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Abstract. We consider dissipative systems on the real axis in situations when the evolution
is dominated by a dynamics similar to the one of a linear diffusion equation. It is surprising
that such a diffusive behavior occurs in relatively complicated systems.

After a discussion of the linear and nonlinear diffusion equation, we give a brief introduc-
tion into the methods which are available to describe diffusive behavior in nonlinear systems.
These are

� �
–
���

estimates, Lyapunov functions and discrete and continuous renormaliza-
tion groups.

In the second part of the paper we show examples, where such a diffusive dynamics can
be seen. For the Ginzburg–Landau equation we consider the nonlinear stability of Eckhaus–
stable equilibria and the diffusive mixing of two different Eckhaus–stable equilibria. Dif-
fusive dynamics also occurs in pattern forming systems as the Swift–Hohenberg equation or
hydrodynamical stability problems as Bénard’s problem. In such cases the method of reduced
instability allows us to analyze the linearized problem.

We close with an outlook on situations, where diffusive behavior is expected, but where a
proof is still missing.

1 Introduction

The dynamics of dissipative partial differential equations (PDEs) on extended do-
mains differs significantly from that on bounded domains. Many new solution types
appear, e.g., traveling waves, fronts and pulses, [DFKM96]. Besides studies of par-
ticular solution classes, an existence theory for attractors for PDEs on unbounded
domains was developed in [BV90,Fei96,MS95,Mie97a,ES99b,EZ99]. The inherent
lack of compactness enforces a parallel use of a uniform and a localized topology;
the attractors can be characterized quantitatively by Kolmogorov’s � –entropy and
the dimension per unit volume, [CE99b,CE99a,Zel99].

For PDEs on bounded domains the bifurcation theory is very well developed: the
center–manifold theory and the Liapunov–Schmidt reduction allow for a finite–
dimensional description. On unbounded domains a reduction may still be possible
by the theory of modulation equations or, for special solution classes, by the Kirch-
g ässner reduction (spatial center–manifold reduction). However, the reduced pro-
blem remains infinite dimensional and is given by a simple partial differential equa-
tion, e.g., the (complex) Ginzburg–Landau equation. Although the multiple scaling
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ansatz of modulation theory has been used formally for more than 30 years, a mathe-
matical justification was only obtained in [vH91,KSM92,Eck93,Sch94b,Sch94c,MS95,Sch98a,MSZ00]
for model problems and in [Sch94a,Sch99b] for the Navier–Stokes equation; for a
survey see [Mie99].

Here we survey one particular subject in the theory of PDEs on extended domains,
namely the stability of spatially homogeneous or spatially periodic steady states.
Moreover, we address the phenomenon of diffusive mixing of such steady states.

A basic concept in stability theory is the stability induced by the linearization alone.
This means that the nonlinear terms can be controlled if the linearized problem dissi-
pates energy with an exponential rate. Then stability can be achieved by considering
the linearized problem alone. For dissipative problems on unbounded domains the
linearization possesses continuous spectrum up to the imaginary axis in the complex
plane. For these problems the linearized problem shows a dynamics similar to the
one of a linear diffusion equation and so by an interplay of norms very often po-
lynomial decay rates of the linearized problem can be obtained. As a consequence
of the polynomial decay not all nonlinear terms can be controlled by the linearized
problem. But if the low order terms are absent, again stability can be established
with the help of the linearized problem. Such nonlinearities are called irrelevant.

On unbounded domains diffusive behavior occurs as a new aspect in the theory of
stability. In fact, it turned out that for many interesting problems the nonlinear terms
are irrelevant, such that this method is widely applicable. For instance, it has been
applied successfully for proving the nonlinear stability of Taylor vortices in infinite
cylinders with respect to spatially localized perturbations.

After a discussion of the linear and nonlinear diffusion equation, we give a brief
introduction into the methods which are available to describe the diffusive beha-
vior when the basic state is spatially homogeneous. These are �

�
– ��� estimates,

Lyapunov functions and discrete and continuous renormalization groups.

Next we provide typical examples, where such a diffusive dynamics can be seen.

For the Ginzburg–Landau equation we consider the nonlinear stability of Eckhaus–
stable equilibria and the diffusive mixing of different steady state solutions.

We use Bloch’s theory to generalize the spectral theory from spatially homogeneous
steady states to spatially periodic ones. For steady states, which bifurcate from a
homogeneous state, the linearized stability can be investigated by the theory of re-
duced instability (cf. [Mie95]). Nonlinear diffusive stability is obtained by showing
the irrelevance of the nonlinear terms by proving appropriate convolution identities.
For the Swift–Hohenberg equation the stability of the Eckhaus stable roll patterns
is shown with respect to one– and two–dimensional perturbations. Applications in
hydrodynamics include the roll solutions in Rayleigh–Bénard convection and the
Taylor vortices in the Taylor–Couette experiment.

We close with an outlook on situations, where diffusive behavior is expected, but a
proof is still missing.
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Here, we restrict ourselves to the case of diffusive repair and diffusive mixing of
equilibria. There are also results for diffusive stability for traveling front solutions
[BK92,Gal94,EW94a,RK98,GR98,GR97]. The transfer of these last stability results
to modulated front solutions ([HCS99]) will be found in [ES99a].

Solutions which are localized perturbations of an exponentially homogeneous state
(traveling pulses or modulated pulses) [BL99b,KS98,Sch00,Uec00] may be expo-
nentially stable. The stability question of localized perturbations of diffusively stable
states was attacked in [SS98] where a spectral stability result was obtained.

Acknowledgment: This work was partially supported by the DFG–Schwerpunkt-
programm DANSE under the grant Mi 459/2. The research has benefited from
the interaction with the DANSE research groups in Berlin, Bielefeld, Stuttgart and
T übingen.

2 Diffusive repair and diffusive mixing in the linear case

2.1 Diffusive repair

In this section we consider the linear diffusion equation��������� �� �
	��� �����������
(1)

with ����� 	������
and

���� 	 ��!"�#� . The solution can be written explicitly as���� 	 �$! � �% �'& �)(+*-,/.10 � .$2+3�4657098 � 3 � � ��: !�; :<� ( *�= � �?> :$	@� ! � � ��: !�; :$A (2)

Spatially constant functions stay constant in time, but by Young’s inequality for
convolutions with B#C�D we obtainE ���� ! E+FHGJILK � . � 570 �@M 3 E ��� E7FON 	 where PRQ B � PRQ/DS>TPRQVU 	 P I B 	 U I�W 	

(3)

for some constant
K

independent of time. Thus, spatially localized initial conditions
give rise to solutions with polynomial decay rates. Moreover, the solutions become
flatter and flatter, since we have for instanceE ��X� � E F�Y IZE �$X� = E F[Y E � � E F[\ ILK � .?0 X/] � 3^5 � E � � E F[\_A
There is some additional structure which can be seen by looking at the Fourier
transform `�
�ba ! �c�^de� ! �fa ! � �

�@& (+* �� ��! , .�gih � ;��
of (1). The equation

� � `�c� > a � `�
possesses the solution

`�1�^� 	'a ! � ,j.�h 4 � `� � �fa ! .
Renormalizing this solution gives`�1�^� 	'a Q�k � ! � , .�h 4 `�����fa Qjk � ! � , .�h 4 lm Xno ��� � . o 5 � a o `� 0 o 3� �^� !?prq ��� . X 5 � !tsu (4)
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if
`� �

is � –times differentiable. Since smoothness in Fourier space corresponds to
decay properties in � –space, solutions to spatially localized initial conditions decay
in a universal way to

�
. Loosely speaking, if the initial conditions spatially decay

like
� � � . X , we obtain���� 	 �$! � X . �no ��� � .10 o ] � 3^5 � `� 0 o 3� �b� ! � o � �$Qjk � !)p�� �^� . X 5 � !

for
��� W

, where
� o is a multiple of the � th Hermite polynomial.

To be more precise we use the fact that Fourier transform is an isomorphism from� X ��� ! to
�
	 � �?! , where

� 	 � �?! ��� �� � ���r� E � E���� 0 X 3 � E ���HX E ����� W��
and

��� ��! � � PVpS� � ! � 5 � A
(5)

For the lowest order terms we obtain
E `�1�^� 	'a Q k � !�> ,j.$h 4 `� � �^� ! E�� 4 0 � 3 I K � . � 5 � ,

i.e., E k �H���� 	 k � �$!> k � `� � �^� ! , . � 4 5@8 E�� 4 0 � 3 ILK � . � 5 � A (6)

The result is based on the fact that the linear evolution operator , .$h 4 � concentrates
the Fourier modes at the wave number

ar� �OA
Depending on the differentiability

of the initial conditions
`� �

the local behavior of
`� �

at the wavenumber
a�� �

is
extracted by the linear evolution operator , .$h 4 � for

��� W
.

Remark 1. Most of the above theory also holds if we have a linear evolution opera-
tor , ��� 0 h+3 with eigenvalues � �fa !! > a �

for
a"� �

. This is the reason why diffusive
behavior can be observed in a big variety of problems.

From (6), i.e.,
�
�^� 	 �$! �$# � Q � `� � ,j. � 4 57098 � 3 p%� �^� . � ! , it is obvious that stability of���L�

in
� � �'& ! does not hold, but again we have

(*),+�.- * � ���� 	 �$! � ITK � . � 5 �
for initial conditions

�� ����� � � � � � � �/& ! . Thus, it makes sense to introduce the
following definition.

Definition 2. Let 0 � 	 0 � be Banach spaces and let 1 � be an evolution operator. A
fixed point

��� � 1 �f��� is called
� 0 � 	 0 � ! –stable under 1 � if the following holds:

For all � C �
there exists a 2�C �

such that from
E�3 > �$� E�4 \ � 2 it follows thatE 1 � 3 > ��� E�4 4 � � for all

� � �
. The point

���
is called asymptotically

� 0 � 	 0 � ! –
stable if additionally 57678 ��9

� 1
� 3 ��� �

in 0 � .
The proof of (6) for some nonlinear problem also establishes asymptotic

� � � �'& ! 	 � � ! –
stability of

� �c�
. The usage of two different norms is very common for problems

posed on unbounded domains, cf. [BV90,MS95].
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2.2 Diffusive mixing

Above we have shown that spatially localized perturbations decay diffusively to
�
.

Another interesting question is the behavior of solutions to initial conditions����� ��! ����� for � � >�� 	�
for � � � 	

for some ��C �
, i.e., we prescribe two different constants on the left and on the right.

Since
� � � � is again spatially localized and since

� � � also satisfies (1) we obtain the
results from above for

� � � . Integration with respect to � leads to
( ),+� - * � �
�^� 	 ��! >�� � p � � > � !
	��� � �$Q�k � !�� � I�K Qjk � 	

where 	��� � �$! � PVQ k � � ( �. � ,j.�2 4 568 ; : . For the linear diffusion equation all spa-
tially constant functions are stable equilibria. Thus, we have some diffusive mixing
of the stable states.

The question arises whether such a behavior also occurs in more complicated sys-
tems if we have different diffusively stable equilibria for � ��� W

.

3 Irrelevant nonlinearities and nonlinear diffusive stability

In this section we explain how the polynomial decay rates for the linearized problem
can be used to control the nonlinear terms. As an example we consider a nonlinear
diffusion equation � ������� �� � p�� ���H	�� � ���)�S�����

(7)

with
�"�T�O	 ����� , B#��� and � ����� � � � .

In case B � &
we have blowup of the solution for most initial conditions, in caseB ���

the sign of � decides about stability ( � � �
) and instability ( � C �

), but forB � � the sign of � doesn’t play any role and small spatially localized perturbations
vanish for

� � W
with the same polynomial decay rate as in the linear case.

There are essentially three methods to prove the last assertion, namely a) �
�
– � �

estimates, b) the construction of Lyapunov functions, and c) the discrete and conti-
nuous renormalization approach.

3.1  "! –  $# estimates

This method relies on the �&% – � � estimate (3), the variation–of–constants formula
and suitable estimates of the nonlinearity.

Lemma 3. Let B�C � . For all
K C �

there exists � C �
such that solutions

�
of (7)

with
E �[� E F[\ p E ��� E+F[YcI

� satisfyE ���� ! E F[\ I�K
and

E �
�^� ! E7F[YZILK Q � PVp � ! \4
for all

����� A
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Proof. We consider the variation–of–constants formula���� ! � , ��� 4� � � p � � �� , 0 � .��t3 � 4� � � ��� !�; �
for (7). With

E � � E+F Y I E � E � F Y
and

E � E � F \ IcE � E � . �F Y E � E F[\_	
the abbreviations

� �^� ! � ( ),+�	� � �[� E ���� ! E F[\ and
� �^� ! � ( ),+�	� � �[� E � PRp � ! � 5 � �
�
� ! E+F�Y

and the estimates of Section 2 we obtain� PRp � ! � 5 ������ ( �� ,/0 � .��t3 � 4� � � ��� !�; � ���� F[Y I � PRp � ! � 5 � ( �� E ,/0 � .��t3 � 4� E F[\ 9 F Y E � � E F[\ ; �I � PVp � ! � 5 � ( �� �^� > � ! . � 5 � � PRp � ! .10 � . � 3^5 � ; �� � ��� ! � . � � �^� ! I K � � ��� ! � . � � �^� !
with a constant

K � independent of
�

for B�C � . Furthermore, we have

����
( �� ,j0 � .��t3 � 4� � � ; � ���� F[\ I ( �� E�� 0 � .��t3 � 4� E F \ 9 F \ E � � E F \ ; �I ( �� � PVp � ! .?0 � . � 3^5 � ; �� � ��� ! � . � � ��� ! I K � � ��� ! � . � � ��� ! A

Together we obtain

� �^� ! I � �b� !)p � � � K � � ��� ! � . � � ��� ! and
� ��� ! I � �^� !?p � � � K � � �^� ! � . � � ��� ! A

If � �b� ! p � �b� ! � � with ��C �
sufficiently small we have the existence of

K C �
such that � ��� ! 	 � ��� ! ITK

for all
�"���

.

3.2 Lyapunov functions

The usage of Lyapunov functions is well established in nonlinear stability problems
if the nonlinearity has some sign as in

� � ����� �� � > ���
. This has been used for diffu-

sive stability problems in [EW94b] and [GR97] and in [GM98] for the proof of dif-
fusive mixing. But also if the nonlinearity has the wrong sign, Lyapunov functions
can be used. We do not obtain the optimal power B of the irrelevant nonlinearities,
but the method is also applicable on unbounded domains ������� with ���� ��� , cf.
[ES98]. As an example we consider again� � � � � �� � p � � � 	��� ����� ��� � A
We introduce the functionals � �^� ! � (+* � � ;�� , � �^� ! � (+* �^� � � ! � ;�� and � �^� ! �( * �^� �� � ! � ; � . This fixes the �&% –power to D � &

, and due to the �
�
– ��� estimate (3)

we can only handle nonlinearities for B �! 
.

With
E � E �F[Y I � � 5 � � � 5 � and � � I �"� we obtain
�
�$## � � � ( ��� � � ;�� � ( ��� �� � p�� � �7] � ;��� ( > �^� � � ! � p � � �+] � ;�� I >$� p � � � E �
� ��! E � . �F Y ( � � ;��I >$� p � � � � 0 �7] � 3^5@8 � 0 � . � 3^5@8 � >$� � Pj> � � � � 0 �7] � 3^5@8 � 0 � .�%'3^5@8 �
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and
�
�$## � � � ( �^� � � ! �^� � � � � ! ;��� ( �^� � � ! �^���� � !)p�� B � � . � �b� � � ! � ;�� I > ( �^� �� � ! � ;�� p � � � B E � E � . �F[Y �I >�� p � � � B � 0 � . � 3^5@8 � 0 �7] � 3^5@8 I >����9P�> � � � B � 0 �7] � 3^5@8 � 0 � .�%'3^5@8 � A

Hence, we have
�� I �

and
�� I �

if � �^� � ! 0 �7] � 3^5@8 � �^� � ! 0 � .�%@3^5@8 is sufficiently small.
Thus, we have proved the following result.

Lemma 4. Let B �! 
. Then, there exists �

� C �
such that for all � � �b� 	

�
� ! and all

solutions
�

of (7) with
E � � E�� \ I

� we have ( ),+ � � � E �
�^� ! E�� \ I
� .

3.3 The discrete and continuous renormalization process

In addition to some stability result this method gives the asymptotics of the decay to�
. It relies on formula (6). By a fixed point argument we prove also for the nonlinear

system (7) that the renormalized solution k �H���� 	 k � �$! converges towards a mul-
tiple of the Gaussian ,�. � 4 5@8 . There are two approaches, a discrete and a continuous
one. We sketch the first one very briefly and the second one in a little more detail.

The discrete approach In the discrete approach (cf. [BK92,BKL94,Gal94,Sch96])
a sequence of problems is considered which converges towards the linear diffusion
equation. Define

� X ��� 	 ��! �
� X ��

�
� X � 	 � X ��! with � C P and � � � . Then

� X
satisfies���V� X � � �� � X p �

X 0 � . � 3 ��� X �� � � ��� � . � 	 P �	� � X � � . � 	 �$! �
�
� X . � � P 	 � ��! A

(8)
Obviously, for BcC �

the influence of the nonlinear terms tends exponentially to
0 as � � W

and in the limit we obtain the linear diffusion equation. Solving the
sequence of problems (8) is equivalent to solving (7). By a fixed point argument
it then follows (see for instance [BK92,Sch96]) that for spatially localized initial
conditions

���
the functions

� X � � � � �
� X ��

�
� X 	 � X  ! converge towards a multiple

of the Gaussian , . � 4 5@8 .

The continuous approach Here the system satisfied by the renormalized solution
is considered directly, where additionally a logarithmic time scale is taken to transfer
the polynomial decay rates into exponential ones. We follow the lines of [Way97]
and introduce the new variable 
 and the new coordinates � and

�
by�
�^� 	 �$! ��� . � 5 � 
 � 5��� � 	 �$Q k � ! � , . � 5 � 
 ��� 	 �j! A (9)

The transformed equation is given by��� 
 � 
eQ & p � ��Q & ! ��� 
 p � �� 
 p , 0 � . � 3 � 5 � 
 � (10)
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with 
 � � ��� � � � �'& ! . The linearization around 
 � �
leads to the spectral problem

which reads in Fourier space> a � `

L> �ba Q & ! � h `


L> � `

 � `� 	

(11)

with

`� � � � �/& ! . The eigenfunctions

`� � �fa ! � a �',/.�h 4 to the real eigenvalues
� � > � Q & are parameterized with

� � � . See also (4). Since
� oh `� � � �

�
is re-

quired for � � �O	 P 	 & (for which the possible singularity of
� oh `� � at

a � �
plays

the crucial role) this leads in (11) to two discrete eigenvalues
�

and > PVQ & and to
essential spectrum

� � � � ��� , � � > � Q � � due to Sobolev’s embedding theo-
rem. Since the solutions of the linearized problem are uniformly bounded and since
the nonlinear terms vanish with an exponential rate there exist �

	 K C �
such that(*),+ � � � E 
 � � ! E�� 4 0 � 3 � K

for the solutions 
 of (10) if
E 
 � � �)� E�� 4 0 � 3 � � andB#C � . If we denote with 
 �

the part of 
 belonging to the eigenvalue
�

and with 
 �
the rest of 
 we can conclude by integration of the variation of constants formula
with respect to time that


 �H��� ! � 
�� g � , .?0�� 3 4 5@8 p � � ,
	�� G4 � ! and 
 � ��� ! � � � , ������ . \4�� 	�� G4��
� ! for

� � W A
Herein,

� � � ,j.?0�� 3 4 5@8 is the eigenvector to
�

in physical space, and 
 � g � � �
is a constant only depending on the initial conditions. This leads to the following
convergence result, cf. [Way97].

Theorem 5. Let B#C � . Then there exist �
	 K C �

such that the following holds. Let�
be a solution of (7) with

E �� ����� E�� 4 0 � 3 I
� . Then there exists a 
�� g � �r� such

thatE k � ���� 		 k � !> 
 � g � , .?0�� 3 4 568 E�� 4 0 � 3 ITK � PRp � ! .������� � 5 � � 0 � . � 3^5 � � for all
�"�T�OA

3.4 Some remarks

Clearly, the above theory can be adjusted to more general nonlinearities as well as to
higher space dimensions. If we call the exponent B of the nonlinear term

� �
degree

of irrelevance then
� � \ �b� � � ! � 4 �b� �� � ! � 	 has the degree of irrelevance B � B � p& B � p � B � . Thus, nonlinear terms with derivatives give some additional irrelevance.

For instance, Lemma 3 holds for all nonlinearities with B C �
. In higher space

dimensions the solutions of the linear diffusion equation
� � ����� �

, �#�#��� satisfy
the estimate E ���� ! E7F[Y ILK � . � 5 � E � E F[\7A
From the above analysis it is easy to see, that all nonlinear terms with degree of
irrelevance B?C PVp & Q�� are irrelevant. As a consequence, in dimensions � � �

all
sufficiently smooth nonlinear terms are irrelevant. Physically this means that there
are enough directions in which the energy can diffuse away before the quadratic
nonlinear terms have time to act. See also [BL99a] for a generalization to larger
classes of initial data.
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4 Diffusive behavior in the Ginzburg–Landau equation

The (real) Ginzburg–Landau equation� � � ��� �� � p � > � �� � �
	 �������� 	 ��! � �"	 � � ����� ��� �
(12)

occurs as an amplitude equation for bifurcation problems on infinitely long cylin-
drical domains, cf. for instance [CE90b,Sch94b,MS96,Mie99,Sch99b]. It possesses
so–called stationary roll solutions, i.e. spatially periodic steady states of the form� % � � � ��! � # Pj> D � ,_g 0 % � ] � 3 . Letting

�
�^� 	 ��! � � % � � � ��!�p ,/.�g 0 % � ] � 3 3 and lineari-
zing in

3
one obtains that a roll

� % � � is linearly stable if and only if D � I PVQ � , cf.
[Eck65]. For D � C PVQ � a roll

� % � � is sideband– or Eckhaus–unstable. This means
that

� % � � is unstable with respect to perturbations , g��% � with a slightly different wa-
venumber �D��LD , �D �� D .

In this section we review results from [CEE92,BK92] and [GM98] concerning the
nonlinear diffusive stability and the diffusive mixing of rolls, respectively.

4.1 Diffusive stability of equilibria

To understand the Ginzburg–Landau equation (12) in the vicinity of a roll we intro-
duce coordinates

�
�^� 	 �$! � U ��� 	 ��! , g���0 � � � 3 . Then� �	� � � �� � > & � � UU � � � 	 � � U � � �� U p U �9P�> U � > �^� � � ! � � A (13)

The roll solution
� % � � now takes the form

� � % � � 	 U % ! � � DR�$p�
 	 # P�> D � ! . On the
linear level we see that

� > � % � � behaves diffusively while U > U % is linearly expo-
nentially damped with rate > &O� Pj> D � ! . Moreover,

�
itself does not appear on the

right–hand side.

This means roughly that the amplitude is slaved to the local wave length � � � � � .
Heuristically, we obtain asymptotically U � # P�> �b� � � ! � p� A � A � A . Neglecting the
higher order terms and inserting the relation in the equation for

�
we arrive at the

phase diffusion equation � ��� � Pj> �[�^� � � ! �P�> �b� � � ! � � �� � A (14)

Writing
� � � % � � p �

allows us to study the question of diffusive stability� � � � � � D/! � �� � p � � � Djp � � � ! > � � D/! � � �� � where � � D/! � � P�> � D � !@Q � Pj> D � ! A
Clearly, we need � � D/!#C �

which characterizes the Eckhaus–stable domain. The
lowest order nonlinear terms are a multiple of

�^� � � ! � 4 � �� � for a B � � P . Following
the remarks given in Section 3.4 we have B � � P and hence B � & B � p � C � . Thus,
for the phase diffusion equation the nonlinearity is irrelevant.

Of course, the proof of diffusive stability (in the sense of
� � � �'& ! 	 � � ! stability)

of Eckhaus–stable rolls
� % � � for the full Ginzburg–Landau equation (12) is much
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more involved as the coupling between
� � � and U has to be studied precisely. See

[BK92] for a proof using renormalization theory as described in subsection 3.3 and
see [Kap94] for a proof which is based on Lyapunov functions and �

�
– � � esti-

mates.

4.2 Diffusive mixing

The next question is the evolution of
�

for an initial condition
� � � ��! � U � � ��! ,7g����70 � 3

that converges to two different stable rolls
� % � � � � for � ��� W

, where
� 
 ] > 
 . ! � p� D ] > D . ! � �� �

. Clearly, the associated solution will, for all
� C �

, satisfy the same
boundary conditions at infinity:���� 	 ��!> � % � � � � � ��! � �

for � ��� W A
The question is how the solutions behave in the intermediate regime. Diffusive
mixing is seen, if the initial condition

� �
is chosen properly. Then, for large

�
the

solution develops an intermediate wave length D�� which solely depends on D . andD ] . However, in general the phase 
 does not converge but grows as k �
.

For D . � D ] � D � � > PRQ k �O	 PVQ k � ! and small 2 � 
 ] > 
 . �� �
the problem has

been treated in [CEE92]. It is shown that, if U � > # Pj> D � and
� �H� �$!?> DR� are small

and spatially localized, then the solution
� U 	 � ! of (13) satisfiesE U ��� ! > # Pj> D � E F[Y p E � � � ��� !> D E F[Y � �

as
� � W A

(15)

The extension to the case D . �� D ] with small
� D�� � 	R� 
�� �

and more detailed asymp-
totics have been obtained in [BK92] using the discrete renormalization approach. In
[GM98] these results are generalized to arbitrary D . 	 D ] � � > PRQ k �O	 PVQ k � ! . In the
case D ] �� D . we may assume 
 . � 
 ] � �

without loss of generality (use the
translation �	�� �$p :

and the phase invariance
� �� � p�
 ).

The first step in the analysis is the construction of a limiting profile �� for the local
wave vector. It is obtained as the unique similarity solution

� �^� 	 ��! � �� � �$Q k � ! of
the phase diffusion equation (14) which satisfies

� � � ��O! �� � � � p � & �� � � �
for � ��� and �� � �j! � D� for � ��� W A

Then we introduce
�� � ��! � D . � p ( �. � � �� � �j! > D . � ; �

and define the limiting profile

�� �^� 	 ��! ��� Pj> �� � ��Qjk � ! � , g % � ���0 � 5 % � 3 A
The following result was proved by using a nonlinear change of variables for the
amplitude U and the phase

�
, the continuous renormalization approach from Sub-

section 3.3 combined with energy estimates in the sense of Section 3.2 and the
theory of nonlinear monotone operators.
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Theorem 6. [GM98, Theorem 4.2] For all D . 	 D ] � � > PVQ k ��	 PVQ k � ! there exist� � C �
and ��C �

such that for all �r� �^�O	 P ! and for all
� � � � �� � � � ! satisfyingE ��� > �� ���t�j		 ! E�� 4 I

� the unique solution of (12) in
� �� � � � ! with

�
�b� 	  ! � ���
satisfiesE ���� 	  ! > �� �^� � p � 		 ! E � \

��� � � �^� .��75@8 ! 	 E � ���� 		 ! � > � �� ��� � p � 	  ! � E � \
��� � � ��� . � �75@8 !

(16)
as

��� W
.

Here the spaces
� 	� � are the uniformly local Sobolev spaces introduced in [MS95].

Using (16) and simple properties of �� one obtains, for all fixed � ,
( ),+� � � �	� 



 �
�^� 	 ��! > � Pj> D � � , g 0 % � �_] % � � � 3 



 � � �^� .��75@8 ! 	

where D � � �� �^� ! and
� � � �� �^� ! with ( 6�� � � � ! � ( 6�� � D ] > D . ! . The weaker decay

rate compared to [BK92] is due to less restrictive conditions on
� �

.

5 General pattern forming systems

So far we have studied the diffusive stability and the diffusive mixing of special
periodic states of the Ginzburg–Landau equation which has the phase invariance as
an SO(2) symmetry. The rotating waves

� % � � are in fact relative equilibria (in the
stationary problem) with respect to this symmetry. As a consequence it is possible
to factor out the phase and treat the problem as a spatially homogeneous one. In the
following we want to indicate, that it is also possible to apply the above techniques
to general spatially periodic solutions in parabolic systems. A basic tool for this
situation is Bloch analysis which generalizes Fourier analysis.

5.1 The Bloch analysis

For simplicity we only treat the one–dimensional case. For the general case we refer
to the standard reference [RS78] as well as to the recent work [Mie97b,Sca99], see
also [OZ00]. We consider a differential operator

� 3 ���Z� �� 3 p�� � ��! � � 3 p�� � �$! 3
where

� � � 	 ,
� � � 	��,	 is invertible and � 	 � are periodic matrices with

period B . The basic observation is that
�

maps functions of the form ,Rg � ��� � �$! with� � ��p�B�! � � � ��! into itself. Functions of this form are called Bloch waves and� ��� � � � Q B�� is called their Bloch wave number.

Defining the Hilbert spaces

� h� � � ! ��� 3 � � h�  "! � � ! � 3 � ��p"B�! � , g � � 3 � ��! � 	
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the operator
�

restricts to a closed unbounded operator
� � with compact resolvent

from
� �
� � � ! into itself. Its domain is � � � � ! � � �� � � ! . In fact, the transformation� ��� � 3 with

� � ��! � , .[g � � 3 � ��! maps
� h� � � ! into

� h����� �6�b� 	 B$!6!  � � h� � � ! . This
transformation defines the Bloch operator
� � �	� � � � � . �� with

� � � � � � � � p � � � ��!@p & 6 � � � � � p � � � �$!@p 6 � � � ��! > � � � � � A
All these operators map

� ������ �6�b� 	 B$!6! into �
������ �@�^�O	 B�!@! and they depend polyno-

mially on
�
. Thus classical perturbation arguments apply.

The main tool of the Bloch analysis is the decomposition of �
� � � ! into the ortho-

gonal, direct sum of the spaces
� �
� � � ! :

�
� � � ! ��


� -� G � �
� 	 3 � ��! � �

� -�� � � � 3 3 � � ��! ; � 	
where the integral is called the direct integral which has to be understood in the
�
� � � ! sense. We have

E 3�E �F 4 0 * 3 � ( �� E 3 � E �F 4 0 * 3 ; � and
3 � can be expressed through

the Fourier transform
`�

as
3 � � �$! � �/& � ! . � 5 ��� 	 -�� ,_g 0 � ] 	 � 3 `3 � � p � B�! . Thus, the

Bloch decomposition is a partial Fourier transform which is exactly adjusted to the
periodicity of the underlying problem.

Moreover, the operator
�

takes the form � � -�� \ � � with respect to this decomposition.
As a result the exponential and the resolvent take the form, ��� ��


� -� G , ����� 	 � �?> � ! . � ��

� -� G � �)> � � ! . � A

The orthogonality of the decomposition implies the norm identitiesE , ��� E ��� 0 * 3 9 ��� 0 * 3 � (*) + � -� G E , ��� � E�� �� 9 � �� 	E � �)> � ! . � E ��� 0 * 3 9 ��� 0 * 3 � ( ),+ � -� G E � �?> � � ! . � E � �� 9 � �� A
As a consequence we have a useful result for the spectrum of

�
:

(*+ , � F 4 0 * 3 � �"!
� -� G ( + ,#� � � � 0 * 3 � � �$!

� -� G ( + ,#� F 4%'&�( 0�0 � � � 3�3 � � A
We refer to [RS78] for the self–adjoint case and to [Mie97b] for the case of general
elliptic operators. In [Sca99] the theory is developed for the Navier–Stokes equa-
tion where slight deviations arise, cf. also [Mie97c] for a concrete treatment of the
operator arising in the Rayleigh–Bénard problem.

5.2 The Swift–Hohenberg equation in one and two dimensions

A widely studied model problem for the pattern formation over unbounded domains
is the Swift–Hohenberg equation [SH77,CE90a],� � ��� > � PVp � ! � � p �

� � > � � 	������ 	 �#�#� � 	�� ���
�^� 	 ��!"�#� A
(17)



Stability and Diffusive Dynamics 13

First we consider the case � � P and below the case � � &
. For small � C �

there
exist stationary roll solutions

���
� � of (17) with � � � > � 	 �j! , which bifurcate from�

�
	6� !�� �b� 	'� ! . These rolls have an amplitude U � � � � � � � � 	 � ! � # � � � � > � � !'Q � ,

are even in � and periodic with period
& � Q a , where

a�� k � pLP . They may be
expanded as � �

� �
� ��! � � � � � ( �ba ��!?p � � � � ( � � a ��!1p � � � � % ! 	 (18)

where � � � � � p � � � Q  P & p � � � � % ! and � � � � � � � � ! , see e.g. [CE90a,Mie95].

The nonlinear diffusive stability of rolls
� �
� � with respect to spatially localized per-

turbations has been shown in [Sch96]. Here we outline the ideas. Letting
�
�^� 	 �$! �� �

� �
� �$!?p 3 �^� 	 ��! , the perturbations

3
have to satisfy� � 3 � � 3 p d � 3 ! 	 (19)

where
� 3 � > � PRp � �� ! � 3 p � � 3 > �/� �� � � 3 and

d � 3 ! � > �/��� � � 3 � > 3 � . The operator
�

can be treated with the Bloch analysis of Section 5.1. The associated Bloch operators
are � �

�
	 � 	 � ! � # ���� > � PVp �b� � p 6 � ! � ! � � p �

�
� > �j� �� � � ! � 	 (20)

which are unbounded operators on �
��#��� � � �'& 5 h ! with domain

� 8����� � � �@& 5'h ! . For
every fixed

� ��� h the eigenvalue problem (20) is self–adjoint with a discrete set
of real eigenvalues

� � 0 � � � 3o � � !��Z�  ��� � � , � 0 � � � 3o � � ! � � 0 � � � 3o ] � � � ! � > W
for

� � W
.

For
�
�
	 � ! � �^�O	@� ! the eigenvalues are � 0 � � � 3o � � ! � > � Pj> �ba �Hp � ! � ! � , and by per-

turbation arguments � 0 � � � 3o � � ! can be calculated for all small
�
�
	 � ! . The stability of� �

� � is then determined from the behavior of the smooth function
� �� � 0 � � � 3�

� � ! for�
close to

�
. In fact, we always have � 0 � � � 3�

�^� ! � �
. This eigenvalue

�
comes from

the fact that we have a family (w.r.t. 
 ) of stationary solutions and that translations
along this family lead to the associated eigenvector

� � ��� � � . For small
�

we have the
expansion

� 0 � � � 3�
� � ! � > � � � � 	 � ! � � p%� � � 8 ! 	 (21)

where expansions for the coefficient � � � � 	 � ! are given in [CE90a,Mie95,Mie97b].
If � � � �

then
� �
� � is linearly unstable (Eckhaus’ sideband instability) which occurs

for �
� �
	�� !��� � � ! � � � � p"� �@� � � � ! . If �

�
lies above the Eckhaus stability boundary	�� !��� � � ! , then the rolls are linearly stable.

Moreover, the parabolic expansion (21) of the critical eigenvalue suggests that so-
lutions to the linear problem

3 � � � 3
decay like solutions to the linear diffusion

equation (1).

Regarding the nonlinear equation (19) the nonlinearity doesn’t seem to be irrele-
vant by naive power counting in the sense of Section 3. However, in the spatially
periodic case a more elaborate way of power counting involving the Bloch analy-
sis is necessary. This can be understood by relating the problem on the unbounded
domain to the center–manifold theory for (17) with periodic boundary conditions.
Then via normal form transformations and appropriate convolution identities it turns
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out that the nonlinearity in Bloch space vanishes up to a sufficiently high order. For
details see Section 3 of [Sch98b]. Using the renormalization group approach from
Subsection 3.3 one obtains the following theorem.

Theorem 7. [Sch96] There exists an � � C �
such that for all � � �b� 	

� � ! , all
Eckhaus–stable rolls

���
� � and all B � �b� 	 PVQ & ! the following holds. There exist

2 	 K C �
such that for all initial conditions

3 �
satisfying

3 � � �$! � � X ��� X � �V�$! ,7g X/� p � A � A�������� � X � � E � X E�� 4 0 � 3 � 2 (22)

we have a constant 
 � � � PR! such that the solution
3

of (19) with
3 � ���)� � 3 �

satisfiesE�3 �^� 	 �$!>
	% � , . � 4 57098�� \ � 3 � � ��� � � � ��! E F Y 0 * 3 I�K
� . � ] � �R� . � ] � for

��� W 	
with � � � � � � � 	 � ! from (21).

Remark 8. From (22) one obtains that the attracted neighborhood  of
� �
� � is of

order � in � �
� �! . Defining

0 � � � ��j�� �$! � n X ��� X � �R�$! , g Xj� with
n X � � E � X E�� 4 0 � 3 � W �

we have asymptotic
� 0 � 	 � � ! stability of

���
� � . A more refined characterization of

 is given in [Sch96].

The above results have been transfered to the two–dimensional Swift–Hohenberg
equation in [Uec99]. Here the rolls considered are

� �
� �
� � � 	 � � ! � � � #� � � � � � ! , i.e.,

they are independent of � � . Inserting
�
�^� 	 �$! � � �

� �
� � � !�p 3 ��� 	 �$! into (17) one

obtains � � 3 � � 3 p d � 3 ! (23)

with
d � 3 ! � > �/��� � � 3 � > 3 � as before, but now

� 3 � > � PVp � ! � 3 p �
� 3 > �/� �� � � 3 .

The eigenvalue problem
� 3 � � 3 can still be treated by the Bloch analysis with3 � ��! � ,7g � � � � � � � ! where
� � � � � 	 � � ! ��� h�� � is now a two–dimensional Bloch

wave vector. The Bloch operators read

� �
�
	 � 	 � ! � # ���� > � PRp �^� � p 6 � � ! � > � �� ! � � p �

�
� > �/� �� � � ! � � � � A (24)

Again, the stability properties of
���
� � are determined by the behavior of the spectral

surface
� � � 	 � � ! �� � 0 � � � 3�

� � � 	 � � ! . Rigorous stability results and a complete charac-

terization of the set of unstable Bloch wave vectors
� � � � h�� � � � 0 � � � 3�

� � ! C � �
in dependence of

�
�
	 � ! have been obtained in [Mie97b]. In addition to the Eckhaus

instability for �
� � 	 � !��� � � ! there occurs a second instability mechanism called

zigzag–instability. This means instability with respect to Bloch waves , g � � ��� � � � !
with wave vectors

� � �^� 	 � � ! with small
� � ����

. The linearized stability results may
be summarized as follows.
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Theorem 9. [Mie97b] There exist an � � C �
and curves

	 � !��� 	 ��� g � � �� with ex-
pansions

	 � !��� � � ! � � � � > � � p � � � 8 ! and ��� g � � �� � �j! � > � 8 Q  P & p � �
�
� ! such

that a roll
���
� � with � � �^� 	

� � � is linearly stable if and only if

�
� C 	�� !��� � � ! and � C � � g � � �� � �j! A

In this case the surface � 0 � � � 3� of the largest eigenvalue of (24) has the expansion

� 0 � � � 3�
� � ! � > � � � � 	 � ! � �� > � � � � 	 � ! � �� p%� �@� � � 8 ! for

� � �
(25)

with � o � � 	 � !"C �
for � � P 	 & .

In [Uec99] these results are combined with the techniques developed in [Sch96]
to show the nonlinear diffusive stability of marginally stable rolls. In order to ob-
tain estimates on the size of the domain of attraction we need to take care of the
dependence of

� � � 	 � � ! on
�
�
	 � ! . Here it is useful to consider the special parame-

terization � � 
 � with 
 � �b� 	 PRQ k � ! and the transformed parameter set
� ��^� 	 PRQ k � ! � �b� 	

� � ! . With the definition (5) adapted to
� 	 �fa ! � �_�� � � � � E � E���� 0 h 3 � E ��� h E���� 0 * 4 3 � W �

,
�$� �$! � � P-p � � � � ! � 5 � , we have the following

result.

Theorem 10. [Uec99] There exist continuous functions 2 	 K S�^�O	 PVQ k � ! � � ]
and a continuous function �  � � � � � � ! � � such that for all

� 
 	
�j!<� �

the
following holds. Let � � 
 � and let

3 � 3 �^� 	 ��! be the solution to (23) with the
initial condition

3 �
satisfying

3 �H� �$! �
�
� 5 � nX � � � X � �V� � 	 k �V� � ! , g X/� \ p � A � A (26)

with
nX � � � PVp � � ! E � X E�� 4 0 � 3 I 2 � 
1! A (27)

Then we haveE 3 ��� 	 �$!> 	% � \ � 4 � , . � � \ � 4 \ ] � 4 � 44 � 57098 � 3 � � \ � � #� � � � � � ! E F Y 0 * 4 3 ITK � 
1! � . � 5 � � . � 5 � 	
with 
 � � � 
 	

�
	 3 � ! and � o � PRQ � o � � 	 
 �j! from (25), � � P 	 & .

Remark 11. Similar to Remark 8 one obtains from (26) that in two dimension the
attracted neighborhood  of

� �
� � is of order �

� 5 � in � �
� � � ! , see [Uec99].

5.3 Application to hydrodynamical stability problems

With the above methods it was possible to solve a class of hydrodynamical stability
problems on unbounded domains which have been open for almost 30 years, na-
mely the nonlinear stability of linearly Eckhaus–stable spatially periodic equilibria
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in infinite cylinders with respect to spatially localized perturbations. The linear sta-
bility analysis leads to a similar situation as for the Swift–Hohenberg equation, i.e.
continuous spectrum up to the imaginary axis and no obvious sign for the nonlinear
terms.

The physical problems which we have in mind are the Taylor–Couette problem and
Rayleigh–Bénard’s problem. The Taylor–Couette problem consists in finding the
flow of a viscous incompressible fluid filling the domain between two rotating infi-
nitely extended cylinders. Bénard’s problem consists in finding the flow of a viscous
incompressible fluid filling an infinitely extended strip subjected to some heating
from below.

In both problems the velocity field is governed by the Navier–Stokes equations, and
in both problems there exist a spatially homogeneous flow, the Couette flow and
pure heat conduction, respectively, which gets unstable and bifurcates into a family
of spatially periodic equilibria, the Taylor vortices and roll solutions, respectively.

The result for the Taylor–Couette problem is formulated in [Sch98b]. For comple-
teness we will give here an explicit formulation of the nonlinear diffusive stability
result for roll solutions in the Rayleigh–Bénard problem. The linear Bloch theory
with one unbounded direction was first studied in [KvW97] and that with two un-
bounded directions in [Mie97c]. Here we only treat the two–dimensional problem
in the strip � � � � �^�O	 � ! . The velocity field

� � ��� � 	@� � ! , the temperature
�

and
the pressure B satisfy � ����� � � � >���B > ��� � > ���  � ! ���� ��� � � � p � � > �^�  �<! �� � � +�
for all

� � 	6: !e� � , with
� � � �� p � �2 , the mean flux condition ( &� � � ; :�� �

and
the boundary conditions� 2 � � �L� � � �

for
:<��� 	 � 	 ��� �$�

for
:<� � 	

and
�L� � � for

:<� �
where

� � � � � .
There exists a trivial spatially homogeneous solution

� ���
,
��� � � p :���� � > � � !'Q � ,

which becomes unstable when the parameter � � � � > � �
is sufficiently large. Then,

a one–dimensional family of spatially periodic equilibria
��� % � � 	 � % � � ! with��� % � � 	 � % � � ! � � 	6: ! � ��� % � � 	 � % � � ! � �$p & � Q/D 	6: ! 	

bifurcates, where the horizontal wave number D lies in the interval
� D .� � � �?! 	 D ]� � � �?!@! .

The linear stability analysis leads to a similar situation as for the Swift–Hohenberg
equation. We have the linear Eckhaus–stability for all

�^� % � � 	'� % � � ! withD � � D .��� 
	 � �?! 	 D ]��� 
	 � �?!@! � � D .� � � �?! 	 D ]� � � �?!6! A
In [Sch98b] the following result has been proved.
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Theorem 12. There exist �
	 K C �

such that the following holds. Let the initial
condition

���
	'� ! � ����� � �^� % � � 	 � % � � !"p � 3 	�� ! � ����� satisfy D�� � D .��� 
	 � �?! 	 D ]��� 
	 � �?!@!
and

E � 3 	�� ! E�� 4 0 � 3 I
� . Then the associated solution

���
	'� ! � ��� % � � 	'� % � � !?p � 3 	�� !
satisfies ����

� 3 ��� >�� �% �?, . � � 4 5 � � �	� � % � �� % � ��
 ���� F�Y I K � for all
� C �O	

where � � � � D 	 �?!"C �
and � � ��� is a constant depending on the initial condition.

In a different situation the diffusive stability method has been used to prove the
nonlinear stability of Kolmogorov flow (cf. [Sch99a]).

5.4 An open problem: Diffusive mixing in pattern forming systems

In the last section we explained how diffusive behavior occurs near spatially periodic
equilibria in pattern forming systems. If such steady state solutions are perturbed in
a spatially localized manner, the perturbations are repaired diffusively and decay to�

algebraically in
�

as
��� W

.

For the Ginzburg–Landau equation we additionally know that diffusive mixing takes
place if two different stable steady states are prescribed for � � > W

and � � W
,

see Section 4.2. Although a proof of diffusive mixing of steady states in general
pattern forming systems is still missing, it is widely expected that such a behavior
occurs. For the one dimensional Swift–Hohenberg equation this conjecture is as
follows.

Conjecture: Fix � C �
sufficiently small and let

���
� h � 	@� � � �� be two stable rolls with

� . �� � ] . Then there exist limiting profiles �a � K 8� � �! and �� � K 8 � � ] � � 	 �S!
with �a)� �j! � a � � k � � p P for � ��� W

andE �a$�  !> �ba . p �fa ] > a . !�	��� �  !6! E���� ILK
�
�E �� ��� 		 ! > � � � � 	 �a��  Q k � !@! � � ( � k � �� �  Q k � !6! E����eILK

�
�j	

where �� � �j! � a . � p ( �. � � �a$�
� ! > a . � ; � and � � � � 	'a ! from (18), such that the
following holds. There exist

� � C �
, 2�C �

such that for all
� � � � �� � � � ! withE ��� > �� �^�t�j		 ! E�� 4 0 � 3 I 2 we haveE ���� 		 !
> �� ��� 		 ! E+F Y I�K � . � 5 � A

In particular, this implies that for all fixed ��C �
,

( ),+� � � � � � �
�^� 	 ��! > � �
� h 4 � . � � ��p k � � � ! � ILK � � . � 5 � 	

where
a � � �a��^� ! � �

�
�ba ] p a . !jp � �

�
� ! and

� � � �� �^� ! � �ba ] > a . !@Q k � p � �
�
� ! .
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For Bénard’s problem a similar conjecture can be stated. The proof of the diffusive
repair of the steady states heavily relies on the Bloch wave analysis. So far it is not
known how to transfer it to the diffusive mixing case, where we have to combine
the Bloch wave analysis of the spatially periodic steady states with a local analysis
in � –space to prove these conjectures.
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