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Abstract

Modulating pulse solutions play a big réle in modern long distance high speed communi-
cation. Such solutions consist of a traveling pulse-like envelope modulating an underlying
electromagnetic wave. In this paper we show that under certain assumptions such solutions
exist and are dynamically stable for the associated nonlinear partial differential equations,
namely Maxwell’s integro—differential equations describing nonlinear optics. The analysis
is worked out in detail for bulk media, and we discuss how the results extend to optical
fibers and to parametrically forced systems.

1 Introduction

The transport of information by light pulses in optical fibers has become a key
technology in long distance high speed communication. From a physical point of
view such a bit consists of a pulse-like envelope modulating an underlying spatially
and temporarily oscillating monochromatic electromagnetic wave train, a so called
modulating pulse. For the transport of information over large distances it is essential
that these modulating pulses retain their shape over long times and that they are
dynamically stable with respect to perturbations.

In order to analyze mathematically such a situation a number of models as the
Nonlinear Schrodinger equation or generalized Ginzburg-Landau equations have
been derived by multiple scaling to describe the envelope of the wave packets. For
these model equations there exist a number of results, as the existence of exponen-
tially stable pulse families. Hence the analysis of these model problems predicts
the possibility of exponentially stable modulating pulse families in the system of
nonlinear partial differential equations describing nonlinear optics. It is the purpose
of this paper to prove such a result rigorously.

Maxwell’s equations for light in nonlinear optical material are given by

AE -V (V-E)-dE = 2P, (1.1)
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where E = E(t,Z) € R® is the electric field, ¢ is the time, 7 = (z,y,2) € R3,
P = 13(15, 7) € R® is the material polarization, and where the speed of light in
vacuum and the dielectric constant are scaled to 1. The polarization P = 131 + ﬁnl
splits into a linear and into a nonlinear part, which in general both depend on
the history of the electric field. In centrosymmetric isotropic bulk material, the

constitutive law for the linear response P is given by

oo
— —

H@@:m@%mzmﬁﬂm@:/;mpqw@@m, (1.2)
—o0
where x; in (1.2) is a scalar function, independent of &, with x;(t) = 0 for ¢ < 0 due
to causality, and similar for the nonlinear polarization. The case of optical fibers
where y; also depends on the transverse directions y, z will be discussed later. We
also postpone the specification of P.,.. We refer to the textbooks [NM92, HK95]
for a comprehensive presentation of the physical background and various mathe-
matical aspects concerning nonlinear optics. See also [Gow93, Dut98] for concrete
technological aspects of fiber communication.

Through most of our analysis we assume the simplest case that E is linearly
polarized and only depends on z, i.e.

E(t,Z) =u(t,z)k with |k|ge =1, (1,0,0)-k =0. (1.3)
Then (1.1) simplifies to
Ou(t, ) = Oul(t,x) — 2pi(t, ) — O2pn(t, ), (1.4)

with py(¢, 2), pu(t, 2) € R such that B(t,Z) = pi(t, )k, Pu(t, %) = pu(t, z)k. Note
that due to (1.2) Maxwell’s equations become integro-differential equations. Then
equation (1.4) is an evolutionary problem with respect to time ¢ with the initial
conditions

u(t, x)|t=0 = wo(x), Opu(t,z)|t=0 = u1(z) (1.5)
and the ”history condition”
u(t, ) = un(t, x) for (t,z) € (—o00,0) x R. (1.6)

Note that as usual we do not assume u;, to be a solution of equation (1.4).
As already said, in nonlinear optics one is in particular interested in modulating
pulse solutions of (1.1) since these are used to transport information as bits and



bytes through optical fibers. Typically, they are approximated by a slowly varying
envelope formalism, also called Ginzburg-Landau ansatz. In a first step the system
is analyzed by inserting £ (t,7) = bz} with (1,0,0)-k = 0 into the linearization
of (1.1) at E = 0. This gives the dispersion relation

k= w*(1+ 3 (w)), (1.7)

where the linear susceptibility x is given by

oo

() = (Fr)@ = [ et dt = fu) + i)
and where n(w) = /1 + x1(w) is called the (linear) refractive index.
As the second step we let

E(t, @) = [e"2qu (2, e(x — wit))elFem=wr) e ek +hot, (1.8)

T

with a small parameter 0 < ¢ < 1, where (1,0,0) k=0, ¢ = . (T,X) € C
is the envelope, e, (z,t) = eikfe®=wrt) ig the carrier wave, and where the (critical)
spatial wavenumber k., the temporal wavenumber w, > 0, and the group speed

w!, = %[, > 0 are related by the dispersion relation (1.7). See Section 2 for

T
details. In (1.8) c.c. means complex conjugate and h.o.t denotes terms of higher
order in ¢. Inserting (1.8) into (1.1) one finds that, under certain assumptions, ¢,

has to satisfy a generalized Ginzburg-Landau equation (gGLe) of the form

Orqy = 0% qy + coqr + cslay Pqr + cslas]'ay, (1.9)

with constants ¢; = ¢, +icj; € C. Because of the quintic nonlinearity (c;7#0) and
due to dissipation (ca, > 0) and damping (co. < 0), (1.9) is also called perturbed
cubic-quintic Nonlinear Schrodinger equation.

For small cy,, cop, €31, c5- the gGLe has a two-parameter family of rotating pulse
solutions ¢ pu(X; Xo, 6)e“+T with w, = w,(cor, ca, c3, ¢5), parametrized by space
translation X, € R and phase 6y € [0,27). Moreover, in [KS98] it is shown that for
certain parameters

(007‘7 C1, C3, 05) € Pa

where P C R” is an open set, the family of pulses ¢y ,, is exponentially stable in
the gGLe.

Inserting ¢ py, into (1.8) we thus obtain an approximate family of exponentially
stable modulating pulse solutions for (1.1), consisting of a traveling pulse-like enve-
lope which modulates the spatially and temporarily oscillating monochromatic wave

(kex—wnrt)

train el ; see Figure 1 for a sketch.



0(81/2)

Figure 1: Sketch of a modulating pulse traveling at some speed 7, &~ w!.(k.).

As already said it is the purpose of the present paper to go beyond these formal
arguments and to prove rigorously the existence and exponential stability of such
modulating pulse solutions directly for the equations of nonlinear optics (1.1). It
will be explained below that such a result is not obvious at all from the formal
analysis. Moreover, it is the purpose of this paper to go beyond the consideration
of phenomenological model problems as in [Sch00, Uec01].

Existence (E) For linearly polarized solutions, the result reads as follows, see
Section 2 for the precise assumptions and Theorem 2.8 for the exact statement.

Under suitable assumptions on 15; and ]3111, such that in particular in (1.9) we have
(cor,c1,c3,¢5) € P, (1.1) has a two parameter family of modulating pulse solutions
in the form

E(t, Z) = upy(x — mt — 20, ket — Mot — 00)12
upn(§,p) = 61/2q+,pu(5§)ei” +c.c. + (’)(53/2) e R,
§EI:E100 Upu(gap) = 07 Upu(fap + 277—) = upu(ﬁ,p),

where 0 < ¢ < 1, (1,0,0) -k =0, 20 € R, 6 € [0,27), and where 7, = w!. + O(£?)
and 7y = w,+O(e?) are small corrections of the linear group speed and the temporal
wavenumber, respectively.

This result is proven in Section 4 using a spatial dynamics formulation for (1.1)
and center manifold theory. The reduced equations on the center manifold can be
interpreted as a small perturbation of the stationary gGLe (1.9). Due to the spectral
properties of the pulses for the gGLe we can show that these pulses also exist in the
reduced equation with the two small corrections of the temporal wavenumber and
the group speed.

Stability (S) In a frame moving with speed 7; the modulating pulses are time-
periodic with period 27/(ny —n1). Therefore in Section 5 we will use Floquet theory
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to prove their stability. The Floquet spectrum is computed by combining a validity
result for the gGLe as a modulation equation for (1.1) with the stability properties
of the pulses in the gGLe. This gives the following result, see Theorem 2.9.

Fix m > 1. Under the assumptions of (E), for all Cy > 0 there exists a C; > 0
such that for ¢ > 0 sufficiently small the following holds. If for some zy € R,
6o € [0,27) we have

l[ug(+) — tpu(-—0, ke - —00) || gm+1my < C1e'/?,
d
Jui(-) = aupu(-—xo,kc - —00) || m(ry < Cre"?,

Sl<1103 Jun(t, ) = upu(- = mt — 20, — not — 0o)|| pm+1w) < Cie'/?,
t<

then for all ¢ > 0 there exist a unique solution of (1.4)—(1.6) and constants z;€R,
6, € [0,27) such that

||u(t>') - upu('_nlt_xl, kc : —Uot—91)||Hm+1(R)
d
+ [10eult, ) = a“pu('—mt—xl, ke - =not—=01) || rmiy < Cos™2e ",
as t — oo.

We close this introduction with a number of remarks and a plan of the paper.

Remark 1.1 All our calculations can be done for circular polarized waves and also
for the full vector Maxwell equation (1.1). However, the ansatz (1.3) is not appro-
priate for susceptibilities dependent on Z, that is, for optical fibers. We comment
on this case in Section 6.

Remark 1.2 In contrast to most of the existing literature we treat Maxwell’s equa-
tion (1.1) as an evolution equation in ¢ which is somewhat inconvenient due to the
memory of the polarization. If the unbounded space variable x is taken as evo-
lutionary variable, then the memory term can of course be converted to a simple
multiplication operator by considering the Fourier transform of (1.1) with respect
to t. We obtain

0w, z) = —w?(1 + X1 (w))i(w, 7) — wQﬁNL(w, x), (1.10)

where G(w,z) = (Fu)(w,z) = [*_e“u(t, z) dt and Py (w, ) contains convolutions
of 4(-,z) with respect to w € R. For (1.10), by a slowly varying envelope approxi-
mation, again the gGLe (1.9) can be derived with 7" and X interchanged and in a
different scaling.



However, the validity of the gGLe (1.9) as a modulation equation does not hold
in the "nonconservative” case considered here (expressed by dissipation ¢y, > 0 and
damping cp, < 0 in (1.9)). To see this, consider an error in the approximation
at "time” z = 0, located at, say, ¢ = 0, that corresponds to a small wave packet
traveling to the left (in negative z-direction) for positive ¢t. As it evolves for ¢ >
0 it is O(1)-damped. This means that it grows in negative time ¢ and positive
space x direction. For the z-evolution this means that the small initial error grows
exponentially, thus causing the approximation to break down already on an O(1)—
time scale which is much smaller than the natural time scale O(1/&?).

Remark 1.3 Since due to the previous remark we consider (1.1) as an evolution
equation in ¢t we have to cope with the memory of the polarization. Therefore we will
restrict the linear and nonlinear susceptibilities to a special (physically motivated)
class of functions, which will allow us to convert (1.1) into a system of autonomous
differential equations without memory. This approach is widely used for numerical
simulations of Maxwell’s equation in the time domain, see [HK96] and the references
therein. This ansatz is in particular used for the spatial dynamics formulation
appearing in the construction of the modulating pulses, see Section 4.

Remark 1.4 As already said the method used in this paper has been applied to
two model problems in [Sch00, Uec01]. The idea to construct special traveling
wave solutions to systems on unbounded domains via spatial dynamics and center
manifold reduction goes back on [Kir82] (see [Mi88a] for a general result). It is
nowadays a well-established theory extensively used in a number of applications, as
water wave problems ([Mi86, Ki88, IK92]) and elasticity problems ([Mi88b, Mi90]).

Remark 1.5 Apart from the problems associated with the memory and the fact
that (1.1) is a system of hyperbolic (and not parabolic) type, the main new diffi-
culty comes from the fact that due to reflection symmetry of the problem the gGLe
is only one possible modulation equation for (1.1). The determining system of am-
plitude equations is given by a nonlinearly coupled system of gGLe (2.11) which
contains (1.9) as invariant subsystem. Since (1.1) is reflection symmetric the associ-
ated amplitude equation (2.11) cover bi-directional motion, where (1.9) only covers
unidirectional motion.

The plan of the paper is as follows. In Section 2 we first describe in detail model
(1.4) to (1.6), and formulate the constitutive laws for the linear and nonlinear polar-
ization. Next we explain the reduction to the system of nonlinearly coupled gGLe
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and the results from [KS98] concerning the existence and stability of pulse-solutions
in the single gGLe. Then we state our main results Theorems 2.8 and 2.9. In the
short but important Section 3 we convert equation (1.4) with the memory term into
an extended system of autonomous partial differential equations without memory.
This extended system will be the basis of the proof of Theorems 2.8 and 2.9. In
Section 4 we show the existence of the modulating pulses, using a spatial dynamics
formulation for the extended system and a center manifold reduction. The stabil-
ity of the modulating pulses is shown in Section 5 by proving the existence and
stability of the pulses in the nonlinear coupled system of gGLes and combining it
with the validity of this system as the modulation equation for (1.4). In Section 6
we show how our results extend to optical fibers and comment on the periodically
forced Nonlinear Schrédinger equation as modulation equation and on modulating
multi-pulse solutions. In the Appendices we collect some results about the deriva-
tion, approximation properties and pulse solutions of the associated modulation
equations.

Notations. Throughout this paper we assume 0 < ¢ < 1. Many constants are
uniformly denoted by C.

Acknowledgments. The paper is partially supported by the Deutsche Forschungs-
gemeinschaft DFG under grant Mi459/2-3.

2 Setup and statement of results

2.1 The linear response

For w in the optical range, the linear susceptibility xi(w) = X1,r(w) + ixu(w) is
usually modeled in the form

i bind;
_ 1d;, 2.1
Xl(w) Z 521 + d_?,l — w2 = 2i(5]~,1w’ ( )

ni
j:l Js

where the constants b;,d;1,0;1 > 0 are fitted from experimental data for the re-
fractive index n(w) = /1 + X1 (w), see, e.g., [Mal65].

Here we extend (2.1) to all frequencies. Figure 2a) shows the typical graphs
of X1r + Xo and X1; (with n; = 2). The constant x, > 0 appearing in Figure 2
corresponds to an instantaneous part of the linear response and will ensure that the
group-velocity is always below 1, the (nondimensionalized) vacuum speed of light.



Note that the ansatz (2.1) gives almost no absorption (x;(w) > 0) except near the
material resonances w;.

a) Xir (W) +X0 b) Xir (W) +Xo

——

w W

X1i(w)
-
| Y w

Figure 2: Susceptibility and absorption for typical materials; a) with ansatz (2.1),

Xi(w)

W

b) with ansatz (2.2) modeling the transmission window.

A more involved ansatz which we will use in the following is given by
ni
. bj1djq
Xa(w) = Z<521 +d? | — w? — 216w
=1 75 Js ’
’ 2 2 2 : 2 2 2 (2.2)
. aj,ﬂ’j,l(%',l T tw )+ 1%‘&‘*’(%‘,1 —CjpTw )
(7]2,1 + C?,l —w?)? + 4%2',1‘*’2 ’

which is written in such a way that

n1

x1(t) = H(t) Z(aﬂ"l cos(cj1t)e 1t + by sin(d; t)e %) (2.3)
j=1
has a simple form. Here H is the Heaviside function, H(t)=1 for t>0 and H(t)=0
for t<0.

In optical material one usually has a small amount of absorption for all frequen-
cies, with a minimum of absorption at certain frequencies, called the transmission
windows and modeled by (2.2). In order to model the small frequency—independent
amount of absorption not yet present in (2.2) we modify (1.4)—(1.6) by introducing
a small constant 0 < 7, to

(1 + XO)atQu = 82,“ - 61:2()(1 *¢ ’LL) - 270&5” - ’Ygu - afpnl(ta .7)), (24)
u(t, ) |=o = uo(z), Owu(t,x)|t=0 = ui(z), u(t,z)=wup(t,z)fort<0. (2.5)



Remark 2.1 As already said there are a number of parameters which allow us to
fit this ansatz to the experimental data in the optical range. We will assume in
the following that these coefficients are chosen in such a way that the system has
the subsequent properties. These coefficients have to be considered as effective (or
averaged) coefficients taking also into account some spatially distributed amplifiers.

Remark 2.2 The crucial reason for modeling x; by a rational function as in (2.2)
and in the existing literature is that by this choice the memory term 92 (x; *; u) can
be converted later on into a system of differential equations, see Section 3.

We start to analyze (2.4) by considering the linearized system. The modified dis-
persion relation reads

k= w?(1+ x0 + X1(w)) — 72 + 2ivyow (2.6)

Figure 3 shows the solution & = k(w) = k,(w) + ik;(w) € C for w € R (with x
from figure 2b)). There exist an optimal frequency w, such that for right traveling
wave trains el(k(w)z—wt) — e=kilw)zeikr(W)z=wt) the damping k;(w) has a minimum at
w.. However, —k(w) is also a solution of (2.6), such that in this picture left traveling

k. (w)
ki (w)

U SRy -

W

Figure 3: k(w) as obtained from solving the dispersion relation (2.6) for k. Note that
k.(w) is no straight line. The picture shows the asymptotic behavior for |w| — oo

wave trains are exponentially amplified for negative times and positive x. Therefore,
as explained in Remark 1.2, we treat Maxwell’s equation as an evolution equation
in ¢. Thus, we need to solve (2.6) for w = w, + iw;€C as a function of k€R. For x
in the form (2.2) the dispersion relation is equlvalent to a polynomlal in w of even
order 2N, with k? as a parameter. We have 2N = 2N +2, where N is the number of
different vectors (c;1, V1, dj 1, B;1) of parameters in (2.2), corresponding to different
resonances in the material. Thus we obtain 2N solutions w;(k) of (2.6). Due to the
special form of x these fulfill wy; = —Wy; 1, 7 = 1,..., N. Figure 4 shows typical
graphs for w;, (with X(w) from figure 2b)): There is one critical curve w;(k) (and
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w1(k)) and a critical wavenumber k. such that wy; has a maximum at k£ = k.,
(k ) & 0, and is strictly below the k—axes for k£ away from k., and all other curves

C
wji(k), 7 > 3, are strictly negative for all &.

a)

Wir (k) j =35 7

wlz(k) kc Wii, .7 = 3; 5

-

’

Figure 4: w;(k) = wj, (k) + iw;;(k) as obtained from solving the dispersion relation
(2.6). a) the critical curve wy(k), b) the damped modes.

2.2 The nonlinear response

The nonlinear polarization ﬁnl(t, z) = pult, :r)lAc also splits into an instantaneous

part and a part with memory see, e.g. [Men99]. For our analysis we don’t allow

for an instantaneous part, but see Remark 3.1, and we assume a focusing saturable
nonlinearity, where the third order term is assumed to be small, proportional to the
small bifurcation parameter € > 0, see, e.g. [GH91]. Then in general pl is given by

pai(t, x) = epnis(t, ) + puis(t, ) with

pnl’g(t, .T) = /// )Zg(t — 71, t— 7'2,15 —_ Tg)U(Tl, x)U(TQ, ,’IJ)’U,(Tg, CC) dTl dT2 dTg,

pn1’5(t,$) :/"'/}25(t—Tl,...,t—Tg,)U(Tl,QJ) (’7'5, )dT1 dT5

However, for most materials we have X3(t1,t2,t3) = 6(t; — t2)0(t1 — t3)x3(¢1) and
X5(t1, ... t5) = 8(t1 — ta) -+ - 6(t1 — t5)xs5(t1) where 6 is the Dirac delta distribution.
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Therefore, we restrict our analysis to the case

pu(t,z) = €/X3(t — ) (7, ) dT + /X5(t — 7)u’(r, x) dr. (2.7)

We assume the nonlinear susceptibilities to be given also in the form (2.2), i.e.,

s () Z( iatia
X3lw) = :
j=1 Vis+ dis — w? = 2iv; 3w (2.8)
N a;37,3(V5s + ¢G5 3+ w?) Fiajaw(vis —c5 3+ w2)>
(772-,3 + ci:,, —w?)2 + 4732,3w2 ’

s () Z( st
Xs5\W) = :
=\ s dfs — w? = 250 (2.9
aj5Yi5(Vis + G5+ w?) +iasw(v5s — ¢G5+ W)
* (V254 ¢ 5 — w?)? + 4y2 w2 '
7]75 J75 7],5

Remark 2.3 Remarks 2.1 and 2.2 also hold for the nonlinear responses.

2.3 The results

Let us first collect our assumptions; all constants are O(1) with respect to the small
bifurcation parameter ¢ which is introduced in (A2).

(A1) xa is given by (2.2).

This implies that the dispersion relation (2.6) has 2N roots w;(k)eC, 1 < j < 2N
with wy (k) = —@y_1(k), 1 =1,..., N, with N = N + 1, where N is the number of
different vectors (¢;1,7;1,d;1,5;1) in (2.2). For these roots w;(k) we assume:

(A2) There exists a k. > 0 such that w;(k.) = ape? with ap < 0, 0 < ¢ < 1,
wh;(ke) = 0, wi;(k.) <0, and wy;(k) < —o for all keR\ (Bs(k.) U Bs(—k.)) for
some 0,6 > 0. Moreover, wi,(k.)=vy > 0, Wi, (k.)=v1 > 0, with vy/k.—v1>0.

(A3) for 3 < j < 2N we have wj;(k) < —o for all kR (damped modes).
For the nonlinearity we assume that

(A4) pn is given by (2.7) with x3 and x5 given by (2.8) and (2.9).
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Remark 2.4 The first assumption of (A2) implies that w; is of the form sketched in
Figure 4 fundamental for our analysis. The last assumption in (A2), that the group
velocity vy is O(1)-different (smaller than) from the phase velocity vy/k. of the
critical mode, is for technical reasons. It is used in the spatial dynamics formulation
to construct a center manifold of size independent of e. If vy/k. — 1 = O(e) then
roughly speaking the results stated below also hold, but the analysis becomes more
complicated, cf.[HCS99]. Moreover we remark that for the following derivation of
the gGLe it is not needed that xi, x3 and x5 are of the rational form (2.2), (2.8)
and (2.9). The rational form is only used in the spatial dynamics formulation in
Section 4.

Due to the reflection symmetry x — —x of Maxwell’s equations there are two critical
complex conjugate curves of eigenvalues k£ — w; (k) and k +— wy(k). Therefore, the
amplitude equations of the system are given by two gGLe, one for the right moving
wave packets modulating e, = e (¢, z) = e**=*%) and one for the left moving wave
packets modulating e_ = e_(t,z) = eilkz+%%)  Under the assumptions (A1)-(A4) it
is straightforward to derive the equation for the modulations of these critical modes.
Let

’U,(t, IE) = SI/qu(ta x) (210)
= e'2q, (%, e(z—wt))es (t, v)+e'2q_ (e, e (x+urt))e_(t, x)+c.c.

with ¢x = ¢+ (T, X) € C. Inserting (2.10) into (2.4) and equating the coefficients of

5/2

€52, and £%/%e_ to zero gives the system of nonlinear coupled gGLe

Orqy = 0%y +coqr + cslgr gy + cslay|*ey

+C4‘7_2V1T/EQ— |2(J+ + 06|7'2u1T/s‘I— |4Q+,

(2.11)
Orq- = C20%q- +Cog— + Csla—|*q— + Cgla—|*q-
+Ca| Ton 17004 0= + G| Tov /e 04 e,
where
i 1 .
Co =g, Cp= 5wi’(kc):i (—wi;(ke) + iwf, (k) (2.12)
vy, . .
C3 =C4 = 21k0 (_X3i(]/0) + 1X37‘(V0)): (213)
C
V2, . .
Cy = Cg = 10 21k0 (_X5i(]/0) + 1X51-(Z/0)). (214)
C

Some details of the derivation of the gGGLes are given in Appendix A.1. We used the
abbreviation (7.ru)(X) = u(X — ¢T'). Hence, these two gGLe are coupled by some
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terms singularly depending on the small bifurcation parameter . For the case of
classical partial differential equations (no memory) the mathematical justification
of the GLes as modulation equations can be found in [Sch99]. A sketch of the
theory can be found in the appendix. For spatially localized solutions, we find that
the interaction time of counter propagating wave packets is very small and so the
coupling terms are then of higher order and can be neglected [Sch97], i.e., then
effectively ¢4, = ¢g = 0. Therefore, the pulse solutions will still be described by the
single gGLe (1.9) from the Introduction.

As already explained we will use heavily the properties of this single gGLe. We
will make this more precise in the following. In (2.11) we always have cg;=0 due
to the derivation. We let ¢, (T, X) = ¢, (T, X)eT and search for stationary pulse
solutions g4 puw, of

Ordy = 20%qs + (a0 — iwo)dy + 3l d4 @+ + 5G4 [+ - (2.15)
For g = ¢9, = ¢3, = ¢5» = 0 a pulse qsg)pu,w() is explicitly given by
q(O) (X) — ﬁlwo 12
RRE 1 + B, cosh (B3 /wpX) ’

16c5,w
Br=4/czi, fa= |1+ 352 %, By =2/\/cn.
\ 3i

For small «q, ¢y, c3r, c5» # 0 and suitable wy these pulses persist. Even analytic
expressions can be found, see, e.g. [vSH92]. Moreover, in [KS98] it is shown that
for a certain choice of parameters ay, ¢, c3,wy the pulses are exponentially stable.

Theorem 2.5 [KS98, Theorem 1.3] There exist an open set P C R" such that for
(v, Co, €3, ¢5)EP the following holds. There exists an wy=w, (o, ca, C3,¢5)>0 such
that (2.15) has a two-parameter family

My = {@s puw, (X — Xo)e' : Xo€R, 0,€[0,27)} (2.16)

of pulse solutions. Moreover, qy puw, 95 exponentially orbital stable, i.e., there exists
a constant b > 0 such that the following holds. For all Cy > 0 there exists a C7 > 0
such that from
1+(0,) = @4 pugws (- — Xo)e® [l < Gy
for some Xy€R, 0y€0,27), it follows
144 (T, ) = g4 puwr (- = X1)e” [ < Coe™*"

for some X;€R, 6,€(0,27).
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Remark 2.6 A characterization for (g, ¢z, c3,c5)€P is 0 < —ay, ¢y, €3, —C5 and

small, 0 < ¢y;, €34, —Cs4, and

2

403 Co 403 Co 24 805
> = >0 and S =) > —ap—-

C3i Co; C3i  Cy o = cy

From (2.12)-(2.14) it is clear that we can tune xi, x3 and x5 in such a way that
(v, €o,C3,¢5) € P. However, note that ¢, > 0 implies that in some (nonlinear)
way energy has to be supplied to the system to compensate for the (linear) loss
ap < 0. See the Remarks 2.1 and 2.2. As already said for ¢ small the system (2.4)
is completely determined by the system of the two gGLe (2.11), and for spatially
localized solutions, as the pulses we are interested in, these equations will decouple.
Since the pulse g4y, is then stable in the first equation and the origin ¢_ = 0
is still stable in the second equation, the pulse will also be stable in the complete
system (2.11) of amplitude equations, see Appendix A.3.

Remark 2.7 There exists a second family of pulse solutions gy py . =~ qsro,)pu,w of
(2.15) with w_ = w_(ay, ¢, €3,¢5) < w,. However, these are unstable [KS98]. The

constants wy are given by

wy = 06 (e e \/(4C3r _ C_) _ A, S

8esy | €3 Cy C3 Coi

We may now state our main results.

Theorem 2.8 [Existence] Assume (A1)-(A4). There exists an g > 0 such that
the following holds. Suppose that X1, X3, and Xs, are chosen in such a way that
0 < e < ¢gg and (ag,ca,c3,¢5) € P. Then there exists a two-parameter family of

modulating pulse solutions for Mazwell’s equation (2.4) in the form

My={u(t, r)=upy (z—mt—2x0, kex—n0t—by) : o€R, Oy €[0, 27)},
upu(&,p) = 51/2q+,pu,w+ (e€)e” +c.c. + (’)(53/2) e R,
§E£I:noo upu(gap) =0, upu(gap + 27T) = Upu(f,p),

where 1 = wl. + O(e%) and ny = w, + O(e?) are small corrections of the linear group
velocity and the linear temporal wavenumber.
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Theorem 2.9 [Stability] Fiz m > 1. Under the assumptions of Theorem 2.8, there
exrists a constant b > 0 such that for all Cy > 0 we have a C1 > 0 such that the
following holds. For some zy€R, 0,€[0,27), let

o () = Upu(-—0, ke - —00) || m+1(m) < Cie'/?,

d
Jui(-) — aupu('—l"o, ke - —00) || amery < Cre/?,

st1<1103 |un(t, ) — upu(- — mt — o, - — not — Oo) || gmt+1(®) < Che’?, (2.17)

and let u be the solution of (2.4)-(2.5). Then u exists for all t > 0, and there exist
constants 1 € R, 6, € [0,27) such that

||U(t,-) - UPU('_nlt_fL'la ke - _770t_01)”Hm+1(R)

d _
+ [|Gpult,-) — Eupu('_nlt_xla ke - —not—01) || mm(r) < Cac'/%e bett

ast — o0.

Remark 2.10 Since we are dealing with an integro—differential equation, (2.17) is
a natural condition, as mentioned before. However, it can be relaxed in the sense
that it is sufficient that the linear and nonlinear initial polarizations are close to the
ones produced by a modulating pulse. This will be made precise in Section 5, where
we prove Theorem 2.9 using the extended system (3.4).

In Appendix A.2, in order to go beyond the formal derivation of the system of
nonlinear coupled gGLes (2.11), we also prove its validity as modulation equation for
Maxwell’s equations; we give exact estimates between the approximations obtained
via the gGLe and solutions of (2.4), (2.5).

3 The extended system

We convert Maxwell’s equations (2.4) into an extended system of autonomous differ-
ential equations without memory term. This can always be done for any x1, X3, X5
given by (2.2), (2.8) and (2.9). However, to simplify notation we assume, w.l.o.g.
for our purposes,

ni=nz=ns=1, d1="71, 013=71,3=1Y3, 01,5="1,5=175,

(3.1)

c1=dy, C1,3=d1,3=1d3, 61,5:d1,5::d55
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such that now N =2 in (A2). Letting

¢i(t,z) = /t Xj(t—T)uj(T,ac)dT, j=1,5, (3.2)

os(t,z) = 5/ x3(t—7)u?(r, x) dr,

—0o0

we obtain
t
A;(t,z) = x;(0)u? (t, ) + / X;(t = )l (1, x) dr,
0
07¢;(t, ) = jx;(0)u "' (t, x)Ou(t, ¥) + X;(O)uj(t, x) » 7 =1,5

t
+ / X (t = ) (7, z) dr,
0

Orps(t,x) =€ |:X3(0)U3(t, x) + /Ot X5t —T)u }
Olps(t,z) =€ [3)(3(0) 2(t, z)ug(t, 7)+x5(0) +/0 X; (t—7)u’ (7, ) dTr| .
Since x;, 7 = 1,3, 5, fulfills
Xj = Bjxg + Bjaxg  with  Bj = —(v +dj), Bj2 = —2v;, (3.3)
we can rewrite (2.4) as

(14+x0)07u =02u—2700u—5u
— [B11¢1+B120:h1+ (X1 (0)— Brax1 (0) ) u+x1(0) D]
— [Bs1003+ 832013 +€ 95 (u, Opu) | — [ Bs1 95+ 5205+ 95 (u, Opu)],

3.4
0761 =[x1(0) — Br2x1(0)]u + x1(0)dpu + By + P12, (34)
07 b3 =Ba103 + B320103 + £93(u, Oyu),
5§¢5 =B5105 + B520¢05 + g5(u, Opu),
where
g;(u, 8u) = (7 — 1)x;(0)e ' 0u + (x;(0) — Bjax;(0))u?, j=3,5. (3.5)

This reformulation of (2.4) as a system of differential equations without memory is
crucial for the spatial dynamics formulation in Section 4. System (3.4) allows us to
apply the standard theory for semilinear hyperbolic problems; see Section 5. Since
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the equations for the variables ¢; contain no spatial derivatives we obtain the local
existence of solutions V' = (u, ¢1, ¢3, ¢5) in

C([0, tol, H™H(R) x [H™(R)]) 0 C*([0, %], [H™(R)]*) N C*([0, %], [H™(R)]"),

for aty > 0, to initial conditions (V(0, ), 8;V (0, -)) e [H™ 1 (R) x [H™(R)]*] x [H™(R)]*
for m > 1, cf. Lemma 5.2.

Remark 3.1 It is the possibility to express X}' by lower order derivatives in (3.3)
which allows us to remove the memory terms from (2.4) and hence to obtain the
extended system (3.4). This system is semilinear due to the absence of an instanta-
neous nonlinear polarization. If Py (¢, z) = pu(t, )k with

pu(t, z) = Piy(t, 2) + Pi(¢, 2),

with p@ as above and where for instance pi (t,z) = eazu® + asu®, with az > 0 and
as < 0, the extended system becomes quasilinear; see also Remark 4.3. For the
existence and uniqueness in this case the methods of [HKM76] can be applied.

4 Existence of the modulating pulses

To prove Theorem 2.8 we use a spatial dynamics formulation and a center manifold
reduction. The method goes back to [Kir82|. Since then it has been used to construct
special traveling wave solutions to systems on unbounded domains in a variety of
problems similar to ours, see [EW91, IM91, HCS99, Sch00, SS00, Uec01]. The idea
is as follows. We set

(’U,(t, SE), ¢1(t7 SE), ¢3(t7 33), ¢5(t7 .T)) = (Wl (gap): WS(&:p)a W5(§7p)7 W?(gvp))v

with éE =z —mt € R, p = k.x — ot € Tor = R/(27Z), where ny = vy + 20,
m = v + &%, are small corrections of the linear phase velocity and the linear
temporal wavenumber with 7, and 7; a priori unknown. We then formulate (3.4)
as a first order dynamical system 0;WW = F'(0,, W) in the ”spatial” variable £ on
the unbounded cylinder (£, p) € R X Ta,. For the linearization of this system about
the trivial solution W = 0 we find four eigenvalues O(g) close to zero, with the rest
of the spectrum bounded away from the imaginary axis. We then construct a four
dimensional center manifold M, for 0;W = F(0,,W). The reduced equation on
M, can be interpreted as an O(e) perturbation of the stationary gGLe (1.9) in the
moving frame. Thus, for € = 0 we have pulse solutions for the reduced equation due
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to Theorem 2.5. We then show that these pulses persist for the O(g) perturbations
in the reduced equation, for suitable 7%y and 7;. This will prove Theorem 2.8. It
remains to work out the details of the approach just sketched.

4.1 The spatial dynamics formulation

Setting
W = (Wb atwla W3a a:‘/I/I/'E}a W57 atW57 W7a atW7)Ta

with Wi = (1— 83)1/2W1 and using 0, = O + k.0, Oy = —110¢ — 100, we write (3.4)
as a first order system. With

1 —~
O2u = (O¢ + k.0,) (—n—at + (k - @) a,,) W,
1

T

we obtain
OW = DM(9,)W — %a,,w + N(W1, Wa), (4.1)
1
where

D, 0\ D, =diag(—1/n,—m/(1— 1+ x0)n?), —1/m, —1/m),

D = ,
0 D, D,=diag(—=1/m,—=1/n,—=1/m,—1/m),
0 (1-8)Y 0 0
MO ) MWD (3,) Moy Mo Bi1 Brz
M(ap): 9 P ) M(O)(ap): )
0 M2 (0,) 0 0 0 1
ma1 Xl(o) B Bie
0O 0 0 O 0 1 0 0
0 0
M(l) (ap): 531 532 ﬁ51 ﬁ52 ’ M(g) (ap): ﬁ?»l ﬁ32 ’
O 0 o0 O 0 0 0 1
0 0 0 0 0 0 Bs1 Bs

2
= [(kf - ch% * %) 35 — 76 — X1(0) — Biax1 (0) | (1 —32)7'/2,
1

= (= 2 9, — 230~ 5a(0), ma=(4(0) ~ x (O))1 - ),
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and
T
N(W1: WQ) = D(07 €93 + g5, 07 0: 07 93/771’ 07 95/771)

with g;, j = 3,5, from (3.5) depending smoothly on Wy = (1- 83)_1/2W1 and Ws.

4.2 The center manifold reduction

The first step in construction of a center manifold for (4.1) is the examination of
the spectrum of the linearization about W = 0, given by

@W:L@MV:DM@MV—%@W (4.2)
1
We fix m > 1 and consider L(J,) as an operator in

X =[H™(T3:)]® with domain Y = [H™"(T3,)]%.

To determine the spectrum of L(0,) we write W as a Fourier series W ({,p) =
> ez Wi(€)el? with Wi(€) € C°, Wi(€) = W_i(€). Then (4.2) decomposes into a
direct sum of systems

QM:MWM:DMWM%EWM (4.3)
1

For each [ € Z we obtain 8 eigenvalues )\, ;, j = 1,...,8, for L(il) and 8 eigenvalues
p; = Mij + Bl for DM(il). The four eigenvalues of the lower block of Dy M@ (il)

are

pse = (v3£ids)/m, prs =(7s £ids)/m.

They come from the auxiliary variables ¢3, ¢5 and are independent of the wave-

number [. Therefore, the associated eigenvalues \;; = p; — il of L(il) are strictly

m
bounded away from the imaginary axis.
Tracing back the transformation from (2.4) to (4.3) one finds that A is an eigen-
value of the first 4 x 4-block of L(il) if and only if the dispersion relation (2.6) holds

with
w=—-mA—iyl and k= \-+ik.l.

See [EW91, HCS99]. In order to find the central eigenvalues we substitute A =
i(A —Ik.), X € R and obtain

VA + (ke — vo)l = wi(N) (4.4)
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with w; from (A1), (A2). The imaginary part of (4.4) gives 0 = w;;(\) and fore =0
we obtain A = +k, using (A2), (A3). Then from the real part we obtain [ = =1.

Thus, for ¢ = 0 and [ = £1 we obtain a zero eigenvalue A\_;; = A;; = 0.
Due to the quadratic tangency of wy;(k) and we;(k) = —wy;(k) at the k-axis at k.,
these eigenvalues have geometric multiplicity one but algebraic multiplicity two, cf.
[AMO95, HCS99]. Thus we obtain Jordan blocks of length 2 for { = —1 and [ = +1.
For £ = 0 we denote the associated eigenvectors by 111 € C® and the generalized
eigenvalues by 115 € C¥. Using perturbation analysis as in [EW91, HCS99] we
obtain four distinct eigenvalues with real part of order O(g) for € > 0.

In order to show that the rest of the spectrum of L(il) is strictly bounded away
from the imaginary axis, we consider the matrices DM (il) for || large. This leads
to the following observations. First, for j = 3,4 the limits limy o py; = p exist
and satisfy p; ¢ iR Secondly, for j = 1,2 there exists a ¢* such that the limits
limyy oo pu,; £ ic*l = pf exist and satisfy p; ¢ iR, Moreover, the limits of the
associated eigenfunctions ¢ ; exist, i.e., limj o ¢1; = ©3, and the set of vectors
{¢5 | j=1,...,8} forms a basis of C°.

Figure 5 shows A1, ..., A\j4, [ = —40, ..., 40, calculated numerically for a typical
dispersion relation. We summarize our results on the spectrum of L(d,) as follows.

Lemma 4.1 There ezist py, ps,c0 > 0 such that for all € € (0,gq) the operator
L(0,) : Y — X has 4 central eigenvalues i1, j = 1,2 of size O(e). All other
eigenvalues A j,1 € Z satisfy p1 < |Re ;| < po.

By Lemma 4.1 we found a gap of order O(1) between the central part and the
hyperbolic part of the spectrum of L(J,). Therefore, we can define the center,
stable, unstable and hyperbolic subspaces X., X;, X,, and X}, by

X, =span{y; () : 1 = +1,5 = 1,2},
X, = clxspan{(p; j()e'? : ReA;; < —p1},
X, = clyspan{p; ;(¢)e™ : Re\;; > p1} and X, = X, ® X,.
Due to Lemma 4.1 this splitting is independent of e€(0, &g), and we have X=X . X},.
Let P, Ps, and P, be the L(0,)-invariant projections from X onto X, X;, and X,
respectively. Moreover, let P, = P; + P,.
By Lemma 4.1 and the convergence of the associated eigenfunctions to linear

independent vectors for |I| — oo we have the O(1)-boundedness of the projections
P,, P,, and P,. This holds since for instance

[ Psullx < sup [1Ps(Dllcs e lullx < Cffullx
€
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+ 100

Figure 5: Eigenvalues A;1,...,Aj4,l = —40,...,40, in the spatial dynamics formu-
lation.

for P; = @z P5(1), where we do not distinguish in our notation the space X in physi-

cal and Fourier space. Note that ||W||x is equivalent to (>~ |W,;|*(1+[I|*)™) 2
1€7,j=1,..8

For the linear semigroups P,e™%) = @, P, (1)e*?t x € {s,u, c} we obtain

| Pyel@) )| x < sup || P(1)el | e ||ullx < Ce™||lul|x for t >0,
lez

| Pueb@)ty| . < Ce=|ju||x  for t <0,

and
|| Pe™ | x < Ce™ |lul|x

for all ¢ € R for each fixed 0 < 1 < p; independent of € € (0, ).

Since the nonlinearity N (W7, Ws) is smooth from X to X, all assumptions of
the center manifold theorem as stated in [VI92] are satisfied. Using the notation
W.,=PW, W, =P,W, L.= P.L, and F(W,, Ws)=N (W, W) we thus have proved
the following result.

Theorem 4.2 Fiz r > 1. Then there exists g > 0 and § > 0 such that for all
e € (0,e9) the following holds. For (4.1) there exists a center manifold M. of
the form Wj(€) = ®(W,(€)) with ® € C™(UF(0), X,) and ®(0) = dw,®(0) = 0.
Moreover, M. contains all small bounded solutions of (4.1), and every solution of
the reduced equation

OWe(€,p) = LWe(& p) + PN (We(&, p), ®(We(&; p))) (4-5)
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gives a solution of (4.1) via
W =W, + ®&(W,).

Remark 4.3 It is also possible to consider the quasilinear case, i.e., the case of an
instantaneous polarization pi;, as explained in Remark 3.1. In this case the linear
operator Ly, = P;L is replaced by a quasilinear operator Ls(W,, Wy, 0,). Similarly
to [Ren92] we then can use the iteration scheme

afI/Vc,n :Lch,n + PCF(Wc,na Ws,n)a
a§Ws,n :Ls(Wc,nfla Ws,nfla ap)Wc,n + PCF(Wc,na Ws,n)

to prove Theorem 4.2 due to the very explicit formulation in this case.

4.3 Existence of pulses for the reduced equation

The reduced equation (4.5) can be interpreted as an O(e) perturbation of the sta-
tionary gGLe (1.9) in a moving frame. In order to see this we introduce coordinates

W(&,p) = e PA(X)p116? + 2B(X)p10€P +cc., X =&t
in the center subspace and obtain that A, B satisfy

8XA =B —+ 0(8),

, \ (4.6)
6XB = El?lB - (OZO - lljo)A - C3‘A| A— C5|A‘ A + O(E)

This follows from inserting the Ginzburg—Landau ansatz

ut,z) = Wi(€,p) = Y Wia(€)e'” =Y e A(e6)e, 7 =1+l -1

A lez

into (2.4). Using formal calculations as in the derivation of the gGLe in App.A.1
we obtain that A = A; has to satisfy the stationary gGLe with the phase rotation
term iy A and the drift term ey Ay, and additional terms of formal higher order
O(e). These terms are rigorously of order O(e) in H™(R) since W lies on M,.
Thus, for e=0, (ao, 2, c3,¢5)EP and Py=w, we have the pulse A(§)=q; puw, (§)
for (4.6). Due to the spectral properties of ¢ pu ., (&) we conclude that g4 puw. (§)
persists for ¢ > 0 upon tuning 7, 7. This is explained in detail in [Sch00] based on
the results of [KS98]. See also [Uec01, Section 4.4] for a proof in a similar problem.
Thus the proof of Theorem 2.8 is complete. O
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5 Stability

We use center manifold theory to prove the stability of the family of modulating
pulses. A modulating pulse is time-periodic with period ¢y in a frame moving with
the envelope. So Floquet theory has to be used to analyze the spectrum of the
linearized system. Using the fact that the dynamics of the extended system (3.4)
can be approximated by the dynamics of the Ginzburg-Landau equations (2.11) we
will obtain exactly two Floquet multipliers 1 which come from the time-periodicity
and the translation invariance. From this we will obtain a two dimensional center-
manifold with trivial flow on it. The application of the center manifold theorem to
the discrete tp—map is complicated by the fact that the linearized operator for the
time evolution is not sectorial. As a consequence, we cannot argue with the spectrum
alone and so we use again the fact that the dynamics of (3.4) can be approximated
by the dynamics of (2.11) in order to obtain the estimates which are needed for the
linearized system. The results about the Ginzburg-Landau approximation which
are used here can be found in Appendix A.2. Therefore, it could be advantageous
to have a parallel look to Appendix A.2.

For the proof of Theorem 2.9 we write the extended system (3.4) as a first order
system in . Setting

U=(Uy, Uy, Us, Uy, Us, Us, Uz, Ug) " =(u, Byu, 1, Osb1, 3, Orbs, s, Orbs)” (5.1)

we obtain
o,U = A(0,)U + F(U), (5.2)
U\t:o = (UOa U, ¢1(0); 3t¢1(0), cee at¢5(0)), '
where
Ap(0,) A
A(8,) = o(%) A ,
0 As
0 1 0 0
32— —x1(0)+B12x1(0) —2v0—x1(0) _Bu P2
AO (az) — 1+x0 1+x0 1+x0 1+xo0 ,
0 0 0 1
X1 (0) — Bi2xa (0) X1 (0) B Bi2
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0 0 0 0 0 1 0 O

—B31 —P32 —Ps1 —Ps2 Bs1 B2 0 0
(1+x0)A1 = , Ay = ,
0 0 0 0 0 0 0 1
0 0 0 0 0 0 Bsi Ps2

and

F(U) = (0, f2(U1,05),0,0,0, gs(Ut, Us), 0, g5(Ux, U2))T,
fo(Ur,Us) = [—eg3 (U, Uz) — g5(Ur, U2)]/ (1 + Xo0)-

We go into the frame y=x—n;¢ comoving with the modulating pulse u,, and consider
U = A(0,))U +mo,U + F(U). (5.3)
We fix m > 1, let
X = H™(®) % [H™®)], Vi = X,
and show first that (5.3) is well posed in X,,,. We start with the linearized system.

Lemma 5.1 The operator Lo(0y) = A(0y) + m0y : Ym — Xm generates a Cy-
semigroup L0 in each X,, with

tLg (ay

€0, x,, < Ce 0=t (5.4)

with C a constant independent of time t > 0. Ezactly the same results hold if A(0y)
is considered instead of Lo(0y).

Proof. We take the Fourier transform V(t,y) = [ V(t, k) dk of 8,V = Lo(8,)V
and obtain 8,V = Lo(ik)V. Denoting the eigenvalues of Ly(ik) = A(ik) + in kId by
M (k) +imk, ..., As(k) + ik we obtain for Ay, ..., A4, belonging to Ag(ik), that

/\j (k) = )\JT(]{J) + 1/\JZ(]€) = —iLUj(k) = w]'i(k) — iwjr(k). (55)

Thus we have 2 curves \; » of critical eigenvalues (A1, (k) = Aor(ke) = —€2ayp), and
2 curves A3 4 belonging to strongly damped modes, cf. Section 2, in particular Fig.
4 and Assumption (A2). The 4 eigenvalues

Asp = —7y3 £ ids, A7g = —75 £ ids (5.6)

of the lower block Ay belong to damped modes, are independent of k, and come
from the auxiliary variables ¢3, ¢s.
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The proof of Lemma 5.1 is based on the following two facts: first, that Fourier

transform is an isomorphism from H™(R) into
L*(m) = {6 € L*(R) | ||a]|3. = / [a(k)|>(1 + k*)™dk < oo},

and secondly that the two critical eigenvalues A5 of Lo(ik) are simple in a neigh-
borhood of +k.. We start by transforming

V(t, k) = Gk)V(t, k) with G(k) =diag((1+k*)Y%,1,...,1): C® — C°.
Then
8,V =BV, where B=GL,G™". (5.7)
Note that
G| 2gmeryiz2mysizzems s 1G™ Niz2gmys s L2meny xiz2gmy < C-

Below we show that the solution V (¢, k) of (5.7) fulfills

IV (2, Mlizzomys < OV (0, ) g2y (5.8)
such that

IV Ollx < CIV O lzzminyxizzemyr < CIHV Ollpzemys < Ce™ [V (0) lz2gmys
< Ce_a°52||V( 0)|| L2(mr1yx (2 (my)r < Ce™ 0 t||V( N xm

which shows (5.4).

It remains to show (5.8). Since B has the same eigenvalues as Ly, then due to
(A2) and (5.6), for k € I. := [~k — 0, —k. + 0] U [k. — 6, k. + ] we can define or-
thogonal projections P;(k) : C® — span{(;(k)}, where ¢, 5 € C® are the normalized
eigenvectors of B(k) to the critical eigenvalues A; (k). Thus, for V € C8, let

Pi(k)V  for kel

P;(k)V =
%) 0 for k¢l

and write

V(t, k) = 7(t, k)oi(k) + 72(t, k)pa(k) + Vi(t, k),
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where V, contains only stable modes, i.e., (Id — Pi(k) — Py(k))Vi(t, k) = Vi(t, k).
Now (5.7) is equivalent to

3t71(t k) >\1(k)71(ta k)
Oya(t, k) = Az(k)’)/z(ta k),
A(k)S(k)Vi(t, k),

OVs(t k) = S (k)
(

where A(k) is the Jordan normal form of B(k). Since B(k)=G(k)A(ik)G (k)™ +in kId
with

By(k) A
ataenam = [ PO 4]
0 A
0 (1+EHY2 0 0
_ k2 —270—x1(0) _ Bn _ B2
Bok) = | RO T iRe e i
0 0 0 1
% x1(0) bu Pz
it follows that the eigenvectors ¢y (k), ..., ps(k) of G(k)A(ik)G(k)™ converge to
fixed vectors ¢}, ..., 5 that form a basis of C®. Therefore the transformations

S(k),S71(k) : C® — C® can be bounded with a constant independent of k. Now let
W (k) = S(k)V,(k). Then 8,W = AW, and hence

W(t k)|os < C(1+ e ! [W (0, k)|s < Ce 2| W (0, k)|cs (5.9)

with o > 0 due to (A2) and (5.6), and with 0 <[ < N due to possible Jordan blocks
in A, with N from (A2). Here N = 2 due to (3.1), but of course (5.9) holds true for
any number of resonances in (2.2). Therefore

1V (0)B2m / Iy 8, k)1 (k) + ot ) pal) + Va(t, B) s (1-4R2)™ dk
<c / (It K2 + ot K)2 + W (£, ) 2] (1-442)™ dk

<of [“““%(\%(0, B+ 1300, ) ) + e 72[TW (1, 0) 2 | (1-+K%)™ dk

—200&%t (|17
< Ce 0V (0)[[Fz2mype -

This is (5.8). O
Since the nonlinearity F' : X,, — X, is locally Lipschitz continuous we can

apply a fixed point argument to the variation of constant formula and obtain the

following local existence and uniqueness theorem for our semilinear system (5.2).

26



Lemma 5.2 Fizm>1. For allty>0 there exists a p>0 such that for all Uye X,, with
|Usl|x,,, <p there exists a unique solution UeC([0, o], X;) to (5.2) with U|—o=Uj.

In order to prove stability of the modulated pulse up, we set

Uty +mt) = Upu(y, key — (mo — kem)t) + V (t,y),
where Uy, is obtained from transfering u,, into (3.2) and (5.1), respectively. Then

0,V =LV + N(V), where (5.10)
L= A(ay) + 77183/ + DF(Upu)a N(V) = F(V + Upll) - F(Upu) - DF(UPU)'

Since upy (Y, key—(no—kem )t) = €Y2q puyw, (ey)eikey—o—kenm)) 4 ¢cc + ho.t is pe-
riodic in ¢ with period ¢y = 27/(k.m—mp), so is the linear operator L and the
nonlinearity V.

Thus, the idea is to construct a center manifold for the Floquet-map, i.e., the
time—tg—map for (5.10). Using the Ginzburg-Landau approximation we will obtain
the spectrum of the linearized time—t;—map and estimates for its iterates.

We define the linear flow ¥;, : X,,, = X,,, by the solution V (t) = ¥, ;V; of the
linear problem

8tV - L‘/, V‘t:s == % (5].].)

Lemma 5.3 The linear flow ¥, :X,,,—X,, is well-defined for allt > s > 0 and
the behavior of the time—ty-map A=V, o, to = 21 /(ken — 1o), is as follows. There
are two simple eigenvalues py 9 = 1, and there exist €9,b,C > 0 such that for all
e € (0,g9) the complementary part As of A is exponentially damping, i.e., for all

m € N we have
A5 x0 < Ce™", (5.12)

Proof. The operator L1=DF(U,,) : X,, = X, is clearly bounded. Using Lemma
5.1 and, e.g., [Paz83, Theorem 3.1.1] it follows that L=A(0y+110y)+L1=L(0,)+ L1
generates a Cp—semigroup in X,, and hence ¥, is well defined. In order to control
the evolution generated by A and its Floquet-spectrum we use the Ginzburg-Landau
formalism, now for the linear equation (5.11). As already said the results about the
Ginzburg-Landau formalism which are used here can be found in Appendix A.2.

For (5.11) we obtain by Lemma A.3 that after a time O(1/£?) every solution to
an initial condition of order O(1) in X,, can be written as

Voly) = 81/2q+,0(sy)e”“°y<p+(kc) + sl/zq,,o(ey)eikcygo,(kc) +cc.+eR(y) (5.13)
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where ||g;||gm+4, || R||x,, = O(1), and where @, (k.) € C* are the normalized eigen-
vectors of A(ik.) to the two eigenvalues with real part —e?ag. As a consequence
all iterations A™ with n = O(1/&?) applied to order O(1) initial conditions in X,
are of this form. This is a linear version of the so called attractivity of the set of
modulated pattern.

After this time we can use the approximation property of the system of cou-
pled generalized Ginzburg-Landau equations (2.11). In detail, let ¢ = (¢1,¢2) €
C([0, Tp], [H™+*(R)]?) be the solution of the linearization gr = L$1q of (2.11) around
the pulses with the initial conditions ¢|7—¢ = (¢+,0,¢-0) from (5.13), and let V' be
the solution to (5.11), V|;—¢ = V4. Then due to Lemma A.4 and Remark A.5 there
exist 9, C > 0 such that for all ¢ € (0,&9) we have

sup [[V(t,) — e29,(t. ) lIx,, < Ce,

0<t<Tp /<2

where here

Since, due to Theorem A.8, Re(\) < —by for A € spec(LS}), except for the two
simple eigenvalues A = 0, we find for some m = M;/e? that

IA™Vollx,, < Coe ™[ Vallx,,, + Ofe) < [[Vallx,/2

for € > 0 sufficiently small and My = O(1) sufficiently large, except of V; in a two-
dimensional subspace. Hence, except of two eigenvalues, A™ has no spectral values
of modulus bigger than 1/2.

This two-dimensional subspace is controlled with the help of the translation
invariance of (5.2). It follows that A has two simple Floquet multipliers p; o = 1
with associated eigenfunctions

Vi(y) = 0cUpu(y, key) = 01Upu(y, key)  and  Va(y) = OpUpu(y, key) = 02Upu (¥, key)

and so we have also controlled the two zero eigenvalues coming from the amplitude
equation (2.11).

Hence, we define some A-invariant projection P, onto span{Vj, 5}, i.e. AP, =
P.A. Then we define Ay = (1 — P.)A and proceed as above. We obtain with Lemma
A.4, Remark A.5 and Theorem A.8 again with some m = M;/c? that

AT x5, < Coe 05 ™0 4 O(e) < 1/2
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for ¢ > 0 sufficiently small and My = O(1) sufficiently large. Thus the proof of
Lemma 5.3 is complete. o

Proof of Theorem 2.9. We define the nonlinear flow ®,, : X,, — X,;, by the
solution V' (t) = &,V of (5.10) with V|,—; = V5. The long time dynamics of (5.10)
for small Vj can be described by iteration of the nonlinear Floquet operator I' =
@40 : U — X, where U is a neighborhood of 0 in X,,. The mapping I' exists for
U sufficiently small since N : X,, — X,, is locally Lipschitz and hence (5.10) has
a local strong solution V; cf. Lemma 5.2. Thus we consider the discrete dynamical
system

y(nt1) (y) = ry® (y). (5.14)

The linearization of I is given by V"*1) = AV, From Lemma 5.3 it follows that
there exists a two—dimensional center manifold M., for (5.14) which is of size O(¢!/?)
since ||N(V)||x,, = O(e%?) for ||V||x,, = O(¢'/?). This manifold is tangential to
span{Vi, Vo} and contains all small solutions of (5.14). Hence it coincides with the
family

{Upu(- — Yo, ke - —60) — Upu(+,-) : yo € R, 6 € [0,27)}

of fixed points of I' and the flow on M, is trivial. Now assume that
VO ) = Upu(- = 4o, ke - =0o) || x,, < Cre'/?

for some C; > 0 sufficiently small. Then for ¢ = mt, and some y; € R, 6; € [0,27)
we obtain

VO = Upa (- = 91 ke =61) = Upu (-, )llx < Cog'/2etmie
for m — oo. Hence
U, ) = Upna (- = mit = y1, ke - —not — 01)]|x,, < Coe/Ze, (5.15)

Since (5.10) has a local solution we obtain (5.15) for all t€[mty, (m + 1)ty) and all
meN. Considering only the first two components of U, the proof of Theorem 2.9 is
complete. O

6 Extensions and variants

Here we discuss how our results can be extended to optical fibers and comment on
the periodically forced Nonlinear Schrodinger equation as modulation equation and
on modulating multi-pulse solutions.
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6.1 Optical fibers

Under suitable assumptions our results also hold for the technologically relevant
problem of pulses in optical fibers. We give a brief overview of the changes in the
analysis compared to linearly polarized light in bulk material.

We model the optical fiber as a cylindrical domain 2 = R x ¥ of infinite extend
where ¥ is a bounded cross—section. The essential difference between (isotropic
and centrosymmetric) bulk material and an optical fiber is that the refractive index
n(zr,,w) =+/14 x1(z1,w) depends on the transverse coordinates z; = (y, z). For
circular symmetric fibers we have 7 = n(r,w), 1> = y*> + 22. The optical fiber
consists of a core and a cladding with refractive indices n(r,w) = fg(w) in the
core and 7(r,w) = fy(w) in the cladding, where Rengy(w) > Ren;(w). Typically
Re(ng — 1) /Reny < 1, and the transition between core and cladding may be sharp
and even discontinuous.

We thus consider Maxwells equation (1.1) in the form

AE(t, )=V (V - E(t, 7)) —0?E(t, ) (6.1)

t
= —8,:2/ x1(z1,t—7)E(7, %) dT — 02 Py (t, 7).

—0o0
For (6.1) typically one either seeks solutions that decay exponentially as |z, | — oo,
or chooses a number R, larger than the diameter of the fiber and prescribes Dirichlet
boundary conditions at |z, | = Ry, i.e. one considers (6.1) with

—

E(t,z,z,)=0for z, € 0%.

Then we proceed as above for bulk material and define some constitutive laws for
the polarization, where for instance x;(z,,w) is given by (2.2) but with coefficients
aj, bj;, ... depending on . In the modeling usually a so called mono—mode fiber is
considered where from the infinitely many solutions k;(w) of the dispersion relation
exactly one function is chosen. See [Gow93, Chapter 10| for concrete examples of
mono—mode fibers.

After such a choice we can proceed as above with the respective changes in the
function spaces. See, e.g., [NM92, Section 3b] for the derivation of the Nonlinear
Schrédinger equation for optical fibers, and [HCS99] for an example of how our
setup of spatial dynamics and center—manifold reduction is translated to vector—
valued problems over cylindrical domains.
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6.2 Periodically forced systems

Another interesting situation arises when in the original system there is a spatially
periodic linear response of order O(£?) with twice the spatial and temporal wavenum-
ber of the critical spatial and temporal wavenumbers k. and w,(k.). In optical fibers
this can be achieved using an external supporting electromagnetic wave, see, e.g,
[MS99]. Then assuming a coefficient in front of the cubic terms which is of order

1/2

O(1) and no longer O(¢), and scaling the solutions with ¢ instead of ¢*/2, a so called

parametrically forced Nonlinear Schrédinger equation (pfNLSe)
Orq = coqy + %1 + a1y + csqilqn
with coefficients ¢; € C can be derived as the modulation equation for wave packets.
The pfNLS is another example for a perturbed Nonlinear Schrodinger equation
that has exponentially stable pulse solutions, cf. [KS98|. Formally these again lead
to modulating pulse solutions in the original system. For a phenomenological model
this analysis has been carried rigorously in [Uec01]. From the above analysis it is
clear that the results also hold for the equations of nonlinear optics considered in
the present paper.
Finally, we remark that instead of a single pulse, multi-pulse solutions can be

considered. The existence and stability for the amplitude equations is also guaran-
teed by the results of [KS98].

A Appendix

A.1 Derivation of the generalized Ginzburg—Landau equation

The derivation of the amplitude equations by multiple scaling perturbation analysis
from the ansatz (2.10), i.e.,

u(t, z) = &'/, (t, x)
=&'2q, (% e(a—wt))es (t, 1) +e'2q_ (€7t e (w+1t))e_(t, x)+c.c.

with g2 = ¢+(T,X) € C and ey = ey(t,z) = eik=F0) i5 standard and based on
relations of the form

O 251/2((—i1/0 — ev10x +€°0r)qs ey + gl/? ((ivo + ev10x +€°0r)q-)e_ + c.c.,
Opu =¢'/? ((ikc+58X)q+)e+ +£1/? ((ikc+86X)q_)e_ +c.c..
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As an example for the somewhat less standard treatment of the memory terms

consider
o} / 2(t—1), e(@—wat+uy7))elker—r0(t=T)y 47 (A1)

:/ {Xl (1) [—1/3-1—2151/01/18)(4—521/%8?(—211/0623T + 0(53)]

0

(¢+ SVlTQX-F%&ZV%TQQXX_527_QT+0(53))eiUOT} drei(ter=vol

:{—VS}Z(I/O)q + & [2ivg X (vo) + 15X (vo)]ax

+&2 (1/12)2(1/0)—2i1/01/f)2'(VO)—i-%VOl/f)Z"(I/O))qXX

—&? (2inox(vo) +Hig X (vo) ) ar }ei(kcx_uot) ;

where in the third and the following lines ¢, ¢x mean ¢(7, X), ¢x(T, X) etc., and
where for example we used

/ x(7)re"” dr = / x(7)Te™T dT = —iy (v).
0

—0oQ0

Applying these formal calculations to the nonlinear terms gives for instance

o0
ed; / Xa(t=)u* (, 2) dr =e**[=305 X () (|04 + 720,170 ") g e
0

—(3v0)*X3(—=310) (|- * + T2y 170+ [*) g ]
+ c.c. + hs(t, z)

where h3(t,z) = O(%/2eTe™) + O(e7/?) with (m,n) € {(£1,0), (0, £1)}. Equating

5/2 5/2

the coefficients of £€°/?e, and £°/?e_ to zero gives the amplitude equations (2.11).

Remark A.1 Note that (A.1) makes sense if, e.g., ¢ € CJ((—o0,T), H"%(R)),
j = 0,1,2. Then for example in the third line of (A.1), O(?) means the leading
order term in the expression

g’ ~

giT?'CIXXX(Ta X) = E32umgrx (T, X) + O(e'), X € (X, X +enr)

for the remainder in the Taylor expansion of (T —&?7, X +ev;7). This is crucial for
the approximation properties of the Ginzburg-Landau formalism, see Lemma A.4
and Corollary A.6 below.
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Remark A.2 From (A1), (A2) we have the so called non resonance conditions

0 # nx(v) — x(nvy) = O(1),n # 1.
Due to these we may define an improved approximation

eyt ) = €y + N PP et =14 ||+ 0|~ 1],
m,neZ
where the sum goes over indices with (m, n) ¢ {(£1,0), (0,£1)}, and where the g,
are given by algebraic expressions in ¢.,q_ such that the so called residual

Res(c'/%1,) =
—'2(1 4 X0) 02y + €2 [020— 02 (X1 * 1) —270000bg—12a) —O2pu(£/%1),)

is (formally) of order O(¢7/2). This is the first step in the proof of an approximation
result, but we omit these lengthy calculations.

A.2 The validity result

The derivation of the gGLe (2.11) from Maxwell’s equations (2.4), (2.5) is purely
formal. There are counterexamples [Sch95, GS01|, where a formally derived am-
plitude equation makes wrong predictions, i.e., where the solutions of the origi-
nal system cannot be approximated via the solutions of the associated modulation
equation. However, for many relevant systems the approximation by amplitude
equations makes sense. This has been shown for instance for different problems in
[Cra85, Kal88, CE90, vHI1, Sch94]. Error estimates in Sobolev spaces have been
considered for instance in [MS95].

In the following we state the so called attractivity and a pproximation result for
our situation. Due to the special form of the nonlinearity ("eu® + u® ”) the proofs
are standard and trivial adaptions of existing proofs in the literature. Hence they
will be omitted or only briefly sketched. We only use these results in Section 5
for the description of the dynamics generated by the linearization around the pulse
solutions.

We mainly work with the extended system (3.4) in the first order formulation
(5.2) and use the following notations. As in Section 5 we fix m > 1 and let X, =
H™YR) x [H™(R)]”. By ¢+(k.) € C* we denote the normalized eigenvectors of
A(ik.) to the two eigenvalues with real part —e?g and analogous to (2.10) we define
the formal approximation

e/, (t,x) = €' (a4 (€% ez — mit))er i (ke) + 4 (€%t ez + mit))e—p— (k)] + cc.,

33



e+(t, z) = eikezF0t) Since the formulation of a nonlinear attractivity result ([Eck93])
for the set of modulated pattern would need the introduction of additional spaces
this result is only formulated for the linearized system (5.11).

Lemma A.3 For all C; > 0 there exist Co, Ty, £9 > 0 such that for alle € (0,¢) the
following holds. Let Vy € X, with ||Vo||x,, < Ci. Then there exist q,,q_ € H™(R)
and R € X, such that for the solution V' of (5.11) with V'|;—¢ = Vi we have

V(y, To/e?) = e [q (ey)e™¥ o (k) + ¢ (ey)e™¥ o (k) +c.c.] +eR(y)
with ||g+||gm+e < Cy and ||R||x,, < Co.

Proof. Similar to the proof of Lemma 5.1 but somewhat more complicated, the
proof of Lemma A.3 is based on the locally parabolic shape of \;(k) near k = k.,
on the fact that all other eigenvalues of A(9,) are strongly exponentially damped,
and on the fact that the perturbation DF(Up,,) does not disturb the desired mode
structure in Fourier space. For a proof of the analogous result in a similar problem
see [Uec01, Appendix B|. O

In the set of modulated functions the dynamics can be controlled via the asso-
ciated amplitude equations. For completeness this result is also formulated for the

nonlinear case.

Lemma A.4 For all C1,Ty > 0 there exist Cy,e9 > 0 such that for all € € (0,¢&p)
the following holds. Let (qy,q_) € C([0,Ty], [H™ (R, C)]?) be a solution of (2.11)
with supreo o 145 (¢ ) |[am+s < C1 and let Uy satisfy

1Us — €"2¢g|i=0l|x,. < Cie. (A.2)

Then the associated solution U of (5.2) with Ul—g = Uy can be approzimated by
ey, i.e.

sup ||U(t) — 61/2¢q(t)||xm < Che. (A.3)

te[0,Tp/e?]

Proof. To prove the result one first defines an improved approximation e/ 21Zq such
that the residual is of order O(c7/?), cf. Remark A.2. Due to the form of the
nonlinearity the result then follows by a simple application of Gronwall’s inequality
to the equation for the error eR = U — e/2¢, as in [KSM92], using Lemma 5.1 to
estimate the linear semigroup generated by A(0;). O
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Remark A.5 It is easy to see that the above theorem also holds if the linearization
around the modulating pulse is considered instead of the full nonlinear system.

For the sake of completeness we reformulate Lemma A.4 for the Maxwell-equations
(2.4), (2.5) in integro-differential form. The crucial point is that in order to obtain a
good approximation of solutions u of (2.4) to (2.5) via (2.10) it is necessary that not
only the initial conditions (u, u)|—o match with £/2(q,, ¢_)|r—¢ but also the initial
polarization. This is somewhat hidden in Lemma A.4 in the 3rd to 8th component
of Uy. It is formulated in the following corollary as a condition on the history uy,
from (2.5). We therefore consider the corollary also to be important in its own right.

Corollary A.6 Let (q,,q ) € C([0,Ty), [H°(R)]?) be a solution of the gGLe (2.11).
Then for all Cy > 0 there exist £9,Cy > 0 such that for all ¢ € (0,eq) the following
holds. Assume that

d
|| (uo — 51/2¢q|t:0, Uy — 51/2&¢q|t:0)“H2xH1 < Cie

and that for some functions qrp : (—00,0) — C that can be chosen in such a
way that the functions gy : (—o00, Ty defined by Ge(T) = qen(T) for T < 0 and
G+(T) = q+(T) for T > 0 fulfill

G € Ci((—o0, Ty], H*"%(R)), j=0,1,2,
we have

supe ' ||up — &', |g> < Cie where v = max {7ij, 6 i =1...n;}.
t<0 .7:15375

Then there exist a unique solution u of Mazwell’s equation on t € [0,Ty/e?] and this
solution fulfills

d
sup  ||(u — ¥4y, Opu — Y2 —aby) || moxmr < Cae. (A.4)

0<t<Tp /> dt
Remark A.7 Note that we do not assume ¢4 5, to be solutions of the gGLe (2.11).
Moreover, note that also in the derivation of the gGLe from Maxwell’s equation in
integro-differential form we need to assume that we can continue (¢, ,¢_) smoothly

to T < 0, cf. Remark A.1.

Proof. The assumptions of Corollary A.6 imply (A.2) with m = 1. From (A.3) we
obtain (A.4) by considering only the first two components of U(t). O
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A.3 Stability of pulses in the modulation equations

It is the purpose of this section to prove the existence and stability of pulses in the
system of nonlinear coupled gGLe which we write as

Orqy = L1qy+Ny(q1)+F(g4,9-), Orq-=L_q +N_(q-)+F_(q4,9-), (A.5)

where
Lygy = 0%y +coqss  Ni(ay) = eslgs gy + eslas gy,
Fi(qy,9-) = calToe 1@’ + cole 1,101,
and similarly for L_, N_ and F_. Moreover, we write @ = (¢4+,q9-), L = (L4, L_),
N =(N_,N,), and F = (F,,F.).

Theorem A.8 There exist an open set P C R” such that for (o, ca, c3,c5)EP the
following holds. There ezxists an wy=w (o, Co, c3,¢5)>0 such that (A.5) has a two-

parameter famaily
My = {(@4 puw, (X — Xo)el®,0) : X,€R, 0,€[0,27)} (A.6)

of pulse solutions. Moreover, for ¢ > 0 sufficiently small these pulses are exponen-
tially orbital stable, i.e., there exists a constant by > 0 such that the following holds.
For all Cy > 0 there exists a C; > 0 such that from

1Q0,-) = (@4puw, (- — Xo)e, 0) ||l gm < C

for some Xo€R, 6y€0,27), it follows that

IQ(T, ) = (¢ puws (- = X1)e™, 0) | < Coe™"
for some X;€R, 6,€(0,27).

Proof. The existence of solutions to (A.5) is obvious. For the stability we consider
the linearization around a pulse solution Qpy = (¢4 puw,,0), i.e., we set Q@ = Qpu+V
and obtain

0,V =LV + DN(Qp)V + DF(Qpu)V.

From Theorem 2.5 we know that for the V,-part we have two zero eigenvalues
and that the rest of the spectrum is strictly in the left half plane. If we ignore
DF(Qpu)V the system decouples and the V_-part reduces to 6;V_ = L_V_ and so
the exponential stability of V_ = 0 follows since Recy = ay < 0.
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In order to estimate the term DF(Qp,)V we consider the variation of constant
formula

V(t) = MV (0) + /0 t M=) DE(Qpu(s))V (s) ds,

where eM? is the analytic semigroup generated by M = L + DN(Q,,). A typical
term which comes up in the computation of the time-1-map is given by

1
/ P09 o1 s a2V (5) ds
0

1
- / / (=g, 1=8) @5 puw, (y—2015/2) V- (3, 8) dy s,
0 R

where (G is the associated Greens function to L_. This expression is estimated by

1 2
/(/ /G(x—y,1—5)\q+,pu7w+(y—2yls/6)\2V(y,s)dyds) dzx
kR \Jo Jr
1 2
S/ (/ /G(za1_5)|Q+,pu,w+(l‘_z_2yls/6)|2dZd‘S) dx sup |V_(y,8)|2
r \Jo JR

yER,s€[0,1]
1 2
</ ( / f(x—m/e)ds) de sup |Vo(y5)P
R 0 yER,s€[0,1]

<Ce? sup  |V_(y,9)|?
y€R,s€[0,1]
for ¢ — 0 since f is a smooth function due to the spatial localization of the pulse
and the exponential decay of the Green’s function in space.
For ¢ > 0 sufficiently small the nonlinear stability then immediately follows by
using the smoothing properties of the linear semigroup with the help of the center
manifold theorem. O
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