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Abstract

We consider the validity of the Ginzburg-Landau equation in pattern forming systems with
time periodic forcing. Beside the proof of an approximation result for a model problem
we extend the possibility for the derivation of the Ginzburg-Landau equation to arbitrary
frequencies in time by a modified ansatz.

1 Introduction

Our investigations are motivated by electro-convection in nematic liquid crystals, the
paradigm for pattern formation in anisotropic systems [10, 27, 6]. In this experiment
[4] nematic liquid crystals with negative or only mildly positive dielectric anisotropy
are sandwiched between two glass plates with transparent electrodes subject to some
external time-periodic electric field, see Figure 1. Liquid crystals are often called
the fourth state of matter, because they combine properties of a liquid, like the flow
behavior, with such of solids, especially the anisotropy. In nematic liquid crystals the
rod-like molecules point at an average in the same direction and can be influenced by
an electric field. If the amplitude of the applied alternate current voltage is above a
certain threshold the trivial spatially homogenous time periodic solution gets unstable
and bifurcates into spatially periodic patterns.

Figure 1: Roll solutions in nematic crystals. The director field is almost parallel to
the plates. The external time-periodic electric field is perpendicular to the plates.

The mathematical analysis of the creation and interactions of such patterns is
based very often on the reduction of the governing partial differential equations to
finite or infinite-dimensional amplitude equations which are expected to capture the
essential dynamics near the bifurcation point. The most famous amplitude equation
occurring in such a setup is the so called Ginzburg-Landau equation. It is derived
by multiple scaling analysis and describes slow modulations in time and space of the
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amplitude of the linearly most unstable modes. The Ginzburg-Landau equation has
been derived for example for reaction-diffusion systems and hydrodynamical stability
problems, as the Bénard and the Taylor-Couette problem. For these examples the
Ginzburg-Landau equation has been justified as an amplitude equation by a number
of mathematical theorems, [3, 29, 8, 19, 21, 11, 12] also including approximation and
attractivity results. For an overview see [16]. Hence, the Ginzburg-Landau equation
really gives a proper description of these original systems near the bifurcation point.

The Ginzburg-Landau equation has also been used extensively to describe pattern
formation in nematic liquid crystals [27, 17, 30, 1]. However, the literature cited above
about the mathematical justification of the Ginzburg-Landau equation is restricted so
far to autonomous systems and is not covering the situation of nematic liquid crystals
due to the time-periodic forcing. Therefore, it is the purpose of this paper to justify
the Ginzburg-Landau equation also in case of a time periodic setup.

oblique

trivial solution

normal 

frequency

Voltage

rolls rolls 

Figure 2: The bifurcation diagram.

The Ginzburg-Landau equation occurs in the parameter region indicated in Figure
2 as ”normal rolls”. For the derivation of the Ginzburg-Landau equation in this
region in the existing literature it is assumed implicitly that the external electric field
oscillates with a sufficiently high frequency such that the governing partial differential
equations can be replaced by an effective autonomous system such that the usual
derivation of the Ginzburg-Landau equation applies.

Our approach is different. By a modified ansatz we remove the assumption of a
highly oscillating external electric field, i.e. we extend the possibility for the derivation
of a Ginzburg-Landau equation to arbitrary frequencies in time. However, in contrast
to the autonomous case the solutions of the Ginzburg-Landau equation then have to
be analytic. This is no serious restriction, since this is true for every t > 0 by the
smoothing properties of the Ginzburg-Landau equation, but it has to be assumed at
t = 0.

Due to the limited number of pages we restrict ourselves in the discussion of the
validity question to a model problem which has the essential features of the nematic
liquid crystal problem which are relevant for our purposes. We refer to a forthcoming
paper for the application of the theory to electro-convection in nematic liquid crystals.

The plan of the paper is as follows. In Section 2 we present our result in Theorem
2.1 for a scalar valued partial differential equation with time periodic forcing on the
real line. We prove that solutions of this original system can be approximated via the
solutions of the associated Ginzburg-Landau equation. This is the first time that the
Ginzburg-Landau formalism is justified in a non-autonomous situation. The proof of
this approximation result is given in a number of steps from Section 3 to Section 7.
The general situation is discussed in a number of remarks in Section 2. The proof
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of Theorem 2.1 goes along the lines of the autonomous case and reviews the basic
concepts.

Notation: Throughout this paper many different constants are denoted by the
same symbol C if they can be chosen independent of the small perturbation parameter
0 < ε� 1. Fourier transform is denoted by

(Fu)(k) = û(k) =
1

2π

∫

R

u(x)e−ikxdx.

2 The model

We consider

∂tu = −u+ β cos(ωt) − γ∂8
xu− u2(4∂2

x + ∂4
x)u+ u∂xu, (2.1)

with u(x, t) ∈ R, x ∈ R, and t ≥ 0. The three parameters satisfy β ≥ 0, ω 6= 0, and
γ > 0, but small. This model problem has the essential features of the nematic liquid
crystal problem which are relevant for our purposes. We have

a) a linear damping −u,
b) a time-periodic forcing β cos(ωt), in which β is the control parameter for the

amplitude and ω 6= 0 the fixed temporal wave number,
c) an 8th-order derivative term γ∂8

xu in which γ > 0 is constant and small. This
term makes the problem semilinear, and is only added to avoid functional analytic
difficulties which are not related to our purposes.

d) the nonlinear term −u2(4∂2
x + ∂4

x)u roughly corresponds to nonlinear viscous
stress in liquid crystals. This term is responsible for the Turing instability of the
trivial solution. Like for the electro-convection problem it will be proportional to β 2.

e) u∂xu models the convection term in the Navier-Stokes equations.
For the model problem we find the trivial, spatially homogenous, time-periodic

solution
u0(t) = (1 + ω2)−1β(cos(ωt) + ω sin(ωt)).

We set u2
0(t) = c̄ + c(t), where c̄ =

ω

2π

∫ 2π
ω

0
u2

0(t)dt is the mean value which is pro-

portional to β2. Note that u0(t) and c(t) have a vanishing mean value. We do this
to separate the equation for the perturbation v(t) = u(t)− u0(t) into an autonomous
and into an oscillating part. We get

∂tv = −v − γ∂8
xv − c(4∂2

x + ∂4
x)v (2.2)

−v2(4∂2
x + ∂4

x)v + v∂xv

−c(t)(4∂2
x + ∂4

x)v + u0(t)∂xv

−2u0(t)v(4∂
2
x + ∂4

x)v.

The first line contains the autonomous linear terms, the second line the autonomous
nonlinear terms, the third line the non autonomous linear terms, and the fourth line
the non autonomous nonlinear terms. To determine the stability of the trivial solution
we first consider the linearized autonomous part

∂tv = −v − γ∂8
xv + c(4∂2

x + ∂4
x)v. (2.3)
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We find the solutions
v(x, t) = eikx+λ(k,c)t,

where
λ(k, c) = −1 + 4ck2 − ck4 − γk8.

There are a critical c̄crit and a critical wave number kc > 0, such that λ(kc, c̄crit) = 0,
where λ(k, c̄) < 0, if c̄ < c̄crit. We are interested in the case c̄ > c̄crit and introduce
the small perturbation parameter ε > 0 by

c̄ = c̄crit + ε2 .

For ε > 0 sufficiently small, we have the typical situation for deriving a Ginzburg-
Landau equation. See Figure 3. Adding the non autonomous linear terms from (2.2)

-
6�

ε2

k

λ(k, c)

−kc kc

Figure 3: The curve k 7→ λ(k, c) for ε > 0

to (2.3) we find solutions (see below)

v(x, t) = eikx+λ(k,c̄)tv̂k(t),

with v̂k(t) = v̂k

(

t+
2π

ω

)

, i.e. the Floquet exponents of the linearization about the

trivial time periodic solution u0(t) are also given by λ = λ(k, c̄).
In order to handle arbitrary but fixed ω we modify the usual ansatz for the deriva-

tion of the Ginzburg-Landau equation to

ψA(x, t, ε) = (εA(X,T )eikcx+ϕ0(t) + c.c.) + O(ε2), (2.4)

where

X = ε(x+ ϕ1(t)) and T = ε2t.

Because of the oscillating terms we have changed the usual ansatz by introducing
functions ϕ0 = ϕ0(t) and ϕ1 = ϕ1(t). Inserting (2.4) into (2.1) and equating the
coefficients in front of the εmeni(kcx+ϕ0(t)) to zero shows

ϕ0(t) = (4k2
c − k4

c )

t
∫

0

c(τ) dτ + ikc

t
∫

0

u0(τ) dτ,

ϕ1(t) = (8k3
c − 4kc)i

t
∫

0

c(τ) dτ +

t
∫

0

u0(τ) dτ,
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and that A has to satisfy a Ginzburg-Landau equation (4.1) with highly oscillat-
ing coefficients which can be simplified further to an autonomous Ginzburg-Landau
equation

∂TA = c1A+ c2∂
2
XA− c3A|A|

2, (2.5)

with coefficients cj ∈ C.
Note that ϕ0 and ϕ1 stay bounded, but possess non vanishing imaginary parts.

Hence A which is evaluated at X = ε(x + ϕ1(t)) has to be analytic in a strip in the
complex plane. Our approximation theorem is as follows:

Theorem 2.1 Let δGL > 0 and A = A(X,T ) be a solution of the Ginzburg-Landau
equation (2.5) for T ∈ [0, T0], analytic in X in a strip SδGL

= {z ∈ C | |Imz| < δGL}
in the complex plane satisfying

sup
T∈[0,T0]

sup
z∈SδGL

|A(z, T )| <∞.

Then there are ε0 > 0 and C > 0, such that for all ε ∈ (0, ε0) we have solutions v of
(2.2) satisfying

sup
t∈[0,T0/ε2]

sup
x∈R

|v(x, t) − ψA(x, t, ε)| ≤ Cε2.

Remark 2.2 As a consequence of Theorem 2.1 the dynamics known for (2.5) can
be found approximately in the original system (2.2), too. The error of order O(ε2)
is much smaller than the approximation ψA and the solution v which are both of
order O(ε) for all T ∈ [0, T0] or t ∈ [0, T0/ε

2], respectively. This fact should not be
taken for granted: there are modulation equations (for an example see [22]) which
although derived by reasonable formal arguments do not reflect the true dynamics of
the original equations.

Remark 2.3 Like in the autonomous case [23] the approximation theorem as stated
above can be improved in a number of directions. However, the proof of an optimized
result would be very technical and beyond the scope of this paper.

Remark 2.4 In the autonomous case approximation and attractivity results have
been established by a number of authors, cf. [3, 29, 8, 18, 19, 21, 26] for model
problems, but also for the general situation including the Navier-Stokes equation.
Nowadays the theory is a well established mathematical tool which can be used to
prove stability results [28, 25], upper semi-continuity of attractors [15, 24] and global
existence results [20, 23].

Remark 2.5 To prove Theorem 2.1 we cannot directly use energy estimates because
they do not work on the long timescale of order O(1/ε2) due to quadratic terms in
(2.2). We have to use mode filters as in the autonomous case [18, 19] to separate the
error function into critical and stable modes.

Surprisingly there are two unexpected points.

Remark 2.6 First, in contrast to the existing literature by the modified ansatz (2.4)
we are able to remove the assumption of a highly oscillating external electric field,
i.e. we gain the possibility of deriving the Ginzburg-Landau equation for arbitrary
frequencies.
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Remark 2.7 Secondly, as a consequence of our approach in contrast to the au-
tonomous case the solutions of the Ginzburg-Landau equation have to be analytic.
However, this is no serious restriction, since this is true for every t > 0 by the smooth-
ing properties of the Ginzburg-Landau equation [26], but it has to be assumed for
t = 0.

Remark 2.8 The electro-convection problem in liquid crystals possesses two un-
bounded directions. Due to the anisotropy of the problem the instability takes place
at two non zero wave vectors ±kc ∈ R

2. The amplitude equation is then given by a
Ginzburg-Landau equation [1]

∂TA = c1A+ c2,X∂
2
XA+ c2,Y ∂

2
YA− c3A|A|

2,

with solutions A = A(X,Y, T ) ∈ C and coefficients c2,X , c2,Y ∈ C. Hence the restric-
tion to one unbounded direction is no restriction with respect to our purposes. For
the classical isotropic Bénard convection instability occurs at a ring of wave vectors
k ∈ R

2 satisfying |k| = kc ∈ R. Hence in two unbounded directions in the isotropic
case no longer a Ginzburg-Landau equation occurs.

Remark 2.9 For non small values of ε, i.e. away from the bifurcation point other
amplitude equations take the role of the Ginzburg-Landau equation. In general the
locally preferred patterns do not fit together globally, and so there will be some
phase shifts in the pattern which will be transported or transformed by dispersion
and diffusion. For the description of the evolution of the local wavenumber q of
these pattern phase diffusion equations, conservation laws and Burgers equation can
be derived. Recently, approximation results in the above sense have been proved in
[13, 14, 7]. However, there are a number of restrictions. The estimates only hold
locally in space and there is a global phase shift which cannot be estimated to be
small on the time scale under consideration, i.e. only the form of the solution, but
not its position can be approximated by these amplitude equations. These restrictions
do not apply for pattern which are perfect for x→ ±∞.

The rest of the paper contains the proof of Theorem 2.1. It goes along the lines of
the autonomous case and reviews the basic concepts.

3 Some preparations

The solution t 7→ v(·, t) of (2.2) defines a curve in an infinite-dimensional phase space.
This means that x 7→ v(x, t) for fixed t lies in a suitable function space. In order to
prove Theorem 2.1 we have to compare the distance between the curve t 7→ v(·, t)
and the associated approximation t 7→ ψA(·, t, ε) for each fixed t in the norm of the
phase space.

Sobolev spaces Hm equipped with the norm

‖u‖Hm =

m
∑

j=0

‖∂j
xu‖L2 , with ‖u‖2

L2 =

∫

R

|u(x)|2dx,

which turned out to be a good choice for the handling of partial differential equations
on finite domains are too small for our purposes. Fundamental solutions like constant
functions, spatially periodic functions, and fronts are not contained in Hm. It turned
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out that it is advantageous [19, 15] to work with the Hm
l,u-space of uniform local

Sobolev functions equipped with the norm

‖u‖Hm
l,u

= sup
x∈R

‖u‖Hm(x,x+1)

satisfying
‖Tyu− u‖Hm

l,u
→ 0 for y → 0,

where (Tyu)(x) = u(x + y). This space contains the missing functions and easily
allows to use Fourier transform. In Fourier space linear differential operators and
fundamental solutions of linear partial differential equations are multiplication op-
erators. In order to control these operators in the Hm

l,u-spaces we use the following
multiplier theorem.

Lemma 3.1 Let W1, W2 be some Hilbert spaces, m ∈ Z and k 7→ (1+k2)m/2M̂(k) ∈
C2

b (R, L(W1,W2)). Then the linear operator Ml,u : Hq
l,u(W1) 7→ Hq+m

l,u (W2) is bounded
for all q ∈ N0 with q +m ≥ 0 by

≤ c(q,m)‖(1 + | · |2)m/2M̂‖C2

b
(R,L(W1,W2)) ,

where c(q,m) is independent of M̂ .

Proof. See page 441/442 of [19].

We mainly use multiplier theory to separate the critical and non critical modes
by so called mode filters.

Fix δ > 0 smaller than kc/8 independent of 0 < ε � 1. Let χc be a C∞
0 cut off

function with values in [0, 1] and

χc(k) =

{

1, for k ∈ Ic = [−kc − δ ,−kc + δ]
⋃

[kc − δ , kc + δ],
0, for k ∈ R \ ([−kc − 2δ ,−kc + 2δ]

⋃

[kc − 2δ , kc + 2δ]) .

Then we define the mode filter for the critical modes by

Ecv = F−1χcFv .

The mode filter for the stable modes is defined by

Es = 1 −Ec .

According to the fact that Ec and Es are not projections we define auxiliary mode
filters Eh

c and Eh
s satisfying Eh

cEc = Ec and Eh
sEs = Es by

Eh
c v = F−1χh

cFv,

where χh
c is a C∞

0 -cut off function with values in [0, 1] and

χh
c (k) =

{

1, for k ∈ Ic = [−kc − 2δ ,−kc + 2δ]
⋃

[kc − 2δ , kc + 2δ],
0, for k ∈ R \ ([−kc − 3δ ,−kc + 3δ]

⋃

[kc − 3δ , kc + 3δ])

and by
Eh

s v = F−1(1 − χh
s )Fv,
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where χh
s is a C∞

0 -cut off function with values in [0, 1] and

χh
s (k) =

{

1, for k ∈ Ic = [−kc − δ/2 ,−kc + δ/2]
⋃

[kc − δ/2 , kc + δ/2],
0, for k ∈ R \ ([−kc − δ ,−kc + δ]

⋃

[kc − δ , kc + δ]) .

We will use that the critical part of the quadratic interaction of critical modes vanishes
identically due to disjoint supports in Fourier space, i.e.

Ec((Ecu) · (Ecv)) = 0 . (3.1)

With Lemma 3.1 we conclude

Lemma 3.2 The operators Ec and Eh
c are linear bounded mappings from L2

l,u into
Hm

l,u, i.e. for all m ≥ 0 there exist Cm ≥ 0, such that

‖Ecu‖Hm
l,u

+ ‖Eh
c u‖Hm

l,u
≤ Cm‖u‖L2

l,u
.

Proof: Using Lemma 3.1 shows

‖Ecu‖Hm
l,u

≤ C‖(1 + | · |2)m/2Êc(·)‖C2

b
‖u‖L2

l,u

≤ C‖u‖L2

l,u

using the compact support of Ec.

As a direct consequence we have

Lemma 3.3 The operators Es and Eh
s are bounded mappings in Hm

l,u, i.e. for all
m ≥ 0 there exist Cm ≥ 0 such that

‖Esu‖Hm
l,u

+ ‖Eh
s u‖Hm

l,u
≤ Cm‖u‖Hm

l,u
.

Our model (2.2) and the associated Ginzburg-Landau equation (2.5) are semilinear
equations, i.e. the local existence and uniqueness of the solutions follows by a standard
fixed point argument with the help of the variation of constant formula [9]. Thus, for
given A|T=0 ∈ Hm

l,u there exists a T1 > 0 and a solution A ∈ C([0, T1],H
m
l,u) of the

Ginzburg-Landau equation (2.5) for all m ≥ 1. Moreover, for given v|t=0 ∈ Hm
l,u there

exists a t1 > 0 and a solution v ∈ C([0, t1],H
m
l,u) of the model (2.2) for all m ≥ 4. As

a consequence the solutions of the Ginzburg-Landau equation (2.5) exist as a long as
they can be bounded in Hm

l,u for a m ≥ 1 and the solutions of the model (2.2) exist as
a long as they can be bounded inHm

l,u for a m ≥ 4. By the smoothing properties of the
linearized system the solutions are analytic for every T > 0 and t > 0, respectively.

Finally, we introduce the space

Cω
a = {u : Sa 7→ C | u analytic in Sa},

where Sa = {z ∈ C | |Imz| < a} equipped with the norm

‖u‖Cω
a

= sup
z∈Sa

|u(z)| <∞.
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4 Derivation of the Ginzburg-Landau-equation

The so called residual

Res(v) = −∂tv − v − γ∂8
xv − c(4∂2

x + ∂4
x)v

−v2(4∂2
x + ∂4

x)v + v∂xv

−c(t)(4∂2
x + ∂4

x)v + u0(t)∂xv

−2u0(t)v(2∂
2
x + ∂4

x)v

contains all terms which do not cancel after inserting the approximation into the
model (2.2). Hence, Res(v) = 0 if and only if v is a solution of (2.2). In this section we
mainly estimate the residual for the approximation (2.4). We recall X = ε(x+ϕ1(t))
and T = ε2t and refine the ansatz to

ψA(x, t, ε) = εA1(X,T )eikcx+ϕ0(t) + c.c.

+
ε2

2
A0(X,T ) + ε2A2(X,T )e2(ikcx+ϕ0(t)) + c.c. .

Equating the coefficient in front of εeikcx to zero shows

ϕ0(t) = (4k2
c − k4

c )

∫ t

0
c(τ)dτ + ikc

∫ t

0
u0(τ)dτ.

The integrals stay bounded due to the vanishing mean values of u0 and c. Equating
the coefficient in front of ε2eikcx to zero shows

ϕ1(t) = (4k3
c − 8kc) i

∫ t

0
c(τ)dτ +

∫ t

0
u0(τ)dτ.

Again the integrals stay bounded due to the vanishing mean values of u0 and c.
Especially, we have the O(1)-boundedness of the imaginary part of ϕ1.

Remark 4.1 The solutions of the Ginzburg-Landau-equation are analytic in a strip
of width δGL. Since |Im(X)| ≤ O(ε) � δGL the solution can be evaluated at the
position X = ε(X + ϕ1(t)).

Equating the coefficient in front of ε3eikcx to zero gives an equation of the form

∂TA1 = d1(
T

ε2
)A1 + d2(

T

ε2
)∂2

XA1 + d3(
T

ε2
)A1A0

+d4(
T

ε2
)A2A−1 + d5(

T

ε2
)A1A1A−1,

with time-dependent coefficients dj = dj(
T
ε2 ). In order to get an equation for A0 we

equate the coefficient in front of ε2e0kcx to zero. We obtain an equation of the form

d6(
T

ε2
)A0 = d7(

T

ε2
)A−1A1,

with

d6(
T

ε2
) = λ(0, c̄crit) = −1 6= 0.
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In order to get on equation for A2 we equate the coefficient in front of ε2e2ikcx to
zero. We obtain an equation of the form

d8(
T

ε2
)A2 = d9(

T

ε2
)A1A1,

with

d6(
T

ε2
) = λ(2kc) − c(t)(−16k2

c + 16k4
c ) + 2u0(t)ikc 6= 0,

which can be computed explicitly. Eliminating A0 and A2 in the equation of A1 shows
that A1 satisfies an equation of the form

∂TA1 = d1(
T

ε2
)A1 + d2(

T

ε2
)∂2

xA1 + d10(
T

ε2
)A1|A1|

2. (4.1)

Then for a given solution A of (4.1), we can construct A0 and A2 such that the
residual for the critical modes is of order O(ε4) and for the stable modes of order
O(ε3). This can be made rigorous with the help of Lemma 3.1, cf. [19].

Notation. If the approximation is constructed via the solutions of the au-
tonomous Ginzburg-Landau equation (2.5) it will be denoted with εψA in the fol-
lowing. If the approximation is constructed via the solutions of the non autonomous
Ginzburg-Landau equation (4.1) it will be denoted with εψB in the following.

Lemma 4.2 Let δ1 > 0 and C1 > 0. For all ε ∈ (0, 1) let A1 = A1(X,T ) ∈
C([0, T0], C

ω
δ1

) be a solution of (4.1) with sup
T∈[0,T0]

‖A1(·, T )‖Cω
δ1

≤ C1. Then we have a

C2 > 0 such that for all ε ∈ (0, 1) we have

sup
t∈[0,T0/ε2]

‖Es(Res(ψB))‖Hm
l,u

= O(ε3),

sup
t∈[0,T0/ε2]

‖Ec(Res(ψB))‖Hm
l,u

= O(ε4).

5 The non autonomous case

As a major step of the proof of Theorem 2.1 we show here that the solutions of
(2.2) can be approximated via the solutions of the non autonomous Ginzburg-Landau
equation (4.1).

Theorem 5.1 Let δ1 > 0 and C1 > 0. For all ε ∈ (0, 1) let A1 = A1(X,T ) ∈
C([0, T0], C

ω
δ1

) be a solution of (4.1) with sup
T∈[0,T0]

‖A1(·, T )‖Cω
δ1

≤ C1. Then there are

ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) we have solutions v of (2.2) satisfying

sup
t∈[0,T0/ε2]

‖v(·, t) − ψB(·, t, ε)‖Hm
l,u

≤ Cε2.

Proof. We write (2.2) as

∂tv = Λv +B(v, v) + C(v, v, v), (5.1)

with

Λv = −v − γ∂8
xv − c(4∂2

x + ∂4
x)v − c(t)(4∂2

x + ∂4
x)v + u0(t)∂xv,

B(v, v) = v∂xv − 2u0(t)v(4∂
2
x + ∂4

x)v,

C(v, v, v) = −v2(4∂2
x + ∂4

x)v.
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Inserting
v = εψc + ε2ψs + ε2Rc + ε3Rs ,

with Rc = Eh
cRc, Rs = Eh

sRs, ψc = Eh
c ψc, and ψs = Eh

c ψs gives, by using (3.1),

∂tRc = ΛRc + ε2Lc(R) + ε3Nc(R) + ε2Resc , (5.2)

∂tRs = ΛRs + Ls(Rc) + εNs(R) + Ress ,

where

Resc = ε−4Ec(Res(ψB)) ,

Ress = ε−3Es(Res(ψB)) ,

Lc(R) = 2Ec(B(Rs, ψc) +B(Rc, ψs)) ,

Ls(Rc) = 2EsB(Rc, ψc) ,

and where Nc(R) and Ns(R) satisfy

‖Nc(R)‖Hm
l,u

≤ C(Dc, Ds)(‖Rc‖Hm
l,u

+ ‖Rs‖Hm
l,u

)2,

‖Ns(R)‖Hm−4

l,u
≤ C‖Rs‖Hm

l,u
+ C(Dc, Ds)(‖Rc‖Hm

l,u
+ ‖Rs‖Hm

l,u
)2

as long as
‖Rc‖Hm

l,u
≤ Dc and ‖Rs‖Hm

l,u
≤ Ds , (5.3)

where C(Dc, Ds) is a constant depending on Dc and Ds independent of 0 ≤ ε � 1.
The constants Dc and Ds will be chosen later on independent of 0 ≤ ε ≤ 1. This
system is solved with initial datum (Rc(0), Rs(0)) = (0, 0). The solution of

∂tR = ΛR, R|t=τ = R0

is denoted with R(t) = K(t, τ)R0 which defines a linear evolution operator K(t, τ)
satisfying K(t, τ) = K(t+ 2π

ω , τ + 2π
ω ). In Fourier space we have

∂tR̂(k) = Λ(k)R(k) = λ(k)R̂(k) − d1(k)c(t)R̂(k) + d2(k)u0(t)R̂(k),

with constants dj = dj(k) which is solved by

v̂(k, t) = e
R t

0
λ(k)+d1(k)c(τ)+d2(k)u0(τ) dτ v̂(k, 0)

= eλ(k)ted1(k)
R t

0
c(τ)dτ ed2(k)

R t

0
u0(τ)dτ v̂(k, 0)

leading to the Floquet multipliers eλ(k) 2π
ω due to the vanishing mean values of c and

u0. As a direct consequence it follows: [19]

Lemma 5.2 There exist C, σ > 0 independent of 0 < ε � 1 such that we have for
the stable part

‖K(t, τ)Eh
s ‖L(Hm

l,u
,Hm

l,u
) ≤ Ce−σ(t−τ)

and
‖K(t, τ)Eh

s ‖L(Hm−4

l,u
,Hm

l,u
) ≤ C max(1, (t − τ)−1/2)e−σ(t−τ).

Moreover, we have for the critical part

‖K(t, τ)Eh
c ‖L(Hm

l,u
,Hm

l,u
) ≤ CeCε2(t−τ).
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We apply the variation of constant formula to (5.3) and obtain

Rc(t) =

∫ t

0
K(t, τ)Eh

c (ε2Lc(R) + ε3Nc(R) + ε2Resc)(τ)dτ ,

Rs(t) =

∫ t

0
K(t, τ)Eh

s (Ls(Rc) + εNs(R) + Ress)(τ)dτ .

With Si(s) := sup0≤t≤s ‖Ri(t)‖Hm
l,u
, (i = s, c) we find, by using (5.2) and

(

∫ t

0
C max(1, τ−1/2)e−στdτ

)

= O(1)

independent of t > 0, that

Ss(t) ≤ CSc(t) + ε(CSs(t) +Cs(Dc, Ds)(Sc(t) + Ss(t))
2) + CRes,

≤ CSc(t) + 1 + CRes,

if
ε(CDs + Cs(Dc, Ds)(Dc +Ds)

2) ≤ 1. (5.4)

Similarly, we find

Sc(t) ≤ ε2
∫ t

0
C(Sc(τ) + Ss(τ)) + εCs(Dc, Ds)(Sc(τ) + Ss(τ))

2 + CResdτ,

≤ ε2
∫ t

0
C(Sc(τ) + Ss(τ)) + 1 + CResdτ,

if
εCs(Dc, Ds)(Dc +Ds)

2 ≤ 1. (5.5)

Using the above estimate for Ss(t) finally shows

Sc(t) ≤ ε2
∫ t

0
C(Sc(τ) + 1 +CRes)dτ.

Gronwall’s inequality yields

Sc(t) ≤ C(1 + CRes)T0e
CT0 =: Dc

for all t ∈ [0, T0/ε
2]. Then by the estimate for Ss(t)

Ss(t) ≤ CDc + 1 + CRes =: Ds.

We are done, if we choose ε0 > 0 so small that for all ε ∈ (0, ε0) the conditions (5.4)
and (5.5) are satisfied.

6 Comparison of the Ginzburg-Landau equations

Obviously the Ginzburg-Landau equation (4.1) is useless for constructing approxi-
mations for the solutions of (2.2) since it still contains the small parameter ε in a
singular way. We expect that for ε→ 0 only the average of the dj will play a role and

12



that it is sufficient to consider an autonomous Ginzburg-Landau equation. There-
fore, it is the purpose of this section to compare the solutions of the autonomous
Ginzburg-Landau-equation

∂TA = c1∂
2
XA+ c2A+ c3A|A|

2, (6.1)

with the solutions of the non-autonomous Ginzburg-Landau-equation

∂TB = (c1 + c4(
T

ε2
))∂2

XB + (c2 + c5(
T

ε2
))B + (c3 + c6(

T

ε2
))B|B|2, (6.2)

with highly oscillating coefficients cj for j = 4, 5, 6 satisfying

cj(t) = cj(t+ 2π/ω) and

2π/ω
∫

0

cj(t)dt = 0.

We prove

Theorem 6.1 Let δ > 0 and let A ∈ C([0, T0], C
ω
2δ) be a solution of (6.1). Then

there exist C, ε0 > 0 such that for all ε ∈ (0, ε0) equation (6.2) possesses solutions B
satisfying

sup
T∈[0,T0]

‖A(·, T ) −B(·, T )‖Cω
δ
≤ Cε2 .

Proof. We introduce the error function R by B = A+ ε2R which satisfies

∂TR = ΛR+ 3C(A,A,R) + 3ε2C(A,R,R)

+ε4C(R,R,R) + ε−2Res(A) ,

where

ΛR = (c1 + c4(
T

ε2
))∂2

XR+ (c2 + c5(
T

ε2
))R ,

3C(R1, R2, R3) = (c3 + c6(
T

ε2
))(R1R2R̄3 +R1R̄2R3 + R̄1R2R3) ,

Res(A) = c4(
T

ε2
)∂2

XA+ c5(
T

ε2
)A+ c6(

T

ε2
)A|A|2 .

We define the linear evolution operator S(T, τ) by R(T ) = S(T, τ)R(τ), where R(t)
solves

∂TR = ΛR , R|T=τ = R(τ) .

Then, we consider

R(T ) =
T
∫

0

S(T, τ)(3C(A,A,R) + 3ε2C(A,R,R)

+ ε4C(R,R,R) + ε−2Res(A))(τ)dτ .

We estimate

sup
T∈[0,T0]

∥

∥

∥

∥

∥

∥

T
∫

0

S(T, τ)ε−2Res(A)(τ)dτ

∥

∥

∥

∥

∥

∥

Cω
δ

≤ CRes,
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with CRes > 0 a constant independent of 0 < ε� 1. This follows for instance from

‖

T
∫

0

S(T, τ)c4(
τ

ε2
)∂2

XA(τ)dτ‖Cω
δ

≤ ‖ε2S(T, τ)c̃4(
τ

ε2
)∂2

XA(τ)|Tτ=0‖Cω
δ

+ ‖

T
∫

0

ε2S(T, τ)c̃4(
τ

ε2
)∂2

X∂τAdτ‖Cω
δ

+ ‖

T
∫

0

ε2(−S(T, τ)Λ(τ))c̃4(
τ

ε2
)∂2

XAdτ‖Cω
δ

≤ Cε2 ,

where ∂τ c̃4 = c4 and ∂τS(T, τ) = −S(T, τ)Λ(τ). The function c̃4 stays O(1)-bounded
due to the vanishing mean value of c4. The rest of the theorem then follows by a
simple application of Gronwall’s inequality.

Remark 6.2 It is easy to see that for every 0 ≤ δ ′ < δ we have ‖∂TB‖Cω
δ′

= O(1) by

expressing ∂TB by the right hand side of (6.2), but ∂2
TB = O(ε−2).

7 The final step

It remains to conclude Theorem 2.1 from Theorem 5.1 and Theorem 6.1. Let ψA

be the approximation constructed via the solution A of the autonomous Ginzburg-
Landau equation (2.5). Let ψB be the approximation constructed via the solution
B = A1 of the non-autonomous Ginzburg-Landau equation (4.1). Moreover, let v be
the solution of the model (2.2). From Theorem 5.1 we have

sup
t∈[0,T0/ε2]

‖ψB(·, t, ε) − v(·, t)‖Hm
l,u

= O(ε2).

From Theorem 6.1 and Cω
δ ⊂ Hm

l,u we have

sup
T∈[0,T0]

‖A(·, T ) −B(·, T )‖Hm
l,u

= O(ε2)

which implies
sup

t∈[0,T0/ε2]

‖ψB(·, t, ε) − ψA(·, t, ε)‖Hm
l,u

= O(ε2).

Hence, by the triangle inequality and Sobolev’s embedding theorem we have

sup
t∈[0,T0/ε2]

sup
x∈R

|ψA(x, t, ε) − v(x, t)|

≤ C sup
t∈[0,T0/ε2]

‖ψA(·, t, ε) − v(·, t)‖Hm
l,u

≤ C( sup
t∈[0,T0/ε2]

‖ψA(·, t, ε) − ψB(·, t, ε)‖Hm
l,u

+ sup
t∈[0,T0/ε2]

‖ψB(·, t, ε) − v(·, t)‖Hm
l,u

)

= O(ε2).

Therefore, we are done.
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