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Abstract

We consider nonlinear diffusion equations with critical exponent as
���������	�
 ���
�	�

with����� for small initial data in ��������� . It is well known that almost all solutions of this

system explode in finite time. However, we make the observation that in terms of the norm

of the initial conditions it takes an exponentially long time. Moreover, before explosion the

��� -norm of such solutions becomes exponentially small which makes it almost impossible

to observe the instability in experiments. As an application we consider the long time

transient self similar decay to unstable Poiseuille flow at criticality for exponentially long

times. This, together with a subcritical bifurcation and short time transient amplification,

is a principal obstruction in all attempts to measure the critical Reynolds number for this

experiment more and more precisely.

1 Introduction

There exists a number of situations in the theory of ordinary and partial differential equations

in which an instability manifests after an exponentially long time in terms of the norm of the

perturbation. Famous examples are Arnold diffusion, also called the theorem of Nehorosev

[Ne77], which shows that in nearly integrable Hamiltonian systems it takes an exponentially

long time for a solution to diffuse through the remaining tori in terms of the perturbation para-

meter, the long time existence of solutions on a time interval of length of order �����! 	"#�%$'&)(+*,*
for nonlinear wave equations [JK84] with initial data of order ���-(+* , and the exponentially slow

evolution of interfaces in bistable nonlinear diffusion equations with ( being the order of the

diffusion coefficient [CP90].
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It is the purpose of this paper to outline a similar phenomenon in nonlinear diffusion equations

which to our knowledge has not been documented explicitely before. For nonlinear diffusion

equations as

� ����� � �
 �����	��
 �
� ������������
 ������
����� !
 �"��� � �#
$� * �% &
 (1)

for small positive initial data in ' �)( ' � it has been known for a long time that all solutions

explode in finite time for *,+�- [We81]. For *%./- solutions to small initial data in ' � ( ' � exist

globally in time, where the ' � -norm stays bounded and the ' � -norm decays with a polynomial

rate ��� �10 �32 � * ; see for instance [BKL94, Wa97, STW01].

Our interest is exactly in the threshold * � - , where the trivial solution
�546�

has not yet

changed from unstable to stable in ' �7( ' � . Our result is as follows. Take an initial condition

in ' �
( ' � of norm less than ( with (8. �
sufficiently small. Then the associated solution

will be less than 9+( for all
�:�<;=�>
 �  	"#�@?+&)( � *BA with a constant ?C. �

independent of ( , i.e. in

terms of the norm of the initial conditions it takes an exponentially long time for the solution

to leave a neighborhood of the origin. This instability is almost not observable since on this

very long time interval the solution decays with a rate ��� �D0 �32 � * in ' � , i.e. for
�&� �! 	"#�@?+&)( � *

in ' � the solution has a norm of order �����  	"#�FE!?+&)( � *,* . Before the explosion takes place the

solution becomes flatter and flatter until the mass, i.e. the ' � -norm, is sufficiently big to start

the explosion.

The proof which is given in Section 2 is remarkably easy and goes along the lines of the global

existence proof for *�.G- .
This observation is not restricted to the above equation (1). Another example would be

� �����5H����8� �

for
�I�% �

or more general � ���"� �FE $'*KJML � � H *$J �N�8�O�
for

���� QP
, R ��S with * � $ ��T R'&VU . The phenomenon is robust under adding higher order

terms, i.e. it also holds for

� ���"� � �
 �N��� � �XW � �#
 � 
 �#
 � �
 � *
where

�YW � �#
 � 
 �7
 � �
 � * � +�Z � � �[� \]�X� � 
 �[� � �X� �[�^� � �
 �
� * , with a constant Z , is called an irrelevant

nonlinearity. For the exact definition of an irrelevant nonlinearity see [BKL94]. Adding a term� � 
 � affects the asymptotic behavior [BKL94], but not the transient decay rates and the above

phenomenon. However, the proof in this case will be less trivial.
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Diffusive behavior is not restricted to obvious diffusion operators [Schn96, Schn98, Uec99],

and whenever the lowest order nonlinear terms are critical in the above sense we can expect

the above long time stability, where after a time �����  	"#� $'&)(��'* * , for a � . �
, an explosion may

occur.

There are a number of real world applications of this phenomenon. The example which we

consider in this paper in Section 3 is unstable Poiseuille flow at criticality. For this classical hy-

drodynamical stability problem the basic laminar flow becomes unstable at a critical Reynolds

number ��� in a subcritical bifurcation which makes the measurement of the critical Reynolds

number ��� a delicate experiment. Moreover, perturbations are transported by the flow and may

be amplified on a short transient time scale due to the non-normality of the linearization around

the laminar flow, see e.g.[SH94]. Our result is another principal obstruction in all attempts to

measure the critical Reynolds number ��� more and more precisely. The better the experiment

is performed the more and more the above observation plays a role and the longer it takes to

observe the growth of localized perturbations. After a short time transient growth due to the

non–normality of the linearization, the solutions seem to decay for a very long time, i.e. at

criticality for an exponentially long time.

Acknowledgment. The authors would like to thank Ralf Kaiser for useful discussions.

2 Formulation and proof of the result for the nonlinear dif-

fusion equation with critical exponent

In section 2.1 we formulate and prove the result for the nonlinear diffusion equation (1) with

critical exponent, using simple ' �)( ' � estimates in order to make clear where the exponen-

tially long times come from. In section 2.2 we reconsider (1) using discrete renormalization to

introduce a robust method which is applicable to Poiseuille flow, too.

2.1 Direct �	� - ��
 -estimates

The following presentation is based on [MSU01] where the case *%./- has been explained.

Theorem 2.1 Let * � - . There exist positive constants ? and ( � such that for all ( � � ��
 ( � *
the following holds. For initial condition

� �
with � ��� ��
�� � � ��� � 
�� + ( the associated solution�"��� � � * of (1) with

� � � * ��� �
exists for all

���8;=�>
 �  	"#�@?+&)( � *FA and satisfies

��� "����� ��� �����! #" 2%$'&'(#) �
� � � **� 
��,+-
�� + 9+(�.
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Proof. The solution of the linear diffusion equation

� ���"� � �
 �#
 �
� ����� ������
%�I�� !
 � ����
I� � �#
 � * �% &
 (2)

can be written explicitly as

� � �#
 � * � �� ��� ����� � 0  
 0�� ( & 2  \ � ( ��� �
	 *��
	 � ����� � � E�	 
 � * � � �
	 *��
	 (3)

which is abbreviated as
� � � * ����� &� � ��� . By Young’s inequality for convolutions with * . ? we

obtain

� � � � **� 
�� +�Z � 0 �32
 ��� ( � ��� � 
�� 
 where $'&D* � $'& ? E�$ &�� 
 $ + * 
 �N+�� 
 (4)

for some constant Z independent of time. Next we consider the variation of constant formula

� � � * � � � &� � ���)� �
�
� � � &�  � 0 J ( � � �3R'*���R

for (1). With � � � � 
 ��+ � � � �
 � and � � � �
�� + � � � �
 � � � � 
 � 
 the abbreviations

! � � * � ��� "�#"
J
" � � � �3R)**� 
�� and $)� � * � ��� "�#"

J
" � � � $ � R'* �32 � � �MR'**� 
��

and the estimate (4) we obtain

� $ � � * �32 ��%%%%
� �� � � &�  � 0 J ( � � �MR'*��]R %%%% 
�� + � $ � � * �32 � �

�
� �!� � &�  � 0 J ( � 
 �
& 
 � � � � �3R'*-� 
 � ��R

+ � $ �!� * �32 � �
�
� � � E R'* 0 �32 � � $ � R'* 0 � ��R�'�$ � � * � ! � � *C+ Z �)(+* �%$ ��� *�$)� � * � ! � � *

with a constant Z � independent of
�
. Furthermore, we have

%%%%
� �� � � &�  � 0 J ( � � �3R)*,��R %%%% 
�� +

� �� � � � &�  � 0 J ( � 
�� & 
 � � � � �3R)**� 
�� �]R
+ Z � �

�
� �%$ � R'* 0 � ��R-'�$)� � * � ! � � *�+ Z � (+* � $ � � *.$)� � * � ! � � *

with a constant Z � independent of
�
. Together we obtain

! � � * + ! � � * � Z �/(0* �%$ �8� *�$ � � * � ! � � * 
 $)� � * +1$)� � * � ! � � * � Z � (+* � $ � � *.$)� � * � ! � � * .
We introduce 2! � � * and 2$ � � * by ! � � * � (/2! � � * and $)� � * � ( 2$)� � * which satisfy

2! � � *6+ 2! � � * � Z � ( � (+* �%$ � � * 2$)� � * � 2! � � * 
2$)� � *6+ 2$ � � * � 2! � � * � Z � ( � (0* �%$ �8� * 2$+� � * � 2! � � * .
If 2! � � * � 2$)� � *�+ $ we have 2! � � * � 2$)� � * + 9 as long as 354) 76 Z � 
 Z ��8 ( � (0* �%$ � � * + $'&�9V9 , i.e. for

all
� � � ��
 �! "#��? &'( � * * for a positive constant ? . :

We have additionally proved
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Proposition 2.2 Under the assumptions of Theorem 2.1 we have a constant Z<. �
independent

of ( � � ��
 ( � * such that

� � ��' 
 � *-� 
�� +�Z ( �%$ � � * 0 �32 �
for all

� �8; ��
 �! "#��? &'( � *FA , i.e.

� � ��' 
 �  	" ��? &'( � * **� 
�� + 2Z (��  	" �KE&?+& � T ( � *,*
with another constant 2Z<. �

independent of ( � � ��
 ( � * .

2.2 Renormalization

To explain the method used later for the Poiseuille problem and to thus make the paper some-

what self-contained, we reconsider the long time behavior of (1) using discrete renormalization

[BK92]. For notational convenience we assume the initial conditions for (1) to be given at
�
� $ .

Moreover we assume that

� ��' 
 $'* ��W �� with � � �,' 
 $ *-��� && � � ��( * 
 (5)

where, for
� 
�� �IS

, the Hilbert spaces
W��� are defined as

W ��	� � 6 ����W � �  * � � � � � ��
� � �
 �
��� � � �

�

 � *�� � � �
 &�� � 8 
 � � � * � �%$ �8� � * �32 � .

Fourier transform �� ��� 
 � * �	�:� � � * ��� * � �� ��� � ����� 
 � � �#
 � *�� � is an isomorphism between
W���

and
W �� .

In Fourier space (1) becomes
� � �� ��� 
 � * � E�� � �� ��� 
 � * � ���� � ��� 
 � * , where ���� � � �� � �� � �� and

�!��"� �# * ��� * � � � �� ���NE%$ *&�� �'$ *,�($ . With ) � � ��
 $'* , we let ��+* ��, 
�- * � �� �.) * , 
 ) 0 � * - * and obtain

�0/ ��1* � E�, � ��1*&� �� � �* (6)

due to the scaling invariance of (1). Hence solving (1) on the time interval
�%� ; $ 
 ) 0 � * A is

equivalent to iterating 2 times the renormalization process:

solve (6) on the time interval
-,�8; ) � 
 $ A with initial datum

�+* �.) � 
 , * ���1* 0 � �%$ 
 )3, * . (7)

The variation of constant for (7) reads

��1* ��, 
 $ * � � 0(4 &  � 065 & ( ��1* 0 � �.)3, 
 $'* � � �5 & �
0(4 &  � 0 J ( �� � �* �MR 
 , *��]R . (8)

Obviously we have �1�� � � � � &  � ( +�Z��1�� � � � &  � ( and

�1�� �7) ' *-� � &  � ( +�Z8) 069 2 � �1�� � � &  � ( (9)
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with Z independent of ) . Introducing

� * � �1��1* � $'*-� � &  � ( and � * � ��� "� ��� 5 & � ��) �1�
�1* � - **� � &  � ( 
 (10)

a standard contraction mapping argument yields

Lemma 2.3 There exist ( � . �
and Z . �

such that for all 2 � S
the following holds. If� * 0 � + ( � then there exists a unique solution ���*�� Z � ; ) � 
 $ A 
 W �� * of (8) with � * +!Z ) 069 2 � � * 0 � .

We now decompose ��+* ��' 
 $'* as

��1* ��, 
 $'* ��� * � 0(4 & � �� * ��, * with
� * ��� ��+* ��' 
 $'* � ��+* � �>
 $'* 


where
� � W ����  

is well defined due to Sobolev embedding. Moreover we have

�!� 0  � 065 & ( 4 & �� �.) ' **� � && +�Z8) � ��	��' **� � && if ��	� � * ����

(11)

i.e. � 0
 
� 065 & ( 4 & �� �7) ' * is a contraction when acting on functions that vanish at � � �

. Here

the smoothness in Fourier space is crucial. Applying
�

to (8) gives
� � *

L � E
� * � + Z�� �* and� * L � +�Z ) � *!� Z	� �* and with Lemma 2.3

� � *
L � E

� * � +�Z �7) 069 2 � � * 0 � * � and � * L � +�Z ) � *!� Z �7) 069 2 � � * 0 � * � .
By scaling

� * � ( 2� * and � * � ( 2� * we obtain

� 2� * L � E 2� * � +�Z ( � �.) 069 2 � 2� * 0 � * � and 2� * L � +�Z8)�2� *!� Z ( � �.) 069 2 � 2� * 0 � * � . (12)

For given $!. �
we choose ) . �

such that Z<+ ) 0 ��
 . Hence

� 2� * L � E 2� * � +�Z ( � and 2� * L � + ) � 0 ��
 2� *&� Z ( � 
 (13)

as long as 2� * and 2� * stay � � $'* bounded. By the last estimates this is guaranteed for 2 � ���-( 0 � * .
Doing back the scalings we obtain

� � �7) 0 * �#
 ) 0 � * * E ) * � *� T�
 � 0 
 & 2 \ � � && +�Z ) * �1�� �7) * , 
 ) 0 � * * E � * � 0(4 & � � &&� Z8) * �1��1* ��, 
 $'* E � * � 0(4 & � � && � Z8) * � �� * ��, *-� � && +�Z8) * ( � � Z ( ) �  � 0 
 ( * . (14)

Since � � � � *-� 
 � � � � �.) 0 * � *-� 
 ��+�Z � � �.) 0 * � *-� � &  � ( and

� � � � **� 
�� � ) 0 * � � �7) 0 * � **� 
��
+ ) 0 * � � �.) 0 * � * �%$ � � � **� 
 & � � $ �!� � * 0 � � 
 & +�Z ) 0 * � � �7) 0 * � **� � &&
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we obtain � � ��' 
 � *-� 
�� +�Z , and in particular

� � � �#
 � * E ( 2� *� T 
�� � 0 
 & 2 \ � 
�� +�Z � 0 �32 � ( � � Z ( � 0 � L 
 
 (15)

first for all
�&� ) 0 � * + � �-�  	"#�-( 0 � *,* . Since (1) generates a local semi-flow we have that (15)

holds for all
� � ; ��
 �! "#��? &'( � *BA with some constant ?5. �

independent of ( , where ( 2� * is

replaced by ( 2� � � * with a suitable smooth � � $'* bounded function 2� .

The method of discrete renormalization is very robust, since it essentially only uses the parabolic

form E � � of the spectral curve locally at � �5�
, and it gives the more detailed asymptotics (15)

under slightly stronger assumptions.

Remark 2.4 Another possibility to prove a result similar to Theorem 2.1 or (15) would be to

work with self similar coordinates, i.e.

� � �#
 � * ��� 0 �32 � � � � 0 �32 � �#
 ( ��� � * � � 0 � 2 � � ��� 
 - *
and to apply the invariant manifold theorem of [Wa97]. On the one-dimensional center mani-

fold, with coordinate � , we obtain �
� � � � �
	 . � .�� 


i.e., for initial conditions less than ( it takes a time
-

of order ���%$'&'( � * to reach
T ( . Doing back

the above transformation for time, i.e.
��� � �

would show our result, too. Moreover, we obtain

that indeed � � �#
 � * � ( � 0 �32 � � � �-( � ( ��� � * � 0 
 & 2 \ � ��� � 0 �32 � ( � *
with a function

� � � - * � (
� �-( � - * that satisfies
� � � � � � � � * � ��	 . � .��!. . The assumptions on

the initial conditions to apply the invariant manifold theorem of [Wa97] are similar as for the

discrete renormalization approach, but we consider the latter to be somewhat more robust.

3 Transient self similar decay to unstable Poiseuille flow at

criticality for exponentially long times

3.1 The equations

Poiseuille flow [HS72, DR81] is a classical hydrodynamical stability problem for the theoretical

and experimental study of the transition scenario from laminar to turbulent flow. The evolution

of the viscous incompressible fluid in a cylindrical domain � �#
 	 * ���/�  ����
, with

�
a boun-

ded cross section, subject to a pressure gradient, is described by the Navier-Stokes equations.
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R

stable
unstable

R c

Figure 1: Simplified schematic bifurcation diagram for Poiseuille flow.

The equations describing Poiseuille flow are

� ��� � E�� * � $� H�� E � � '�� * ��

��' � � ��
 � � ��� �	� ���>
 (16)

where � is called the Reynolds number. For simplicity we restrict ourselves to two-dimensional

flows, i.e., w.l.o.g.
��� � ��
 
 * . However, our result also holds for three-dimensional flows for

which a transition to instability occurs, e.g., for elliptical pipes with sufficient ellipticity, see

[Ho77].

We shall assume that there is a basic flow
�)� � �
	 E 	 � 
 � * , * � � E �
 � . The deviation from the

basic flow, defined by
�5��� �)����


, * � * � � * 
 , satisfies

� ��� 
 � E�� * 
 � $� H�� 
 E � � 
 '�� * � � E � � � '�� * � 
 E � � 
 '�� * � 
 

��' ��
 � �>
 ��
 � � ����� � � ��
 (17)

In the following we will drop the primes � . In order to solve the problem uniquely for the

velocity field
� ��� � �#
 	 
 � * � � � �


	� � * � �#
 	 
 � * �  �
we additionally assume the vanishing

mean flow condition �
�
�
� �
�#
 	 
$� *��
	 �5��


cf. [CI94]. There exists a critical Reynolds number � � such that for � � ��� the trivial flow is

asymptotically stable, i.e., after some possible transient growth due to the non-normality of the

linearization of (17) perturbations decay with some exponential rate towards this trivial solution.

If � becomes larger than ��� the trivial solution becomes unstable via a subcritical bifurcation.

See Figure 1.

As usual we eliminate the pressure gradient by introducing a projection � on the divergence

free vector fields by defining
�"� ��� , where

�
solves

�N� � * � � 
 ��' �"� ��
 � '��2 � ����� ��� ��� �5�>
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����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Re λ

kc

rest of spectrum 

k

(a)

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Re

rest of spectrum 

l

µ

−1/2 1/2
µµ1 2

(b)

Figure 2: Sketch of the spectrum for Poiseuille flow at the threshold of instability; critical curve

of eigenvalues over the Fourier wave number � (a), and over the Bloch wave number $ (b).

with �2 the outer normal on
 � � �

. Then we consider

� ������� ���	� � � * 
 (18)

where

� � � $
� �

H � E � ; � � '�� * � � E � � � '�� * � A 
 � � � * � E�� ; � � '�� * � A 

in a space of functions satisfying � ' � � �

, the above Dirichlet boundary conditions and the

vanishing mean flow condition. For the functional analytic properties of the projection � and

the other terms in this equation see below.

3.2 Linear analysis

Since (18) is translation invariant along the
�

-axis the solutions of the linearized system for�"��� � �#
 	 
 � * are of the form 

� � * �
	 *%����


 � ( � � ��� 

with � �/ &
 2 �XS

, and



� � * �
	 * ��� �

. Then for � � ��� all curves, except � � , have strictly

negative real parts. More precisely, there exists a ) . �
such that

��� "*�� � � � ������� ��� "� � ��� ��� * ��� * � E ) .
The curve ���� � ��� � ��� * touches

�
at a wave number � ���� �

; see Figure 2. From the form of���� � ��� � ��� * close to wave number � � , namely

� ��� � ��� * � E!Z � ���NE ���%* � � � �,����E ���%* � *
for a constant Z � . �

, it is clear that the linearized system exhibits some diffusive behavior. For� � � the linearized system behaves asymptotically as

� � �#
 	 
 � * ��� � � 0 �32 � ��� � �"!$#&% &' �)( �$*"+ ( & %,# � �  �.- 
 00/"1 � (


� - � � �
	 * �32 . 2 . � ��� � 0 � * .
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for a constant
� � �	�

, where

� 3�� � ��� * ��� � ��� ���NE ���%* E Z � ��� E ���%* � � � �,���NE ��� * � *
with real valued constants

�)�
,
�

, and Z � .

3.3 The result

In order to understand heuristically the nonlinear system at criticality we make a so called

Ginzburg-Landau ansatz [Schn99, Mi01], namely

� � �#
 	 
 � * ��� � � � � � E �O� * 
�� � � *%� �  � - 
 00/"1 � ( 
 �.- � � � 	 * � 2 . 2 . � ��� � � * (19)

with
� � �	� $ a small perturbation parameter. Inserting this into (18) shows that at criticality,

i.e. � � � � , the complex-valued amplitude
� ��
 

� * with 
 ��� �#

�5��� � �

satisfies in lowest

order a Ginzburg-Landau equation

�0/ ��� �@Z � ��� Z � *
� �� ��� � � � � � � 


with � � � . �
a constant which can be computed by classical perturbation analysis [HS72,

BSvH95, Bol96]. Hence, for
� � �

the critical modes concentrate at the Fourier wave num-

ber � ��� and corresponding to the curve of eigenvalues � � they satisfy an equation similar to

the nonlinear diffusion equation of the Introduction. This motivates the following result for

Poiseuille flow at criticality, where
W �� is defined as

W �� � 6 ����W � �  � � 
  � * � � � � � � &&
� �

� ��� ��� � �

� � � * � � � �
 & � � 8 
 � � � * � �%$ �8� � * �32 � 


together with the divergence and boundary conditions. For notational convenience the initial

conditions are taken at
�[� $ .

Theorem 3.1 Consider (18) for � � ��� . For all $!. �
there exist positive constants ( � , ? , and

Z such that for all ( � � �>
 ( � * the following holds. For initial conditions
� �

with � ��� � � && + (
the associated solution

� �<� � � * of (18) with
�
� ���

�
� ���

exists for all
� ��; $ 
 �  	" �@?'( 
 0 � *BA and

satisfies

i) ��� "�����
�
� �����! #" $�� � &'(#) �

� � � *-��
 � + $ 9)( ,

ii) � � � � *-� 
�� +�Z ( � 0 �& for all
���8; $ 
 �  	"#�@?'( 
 0 � *FA ; in particular we have

� �[� ��� �����  " $�� � & ( � 
�� +�Z ( �  	" �FE!?'( 
 0 � & T *�.
10



Remark 3.2 In order to show this result we prove, similar to (15), the detailed transient asymp-

totic behavior of our solution
� � � * for

� ��; $ 
 �  	"#�@?'( 0 � *BA . It behaves (which we do not prove in

this optimal ( $ �5�
) formulation) like

� � �#
 	 
$� * � ( � � ��( � ( ��� � * � 0 �32 � � 0 � � ��! #&% &' �)( � + ( & %,# � �  � - 
 00/"1 � (


�.- � � � 	 * � 2 . 2 . � � ��( � & � � * � ���-(+& � * 


where
� � ��� � � - * � � � $'* solves a problem of the form

� � � � � 2� � � � � � � �
on a time interval of order ���%$'* with initial conditions

� � � � ���D� � � $'* and a constant 2� � ���%$'*
with � �)2�7. � , compare Remark 2.4.

Remark 3.3 The approach of Remark 2.4 immediately shows the instability of
� �6�

in a

number of spaces, for instance, there exists a
�
� . �

such that for all initial conditions
� � ��W ��

we have a
�F� . �

such that the associated solution satisfies � � � � � *-� 
 � . � � no matter how small

� � � ��� && . �
has been.

Remark 3.4 Due some technical details in our approach we prove a slightly weaker result than

in Theorem 2.1 and Proposition 2.2 with respect to the length of the possible time interval,

namely
� ��; $ 
 �! 	" �@?'( 
 0 � *BA instead of

� ��; $ 
 �  	"#��? &)( � *FA . By including higher order terms into

our analysis it is possible to prove the assertions of the theorem also for $ ���
.

Remark 3.5 There exist attractivity results [Eck93] showing that all small solutions of pattern

forming systems, as Poiseuille flow, develop in such a way that after a time of order � � $'& � � *
they are of the form (19). Hence an optimal description in terms of

�
of the set of initial

conditions for which our result holds would be adequate. Here we refrain from such a very

technical description, cf. [Schn98].

Remark 3.6 In case of weak linear instability, i.e. �GE � � ��� � . �
small, the dynamics stated

in the theorem holds for all
� + � + 3 � * � � 0 � 
 �  	" ��?)( 0 � *,* , i.e. especially � �[� ����� � & � 
�� + Z ( �

which is much smaller than ( if
� + � � ( .

Remark 3.7 A physical relevant cross section
�

where such a behavior could be observed is

for instance an elliptic domain with strong ellipticity [Ho77]. In case of a circular domain no

instability occurs. The case
� � � ��
 
 * is an idealization of span-wise independent flows in� � � �>
 
 * �  . For the last unbounded cross section the trivial solution

� � �
at criticality

is stable with respect to small spatially localized perturbations since the nonlinear terms
� � � � �

are asymptotically irrelevant with respect to diffusion in
 �

.
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The proof of Theorem 3.1 is based on Bloch wave analysis and renormalization theory. It

stands in a line of papers where results about the dynamics of simple nonlinear diffusion equa-

tions have been transfered to the Ginzburg-Landau equation, cf. [BK92, CEE92, BK94], or to

hydrodynamical stability problems [Schn98, ES00].

For notational convenience it is advantageous to go into a frame moving with velocity
�
, i.e.

we introduce the coordinate
� 
 � � E �O� . Again for notational convenience we drop the prime


, i.e. w.l.o.g. we can assume
� ���

in the following.

3.4 Bloch wave analysis

This section is based on [ES02, Section 5] and contains a short summary about the information

needed for the use of Bloch waves.

By rescaling the space variable
�

, w.l.o.g. we can assume that � � � $ . We suppress the notation

of the variable 	 throughout this section. The starting point of Bloch wave analysis in case of aT 

-periodic underlying pattern is the (formal) relation

� � � * � $� T�
 � � ��� 
 2� ��� *��+� � $� T 
 
 * ��� � �32 �
0 �32 �

� �  * L � ( 
 2� �72 � $ *,�($
� $� T 
 � �32 �

0 �32 �

 * ��� � �  * L � ( 
 2� �72 � $ *,�($ � $� T�
 � �32 �

0 �32 �
� � � 
 �� � $ 
 � * �($ 


where now 2�"� � � is the Fourier transform of
�

and where we define
��� ��� �'$ 
$� * 4 �� � $ 
 � * � 
 *���� � � * 
 2� �.2 � $ * . (20)

Thus Bloch wave transform
�

can be seen as a generalization of Fourier transform
�

. For the

rest of the paper we use the following notation: if � is a function, then �� is defined by �� � � � ,

and if 	 is an operator, then �	 is defined by �	 � � 	 � 0 � .
Note that by Parseval’s identity we have

� � � � � � * � � � �"� � � � 2� ��� * � � �+� � 
 * ��� � �32 �
0 �32 �

� 2� �.2 � $ * � � �($
� � �32 �

0 �32 �

 *���� � 2� �72 � $ * � � �6$ � � �32 �

0 �32 �
� ���� � �� � $ 
 � * � � � � �($ (21)

The sum and the integral can be interchanged due to Fubini’s theorem when
�

is in the Schwartz

space 
 . By density (21) extends to
��� ' � . We shall use the following fundamental properties

�� � $ 
 � * � � � 
 �� � $ � $ 
 � * 
 �� � $ 
 � * � �� � $ 
 �N�/T 
 * 
 and

�� � $ 
 � * � �� �FE $ 
 � * for real-valued
� .
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Multiplication in position space corresponds to a modified convolution for the Bloch-functions,

���� ' # � �'$ 
$� * � � �32 �
0 �32 �

�� � $ E $ 
 
 � * �# � $ 
 
 � *��($ 4 � ���� �# � � $ 
 � * 

which follows from

� �� ' # � �'$ 
 � * � 

� ��� � � 2� �'$ � � E � * 2# ��� *%� � � 
 �+�

� � �32 �
0 �32 �



� � * ��� 2� �'$ � � E $ 
 E 2�* 2# �'$ 
 � 2�* � �  �Q0 * ( 
 � � * 
 �6$�.

We introduce the norms

� � � �� 
� � J
 � ���
*


� � L � & ����� � � � � & � �
� � � � � �
 � � &� � � �#
 	 * � � � � � � 	/� �#


� �� � � �� �
 �
*
� � L � & ����� � � � � & � �

J

� ��� � �32 �

0 �32 �
� ���
� �

�
� � � �
 � � &� � �� ���� $ 
 � * � � �
	)� � �($ 


Similar to (21), from Parseval’s identity we get

Z 0 � � � � � 
� + �1�� � �� �
 + Z � � � � 
� 
 (22)

for some Z . �
. In the following we mainly work with the spaces to R � 2 � T

and R � �
,2 ��T

. We have

� �� # � �� &&
� �1��	� �# � �� && +�Z��1�� � �� && � �# � �� && . (23)

3.5 The linearized problem in Bloch space

The linearized problem is given by � ��� � � � . (24)

Since the spectrum of
�

is well-documented, we just summarized the results in Section 3.2.

Although the linearized problem has constant coefficients it is advantageous to work in Bloch

space. This is due to the fact that the critical eigenvalue curve � � ��� * touches the real axis at a

wave-number � � ��5�
. Renormalization in Fourier space as in Section 2.2 would be much more

complicated due to the fact that the Fourier modes do not concentrate at the wave numbers

� ��� alone, but also at all integer multiples of � � . Working in Bloch space turns out to be more

convenient.

Thus, we consider � � ���� �� ��#
 (25)
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where the operator
�� � � � � 0 � equals a direct integral � � � �6$ . Each

� � acts on the

subspace with fixed Bloch wave number $ . The eigenfunctions of
� � are given by Bloch

waves of the form � � � 
 � � � * with
T 


-periodic � � � * , where 2 ��S indexes various eigenvalues for

fixed $ . For each $ �% these are solutions of
� � � � � � * � � � * � � 0

�
� 
 � � � � � * � � * � 0

�
� 
 * ��� * �'$ * � � � * � � * .

The spectrum takes the familiar form of two curves
�
� � $ * � � � ����� � $ * and

� � �'$ * � � � �KE � � � $ *
with an expansion � � � $ * ��� � � E �3Z � � � Z � * $ � � ��� $ � * 

for
� � $ 
DT with Z � . �

and the remainder of the spectrum has negative real part bounded

away from 0. The eigenfunctions associated with
�
� �
� * and

� � � � * are ��� ��� - 
 
 � � - � � � 	 * . There

is an $ � . �
such that for fixed $ � �KE�$ � 
 $ � * the eigenfunctions � � � � � � * of the main branches� � � $ * for

� � $ 
 T are well defined as $ is varied away from
�
. Corresponding to this we define

the projections �� � � $ * by �� � �'$ * ������ * �	� � �� � � 
 ����
��*�� � � � � 

for
� � $ 
 T and ���
 �'$ * by ���
 � $ * �� ����* � �� � � $ * ����
��* � �� � � $ * �� 


where
� ' 
 '�� is the scalar product in ' � � ;=��
 T 
 A � � * and � �� � � the associated eigenfunction of the

adjoint problem. We will need a version of �� � that depends smoothly on $ . Therefore we fix

once and for all a non-negative smooth cutoff function � with support in
; E�$ � & T>
 $ � & T A which

equals 1 on
; E�$ � & 9 
 $ � & 9VA . Then we define the operators ���
 and ���� by

���
 � $ * � � �'$ * ���
 �'$ * 
 ���� �'$ * ��� � $ * E ���
 � $ * .
It will be useful to define auxiliary mode filters ����
 and ����� by ����
 � $ * � ��� $ & T * ���
 �'$ * and�� �� �'$ * �	� � $ * E���� T $ * ���
 �'$ * . These definitions are made in such a way that

�� �
 ���
 � ���
 
 �� �� ���� � ���� 

which will be used to replace the (missing) projection property of ���
 and ���� .
As already said, our proof of Theorem 3.1 is based on discrete renormalization theory similar

to section 2.2. Thus, with ) � � ��
 $'* , we let
���� �� � ��, 
 �#
 	 * � �� �.)3, 
 �#
 	 * .

Note that here, and elsewhere, the scaling does not act on the � �#
 	 * variable, only on the Bloch

wave number , . The integration region over the $ variable is finite and it will change with the

scaling. Therefore, we introduce

� 5 � 63�� � �1�� �! #" � � 
 � �%$����5��
 �
� ��� �	� ����
 �
�
�
� U 	 �5� 8 
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where

�1�� � � #" 4 �
 * ���
�
*��

L
*�� � ����� *�� � *�� � � � � �32  � 5 (

0 �32  � 5 (
� ���
� �

�
� � *� � * �
 � * � �� �� �'$ 
 �#
 	 * � � �
	)� � �($�.

For the nonlinear terms we need a space

� �5 � 63�� � �1�� �! ��" � � 
 � �%$�������
 � ' �2 � ��� �	� ����
 �
�
�
� U 	 �5� 8 


where �2 is the outer normal on
 � � �

and where

�1�� � � ��" 4
�
 *���� �
*��

L
*�� � ����� *�� � *�� � � � � �32  � 5 (

0 �32  � 5 (
� ���� �

�
� � *� � * �
 � * � �� �� � $ 
 �#
 	 * � � � 	/� � �6$�.

From (22) we have that
�

, as defined in (20), is an isomorphism between
� �� and

�
� . As in (11)

we have

� �� �� �! " 
 + Z8) 069 2 � � �� �! " 
 � � 
 (26)

for
� � ) + $ and similarly for

� �5 , cf. [ES02].

Because of the nature of the spectrum
�
� � $ * and

� � �'$ * , the critical part of the solution satisfies

���
 �� � � 0 �32 � $ 
 �#
 	 
 � * � � 0
 �� � L � � & ( � & � ! � � �

 �.- 
 00/ 1 � ( 
 � - � � �
	 * � ! � � 0 �
 � - 
 00/ 1 � ( 
 0 � - � � �
	 * * � ��� � 0 �32 � *

with ! � � �
a number depending on the initial conditions. Using this observation and the

fact that the ���� -part is exponentially damped, we obtain the following result for the linearized

system.

Proposition 3.8 The solution �� of the problem (25) with initial data ��)� ��� � � ���� satisfies

� � �� � � 0 �32 � $ 
 �#
 	 
 � * E � 0
 	� � L � � & ( � & � �� � � � * � � /�1

� � �� 0 � � � * � 0 � /�1
�
*&���� � � * � �#
 	 * � �! ��
 � #

+ Z � 0 �32 � �1���� � �� &&



for a constant Z . �
and all

� � $ . Moreover, there is a constant � 0 . �
such that

� � $ 
 �#
 	 * �� � ���� �� � � � 0 �32 � $ 
 �#
 	 
 � *-�! ��
 � # + Z�� 0 � � � �1���� � �� &&



for all
� � $ .

3.6 The renormalization process for the full problem

Here we start the proof of our main result. In addition to the statement in Theorem 3.1 we give

the detailed asymptotic behavior for large
�
.

15



Theorem 3.9 For all $ . � there are positive constants ( � , ? and Z such that for all ( � � ��
 ( � *
the following holds. Assume � � � � � && +�( and let

�
be the solution of (18) with initial condition�
� ���

�
�����

. Let 2� �'$ * � �  	"#�KE!Z � $ � * . Then the rescaled solution ���� � $ 
 �#
 	 
 � * � �� � �10 �32 � $ 
 �#
 	 
 � *
satisfies

� �'$ 
 �#
 	 * �� �� � � $ 
 �#
 	 
 � *7E �-( � � ��( � 0 
 ( ��� � *%� �
 � - 
 00/�1 � ( 
 � � � - � 	 * 2� �'$ * �32 . 2 . *-�! ��
 � #

+�Z ( � 
 0 �32 � � Z ( � 0 
 (27)

for all
� �8; $ 
 �! "#��?)( 
 0 � *BA , where

� � ��� � � - * is a function with
� � � � ����� ���%$ * and

��� "� ��� ��� " )
� � �� � � � - * � � Z � ���%$'* 
 � � ��
 $�.

Remark 3.10 Similar to (15), this means that a spatially localized initial perturbation
� � � � * of

order ���-(+* behaves like
� � �#
 � *�� (�� � � �-( � 0 
 ( � � � * � 0 �32 � �! 	" � E � � & �@9 �3Z � � � Z � * � * � � �

 � - 
 00/�1 � ( 
 � � �.- �32 . 2 .�� 

for ( � �

, uniformly for
���  

, for all
� � ; $ 
 �  	" ��( 
 0 � *FA , cf. [Schn98]. The function

� � is

denoted different from the function
� �

defined in Remark 3.2 due to the different time scales.

On the interval
; $ 
 �! 	"#�@?'( 
 0 � *FA the function

� �
does not make any � � $'* change.

Proof. The idea of the proof is similar to [Schn96], i.e. the solution �� is split into a diffusive

part �� 
 and into an exponentially damped part �� � . In Bloch space the initial conditions satisfy

�+�� � � �� && + ( . The system for the variables �� 
 and �� � with initial conditions �� 
 � ����� � ���
 ��)� ����� ,�� � � ����� � ���� ��
� ����� is given in Bloch space by

� � �� 
 � �� �� 
 � ���
 �� � �� 
 
 �� � * 

� � �� � � �� �� � � ���� �� �!�� 
 
 �� � * 
 (28)

where with ���� �� 
 � �� � ,
�� � � � � 0 � and

�� �!�� 
 
 �� � * � � � � � 0 � �� * .
We start with the renormalization process by introducing the scalings

�� 
 � * ��, 
 �#
 	 
�- * � �� 
 �7) * , 
 �#
 	 
 ) 0 � * - * 

�� � � * ��, 
 �#
 	 
�- * � ) 0 * �� � �.) * , 
 �#
 	 
 ) 0 � * - * .

The variation of constant formula yields now

�� 
 � * ��, 
$�#
 	 
 - * � � 5 � & 

	�
��� 
  � 065 & ( �� 
 � * 0 � �7)3, 
$�#
 	 
 $'*� ) 0 � * � �5 & �
5 � & 
 	� ��� 
  � 0 � � ( � �� 
 � * � �� 
 � *O
 �� � � * * � ��, 
 �#
 	 
�- 
 * � - 
 
 (29)

�� � � * ��, 
$�#
 	 
 - * � � 5 � & 

	�
��� 
  � 065 & ( ) 0 � �� � � * 0 � �.)3, 
 �#
 	 
 $'*� ) 0 � * � �5 & �
5 � & 
 	� ��� 
  � 0 � � ( � �� � � * �!�� 
 � *>
 �� � � * * � ��, 
$�#
 	 
 - 
 * � - 
 
 (30)
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with
�� 
 � * � �� * �� �
 �� �� 0 * 
 �� 
 � * �!�� 
 � *O
 �� � � * * � �� * ���
 �� � �� 0

* �� 
 � *>
 ) * �� 0 * �� � � * * 

�� � � *C� �� * �� �� �� �� 0 * 
 �� � � * �!�� 
 � *>
 �� � � * * � �� * ���� �� � �� 0

* �� 
 � *�
 ) * �� 0 * �� � � * * .
3.7 Bounds on the linear and nonlinear terms

Lemma 3.11 For all � � � � � � �
there exist Z�� � � � & .

�
and � 0 . �

such that for all 2 � S ,

for all $ � - . - 
 � ) � and all ) � � ��
 $'* one has

�!� 5 � & 
 	�
� � 
  � 0 � � ( �� * �� �
 �� 0 * �� �! " 
 + Z��6�� �! " 
 

�!� 5 � & 
 	�
��� 
  � 0 � � ( �� * �� �� �� 0 * �� �! " 
 + Z�� 0 � � 5 � & 
  � 0 � � ( �6�� �! " 
 
�!� 5 � & 
 	� ��� 
  � 0 � � ( �� * �� �� �� 0 * �� �! " 
 + Z�� 0 � � 5 � & 
  � 0 � � ( 3 4) �%$ 
 ) � * 2 � � - E - 
 * 0 � 2 \ *-�(�� �! �" 
 .

Proof. The first estimate follows directly from the fact that
�� 
 � * �'$ * � � �

� �'$ * �� � � $ * � � � � � $ * �� � � $ * � � E Z � $ � ���
 � $ * � � ��� $ � * .
The last two estimates follow from the fact that the real part of the spectrum of

�� � � * � $ * as a

function of $ can be bounded from above by a strictly negative parabola. It is easy to see that the

estimates can be chosen independent of 2 . For more details see [Schn98, Lemma 7.1] which is

based on estimates of [Io71]. :
Lemma 3.12 Suppose 3 4) 6 �1�� 
 � * �! " 
 
 �+�� � � * �! " 
 8 + $ . Then there exists a Z � . �

such that

for all ) � � ��
 $ A one has

� �� 
 � * �! " 
 + Z � ) �
*
� �+�� 
 � * �! " 
 �+�� � � * �! " 
 � ) * �1�� � � * � � " 
 *� �� � � * �! �" 
 + Z � )

*
� �1�� 
 � * � � " 
 � )

* �1�� 
 � * �! " 
 �1�� � � * �! " 
 � ) �
* �1�� � � * � � " 
 *

Proof. The projection � on the divergence free vector fields is estimated in [Schn98, Lemma 8.1

and Lemma A.8] and is a bounded operator in all spaces considered with bounds independent

of 2 �IS and ) � � ��
 $'* . Using the equation � �%$����5�
the nonlinear terms can be written as

� � � * � E�� ; � � �
/ � *FA .

Since
W � �  � � ��
 
 * * is a Banach algebra, i.e. � � # � � & +�Z�� � � � & � # � � & , the nonlinearity maps� 5 
 into

� �5 
 . Since �� �!� $ * has a finite dimensional image and a compact support w.r.t. $ the

part
�� 
 � *

maps
� 5 
 still in

� 5 
 .

The estimates for
�� � � *

follow directly from

� �� � �� � �� * � ��, * � ) � � �� �� * � � �� �� * � ��, * . (31)
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The estimates on
�� 
 � *

follow from the fact that the quadratic interaction of critical modes

��� �  � - L � ( 
 with
� $ � + $ � gives non critical modes, i.e. ���
 �� � � 
 � �� 
 � *O
 �� 
 � * * 4 �

. This is the crucial

property used in the proof. :
Next we estimate the integrals in the variation of constant formulas (29)-(30) in terms of

� 
 � * � ��� "� ��� 5 & � ��) �+�
� 
 � * � - *-�! -" 
 and � � � * � ��� "� ��� 5 & � ��) �1�

� � � * � - **�! �" 
 .

Lemma 3.13 Assume � 
 � *&� � � � * + $ . Then for all $ � -,� ) � and all ) � � ��
 $ A one has

� ) 0 � * � �5 & �
5 � & 
 	� � � 
  � 0 � � ( � �� 
 � * �!�� 
 � *>
 �� � � * * � �,' 
 ' 
�- 
 * � - 
 �! " 
 +�Z � � 
 � * � � � *&� ) * � �� � * * 


� ) 0 � * � �5 & �
5 � & 
 	� ��� 
  � 0 � � ( � �� � � * �!�� 
 � *�
 �� � � * * � ��' 
 ' 
�- 
 * � - 
 �! " 


+�Z � � �
 � * � ) * � 
 � * � � � *&� ) � * � �� � * *�.
Proof. Using Lemma 3.11 and Lemma 3.12, we bound the integral in (29) by

��� "� ��� 5 & � ��) � )
0 � * � �5 & �

5 � & 
 	� � � 
  � 0 � � ( � �� 
 � * �!�� 
 � *>
 �� � � * * � �,' 
 ' 
�- 
 * � - 
 �! " 

+ Z8) 0 � * Z � � 
 � * � � � *&� ) * � �� � * *�) � * � �5 & �

- 
 + Z � � 
 � * � � � * � ) * � �� � * *�.
For the integral in (30) we find similarly

��� "� ��� 5 & � ��) � )
0 � * � �5 & �

5 � & 

	� ��� 
  � 0 � � ( � �� � � * �!�� 
 � *O
 �� � � * * � ��' 
 ' 
�- 
 * � - 
 �! �" 

+ Z8) 0 � * Z � � �
 � * � ) * � 
 � * � � � * � ) � * � �� � * * � �5 & �

0 � 5 � & 
  � 0 � � ( 3 4) �%$ 
 ) � * 2 � � $�E - 
 * 0 � 2 \ * � - 

+ Z � � �
 � * � ) * � 
 � * � � � *&� ) � * � �� � * *�.

:
Lemma 3.14 For all $ � -�� ) � and all ) � � �>
 $ A we have

�!� 5 � & 

	� � � 
  � 065 & ( �� * �� �
 �� 0 * �� �� �! " 
 +�Z ) 069 2 � �6�� �! " 
 � � 
�!� 5 � & 
 	� ��� 
  � 065 & ( �� * �� �� ��!0 * ) 0 � �� �� �! " 
 +�Z8) 0�� 2 � � 0 � 5 � & 
  � 065 & ( �(�� �! " 
 � � .
Proof. These bounds follow immediately from Lemma 3.11 and (26). :
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3.8 A priori bounds on the non-linear problem

To state a priori bounds on the solution of (29)-(30) we use the quantities

� 
 � * � �1�� 
 � *�� � � � �! " 
 and � � � * � �1�� � � * � � � � �! " 
 .
Lemma 3.15 For all 2 � S

there is a constant � * . �
such that the following holds: If� 
 � * 0 � , � � � * 0 � and ) . �

are smaller than � * , the solutions of (29)-(30) exist for all
-I�X; ) � 
 $ A .

Moreover, we have the estimates

� 
 � * + Z ) 069 2 � � 
 � * 0 � � Z � � 
 � * � � � *&� )
*
� �� � * * 


� � � * + Z ) 0�� 2 � � � � * 0 � � Z � � �
 � * � )
*
� 
 � * � � � *&� ) � * � �� � * * 


with a constant Z independent of ) and 2 .

Remark 3.16 There is no need for a detailed expression for � * since the existence of the solu-

tions is guaranteed if we can show � 
 � * � � � � * � � . By Lemma 3.15 we have detailed control

of these quantities in terms of the norms of the initial conditions and ) .

Proof. For the derivation of the estimates we assume in the sequel, without loss of generality,

that � 
 � *!� � � � * + $ .
Using Lemma 3.14 the first term in (30) is bounded by Z8) 0�� 2 � � � � * 0 � with Z . �

independent of) � � ��
 $ A and 2 �IS . For the second term, Lemma 3.13 yields a bound Z � � �
 � * � ) * � 
 � * � � � *[�) � * � �� � * * . Again by Lemma 3.14 the first term in (29) is bounded by Z ) 069 2 � � 
 � * 0 � , and the

second term by Z � � 
 � * � � � * � ) * � �� � * * due to Lemma 3.13.

The proof of Lemma 3.15 now follows by applying the contraction mapping principle to the

system consisting of (29) and (30). For � 
 � * 0 � . �
and � � � * 0 � . �

sufficiently small, the

Lipschitz constant on the right hand side of (29), (30) in � � ; ) � 
 $ A 
 � �5 
 � � J5 
 * is smaller than

1. An application of a classical fixed point argument completes the proof of Lemma 3.15. :
3.9 The iteration process

We decompose the solution �� 
 � * ��' 
 ' 
 - * for
-/� $ into a Gaussian part and a remainder. Let2� ��, * � � 0

 �� � L � � & ( 4 & and write

�� 
 � * ��, 
 �#
 	 
 $ * � � * 2� ��, * � 5 � 
 4 � � � �#
 	 *%� � /"1 5 � & 
� � * 2� ��, * � 5 � 
 4 � 0 � � �#
 	 *%� 0 � /"1�5 � & 
 � �� * ��, 
 �#
 	 * 

where �� * � ��
 �#
 	 * � �

, and the amplitude
� *

is in
�

. Moreover we define
�� � � 5 
 � �

by

� �� � * � ��� � � �� � � � * ���� 4 ��� . Since �� is in
W �

as a function of $ we have

� �� �� � + Z�� �� �! " 
 (32)
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and �� is well defined. Then (29) can be decomposed accordingly and takes the form

� * � � * 0 � � � 0 � /"1 5 � & 
 ������ �5 & �
5 � & 
 	� � � 
  � 0 � � ( � ) 0 � * � �� 
 � * * ��� � - 
 
 (33)

�� * ��, 
 � * � � 5 � & 
 	� ��� 
  � 065 & ( �� * 0 � �7) , 
 � * � �

 * ��, 
 � *

� ) 0 � * � �5 &�� � 5
� & 
 	� � � 
  � 0 � � ( � �� 
 � * *�� ��, 
 � * � - 
 
 (34)

where

�

 * ��, 
$�#
 	 * 4 � 5 � & 
 	� ��� 
  � 065 & ( � * 0 � 2� �7)3, * � 5 � 
 4 � � � �#
 	 * � � / 1 5 � & � 
 � � %

E � * 2� ��, * � 5 � 
 4 � � � �#
 	 *%� � /"1 5 � & 
� � 5 � & 
 	�
��� 
  � 065 & ( � * 0 � 2� �.)3, * � 5 � 
 4 � 0 � � �#
 	 * � 0 � /"1�5 � & � 
 � � %
E � * 2� ��, * � 5 � 
 4 � 0 � � �#
 	 *%� 0 � /"1�5 � & 
 .

If we define next � � � * � � �� * �! -" 
 then the above construction implies � 
 � * +�Z � � � *�� � � � � * * .
Our main estimate is now

Proposition 3.17 There is a constant Z . �
such that for sufficiently small ) . �

the solution

� # 
 � *>
 # � � * * of (29)-(30) satisfies

� � * E � * 0 � � + Z � � 
 � * � � � * � ) * � �� � * * 
 (35)

� � � * + Z8) � � � * 0 � � Z � � 
 � * � � � *&� )
*
� �� � * * � Z ) * � 
 � * 
 (36)

� � � * + Z ) 0�� 2 � � 0 � 5 � & 
 � � � * 0 � � Z � � �
 � * � )
*
� 
 � * � � � *&� ) � * � �� � * *�. (37)

Proof. The bound on
� � * E � * 0 � � follows from (32), (33) and Lemma 3.13.

Next we bound �� * in terms of �� * 0 � , using (34). As in (11), the first term is the one where the

projection is crucial. For ) . �
sufficiently small and �� * 0 � � � 5 
 � � with �� * 0 � � � * ���

we have

� ��, 
 � * �� � 5 � & 
 	�
��� 
  � 065 & ( �� * 0 � �7)3, 
$� *-�! " 
 + Z8) � �� * 0 � �! " 
 � � � Z ) � � � * 0 �
The last term in (34) has been bounded in the proof of Lemma 3.13 by Z � � 
 � * � � � *&� ) * � �� � * * .
Finally we have

� �
 * �! " 
 + Z � � 
 � * � � � * � ) * � �� � * * � Z8) * � 
 � * 

where the last term is due to

�
� � $ * � E!Z � $ � � ��� $ � * not being exactly a parabola. For details

see [Schn96]. Collecting the bounds, the estimate (36) for � � � * follows.

The estimate in (37) for � � � * is immediately clear. Hence, the proof of Proposition 3.17 is

complete. :
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Proof of Theorem 3.9: The proof is an induction argument, using repeatedly the above esti-

mates. We write Z for constants which can be chosen independent of ) and 2 . From Lemma

3.15 we obtain that for Z � . �
sufficiently small, there exists a Z � . �

such that

� 
 � * + Z � �.) 069 2 � � 
 � * 0 � � �.) 0�� 2 � � � � * 0 � * � * 

� � � * + Z � �,�7) 069 2 � � 
 � * 0 � * � � ) 0�� 2 � � � � * 0 � * 


if � ) 069 2 � � 
 � * 0 � � � � ) 0�� 2 � � � � * 0 � � +�Z � . (38)

Using Proposition 3.17 we find

� � * E � * 0 � � + Z��@Z � �7) 069 2 � � 
 � * 0 � � �7) 0�� 2 � � � � * 0 � * � *$Z � � �7) 069 2 � � 
 � * 0 � * � � ) 0�� 2 � � � � * 0 � *
� ) * �@Z � � �.) 069 2 � � 
 � * 0 � * � � ) 0�� 2 � � � � * 0 � * * ��� 
� � � * + Z8) � � � * 0 �� Z � Z � �7) 069 2 � � 
 � * 0 � � �7) 0�� 2 � � � � * 0 � * � *$Z � �,�7) 069 2 � � 
 � * 0 � * � � ) 0�� 2 � � � � * 0 � *
� ) * �@Z � � �.) 069 2 � � 
 � * 0 � * � � ) 0�� 2 � � � � * 0 � * * ��� 
� 
 � * + Z � � � * � � � � � * * 


� � � * + Z ) 0�� 2 � � 0 � 5 � & 
 � � � * 0 �� Z � �3Z � �.) 069 2 � � 
 � * 0 � � �.) 0�� 2 � � � � * 0 � * � *,* �� ) * Z � �7) 069 2 � � 
 � * 0 � � �7) 0�� 2 � � � � * 0 � * � *$Z � �,�7) 069 2 � � 
 � * 0 � * � � ) 0�� 2 � � � � * 0 � *� ) � * �@Z � � �.) 069 2 � � 
 � * 0 � * � � ) 0�� 2 � � � � * 0 � * * � � .
In a first step we show � � � *�� ���-( � * for 2 � T

. We introduce
� *�� ( 2� * , � � � *�� ( 2� � � * , and� � � * � ( 2� � � * . We obtain

� 2� � E 2� � � + ���-(+* 

2� � � � + Z8)-2� � � � � � ��(+* 

2� � � � + Z8) 0�� 2 � � 0 � 5 � & 2� � � � � ���-(+* .

For given ( and $ we choose ) . �
so small that

Z8) 0�� 2 � � 0 � 5 � & + ( 4 * � Z + ) 0 ��
 .
Since ) goes logarithmically in ( the assumption (38) is still satisfied if � 
 � � � � � � � � ���-(+* for

( � �
. Then we obtain 2� � � � � � ��( � 0 
 * , or equivalently � � � � � � ��( � 0 
 * with an arbitrary small,

but fixed $ . �
, due to the nonlinear terms.
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In a second step we prove the assertions of Theorem 3.9. We introduce
�8* � ( 2� * , � � � * � ( 2� � � * ,

and � � � * � ( � 0 
 2� � � * . This time we obtain a system of the form

� 2� * E 2� * 0 � � + � ��( � 0 
 * 

2� � � * + Z8)�2� � � * 0 � � � ��( � 0 
 * � Z8) *
2� � � * + Z ) 0�� 2 � � 0 � 5 � & 2� � � * 0 � � Z 2� �
 � * 0 � .

Thus the sequence 2� � � * is mainly bounded by Z 2� �
 � * 0 � . The sequence 2� � � * shows some decay as

�3Z8) * * from the first term leading to
� 
 0 � by the choice Z + ) 0 ��
 and some growth of order

� ��( � 0 
 * from the second term. The sequence
� 2� * � can be bounded by

� 2� � � � 2#���-( � 0 
 * . Hence� 2� * � is of order ���%$'* for 2 +�?)( 0 � L 
 for a ? . �
independent of ( . Doing back the scalings as

in (14) shows the estimate (27) for
���8; ��
 �  	"#��?)( 
 0 � *BA . :
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