + 2(|A1|2 + |B1|2)]E0F0

+ε2[−2A1B1−(1 − 4ω2
0)F2]F

2 + ε2[−2A1B−1−(1 + 4k2
0)E2]E

2

+ε3[−2iω0∂T A1 + 2ik0∂XA1 + κB1

−2A0A1−2A2A−1−2B1E2−2B−1F2]EF

+ε3[−2iω0∂T B1−2ik0∂XB1 + κA1

−2A0B1−2B2B−1−2A1E−2−2A−1F2]E
−1F

+ε3[κB1−2A−1B2 − 2B1E−2]E
−3F + ε3[κA1−2A2B−1−2A1E2]E

3F

+ε3[−2A1B2−2B1F2]E
−1F3 + ε3[−2A2B1−2A1F2]EF3

+ε3[−2B1B2]E
−3F3 + ε3[−2A1A2]E

3F3 + c.c. + O(ε4),

where A−k = Ak, B−k = Bk, E−k = Ek, F−k = Fk, and where we used

∂2
t (B(ε2x, ε2t)EpFq) = (ε4∂2

T B(X, T ) + 2iω0qε
2∂T B(X, T ) − ω2

0q
2B(X, T ))EpFq

and similarly for ∂2
x. Equating the coefficients of ε2E2F2, ε2E−2F2, ε2E0F0, ε2F2

and ε2E2 to zero and using ω2
0 − k2

0 = 1 gives

A2 = 1
3
A2

1, B2 = 1
3
B2

1 , A0 = 2(|A1|2 + |B1|2),
F2 = −2

1−4ω2
0

A1B1, E2 = −2
1+4k2

0

A1B−1.
(2.4)

Inserting this into the coefficients of ε3EF and ε3E−1F we obtain

−2iω0∂T A1 + 2ik0∂xA1 + κB1

−2(2|A1|2 + |B1|2)A1 − 2
3
|A1|2A1 + 4

(
1

1+4k2
0

+ 1
1−4ω2

0

)
|B1|2A1 = 0,

−2iω0∂T B1 − 2ik0∂xB1 + κA1

−2(2|B1|2 + |A1|2)B1 − 2
3
|B1|2B1 + 4

(
1

1+4k2
0

+ 1
1−4ω2

0

)
|A1|2B1 = 0,

(2.5)

i.e, the NLCME with

vg = k0/ω0, γ1 =
7i

3ω0
and γ2 =

i

ω0

(
1 − 2(

1

1 + 4k2
0

+
1

1 − 4ω2
0

)
)
.

2.2 The approximation result

As a number of counterexamples [11, 5] show, it is not obvious that the dynamics of

(2.1) can be predicted by the formally derived system (2.5). We show the following

result.
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Theorem 2.1 Let (A1, B1) ∈ C([0, T0], [H
3(R, C)]2) be solutions of the NLCME

(2.5) for a fixed T0 > 0. Then there exist ε0, C > 0 such that for all ε ∈ (0, ε0) there

exist solutions u of (2.1) which can be approximated by

εΨ0(x, t, ε) = εA1(ε
2x, ε2t)EF + εB1(ε

2x, ε2t)E−1F + c.c.

such that

sup
t∈[0,T0/ε2]

‖u(·, t) − εΨ0(·, t, ε)‖C0
b
≤ Cε2.

Remark. The error of order O(ε2) is small compared with the solution and the

approximation which are both of order O(ε) for all 0 ≤ t ≤ T0/ε
2, i.e., the dynamics

predicted by the NLCME (2.5) can be seen in (2.1).

Proof. We write the solution u as a sum of an approximation εΨ and an error ε2R.

Then the error is determined by the equation

∂2
t R = ∂2

xR − R + 2ε2κ cos(2k0x)R − 2εΨR − ε2R2 + ε−2Res(εΨ), (2.6)

where the residual Res(εΨ) is defined by all terms which do not cancel after inserting

the ansatz into (2.1), i.e.

Res(u) = −∂2
t u + ∂2

xu − u + 2ε2κ cos(2k0x)u − u2.

It is easy to see that for f = O(1) the inhomogeneous equation

∂2
t R = ∂2

xR − R + ε2f

has O(1)-bounded solutions R for all t on a time scale of order O(1/ε2). Thus

there are two difficulties which have to be overcome in order to prove the O(1)-

boundedness of the error R. We have to

a) prove that the residual Res(εΨ) is of order O(ε4),

b) control the influence of the term 2εΨR.

We start with the goal in a) which can always be achieved by adding higher order

terms to the approximation defined in (2.2). We define the final approximation

εΨ2(x, t) = εA1(X, T )EF + ε2A2(X, T )E2F2 +
1

2
ε2A0(X, T )E0F0 (2.7)

+εB1(X, T )E−1F + ε2B2(X, T )E−2F2

+ε2E2(X, T )E2 + ε2F2(X, T )F2

+ε3H−3,1(X, T )E−3F + ε3H3,1(X, T )E3F

+ε3H−1,3(X, T )E−1F3 + ε3H1,3(X, T )EF3

+ε3H−3,3(X, T )E−3F3 + ε3H3,3(X, T )E3F3 + c.c.
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where A1, B1 solve (2.5), where A0, A2, B2 solve (2.4), and where H−3,1, H3,1, H−1,3,

H1,3, H−3,3, H3,3 solve

ε3E−3F : (ω2
0−9k2

0−1)H−3,1 + κB1−2A−1B2−2B1E−2 (2.8)

= −8k2
0H−3,1 + κB1−2A−1B2−2B1E−2 = 0,

ε3E3F : (ω2
0−9k2

0−1)H3,1 + κA1−2A2B−1−2A1E2

= −8k2
0H3,1 + κA1−2A2B−1−2A1E2 = 0,

ε3E−1F3 : (9ω2
0−k2

0−1)H−1,3−2A1B2−2B1F2

= 8ω2
0H−1,3−2A1B2−2B1F2 = 0,

ε3E1F3 : (9ω2
0−k2

0−1)H1,3−2A2B1−2A1F2

= 8ω2
0H1,3−2A2B1−2A1F2 = 0,

ε3E−3F : (9ω2
0 − 9k2

0 − 1)H−3,3 − 2B1B2 = 8H−3,3 − 2B1B2 = 0,

ε3E3F3 : (9ω2
0 − 9k2

0 − 1)H3,3 − 2A1A2 = 8H3,3 − 2A1A2 = 0,

with A−j = Aj, B−j = Bj. Thus, by adding the terms Hi,j to the original ansatz

all terms of order O(ε3) in the original residual can be eliminated, and so the final

residual will be of order O(ε4).

To formulate and prove this rigorously we have to choose some function spaces.

We consider (2.1) in Fourier-space and look for solutions in L1(R, C). In the fol-

lowing we usually simply write L1(R) for both real and complex valued functions,

and similar for the other spaces appearing below. The choice of L1(R) is mainly

motivated by the invariance of L1(R) with respect to scaling in the following sense;

defining the scaling operator Sε by (Sεu)(x) = u(εx), for the Fourier transform

û(k) = (Fu)(k) =
1

2π

∫
u(x)e−ikxdx

of a scaled function we obtain

F(Sεu) =
1

ε
S 1

ε
(Fu) and ‖û‖L1 = ‖1

ε
S 1

ε
û‖L1 .

Estimates for û in L1(R) transfer easily into physical space, since F−1 is continuous

from L1(R) into C0
b (R) equipped with the sup-norm, i.e., ‖u‖C0

b
≤ ‖û‖L1 , but not

vice versa. We remark that in classical Sobolev spaces Hm(R) we would loose too

many powers in ε since ‖Sε2A‖Hm ≤ Cε−1‖A‖Hm .

Before we go on with the proof we recall some basic facts. Let

‖û‖p
Lp(m) =

∫
|û(k)|p(1 + |k|2)pmdk, Lp(m) := {û ∈ Lp(R) : ‖û‖Lp(m) < ∞}.
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Fourier transform is an isomorphism between Hm(R) and L2(m), i.e., there exist

constants C1, C2 > 0 such that ‖u‖Hm ≤ C1‖û‖L2(m) ≤ C2‖u‖Hm. Sobolev’s in-

equality is given by ‖û‖L1(m) ≤ C‖û‖L2(m+s) for s > 1
2

and a constant C = C(s).

Multiplication in physical space corresponds in Fourier space to convolution

(û ∗ v̂)(k) =

∫
û(k − `)v̂(`) d` with ‖û ∗ v̂‖L1 ≤ ‖v̂‖L1‖û‖L1.

With these estimates and the formal computation from above we may estimate the

residual as follows.

Lemma 2.2 Let A1, B1 ∈ C([0, T0], [H
3(R, C)]2) be solutions of (1.1). Define A0, A2,

B2 by (2.4) and Hi,j by (2.8). Then there exist positive constants C, ε0 > 0 such

that for all ε ∈ (0, ε0) the approximation Ψ defined in (2.7) satisfies

sup
t∈[0,T0/ε2]

‖FεΨ2(·, t)‖L1 < Cε and sup
t∈[0,T0/ε2]

‖F(Res(εΨ2(·, t)))‖L1 < Cε4.

Thus we have shown a) of the above program. In order to establish b) we consider

(2.1) in Fourier space, i.e.

∂2
t û(k) = (−k2 − 1)û(k) + κ[ε2û(k + 2) + ε2û(k − 2)] − û ∗ û(k). (2.9)

To eliminate the term −2εΨR in (2.6) we use a normal form transform. Due to

the special structure of (2.1) it is possible to eliminate the quadratic terms in (2.1)

completely. This has been observed in [14] and used since this time for different pur-

poses. However, for the validity proof there is no need for the complete elimination

of all quadratic terms, see [12].

We formulate (2.9) as a first order system

∂tû = Lû + Ñ(û), (2.10)

û =

(
û1

û2

)
=

(
û

1√
k2+1

∂tû

)
, L =

(
0

√
k2+1

−
√

k2+1 0

)
,

Ñ(û) =

(
0

1√
k2+1

(κ(ε2û1(k−2)+ε2û1(k+2))−(û1 ∗ û1)(k))

)
.

Diagonalizing (2.10) by û = Sv̂ with S = 1√
2

(
i 1

−1 −i

)
we obtain

∂tv̂ = Mv̂ + N(v̂), (2.11)

with

M = S−1LS =

(
i
√

k2 + 1 0

0 −i
√

k2 + 1

)
, N(v̂) = S−1Ñ(Sv̂).
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We write

N(v̂) = ε2N1(v̂) + N2(v̂, v̂)

with N1 linear in v̂ and N2 containing the bilinear terms of N and make a near

identity change of variables

v̂ = ŵ + B(ŵ, ŵ) = T (ŵ) (2.12)

with B an autonomous bilinear mapping. This gives

∂tŵ + B(∂tŵ, ŵ) + B(ŵ, ∂tŵ)

= Mŵ + MB(ŵ, ŵ) + ε2N1(ŵ + B(ŵ, ŵ)) + N2(ŵ, ŵ) + O(‖ŵ‖3)

and so

∂tŵ = Mŵ + MB(ŵ, ŵ) − B(Mŵ, ŵ) − B(ŵ, Mŵ) + N2(ŵ, ŵ)

+ε2N1(ŵ + B(ŵ, ŵ)) + O(‖ŵ‖3).

In order to eliminate the quadratic terms N2(ŵ, ŵ) we have to find a B such that

MB(ŵ, ŵ) − B(Mŵ, ŵ) − B(ŵ, Mŵ) + N2(ŵ, ŵ) = 0.

With

(N2(ŵ, ŵ))h =

2∑

i,j=1

∫
nhpq(k, k − `, `)ŵp(k − `)ŵq(`) d`,

(B(ŵ, ŵ))h =
2∑

i,j=1

∫
bhpq(k, k − `, `)ŵp(k − `)ŵq(`) d`

for the h-th component of N2 and B, λ1(k) = −λ2(k) = i
√

k2 + 1 and nhpq, bhpq

some coefficients we obtain the well known relation

(λh(k) − λp(k − `) − λq(`))bhpq(k, k − `, `) = nhpq(k, k − `, `).

This can be resolved with respect to bhpq due to the non resonance property

inf
h,p,q∈{1,2}

k,l∈R

|λh(k) − λp(k − `) − λq(`)| ≥ 1 (2.13)

of the dispersion relation of (2.1). Since sup
k,`∈R,p,q=1,2

|nhpq(k, k−`, `)| < C < ∞ we

obtain

‖(B(ŵ, ŵ))h‖L1 =

∫ ∫ 2∑

p,q=1

|bhpq(k, k−`, `)ŵp(k−`)ŵq(`)| d` dk

≤ sup
k,`∈R,p,q=1,2

|nhpq(k, k−`, `)|
∫ ∫ 2∑

p,q=1

|ŵp(k−`)ŵq(`)| d` dk

≤ C‖ŵ‖L1‖ŵ‖L1.
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Thus the transformation (2.12) can be resolved with respect to ŵ for ‖ŵ‖L1 suffi-

ciently small. Therefore (2.11) transforms into

∂tŵ = Mŵ + N3(ŵ) (2.14)

with a nonlinearity N3 which satisfies

‖N3(ŵ)‖L1 ≤ Cε2‖ŵ‖L1 + C‖ŵ‖3
L1

for a constant C if ‖ŵ‖L1 < δ for a fixed δ > 0 sufficiently small independent of

ε > 0.

We write a solution ŵ of (2.14) as a sum of an approximation εΨ̂ and an error

ε2R̂. The approximation εΨ̂ is defined by

εΨ̂ = T−1S−1

( FΨ2

FΨ2/
√

k2 + 1

)

and satisfies the assertions of Lemma 2.2. Therefore the error R satisfies a differential

equation of the form

∂tR = MR + h(εΨ̂, R)

with

‖h(εΨ̂, R)‖L1 ≤ C1ε
2‖R‖L1 + C2ε

3‖R‖2
L1 + CResε

2,

where the constants C1 and CRes (coming from the residual) are independent of

ε ∈ (0, 1) and ‖R‖L1 and where C2 is independent of ε ∈ (0, 1) but depends on

Cmax = supt∈[0,T0/ε2] ‖R(t)‖L1 . Choosing ε > 0 so small that C2(Cmax)ε < 1 we

obtain

‖R(t)‖L1 ≤ CRese
(C1+1)T0 =: Cmax

with the help Gronwall’s inequality. Doing back all transformations and using

supt∈[0,T0/ε2] ‖εΨ2 − εΨ0‖ = O(ε2) shows the assertion of Theorem 2.1. �

3 The Swift-Hohenberg model

In this section we consider the parabolic case. The easiest model problem with a

quadratic nonlinearity is a system of coupled Swift-Hohenberg type equations

∂tU = ΛU+c



 ∂xu

−∂xv



 +ε2α0U+2ε2κ sin(2x)



 u−v

v−u



 +N(U, ∂xU), (3.1)

where U = U(x, t) =



 u(x, t)

v(x, t)



 ∈ R
2, ΛU =



−(1 + ∂2
x)

2u

−(1 + ∂2
x)

2v



 ,
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c > 0, α0, κ ∈ R, and where N is some quadratic nonlinearity with (N1, N2) 7→
(N2, N1) as x 7→ −x, such that (u, v) 7→ (v, u) as x 7→ −x in (3.1). This system is

a phenomenological model of a reflection symmetric, pattern forming system in a

spatially periodic domain undergoing a Hopf-bifurcation at a non-zero wavenumber

k0 = 1, where 0 < ε � 1 is the small bifurcation parameter.

Setting

e1 =


 1

0


 , e2 =


 0

1


 ,

the constant coefficient linear part L1 of (3.1) with

L1U = ΛU + ε2α0U + c


 ∂xu

−∂xv


 ,

fulfills L1e
ikxej = λj(k)ej, where

λ1(k) = −(1 − k2)2 + ick + α0ε
2, λ2(k) = −(1 − k2)2 − ick + α0ε

2.

Therefore, the linear semigroup etL1 damps all modes eikxÛ(k) except of the so

called critical modes with |k| in a small neighborhood of the critical wavenumber

k0. The basic idea used for proving the approximation result for the NLCME below

is to separate the critical modes from the stable modes with ||k| − 1| ≥ 1/4, and

to control the quadratic mode interaction. This idea goes back to [10], where the

validity question for the Ginzburg-Landau equation for quadratic nonlinearities has

been handled. In order so see interesting effects of the spatially periodic coefficient

2ε2κ sin(kpx), its wavenumber kp has to be in resonance with the critical wavenumber

k0 = 1, i.e. kp = nk0 for some n ∈ N. See, e.g., [3, 15]. Choosing n = 2 is the simplest

possibility to obtain the NLCME.

A particular simple choice for N(U, ∂xU) that leads to NLCME in the regime of

gap solitons is

N(U, ∂xU) = f1(u
2 + v2)


 1

1


 + f2(u∂xu + v∂xv)


 1

−1


 (3.2)

with suitable coefficients f1, f2 ∈ R. For notational simplicity we will use this non-

linearity throughout.

Remark. For systems like (3.1) the long time dynamics of the bifurcating solutions

can be described by a system of singularly coupled Ginzburg-Landau equations in

which space scales as X = εx, see, e.g., [13]. If we consider the special class of
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very long wave modulations X = ε2x of the most unstable pattern we arrive at the

NLCME which describe some interesting transient dynamics in the original system

before the Ginzburg–Landau equations take their role in the description of the so-

lutions. This is sketched in Figure 1.

a) b)

U1(t, x) U1(t, x)

O(ε)





x x

︸ ︷︷ ︸
O(1/ε2)

︸ ︷︷ ︸
O(1/ε)

Figure 1: Sketches of the dynamics of (3.1). a) transient dynamics, envelope described

by NLCME; b) example of asymptotic dynamics described by coupled Ginzburg–Landau

equations.

3.1 Derivation of the NLCME

We let again E = eix, F = eiω0t, X = ε2x, T = ε2t. As before we start with a

preliminary approximation

εΨ1(x, t) = [εA1(X, T )EF + ε2A2(X, T )E2F2 +
ε2

2
A0(X, T )]e1 (3.3)

+[εB1(X, T )E−1F + ε2B2(X, T )E−2F2 +
ε2

2
B0(X, T )]e2

+ε2C−2,2E
−2F2e1 + ε2D2,2E

2F2e2 + c.c..

Inserting (3.3) into (3.1) gives

0 =
ε2

2
[−A0+2f1(|A|2+|B|2)]E0F0e1+

ε2

2
[−B0+2f1(|A|2+|B|2)]E0F0e2 (3.4)

+ε2[−9A2+(f1+if2)A
2
1]E

2F2e1+ε2[−9B2+(f1+if2)B
2
1 ]E

−2F2e2

+ε2[(−9−2ic)C−2,2+(f1−if2)B
2]E−2F2e1

+ε2[(−9 + 2ic)D2,2+(f1−if2)A
2]E2F2e2

+ε3[−∂T A1+c∂XA1+α0A1+iκB1+(2f1+if2)(A0A1+A2A−1)]EFe1

11



+ε3[−∂T B1−c∂XB1+α0B1+iκA1+(2f1+if2)(B0B1+B2B−1)]E
−1Fe2

+ε3[iκA−1+(2f1−if2)(B0B1+B2B−1)]E
−1Fe1

+ε3[iκB1+(2f1−if2)(A0A1+A−2A1)]EFe2

+ε3[(2f1−if2)C−2,2A1]E
−1F3e1+ε3[(2f1+if2)D2,2B1]EF3e1

+ε3[(2f1+if2)C−2,2A1]E
−1F3e2+ε3[(2f1−if2)D2,2B1]EF3e2

+ε3[(2f1−2if2)C−2,2A0]E
−2F2e1+ε3[(2f1+2if2)D2,2B0]E

2F2e1

+ε3[(2f1+2if2)C−2,2A0]E
−2F2e2+ε3[(2f1−2if2)D2,2B0]E

2F2e2

+ε3[(2f1+3if2)A2A1]E
3F3e1+ε3[(2f1−3if2)B2B1]E

−3F3e1

+ε3[(2f1−3if2)A1A2]E
3F3e2+ε3[(2f1+3if2)B2B1]E

−3F3e2

+ε3[(2f1+3if2)D2,2B−1−iκA1]E
3Fe1+ε3[(2f1−3if2)C−2,2A−1−iκB1]E

−3Fe1

+ε3[(2f1−3if2)D2,2B−1−iκA1]E
3Fe2+ε3[(2f1+3if2)C−2,2A−1−iκB1]E

−3Fe2

+c.c. + O(ε4),

where A−j = Aj, B−j = Bj. In the seventh line the (preliminary) residual starts,

see below. Solving for A0 at ε2e1, for A2 at ε2E2F2e1, for B0 at ε2e2, for B2 at

ε2E−2F2e2, for C−2,2 at ε2E−2F2 and for D2,2 at ε2E2F2e2, i.e.

A0 = 2f1(|A1|2+|B1|2), B0 = 2f1(|A1|2+|B1|2), A2 = 1
9
(f1+if2)A

2
1 etc., (3.5)

the order O(ε2) terms vanish. Inserting the results into the equations at ε3EF and

ε3E−1F we obtain the NLCME for A1, B1, i.e.,

∂T A1 = c∂XA1 + α0A1 + iκB1 + (γ1|A1|2 + γ2|B1|2)A1,

∂T B1 = −c∂XB1 + α0B1 + iκA1 + (γ1|B1|2 + γ2|A1|2)B1,
(3.6)

with

γ1 = (2f1 + if2)(2f1 +
1

9
(f1 + if2)), γ2 = 2f1(2f1 + if2).

Remark. Note that for the derivation of the NLCME (3.6) the terms ε2C−2,2E
−2F2e1

and ε2D2,2E
2F2e2 are not needed. However, they are needed to produce a formally

consistent approximation, i.e., to remove the O(ε2) terms from the residual in (3.4).

In general one would also need

ε2C2,0E
2e1, ε2C0,2F

2e1, ε2D−2,0E
−2e2, ε2D0,2F

2e2 (3.7)

in (3.3) to balance terms at ε2E2e1, ε
2F2e1, ε

2E−2e2, ε
2F2e2 in (3.4) generated by the

quadratic nonlinearity. However, due to our special nonlinearity, i.e., since there is

no uv in (3.2), these terms are not generated. Thus we may omit the terms from

(3.7) in (3.3).
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3.2 The approximation result

In contrast to the hyperbolic equation (2.1) system (3.1) is dissipative and allows for

bigger spaces concerning the local existence and uniqueness of solutions. Therefore,

we consider (3.1) in uniformly local Sobolev spaces Hm
ul (R), where again in the

notation we usually do not distinguish between real or complex or vector valued

functions. The Banach spaces Hm
ul (R) contain all kinds of bounded functions and

are defined as follows: fix the weight function ρ(x) = 1/ cosh(x) and let

‖u‖2
L2

ul

= sup
y∈R

∫
|u(x)|2ρ(x + y)dx, L̃2

ul(R) = {u ∈ L2
loc(R) : ‖u‖L2

ul
< ∞},

L2
ul(R) = {u ∈ L̃2

ul(R) : ‖Tyu − u‖L2
ul
→ 0 as y → 0},

where (Tyu)(x) = u(x − y). Then

Hm
ul (R) := {u ∈ L2

ul : ∂j
xu ∈ L2

ul for 0 ≤ j ≤ k}. (3.8)

Since the spaces Hm
ul (R) are based on L2(R) the global existence of solutions for typ-

ical dissipative systems can be shown via Fourier transform methods and weighted

energy estimates, see [10, 8]. Moreover we have the estimates

‖SδA‖L2
lu
≤ δ−1/2‖A‖L2

ul
and ‖SδA‖H1

ul
≤ C‖A‖H1

ul
, (3.9)

where as before (SδA)(x) = A(δx). In the first estimate the factor δ−1/2 is due to

scaling, and the second estimates holds due to ‖SδA‖L2
ul
≤ C‖SδA‖L∞ ≤ C‖A‖L∞ ≤

C‖A‖H1
ul

and the scaling properties of the derivative. With these preparations our

approximation result reads as follows.

Theorem 3.1 Let (A1, B1) ∈ C([0, T0], [H
5
ul(R, C)]2) be solutions of the NLCME

(2.5) for a fixed T0 > 0. Then there exist ε0, C > 0 such that for all ε ∈ (0, ε0) there

exist solutions u of (2.1) which can be approximated by

εΨ0(x, t, ε) = εA1(ε
2x, ε2t)EFe1 + εB1(ε

2x, ε2t)E−1Fe2 + c.c.

such that

sup
[t∈0,T0/ε2]

‖U(·, t) − εΨ0(·, t, ε)‖H1
ul
≤ Cε2.

Proof. As in section 2 we start with a brief formal discussion. We set

L2U = 2κ sin(2x)



 u−v

v−u



 ,
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and write the nonlinearity as a symmetric bilinear form N1(U, U), i.e.,

N1(U, V ) =
1

2
[N(U, ∂xV ) + N(V, ∂xU)] .

Letting U = εΨ + ε2R, where Ψ will be close to Ψ1, the error R fulfills

∂tR = L1R + ε2L2R + 2εN1(Ψ, R) + ε2N1(R, R) + ε−2Res(εΨ), (3.10)

where

Res(U) = −∂tU + L1U + ε2L2U + N1(U, U). (3.11)

From the properties of the semigroup generated by L1, see below, it follows that

for ‖f‖L2
ul

= O(1) the inhomogenous equation ∂tR = L1R + ε2L2R + ε2f has O(1)-

bounded solutions R in H1
ul(R) for all t on a time scale of order O(1/ε2). Therefore,

roughly speaking, we again have to

a) show that ‖Res(εΨ)‖L2
ul

is sufficiently small,

b) control the influence of the term 2εN1(Ψ, R).

In order to achieve a) and b) we use the method from [10] and introduce so called

mode-filters to separate the critical from the stable modes.

However, first we modify our approximation Ψ1 in such a way that in the residual

of (3.4) all coefficients of ε3E±1Fj, j = 1, 3 vanish, since these terms are critical

modes. The remaining O(ε3) terms in the residual belong to damped modes and

will be controlled using the mode filters. By a simple calculation we find that the

coefficients of ε3E±1Fj, j = 1, 3 vanish if we modify Ψ1 to

εΨ2(x, t) = εΨ1(x, t) +ε3[C−1,1E
−1F + C−1,3E

−1F3 + C1,3FE3]e1

+ε3[D1,1EF + D−1,3E
−1F3 + D1,3FE3]e2

(3.12)

where Ci,j, Di,j satisfy

−2icC−1,1 + iκA−1 + (2f1−if2)(B0B1 + B2B−1) = 0,

−2icD1,1 + iκB1 + (2f1−if2)(A0A1 + A−2A1) = 0,

−4icC−1,3+(2f1−if2)C−2,2A1 = 0, −2icC1,3+(2f1+if2)D2,2B1 = 0,

−2icD−1,3+(2f1−if2)C−2,2A1 = 0, −4icD1,3+(2f1+if2)C−2,2A1 = 0.

(3.13)

Note that adding the O(ε3) terms to Ψ1 does not change the remaining O(ε3) terms

in (3.4).
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For the mode filters we use multipliers: given a function M̂ ∈ L∞(R, C), we

define a multiplier M : L2(R, R) → L2(R, R) by multiplying û with M̂ , i.e.,

Mu = F−1(M̂û).

In typical examples M̂ is a characteristic function, or the symbol of a differential

operator, see below. The following lemma shows that such multipliers extend to

bounded operators in uniformly local Sobolev spaces.

Lemma 3.2 [10, Lemma 5] Let m∈Z, (1+|·|2)m/2M̂( · )∈C2(R, C) and q∈N. Then

M extends to a bounded operator (denoted by the same symbol) M : H q
ul(R) →

Hq+m
ul (R) with

‖Mu‖Hq+m

ul

≤ C(q, m)‖(1 + | · |)m/2M̂( · )‖C2
b
‖u‖Hq

ul

with C(q, m) independent of M̂ .

Now the mode filters are defined as follows. Let χ0 : R → R be a C∞ function with

χ0(k) =





1, |k| ≤ 1/8

∈ [0, 1], 1/8 ≤ |k| ≤ 1/4

0, 1/4 ≤ |k|
and let E0 be the multiplier formally defined by χ0. Similarly, define Ec by

χc(k) = χ0(1 + k) + χ0(−1 + k),

and let Es = Id − Ec. We call Ec, Es mode filters since they separate critical and

stable modes. Since they are not projections it will be helpful to define auxiliary

mode filters Eh
c and Eh

s by

χh
c = χ0((1 + k)/2) + χ0((−1 + k)/2), χh

s = 1 − χ0(2(1 + k)) − χ0(2(−1 + k)).

Note that Eh
c Ec = Ec and Eh

s Es = Es. Finally, for U = (u, v)T let

EcU =


 Ecu

Ecv


 , Es = Id − Ec, Eh

c U =


 Eh

c u

Eh
c v


 , Eh

s =


Eh

s u

Eh
s v


 .

We define our final approximation Ψ by applying E0 to all Aj, Bj, Ci,j, Di,j in Ψ2,

i.e.,

εΨ(x, t) = ε[(E0Sε2A1)(T )EF + ε2(E0Sε2A2)(T )E2F2 + . . .]e1 + . . . (3.14)

and assume that (A1, B1) fulfill the NLCME (3.6) and A0, A2, B0, B2, C−2,2, D2,2, . . .

fulfill the auxiliary equations (3.5), (3.13) as before. In order to show that the filtered

approximation Ψ is close to Ψ2 and to control Res(εΨ) we need the following lemma

that estimates multipliers acting on scaled functions.
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Lemma 3.3 [10, Lemma 6] Let m ∈ N and (1 + | · |2)−m/2M̂(·) ∈ C2(R, C). Then

‖M [(SδU)eik0x]‖Hq−r

ul

≤ C(q, r, m)‖(1 + | · |)−m/2M̂(δ(· + k0))‖C2
b
‖Sδ‖L(Hq−m

ul
,Hq−r

ul
)‖U‖Hq

ul
.

for all q ≥ r ≥ m, with C(q, r, m) independent of M̂ .

In particular, in the situation of Lemma 3.3 assume that M̂(k0 + k) = O(|k|s) as

k → 0 with s ≤ m. Then [10, Lemma 7]

‖(1 + | · |2)−m/2M̂(δ(k0 + ·))‖C2
b

= O(δs). (3.15)

Using Lemma 3.2 with q = 4, r, m = 3 and (3.15) we obtain

‖(Id −E0)[(Sε2A)EjFl]‖H1
ul
≤ C‖(Id − E0)[(Sε2A)Ej]‖H1

ul

≤ ‖(1 + | · |2)−3/2(1 − χ0(ε
2(j + ·)))‖C2

b
‖Sε2‖L(H1

ul
,H1

ul
)‖A‖H4

ul
≤ Cε6.

(3.16)

This holds since 1 − χ0(ε
2(j + k)) ≡ 0 for |k + j| ≤ 1/(8ε2), for ε sufficiently small.

By (3.16) Ψ is close to Ψ2, i.e.

‖Ψ2 − Ψ‖H1
ul

= O(ε6). (3.17)

To estimate ‖Res(εΨ)‖H1
ul

we also need estimates of (Id−E0)[∂
l
x(S

2
εA)EjFl]. Using

Lemma 3.3 with q = 3, r, m = 2 we obtain

‖(Id −E0)[∂x(Sε2A)EjFl]‖H1
ul

= ε2‖(Id − E0)[(Sε2∂XA)EjFl]‖H1
ul

≤ ‖(1 + | · |2)−2(1 − χ0(ε
2(j + ·)))‖C2

b
‖Sε2‖L(H1

ul
,H1

ul
)‖∂XA‖H3

ul
≤ Cε6,

(3.18)

and similarly for higher order derivatives of Sε2A.

In order to achieve b) we now split the error into a critical part ε2Rc and a stable

part ε3Rs, i.e., we let

ε2R = ε2Rc + ε3Rs with Eh
c Rc = Rc and Eh

s Rs = Rs.

Moreover, we introduce

εΨc = ε(E0Sε2A1)(T )EFe1 + ε(E0Sε2B1)(T )E−1Fe2 + c.c.,

ε2Ψs = εΨ − εΨc,

such that εΨc contains the lowest order critical modes and ε2Ψs contains the stable

modes and the O(ε3) corrections of the critical modes. In fact, by (3.16) we have

‖Ψs‖H1
ul

= O(1). Inserting U = εΨc + ε2Ψs + ε2Rc + ε3Rs into (3.1) gives

∂tRc+ε∂tRs = L1Rc+εL1Rs+ε2L2Rc+ε3L2Rs+2εN2(Ψc, Rc)

+ε2N2(Rc, Rc) + ε2G1R + ε3G2(R) + ε−2Res(εΨ),
(3.19)

16



where

G1R = 2[N2(Ψc, Rs)+N2(Ψs, Rc)], G2(R) = N2(Rs, 2Ψs+2Rc + εRs).

The crucial feature of quadratic nonlinearities is that the quadratic interaction of

critical modes generates only stable modes, i.e., for u, v ∈ H1
ul(R) we have

EcN(Eh
c u, Eh

c v) = 0, (3.20)

where N : H1
ul(R) × H1

ul(R) → L2
ul(R) is some bilinear mapping. This follows from

looking at the support of FEh
c u, see [10, Lemma 9].

We define Rc and Rs to be the solutions of the system

∂tRc = L1Rc + ε2Ec(L2Rc + G1R) + ε3Nc(R) + ε2δc,

∂tRs = L1Rs + LsRc + εNs(R) + δs,

(Rc, Rs)|t=0 = 0,

(3.21)

where

Nc(R) = Ec(L2Rs + G2(R)),

δc = ε−4EcRes(εΨ),

LsRc = 2Es(N2(Ψc, Rc)),

Ns(R) = Es(L2Rc + G1R + N2(Rc, Rc) + εL2Rs + εG2(R)),

δs = ε−3EsRes(εΨ).

If (Rc, Rs) is a solution of (3.21), then Rc + εRs is a solution of (3.19). In the

derivation of (3.21) we used

EcN2(Ψc, Rc)=0 and EcN2(Rc, Rc) = 0

due to (3.20). Thus there are no order O(ε) terms linear in Rc and no order O(ε2)

terms nonlinear in Rc in the equation for the critical part Rc of the error. This

corresponds to b) on page 14.

For the approximation εΨ2 defined in (3.12) all terms at orders ε3E±1 in (3.4)

vanish by construction, i.e., formally we have EcRes(εΨ2) = O(ε4). For the filtered

approximation εΨ we obtain rigorously

‖EcRes(εΨ)‖H1
ul

= O(ε4), ‖EsRes(εΨ)‖H1
ul

= O(ε3), (3.22)

using (3.16) and (3.18). See also [10, Lemma 8] for a detailed proof of this result in

a related problem. Basically, (3.22) corresponds to a) on page 14. The nonlinearity

Ñ(R) : H1
ul(R) → L2

ul(R) with

Ñ(R) = (Nc(R), Ns(R)).
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is a sum of linear and bilinear terms and therefore locally Lipschitz. In order to

solve (3.21), for j = 0, 1 we introduce the spaces

Hj = C([0, T0/ε
2], [Hj

ul(R)]2) with ‖(Rc, Rs)‖Hj = sup
0≤t≤T0/ε2

(‖Rc‖Hj

ul

+‖Rs‖Hj

ul

),

invert the linear part of (3.21) and apply a fixed point argument. By (3.22) we have

‖(δc, δs)‖H1 = O(1). Note that Eh
c (resp. Eh

s ) leaves the equation for Rc (resp. Rs)

invariant. Therefore we first estimate the solutions of

∂tRc = L1Rc + ε2Ec(L2Rc + G1R) + ε2fc,

∂tRs = L1Rs + LsRc + fs

(3.23)

with Eh
c fc = fc and Eh

s fs = fs. Using a modification of Lemma 3.2, we obtain for

the linear semigroup generated by L1 the estimate

‖etL1Eh
c ‖L(L2

ul
,H1

ul
) ≤ Ceε2t, (3.24)

due to the compact support of χh
c and since Reλ1,2(k) ≤ α0ε

2 for |k| ∈ [3/4, 5/4].

Similarly, for some σ0 > 0 we have

‖etL1Eh
c ‖L(L2

ul
,H1

ul
) ≤ ‖(1+|·|2)1/2


 eλ1(·)t

eλ2(·)t


 χh

s (·)‖C2(R,C) ≤ Ce−σ0t(1+t−1/4), (3.25)

since Reλ1,2(k) ≤ −2σ0 for |k| 6∈ [3/4, 5/4] and since λ1,2(k) ∼ −k4 as |k| → ∞.

From (3.24),(3.25) follows the local solvability of (3.23) in H1
ul(R). Writing the

solutions Rc, Rs as

Rc(t) = ε2

∫ t

0

e(t−τ)L1(Ec(L2Rc + G1R + fc)dτ,

Rs(t) =

∫ t

0

e(t−τ)L1(LsRc + fs)dτ

and introducing Si(s) = supτ≤s ‖Ri(·, τ)‖L2
ul

we obtain

Ss(t) ≤
∫ t

0
C(1 + (t − τ)−1/4)e−σ0(t−τ)dτ(Sc(t) + ‖f‖H0)

≤ CSc(t) + C‖f‖H0.
(3.26)

Inserting this into the equation for Sc shows that

Sc(t) ≤ ε2
∫ t

0
CeCε2(t−τ)(CSc(τ) + ‖f‖H0)dτ. (3.27)

Gronwall’s inequality gives Sc(T0/ε
2) = O(1). Thus we have J ∈ L(H0,H1) for the

solution operator J of (3.23).
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Applying J to (3.21) we obtain R = Jδ + εJÑ(R) =: F (R). For 0 < ε ≤ ε0

for some ε0 > 0 the function F : H1 → H1 is a contraction on a ball in H1 with

radius O(1) and center Jδ due to the Lipschitz continuity of Ñ and the factor ε in

front JÑ . Thus there exists a unique fixed point which is a solution of order O(1)

of (3.21). Using (3.17) and ‖εΨ2 − εΨ0‖H1 = O(ε2) the proof of Theorem 3.1 is

complete. �
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