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Abstract

The Lombardo–Fink–Imbihl (LFI) model for the NO+NH3 reaction on Pt{100} consists of seven

coupled ordinary differential equations (ODE). Here we present a numerical analysis for relaxation

oscillations in LFI and show that LFI can not be adiabatically reduced to two coupled ODEs,

belonging then to the multicomponent ODEs category. We show that this is because the explicit

consideration of the trapping processes of NO from 1 × 1 to hex phases in the kinetic mechanism

of the reaction. Our analysis shows that an adiabatic reduction to three coupled ODEs can be

achieved. Moreover, we examine in detail the hysteretic behavior.
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1 Introduction

The catalytic reduction of NO on metal surfaces has been intensely studied in recent years due to the

deleterious effect of NO in the atmosphere[1, 2]. Aside from these practical aspects, work function

and mass spectrometric measurements revealed that these reactions very often exhibit interesting

dynamical behaviour such as multiple steady states and regular or chaotic temporal oscillations in the

rate of the reaction or in the partial pressures of the reactants[3]. These phenomena have been for

example observed during the reduction of NO with NH3 on polycrystalline and single-crystal metal

surfaces under ultrahigh vacuum conditions where the reaction proceeds isothermally. Under such

conditions the mechanism underlying the oscillatory behavior has been well-established and can be

explained by the existence of a reversible adsorbate-induced phase transition in the crystalline structure

that causes a periodic switching between two states with different catalytic activity. For example on

Pt{100} oscillations are observed associated with a phase transition between hex and 1 × 1 surface

structures. The hex phase, which is catalytically inactive reverts to the active 1 × 1–phase due to

adsorption of NO upon a critical value of adsorbate coverage[3, 4, 5, 6, 7].

Related with temporal oscillations, the spatiotemporal distribution of adsorbates on the surface

has been experimentally investigated by photoemission electron microscopy (PEEM), revealing a rich

variety of spatial patterns and waves[3, 4, 5, 6, 7]. These spatial features are well-documented today

and are common to a wide class of non-equilibrium systems[8, 9, 10, 11, 12, 13, 14, 15, 16].

From the theoretical point of view kinetic models based upon the phase transition mechanism has

been developed to describe temporal behaviour, in the so called mean field approximation [3, 4, 5, 6, 7].

Extensions to describe pattern formation typically introduce diffusion of the mobile species, leading

to the reaction-diffusion equation (RDE) formalism, and gas global coupling. While these develop-

ments can nicely describe a number of experimentally observed patterns, it is also true that they

are usually based on simplistic representations of the real mechanisms governing the chemical reac-

tions. The NO+ NH3 reaction involves a number of intermediate species whose dynamic must be

adequately represented in order to achieve additional insights about the behavior of this system. Also,

it has been recently shown that the dynamic behaviour of multicomponent reaction-diffusion systems

posses special properties that deserve to be studied[17, 18, 19]. It is desirable then to explore more

detailed models of chemical reactions with the final purpose to achieve a realistic representation with
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quantitative agreement with experiments.

The aim of the present work is to analyze a detailed kinetic model for NO+NH3 reaction. We

used here the model developed by Imbihl and co-workers[3], (LFI model), which reproduces the overall

kinetics as well as the rate oscillations quite well. The LFI model was developed to provide a unified

model to both NO+NH3 and NO+H2 reactions and is based upon the decisive role of the 1 × 1 ↔

hex phase-transition. The model considers the evolution of seven different chemical species including

adsorption, desorption, dissociation, reaction and trapping processes. Recent experimental measure-

ments of the coverage dependence of sticking probabilities and rate constants were obtained which is

not included here[20, 21, 22]. Also it was proposed that the 1 × 1 ↔ hex phase transition on Pt{100}

follows a non-linear power law with the NO coverage in hex phase like in the CO+O2 reaction[22]. All

these features can be introduced in the LFI model but their inclusion implies additional mathematical

difficulties which will be the subject of a further work[23]. We used LFI model as a starting point for

further investigations.

In the present work we focus ourselves in the analysis of the set of seven coupled ordinary differential

equations (ODE’s) in the LFI model. We show that the system cannot be adiabatically reduced to

a simple two-dimensional ODE system. Due to the mathematical complexity which makes difficult

to handle the equations for analytical treatment, we perform the analysis numerically. This shows

that a reduction to three coupled ODEs can be achieved. In Section 2, the kinetic model and the

numerical method to solve it are presented. In Section 3 we perform a constrained system analysis

(CSA) to follows the dynamics of the system. A dynamical adiabatic reduction is performed in Section

4 showing that the system can not be reduced to a two-dimensional ODE system. In Section 3, we

study the dependence of the system behavior on temperature. Finally our conclusions are summarized

in Section 5.

2 The model

The mechanism of the LFI model can be written as[3]:

NO + ∗1x1 ⇔ NOad (1.1)

NO + ∗hex ⇔ NOad (1.2)
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NH3 + ∗1x1 ⇔ NH3,1x1 (1.3)

H2 + 2∗1x1 ⇔ 2H1x1 (1.4)

NOad + ∗1x1 → N1x1 + O1x1 (1.5)

NH3,1x1 + 3∗1x1 ⇔ N1x1 + 3H1×1 (1.6)

2N1x1 → N2 + 2 ∗1x1 (1.7)

O1x1 + 2H1x1 → H2O + 3 ∗1x1 (1.8)

1 × 1 ⇔ hex (1.9)

NOhex + ∗1×1 → NO1×1 + ∗hex (1.10)

Here ∗1×1 denotes a vacant adsorption site on the 1×1 phase, and ∗hex a vacant adsorption site on

the hex phase. Steps (1.1)-(1.4) represent NO, NH3 , and H2 adsorption and desorption. Step (1.5)

corresponds to the dissociation of NO, which on Pt{100} occurs above T≈ 380K. In (1.8) is assumed

that the reaction product H2O desorbs immediately after formation, while atomic nitrogen which may

desorb as N2 via reaction (1.7) has a finite residence time on the surface. As an alternative reaction

channel, Nad may also recombine with Had to form NH3 as denoted by step (1.6). We refer to the

reader to Ref [3] and references therein for a detailed description of the mechanism.

This mechanism yields to a set of seven ODEs:

d

dt
θ1×1
NO = FNOpNO(θ1×1 − θ1×1

NO − 4θ1×1
NH3

) − k1θ
1×1
NO − k2

θ1×1
NO θ1×1

empty

θ1×1
+ k3θ

hex
NOθ1×1 (2.1)

d

dt
θhex
NO = FNOpNO(θhex − θhex

NO) − k3θ
hex
NOθ1×1 − k4θ

hex
NO (2.2)

d

dt
θ1×1 =



























( d
dtθ

1×1
NO )/θ1×1

grow if d
dtθ

1×1
NO > 0 and θ1×1

NO ≥ θ1×1
growθ1×1 and θ1×1 < 1

−k11(θ1×1 − θhex
def )(1 − c) if θ1×1 > θhex

def and c < 1

0 otherwise



























(2.3)

d

dt
θ1×1
NH3

= FNH3
pNH3

(θ1×1 − 3θ1×1
NH3

− 1.6θ1×1
NO ) − k5θ

1×1
NH3

(2.4)

−k6

θ1×1
NH3

[θ1×1 − θ1×1
H − 2.5(θ1×1

O + θ1×1
N )]

θ1×1
+ k7

θ1×1
N θ1×1

H

θ1×1

d

dt
θ1×1
O = k2

θ1×1
NO θ1×1

empty

θ1×1
− k8

θ1×1
O θ1×1

N

θ1×1
(2.5)

d

dt
θ1×1
N = k2

θ1×1
NO θ1×1

empty

θ1×1
+ k6

θ1×1
NH3

[θ1×1 − θ1×1
H − 2.5(θ1×1

O + θ1×1
N )]

θ1×1
(2.6)
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−k7
θ1×1
N θ1×1

H

θ1×1
− k9

(θ1×1
N )2

θ1×1

d

dt
θ1×1
H = FH2

pH2

[θ1×1 − θ1×1
H − 2.5(θ1×1

O + θ1×1
N )]2

θ1×1
(2.7)

+3k6

θ1×1
NH3

[θ1×1 − θ1×1
H − 2.5(θ1×1

O + θ1×1
N )]

θ1×1

−3k7
θ1×1
N θ1×1

H

θ1×1
− 2k8

θ1×1
O θ1×1

N

θ1×1
− k10

(θ1×1
H )2

θ1×1

where the coverages of the adsorbed species are normalised by the total number of sites. The

temperature dependence of the rate constants k1, . . . , k11 is expressed via the Arrhenius–law ki =

νie
−Ei/RT , see Table 1. The coverage dependence of NO and NH3 desorption is taken into account by

E1 = E0
1 − α(θ1×1

NO /θ1×1)
2, E5 = E0

5 − φ(θ1×1
NH3

/θ1×1)
2 (3)

The inhibitory effect of adsorbates on NO dissociation and the stabilizing effect of adsorbates for

the 1 × 1 phase in Eqs (2) are given by

θ1×1
empty = max[(θ1×1−

θ1×1
NO

θinh
NO

−
θ1×1
O

θinh
O

), 0] + max[(θ1×1
def − θ1×1

O ), 0] (4)

c = (
θ1×1
NO

θcrit
NO

+
θ1×1
O

θcrit
O

)/θ1×1, θ1×1 + θhex = 1, θ1×1
def = θ1×1θdef , θ

hex
def = θhexθdef . (5)

and the further parameters are given in Table 2. A single adsorption site was assumed for all

adsorbates so that θ1×1
NO + θ1×1

NH3
+ θ1×1

O + θ1×1
N + θ1×1

H ≤ θ1×1. A certain number of static defect sites,

given by θdef , were distributed homogeneously over the surface assuming that NO dissociation can

occur more easily there. The condition θ1×1 < 1 in the first line of the right hand side of Eq. (2.3)

was not explicitly displayed in Ref[3] ; it takes effect at the lower temperature threshold T ≈ 404K

for kinetic oscillations and ensures θ1×1 ≤ 1. In Eq. (2.3) θ1×1
grow is the coverage of NO on 1 × 1 phase

for which the growth of islands occurs. Further details of these ODEs are given in Ref[3]. All our

calculations, concerning with the NO + NH3 reaction, were made at pNO = 1.1 × 10−6mbar and

pNH3
= 4.7 × 10−6mbar.

The system of Eqs (2) is very stiff and the oscillations are of relaxation type involving widely

different time scales. An appropriate ODE numerical solver is the linearly implicit extrapolation

solver limex[24]. Moreover, limex can also be used to integrate differential algebraic equations (DAE)

B(X)
d

dt
X = f(X), X ∈ Ω ⊂ Rd, B(X) ∈ Rd×d (6)
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where B(X) may be singular. For general equations

d

dt
X = f(X) (7)

this allows a very easy test whether components of X have no own dynamics and can be eliminated

adiabatically. Clearly, Eq. (7) is of the form of Eq.(6) with B = diag(b1, . . . , bd) = diag(1, . . . , 1).

Hence, we may test for slaved Xi, i ∈ I, where I ⊂ {1, . . . , d} is some index–set, by simply setting

bi = 0, i ∈ I and integrating Eq(6). If this yields (approximately, in some part of Ω) the same results

as integration of Eq(7) then components Xi, i ∈ I, are slaved (in that part of Ω). In chemical kinetics

setting the time derivatives of some reaction intermediates equal to zero is known as quasi steady state

approximation.

3 Constrained System Analysis (CSA)

A method[25] which yields insights into the mechanism of kinetic oscillations is what here we call

constrained system analysis (CSA). In the CSA, the coverages and the reaction rates are calculated

as functions of θ1×1 by setting d
dtθ1×1 = 0 in Eq. (2.3) and letting this so-called constrained system

converge to a stable fixed point. To understand the effect of CSA on the dynamics of the system we

use the phase picture of oscillatory systems. The evolution of systems describing temporal oscillations

can be represented in the phase space, in which time is considered as an implicit variable. In this

phase space the system moves on a limit cycle which depends on temperature and that we call periodic

orbit γ(T ). In general then, we use this name to indicate the temporal evolution of the entire set of

variables, during an oscillatory period. A periodic orbit γ(425) of the system of Eqs.(2) at T = 425 is

shown in Figure 1(a), together with the temporal evolution of the production rates rN2
of N2 and rH2O

of H2O. The relaxation type oscillations are cut into four segments. The decay of θ1×1 sets the slowest

time scale in the largest segment which is segment 1. Here all other variables follow θ1×1 adiabatically.

This breaks down in segments 2 and 3, where NO adsorption lifts the hex reconstruction. In segment

4 the so-called “surface explosion” occurs with rapid increase in the production of N2 and H2O. The

explosive behavior is due to the autocatalytic increase in the number of vacant sites. These sites are

required for the rate-limiting step of NO dissociation to take place. NH3 adsorption leads to the build

up of an NHx,ad/Had layer. This layer is unable to stabilize the 1 × 1 phase, which leads to the slow
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relaxation to the hex phase in segment 1.

In Figure 1(b) we compare the phase plane portraits of the orbit from Fig 1(a) (dots) with the

results of a CSA (lines). The plots of the CSA were obtained by increasing θ1×1 coverage value in

steps of 0.01 units from 0.125 to 0.75 and then decreasing it again down to 0.125. These two numbers

are the minimum and maximum coverage values for which the CSA converges to a fixed point. Within

this range of θ1×1, the constrained system shows bistability for 0.125 ≤ θ1×1 ≤ 0.6, because two

fixed-points co-exist for each value of θ1×1, yielding two branches in Fig 1(b) (except for θ1×1
NO as we

explain below). The branch associated with a high (low) reaction rate (the full–line (dotted) branch),

is called the lower (upper) branch. Outside this range the system is monostable.

The fact that in Fig.1 (b) there is only one branch for θhex
NO follows from Eq. (2.2). This equation

is linear in θhex
NO and otherwise only contains θ1×1; hence it can have only one fixed point for each fixed

value of θ1×1.

The constrained system can now be compared to the solution of the full system of Eqs (2). The

density of points in the plots of γ(425) shows how fast a certain branch is transversed. There is

excellent agreement of the slow segment 1 of γ(425) with the upper branch from the CSA. However,

θ1×1 stays essentially constant in time in segments 2 and 4(see Fig 1(a)) and hence, these segments

can not be captured by CSA. Segments 2 and 4 represent in phase portraits fast transitions between

the branches. In segment 3 a considerable error is seen between γ(425) and CSA. The CSA is an

approximate method that only gives information in those regions in which the variables can follow

θ1×1 adiabatically. However, it must fail in segments 2 and 4 where fast transitions between two

branches occur associated with the chemically very important surface explosion. We believe that

similar care must be taken in the application of CSA to related systems[25].

4 Adiabatic reduction

First we introduce some notation. We set X = (y, z) with y = (θ1×1
NO , θhex

NO, θ1×1) and z = (θ1×1
NH3

, θ1×1
O , θ1×1

N , θ1×1
H ),

and write Eqs.(2) in the form:

d

dt







y

z






=







fy((y, z);T, p)

f z((y, z);T, p)






(8)
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where f y : R7 → R3 and f z : R7 → R4 denote the respective right hand sides in Eqs (2) and

p ∈ R11 denotes the vector of temperature–independent parameters from Table 2, while T denotes the

temperature. Figures 2 (a) and (b) illustrate that (on the periodic orbit γ) z can be eliminated from

Eqs (2) adiabatically. Here, for initial conditions on the periodic orbit, using limex we integrate Eqs

(2) in the form of Eq. (6) with B(X) = diag(1, 1, 1, 0, 0, 0, 0), i.e., we integrate the DAE

d

dt
y = fy(y, z), 0 = f z(y, z) (9)

In the following we call this method implicit reduction. In Figure 2(a) we compare time–series for

some components and the reaction rates of the solution of implicit reduction (dotted lines) with the

original periodic orbit γ(425) for Eqs(2), i.e. Eq. (8), (full lines). Obviously, the agreement is very

good, except for a slightly smaller period for the solution of Eq.(9).

In the orbital plots in Figure 2(b) we compare the two solutions (solution of implicit reduction

using +) for three projections in phase space, which cover the seven components of X and the two

reaction rates.

We conclude that the system can in principle be reduced to the three dimensional ODE

d

dt
y = fy(y, h(y)) =: g(y), where z = h(y) solves f z(y, z) = 0 (10)

i.e., to an ODE for the slow components y = (θ1×1
NO , θhex

NO, θ1×1) alone. However, two questions imme-

diately arises: 1) can we solve (explicitly) the (nonlinear, coupled) algebraic system 0 = f z(y, z) for

z = z(y)? 2) can we walk off the periodic orbit obtained with the implicit reduction method and does

it drive us back to the periodic orbit?, i.e. does the reduction work in a sufficiently large neighborhood

of the periodic orbit?

Explicitly, the system 0 = f z(y, z) reads

0 = FNH3
pNH3

(θ1×1 − 3θ1×1
NH3

− 1.6θ1×1
NO ) − k5θ

1×1
NH3

(11.1)

−k6

θ1×1
NH3

[θ1×1 − θ1×1
H − 2.5(θ1×1

O + θ1×1
N )]

θ1×1
+ k7

θ1×1
N θ1×1

H

θ1×1

0 = k2θ
1×1
NO θ1×1

empty − k8θ
1×1
O θ1×1

N (11.2)

0 = k2θ
1×1
NO θ1×1

empty + k6θ
1×1
NH3

[θ1×1 − θ1×1
H − 2.5(θ1×1

O + θ1×1
N )] (11.3)

−k7θ
1×1
N θ1×1

H − k9(θ
1×1
N )2
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0 = FH2
pH2

[θ1×1 − θ1×1
H − 2.5(θ1×1

O + θ1×1
N )]2 (11.4)

+3k6θ
1×1
NH3

[θ1×1 − θ1×1
H − 2.5(θ1×1

O + θ1×1
N )]

−3k7θ
1×1
N θ1×1

H − 2k8θ
1×1
O θ1×1

H − k10(θ
1×1
H )2

and we need to solve for θ1×1
NH3

, θ1×1
O , θ1×1

N , θ1×1
H as functions of θ1×1

NO , θhex
NO and θ1×1. Clearly, we

cannot expect a simple solution for this (highly) nonlinear coupled system. However, we can use some

ad hoc simplifications and check a posteriori if the reduction works. We ignore the nonlinear correction

to E5 in Eq.(3) and write down the solution of Eqs.(12) as if the system was uncoupled. That means

we solve Eq. (11.1) for θ1×1
NH3

while fixing the remaining variables, Eq (11.2) for θ1×1
O and so on. This

yields:

θ1×1
NH3

=
FNH3

pNH3
(θ1×1 − 1.6θ1×1

NO )+(k7θ
1×1
N θ1×1

H )/θ1×1

3FNH3
pNH3

+ k5+k6[θ1×1 − θ1×1
H − 2.5(θ1×1

O + θ1×1
N )]/θ1×1

(12.1)

θ1×1
O =























































0 case(00)

k2θ
1×1
NO (θ1×1 − θ1×1

NO /θinh
NO)/(k2θ

1×1
NO /θinh

O + k8θ
1×1
H ) case(10)

k2θ
1×1
NO θ1×1

def /(k2θ
1×1
NO + k8θ

1×1
H ) case(01)

k2θ
1×1
NO (θ1×1(1 + θ1×1

def )

−θ1×1
NO /θinh

NO)/(k2θ
1×1
NO (1 + 1/θinh

O ) + k8θ
1×1
H )

case(11)























































(12.2)

θ1×1
N = −α1/2 +

√

α2
1/4 − β1 (12.3)

α1 = (k7θ
1×1
H + 2.5k6θ

1×1
NH3

θ1×1
O )/k9

β1 = k6θ
1×1
NH3

(θ1×1
H + 2.5θ1×1

O − θ1×1 − 2k2θ
1×1
empty)/k9

θ1×1
H = −α2/2 +

√

α2
2/4 − β2 (12.4)

α2 = (2k8θ
1×1
O + 3k7θ

1×1
N + 3k6θ

1×1
NH3

)/k10

β2 = 3k6θ
1×1
NH3

(2.5(θ1×1
O + θ1×1

N ) − θ1×1)/k10.

In (12.2), the binary notation ’case(ab)’ refers to the two max in the function:

θ1×1
empty = max[(θ1×1−

θ1×1
NO

θinh
NO

−
θ1×1
O

θinh
O

), 0] + max[(θ1×1
def − θ1×1

O ), 0] (13)

with a = 1 (b = 1) denoting the case that the first (the second) max is greater 0. In (11.3) and (11.4)

we take the positive root for physical reasons.
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The next step would be to simplify, e.g., (12.1) to

θ1×1
NH3

=
FNH3

pNH3

3FNH3
pNH3

+ k5 + k6
(θ1×1 − 1.6θ1×1

NO ) (14)

where we used that θ1×1
H − 2.5(θ1×1

O + θ1×1
N ) is rather small on the periodic orbits. Using the values

from Tables 1 and 2 we obtain θ1×1
NH3

≈ 1
7(θ1×1 − 1.6θ1×1

NO ) at T = 425. Note that θ1×1
NH3

in Eq.(14)

only depends on θ1×1
NO , θ1×1. Proceeding in this manner we can produce approximate solutions of the

coupled system with reasonably simple formulas.

However, here we rather use the Eqs (12) to reduce the system in Eqs(2) dynamically, i.e., we solve

Eq.(10), keeping the values of θ1×1
NH3

, θ1×1
O , θ1×1

N , θ1×1
H as auxiliary variables and in each time–step solve

Eqs(11) as an uncoupled system. That means, in Eq (12.1) we use θ1×1
NO , θhex

NO, θ1×1
O , θ1×1

N , θ1×1
H from

the previous time–step to solve for θ1×1
NH3

, and similarly in Eqs(12.2-4). We call this method explicit

reduction to distinguished it from the implicit one mentioned above.

Figure 3 (a) compares γ(425) with the result of using the explicit reduction method. The initial

conditions were chosen on γ(425). Clearly, explicit reduction again produces a periodic orbit which

we call γ̃(425). There is a slightly bigger error in rH2O than in Fig.2(a), but in fact the periods match

even better, and a phase shift becomes only visible after several periods.

The points in Figure 3(b) show solutions of explicit reduction for initial conditions off γ̃(425),

which we compare again with γ(425) (full line). The dotted line represents two periods of γ̃(425). In

the θ1×1, θ
1×1
NO , θhex

NO plot on the left the two trajectories are indistinguishable. We see that the explicit

reduction works in a neighborhood of γ(425), and that after a rather short transient time we go back

to γ̃(425). This has been confirmed using several more perturbations of the system off γ(425). In the

θ1×1
H , rN2

, rH2O plot on the right we see that the error for these components is somewhat larger but

still acceptable. The behavior of θ1×1
NH3

, θ1×1
O , θ1×1

N is similar to the one in Fig.2(b) middle.

Obviously, the return of the perturbed orbits to γ̃(425) essentially takes place during segment 1

of γ̃(425). This is exactly what we can expect from the CSA in section 3, where we saw the slaving

of all other variables to θ1×1. However, the good agreement between γ̃(425) and γ(425) also during

the ”surface explosions” is rather surprising. This again illustrates the fact that the dynamics of the

system is constituted by only two processes, the surface phase transition and the so-called ”surface

explosion”. The nucleation of the 1 × 1 phase on a hex substrate is controlled by the NO coverage

on the hex phase. The NO coverage on the 1 × 1 phase in turn controls the phase transition in the
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other direction, i.e. from the 1× 1 to the hex phase as well as the ignition of the ”surface explosion”.

The latter happens as the NO coverage falls below a certain limit creating enough vacant sites for NO

dissociation to occur and to spread autocatalytically. In conclusion three variables are representing

the dynamics of the system (θ1×1
NO , θhex

NO, θ1×1).

Next, we may ask whether we can even reduce Eqs (2) to a two-dimensional ODE by eliminating

either θ1×1
NO or θhex

NO, proceeding as above. This fails because no oscillatory behavior is then found.

The NO coverage on the hex phase seems to be an excellent candidate for further elimination because

the hex phase is catalytically inactive and the only role of the NO there is to initiate the lifting of

the hex reconstruction through NO supply for growing 1 × 1 islands. This happens in a so-called

trapping process in which NO molecules migrate from the hex phase to 1× 1 islands and are trapped

there because of the higher adsorption energy. Apparently because this is an essential step further

elimination is not possible.

5 Temperature dependence and hystereses

One of the strengths of the LFI model is that it not only yields oscillations but also reproduces

qualitatively the overall behavior of the reaction system over a wide range of temperatures. Here

we show that also our reduction works in this whole T-range. We start with some typical periodic

orbits γ(T ) of Eqs (2) (full lines) and γ̃(T ), the orbit of explicit reduction (broken lines) in Figure

4. We restrict to plotting θ1×1
NO , θhex

NO, θ1×1
NH3

, rN2
. The initial conditions were deliberately chosen off

γ(T ) (and γ̃(T )), in order to illustrate again that the reduction also works off the periodic orbit.

The temperatures were chosen near the lower and upper ends of the range of kinetic oscillations. The

temperature dependence of the full model of Eqs (2) can be summarized as follows. Kinetic oscillations

are observed for T0 < T < T1, with T0 ≈ 404K, T1 ≈ 433K.

For T < T0, the surface is completely in the 1×1 phase (θ1×1 = 1), while for T > T1 it is in the hex

phase (θ1×1 = 0). In both cases, the production rates rN2
and rH2O are zero. The periods π(γ(T )) of

the oscillations also depend on T , but only slightly except near the boundaries of the existence range.

In Figure 4 we compare γ(T ) and γ̃(T ). Again, the agreement is very good, with a small downshift

(upshift) in period for T = 408K (T = 433K). The error in the components (not shown) is small too.

This shows that our explicit reduction also works in these temperature ranges.
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In order to study the temperature dependence of the model, we calculate for fixed T averaged

quantities like:

〈θ1×1〉(T ) =
1

τ

∫ τ

0
θ1×1(t) dt (15)

for large τ (of the order 104sec.). Equivalently, we could average over one period π(T ) (or π̃(T ))

but since we want to compare the results of Eqs.(2) and the explicit reduction this would give a

slight ambiguity. In Ref [6] , the hysteretic behavior of the reaction rates in NO+NH3 on Pt100

was not measured under true steady state conditions because the temperature was changed with a

heating/cooling rate 0.75K/s. The same problem exist in the numerical simulations of Eqs(2) in Ref

[3], where also a temperature ramp was applied. For obtaining the true steady state behavior as a

function of temperature we vary the temperature stepwise to T +δ (with δ = ±1K) instead of ramping

it.

For the parameters from Tables 1 and 2, the kinetics oscillations are found from 411 K to 433 K

in the heating branch (dashed line) and from 433 K to 404 K in the cooling branch (full line). As we

show in Figure 5, a hysteresis occurs only in a small T-window at low temperatures. Moreover, Fig.5

shows that the error in the averages between γ(T ) and γ̃(T ) is very small, except for, again, rN2
.

The two branches of the hysteresis differ essentially in the NO coverage on the 1x1 phase. At high

NO coverage NO dissociation is inhibited and therefore this branch is catalytically inactive. On the

branch with the low NO coverage NO can dissociate freely and therefore this branch is active.

6 Discussion and Conclusions

The primary motivation for this analysis has been that spatially resolved studies of this system

showed an interesting sequence of chemical wave patterns transforming finally into a state of chemical

turbulence[26, 27]. In order to link these phenomena to local dynamics described by ODE’s the com-

plexity of the seven variable system needs first to be reduced before formulating a reaction-diffusion

system. CSA has being used in an attempt to identify the slow variables. CSA showed that the time

evolution of the variables can be naturally divided in four segments. We can clearly identify the θ1×1

as a slow variable but this holds only in one of the four segments. Despite a missing clear separation of

time scales over the whole oscillation cycle the dynamics of the system can be reproduced quite accu-

rately by only three variables, (θ1×1
NO , θhex

NO, θ1×1) and treating the remaining four variables as ”slaved”
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by setting their time derivatives equal to zero. The mechanistic basis of this reduction is the decisive

role of the surface phase transition and of the ”surface explosion” being controlled by the NO coverage

on the 1×1 and on the hex phase, respectively. It has been verified that this reduction works through

the whole window of oscillatory behaviour (404 K to 434 K), with the agreement between reduced

and full system being remarkably good even at the lower and upper temperature limit. It’s worth

mentioning that we have also neglected the (non-linear) coverage dependence oft he activation energy

for ammonia desorption in k5, in the reduction. Importantly, the system can not be further reduced

to a two variables one without loss of oscillatory behavior. This is due to the explicit consideration of

the trapping process of NO form 1 × 1 to hex phases in the kinetic mechanism of the reaction. With

the reduced equations as basis the more complex subject of the spatiotemporal dynamics can now be

attacked.
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Figure Captions

Figure 1 :(a) The periodic orbit γ(425) for the system of Eqs (2) at T = 425K, (b) phase plane portraits

of the orbit in (a) (dots) compared to the constrained system analysis (lines). Coverages in ML

and the rates in ML/s. The arrows indicate the direction of time

Figure 2 : Comparison of the system of Eqs(2) (full lines) and the implicitly reduced 3d-system (dotted

lines) (a) Time series of θ1×1, θ
1×1
NO , θhex

NO, θ1×1
NH3

, rN2
, rH2O and , (b) orbital plots. The arrows

indicate the direction of time.

Figure 3 : Comparison of the system of Eqs(2) (full lines) and the explicitly reduced 3d-system (dashed

lines) (a) Time series of θ1×1, rN2
, rH2O and , (b) orbital plots with initial conditions on the

periodic orbit. The points show solution of the explicitly reduced 3d-system for initial condition

off the periodic orbit.

Figure 4 : Periodic ODE-orbits γ(T ) (full line) and γ̃(T )(dashed line) at T = 408K (a) and T = 433 K (b).

Figure 5 : Hysteretic behaviour in the system of Eqs, (2) (lines) when T is varied in a slow cycle. The

arrows indicate the change of T. Points indicate the behavior of the explicitly reduced 3d-system.

Coverages in ML, reaction rates in ML/s.
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Table 1: Rate constants for the NO+NH3 reaction on Pt{100}[3].

reaction step parameter νi(s
−1) Ei(kcal×mol−1) value at T=425K (s−1)

NO-desorption 1×1 k1 1.7×1014 37.0a 1.6×10−5

NO-dissociation 1×1 k2 2.0×1015 28.5 4.4

NO-trapping on 1×1 k3 2.2×104 8.0 1.7

NO-desorption hex k4 4.0×1012 26.0 0.17

NH3-desorption 1×1 k5 1.0×109 18.0a 0.55

NH3-dissociation 1×1 k6 1.0×1015 27.5 7.2

NH3-formation 1×1 k7 1.0×1010 16.0 59.1

H2O-formation 1×1 k8 1.0×1013 13.0 2.1×106

N2-desorption 1×1 k9 1.3×1012 19.0 2.2×102

H2-desorption 1×1 k10 8.0×1012 23.0 11.9

Transition 1×1→hex k11 2.5×1011 25.0 3.5×10−2

aFor zero local coverage, see Eq.(3)

Table 2: Temperature independent parameters[3].

description parameter value

NO-adsorption flux 1×1, hex FNO 2.21

NH3-adsorption flux 1×1 FNH3
2.84

H2-adsorption flux 1×1 FH2
8.28

Parameter for NO desorption activation energy α 24(kcal×mol−1)

Parameter for NH3 desorption activation energy φ 30(kcal×mol−1)

Inhibition coverage of NO for NO-dissociation θinh
NO 0.61(ML)

Inhibition coverage of O for NO-dissociation θinh
O 0.399(ML)

Critical coverage of NO for the 1×1→ hex phase transf. θcrit
NO 0.3(ML)

Critical coverage of O for the 1×1→ hex phase transf. θcrit
O 0.4(ML)

Coverage for island growth in the hex→1×1 phase transf. θ1×1
grow 0.5(ML)

Amount of surface defects θdef 1.0×10−4(ML)
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