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Abstract

The variational principle for relaxed toroidal plasma-vacuum systems
with pressure is applied to axially periodic circular cylinders. More pre-
cisely, equilibria with cylindrical symmetry are investigated for their po-
tential to be a relaxed state. Such equilibria are characterized by their
pinch ratio µ, the jump δ of the pitch angle of the magnetic field across the
plasma–vacuum interface, a constant plasma pressure β, and the ratio l of
wall radius over interface radius. In the limit of an infinitely long cylinder
the necessary and sufficient condition for the equilibrium to be a relaxed
state defines one or two intervals of allowed values of the pinch ratio µ,
which depend still on the other parameters. These intervals are contained
in the interval known from Taylor’s theory, but are generally smaller. They
are shrinking with increasing plasma pressure β or increasing radius ratio
l. In particular, in the field-free limit case β = 1, for l exceeding the critical
value lc ≈ 4.983, or for a vanishing δ, these intervals are zero.

1 Introduction

Taylor’s theory of plasma relaxation [1, 2] describes the evolution of a magnetic
field in a conducting fluid with small but finite resistivity and viscosity in a
toroidal vessel with highly conducting wall in a particular simple way: the system
relaxes to the state of lowest energy compatible with conservation of the total
magnetic helicity and the total toroidal magnetic flux, and with the boundary
condition that the wall be a magnetic surface. In these relaxed states the magnetic
field B is a linear force-free field

curlB = µB
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with µ below some critical value µT , which depends only on the vessel. Con-
trary to the ideal situation in plasmas with finite resistivity individual flux tubes
can no longer be identified and the infinite number of invariants of ideal magne-
tohydrodynamics lose their significance. Total helicity, however, is not affected
by these topological considerations and should remain (at least approximately)
a conserved quantity. In fact, analytical considerations [3] as well as numerical
studies [4, chap. 7] show that total helicity dissipation is small compared to energy
dissipation.

The determination of relaxed states for arbitrary toroidal vessels is a formidable
task, which in general does not succeed in an explicit way (cf. [5]). However, in
axially periodic circular cylinders, representing large aspect ratio tori, relaxed
states as well as µT can be calculated explicitly [1, 6]. These calculations are
the basis of the successful application of the theory to various toroidal pinch
experiments [2], [4, chap. 9].

A plasma filling the vessel up to the wall is, of course, not realistic. There-
fore, in [7] relaxed states in plasma-vacuum systems have been investigated. For
simplicity it has been assumed that plasma and vacuum region are separated by
a sharp, highly conducting interface. The constraint of helicity conservation in
the plasma region then makes sense and a correspondingly extended variational
principle has been formulated. According to this extended theory relaxed states
are those states which minimize energy within the constraints of conserved total
helicity and total toroidal flux in the plasma region as well as of total toroidal
and poloidal flux in the vacuum region. (In a cylinder “toroidal” refers to the
axial direction and “poloidal” to the azimuthal direction.) In [8] the theory has
been further extended in order to include plasma pressure. The theory has been
applied to a plane slab in [7] and those symmetric equilibria have been identified
which are relaxed states. Here, symmetric means that all equilibrium quanti-
ties vary only in the direction perpendicular to the slab. It is the purpose of
the present paper to apply the extended variational principle to axially periodic
circular cylinders and to identify the cylinder-symmetric relaxed states in this
system. These results allow a comparison of the extended theory with Taylor’s
original theory without vacuum region.

Section 2 summarizes the extended variational principle and presents a slightly
modified version which is more appropriate for the subsequent application. Sec-
tion 3 presents cylinder-symmetric equilibria with suitable parametrization. In
section 4 the modified extended variational principle is applied to these equilibria
and a dispersion relation is derived, which describes the relaxed states in the
space of the equilibrium parameters. The evaluation of this dispersion relation
is more complicated than in Taylor’s theory and ultimately has to be done nu-
merically. The corresponding results are presented in the sections 5 and 6 for the
cases of vanishing and nonvanishing plasma pressure, respectively. An appendix
contains the modifications of the plane slab–results in [7] due to a nonvanishing
plasma pressure.
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It was a remarkable prediction in [7] that pressure-less equilibria with a smooth
interface and ergodic field lines on that surface are relaxed states only if the pitch
angle of the magnetic field is discontinuous across the interface. This prediction is
confirmed by the present analysis of pressure-less equilibria as well as of equilibria
with pressure.

Magnetic relaxation has also been considered in the somewhat artificial situ-
ation of a viscous but perfectly conducting fluid [9, 10]. In that case magnetic
helicity in any flux tube is a conserved quantity during the relaxation process. As
a consequence the topology of knots and links of magnetic lines is also conserved,
and it is argued in [10] that in relaxed states with nontrivial topology the presence
of tangential discontinuities is rather the rule than the exception. In our situation
the only conserved helicity is total helicity in the plasma region. Therefore, only
at the plasma-vacuum interface a tangential discontinuity may arise. We show
here that in the class of cylinder-symmetric plasma-vacuum equilibria all relaxed
states have in fact tangential discontinuities at the interface. No other examples
of discontinuous relaxed states are known to us.

2 Extended variational principle

We consider a highly conducting plasma in a toroidal region P surrounded by
a vacuum region V that extends to a rigid toroidal wall W. It is assumed that
plasma and vacuum are separated by a sharp interface I and that the interface
as well as the wall are perfectly conducting. This implies that the interface is
a magnetic surface and that magnetic fluxes through any loops in I or W are
conserved. According to [7, 8] relaxed states are states of lowest energy compatible
with conservation of total magnetic helicity and mass in P as well as of magnetic
fluxes through any loops in I or W.

Denoting with B the magnitude of the magnetic field vector B, with P the
plasma pressure and with γ = 5/3 the ratio of specific heats, the potential energy
of the plasma-vacuum system takes the form

U =

∫

P

d3τ
1

γ − 1
P +

∫

P∪V

d3τ
1

2
B2 .

With ρ denoting the mass density and observing that the quantity S = P/ργ is
constant in an isentropic ideal gas, the constraint of mass conservation takes the
form

M =

∫

P

d3τ P 1/γ . (1)

A gauge–invariant form of the helicity of the magnetic field B which is appropriate
for toroidal domains reads

H =

∫

P

d3τ A · curlA −
∮

Cs

dl ·A
∮

Cl

dl · A . (2)
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Here A is a vector potential for B and Cs, Cl are fixed loops the short and the
long way in I.

The variational principle now takes the more precise form: the first variation
of the functional U with respect to the variables A and P within the constraints
(1), (2) as well as the flux conditions mentioned above must vanish in a relaxed
state and the second variation has to be positive. Setting the first variation of
the energy functional

W := U − 1

2
µH − ν M, (3)

to zero, where µ and ν are Lagrangian multipliers, yields the following system of
equations (cf. [7, 8]):

curlB = µB, P = const in P, (4)

curlB = 0, div B = 0 in V, (5)

n ·B = 0, 〈P +
1

2
B2〉 = 0 on I, (6)

n · B = 0 on W. (7)

Here µ is a constant, 〈. . .〉 := . . . |V − . . . |P denotes the jump of a quantity
. . . across I and n is the outward pointing unit normal vector. The boundary
conditions on n · B at I and W (zero on I by assumption, and zero on W for
simplicity) are due to the flux constraints with respect to shrinkable loops in I
and W, respectively. The flux constraints with respect to non-shrinkable loops
fix the toroidal fluxes Ψ

(t)
P and Ψ

(t)
V in P and V, respectively, and the poloidal flux

Ψ
(p)
V in V:

Ψ
(t)
P = const, Ψ

(t)
V = const, Ψ

(p)
V = const. (8)

Given the vessel with boundary W the system (4)–(7) constitutes a free-boundary
problem for the determination of the relaxed state B together with the interface
I.

Denoting equilibrium quantities, i.e. a solution of the system (4)–(7), by cap-
ital letters and perturbations by lower case letters the second variation reads
[7, 8]

δ2W = δ2WP + δ2WI + δ2WV , (9)

δ2WP =

∫

P

d3τ (|curl a|2 − µ a∗ · curl a), (10)

δ2WI =

∫

I

d2σ |ξ|2 〈B n · ∇B〉 , (11)

δ2WV =

∫

V

d3τ |curla|2. (12)

The pressure variation has already been minimized to zero, ξ = n · ξ denotes the
normal displacement of I and ∗ means complex conjugation.
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In [7] the positivity condition on δ2W has been reformulated in terms of an
eigenvalue problem. This problem reads

curl curl a = α curl a in P, (13)

curl curl a = 0 in V, (14)

µ 〈B · curl a〉 + α 〈B n · ∇B〉 ξ = 0 on I, (15)

n × aP,V + ξBP,V = 0 on I, (16)

n × a = 0 on W. (17)

Plasma quantities and vacuum quantities at I are distinguished by subscripts P
and V whenever necessary. The equilibrium is a relaxed state if no eigenvalue α
is between zero and µ. The eigenvalue problem can likewise be written in terms
of the perturbing magnetic field b = curl a (cf. [7]). However, the eigenvalue
parameter enters the problem in a highly implicit form which makes its determi-
nation difficult if nontrivial geometries (such as cylindrical geometry considered
below) are involved. Therefore, we present yet a slightly different method for the
evaluation of the second energy variation.

We minimize δ2W with respect to a while keeping fixed the displacement
ξ of the interface and according to (16) the tangential components of a. No
normalization appears in this inhomogeneous variational problem and the Euler–
Lagrange equations for a read:

curl curl a = µ curla in P, (18)

curl curl a = 0 in V, (19)

n × a = 0 on W. (20)

Inserting (18)–(20) into the energy functional (9)–(12), δ2W reduces to an inter-
face integral of the form

δ2W =

∫

I

d2σ 〈ξ∗B · b + |ξ|2B(n · ∇)B〉. (21)

Here, ξ is a yet undetermined test function, whereas the perturbing magnetic
field b = curl a is determined by the following system of equations corresponding
to (18)–(20) and (16):

curlb = µb in P, (22)

curl b = 0, div b = 0 in V, (23)

n · bP,V = BP,V · ∇ξ + ξ n · curl(n × BP,V ) on I, (24)

n · b = 0 on W, (25)
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as well as the flux conditions

ψ
(t)
P =

∮

Cs

dl · (ξ n × BP ), (26)

ψ
(t)
V = −

∮

Cs

dl · (ξ n × BV ), (27)

ψ
(p)
V =

∮

Cl

dl · (ξ n × BV ), (28)

which are due to (8). In (26)–(28), Cs and Cl are loops in I the short and the long
way around the torus, oriented such that n, a vector along Cs, and a vector along
Cl, form a right-handed system, ψ

(t)
P is the flux of b through a disk-like surface

enclosed by Cs, ψ
(t)
V is the flux through an annular surface enclosed by Cs and a

similar loop in W, and ψ
(p)
V is the flux through an annular surface enclosed by Cl

and a similar loop in W.
The equilibrium is now a relaxed state if the reduced functional (21) is positive

for all normal displacements ξ of the interface and corresponding magnetic fields
b determined by (22)–(28).

The case without pressure as discussed in [7] is obtained by simply putting
P = 0 in the preceeding formulas. Taylor’s theory of plasma relaxation is obtained
by dropping the vacuum part in the energy functional (3) and keeping fixed the

interface, which is now the wall. The only conserved flux is now Ψ
(t)
P . The

equilibrium equations reduce to (4) with P = 0 and (7), the second variation
reduces to the plasma contribution (10), and the eigenvalue problem reduces to
(13) and (17).

3 Cylinder equilibria

An axially periodic circular cylinder is an approximation of a genuine torus which
is simple enough to allow explicit calculations. In comparison to a torus the
cylinder retains only part of the curvature effects; in contrast to a still rougher
approximation, a plane slab (cf. the appendix), the cylinder retains, however,
the magnetic axis. Moreover, the cylinder results can be compared with Taylor’s
original theory of plasma relaxation without vacuum region [1, 2].

In the following we consider solutions of the equilibrium equations (4)–(7)
with cylindrical symmetry, i.e., using cylindrical coordinates (r, θ, z) all scalar
quantities depend only on r. The plasma vacuum interface I and the wall W
are then spherical cylinders with (normalized) radius r = 1 and r = l > 1,
respectively. In order to simulate the topology of a torus all physical quantities
are assumed to be periodic in the z-direction with period L. The equilibrium
magnetic field has no radial component while the other two components are given
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by

Bθ =

{ √
1 − β J1(µr) 0 ≤ r ≤ 1 ,

(J1(µ) cos δ + J0(µ) sin δ)/r 1 ≤ r ≤ l ,
(29)

Bz =

{ √
1 − β J0(µr) 0 ≤ r ≤ 1 ,

J0(µ) cos δ − J1(µ) sin δ 1 ≤ r ≤ l .
(30)

Here, J0/1 denote Bessel functions of the first kind of order 0/1, δ measures the
jump of the pitch angle of the magnetic field across the interface and β is related
to the pressure constant P by

β =
2P

B2|r=1+

=
2P

J2
0 (µ) + J2

1 (µ)
. (31)

Observe that the magnitude of the vacuum magnetic field at the interface B2|r=1+

does never vanish. The parameter β may vary in the interval [0, 1], where the
boundaries describe a force-free field (β = 0) and a field-free plasma (β = 1). For
later use we note the relation

〈B ∂rB〉
∣

∣

∣

r=1
= (J2

1 (µ) − J2
0 (µ)) sin2 δ − 2 J1(µ)J0(µ) sin δ cos δ − β J2

1 (µ)

= −(J0(µ) sin δ + J1(µ) cos δ)2 + (1 − β)J2
1 (µ).

(32)

Up to an overall normalization, (29)–(31) is the only cylinder symmetric solution
of the equilibrium equations (4)–(7).

Computing the conserved quantities we obtain for the helicity

H = 2πL (1 − β)

(

1

µ
(J2

0 (µ) + J2
1 (µ)) − 2

µ2
J0(µ)J1(µ)

)

,

for the total mass

M = πL
(1

2
β(J2

0 (µ) + J2
1 (µ)

)1/γ

, (33)

and for the conserved fluxes

Ψ
(t)
P = 2π

√
1 − β J1(µ)/µ, Ψ

(t)
V =2π(J0(µ) cos δ − J1(µ) sin δ)(l2 − 1)/2,

Ψ
(p)
V = L(J1(µ) cos δ + J0(µ) sin δ) ln l,

where Ψ
(t)
P and Ψ

(t)
V denote the toroidal flux (z-direction) in the plasma and the

vacuum region, respectively, and Ψ
(p)
V the poloidal flux in the vacuum region.

Introducing the nondimensional conserved quantities (L and l have already been
made dimensionless with the plasma radius)

H̃ :=
2πH

LΨ
(t)
P

= µ
(J0(µ)

J1(µ)

)2

− 2
J0(µ)

J1(µ)
+ µ, (34)
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Ψ̃(t) :=
Ψ

(t)
V

Ψ
(t)
P

=
1√

1 − β

µ

J1(µ)
(J0(µ) cos δ − J1(µ) sin δ)(l2 − 1)/2, (35)

Ψ̃(p) :=
2πΨ

(p)
V

LΨ
(t)
P

=
1√

1 − β

µ

J1(µ)
(J1(µ) cos δ + J0(µ) sin δ) ln l, (36)

the four nondimensional equilibrium parameters µ, δ, l and β can equivalently be
expressed by H̃, Ψ̃(t), Ψ̃(p) and M̃ = M/πL. In fact, for |µ| < µT ≈ 3.112, which
is necessary for stability (see below), the right-hand side of (34) is monotonous in
µ. Thus, (34) can be uniquely solved for µ. Using (33), β can then be expressed
by M̃ and H̃, and δ and l are determined from (35) and (36).

4 Relaxed states in the cylinder

Whether the equilibrium solution discussed in the preceeding section is a relaxed
state or not depends on the second variation δ2W of the functional (3). In the
following we use its reduced form (21). Since the whole problem is homogeneous
in the variables θ and z, it suffices to consider test functions of the form

ξ(θ, z) = X ei(mθ+kz), m ∈ ZZ, k ∈ 2π

L
ZZ, X ∈ IC. (37)

Note that ξ needs only to be defined on the interface r = 1. The magnetic field
b is then determined by (22)–(28) and allows the ansatz

b(x) = b̃(r) ei(mθ+kz). (38)

Inserting (38) into (22) yields for fixed m and k the following system of ordinary
differential equations in P, i.e. for r ≤ 1:

i
m

r
b̃z − i k b̃θ = µ b̃r , (39)

i k b̃r −
d

dr
b̃z = µ b̃θ , (40)

1

r

d

dr

(

r b̃θ

)

− i
m

r
b̃r = µ b̃z . (41)

Inserting (38) into (23) amounts to (39)–(41) with a vanishing right-hand side
and the independent equation

1

r

d

dr

(

r b̃r

)

+ i
m

r
b̃θ + i k b̃z = 0 , (42)

valid in the vacuum region V, i.e. for 1 ≤ r ≤ l.
By substitution one obtains from (39)–(41) a single ordinary differential equa-

tion for b̃z,
[ d

dr
+

1

r

d

dr
−

(

K2 +
(m

r

)2)]

b̃z = 0, (43)
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where K2 := k2 − µ2. Once b̃z is determined, b̃r and b̃θ are given by the algebraic
equations

b̃r = − i

K2

(

µ
m

r
b̃z + k

d

dr
b̃z

)

, b̃θ =
1

K2

(

k
m

r
b̃z + µ

d

dr
b̃z

)

. (44)

Two linearly independent solutions of (43) are the modified Bessel functions Im(x)
and Km(x) with x:=Kr. Note that Im(x) is regular at x=0 but Km(x) is not
[11].

In the plasma region P eqs. (43), (44) are equivalent to (39)–(41) as long as
K 6= 0; thus for K 6= 0 the eigenfunctions, regular at r = 0, in P take the form

b̃Pr = −iNP

(µm

Kx
Im(x) +

k

K
I ′m(x)

)

, (45)

b̃Pθ = NP

(km

Kx
Im(x) +

µ

K
I ′m(x)

)

, (46)

b̃Pz = NP Im(x) . (47)

The prime means differentiation with respect to the argument and NP is a nor-
malization constant yet to be determined. For K = 0 the cases m 6= 0 and m = 0
have to be distinguished. For m 6= 0, one obtains after some algebra

b̃Pr = −iNP k
( µ2

|m| + 1
r|m|+1 + |m| r|m|−1

)

, (48)

b̃Pθ = NP µ
( µ2

|m| + 1
r|m|+1 − |m| r|m|−1

)

, (49)

b̃Pz = 2NP µ
2 r|m|, (50)

and in the case m = 0

b̃Pr = −iNP k r, b̃Pθ = NP µ r, b̃Pz = 2NP . (51)

It is not hard to verify that for k 6= 0 eqs. (43), (44) with µ = 0 describe solutions
in the vacuum region V as well. For 1 ≤ r ≤ l we obtain

b̃Vr = −iNV

(

I ′m(x) + cmK
′
m(x)

)

, (52)

b̃Vθ = NV
m

x

(

Im(x) + cmKm(x)
)

, (53)

b̃Vz = NV

(

Im(x) + cmKm(x)
)

, (54)

with x=kr andNV a normalization constant. The coefficient cm := I ′m(kl)/K ′
m(kl)

has been determined from the boundary condition (25). The special case k = 0
is directly determined from (39)–(41) and (25). For m 6= 0 this yields

b̃Vr = −iNV

r

(

(r/l)m − (r/l)−m
)

, (55)

b̃Vθ =
NV

r

(

(r/l)m + (r/l)−m
)

, (56)

b̃Vz = 0 , (57)
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and for m = 0
b̃Vr = 0, b̃Vθ = N θ

V /r, b̃Vz = N z
V . (58)

Equation (24) can be used to relate the normalization constants NP/V to the
amplitude X of the displacement ξ of the interface, cf.(37). Observing that the
second term on the right-hand side of (24) always vanishes, and using (29), (30)
and (45), (52), we calculate

NP = −X
√

1 − β K2 um
k (µ)

µmIm(K) + kKI ′m(K)
, (59)

NV = −X um
k (µ) cos δ + vm

k (µ) sin δ

I ′m(k) + cmK ′
m(k)

, (60)

where

um
k (µ) := k J0(µ) +mJ1(µ), vm

k (µ) := mJ0(µ) − k J1(µ). (61)

Similar relations are obtained in the special cases K = 0 and k = 0, m 6= 0. Note,
however, that (24) does not provide any information in the case k = 0, m = 0.
In that case the normalization constants are determined by the flux conditions
(26)–(28),

NP = −X
√

1 − β µ
J0(µ)

J1(µ)
, (62)

N θ
V =

X

ln l

(

J1(µ) cos δ + J0(µ) sin δ
)

, (63)

N z
V =

2X

l2 − 1

(

J0(µ) cos δ − J1(µ) sin δ
)

. (64)

In all other cases these conditions contain no additional information.
If (46), (47), (53), (54) together with (59), (60) and the equilibrium quantities

(29), (30) and (32) are inserted in (21), δ2W takes the form

δ2W = δ2Wm
k (µ, δ, l, β)

= 2π L |X|2
{

Fm
k (µ, δ, l) + (1 − β)[Gm

k (µ) + J2
1 (µ)] +H(µ, δ)

} (65)

with

Fm
k :=

(um
k (µ) cos δ + vm

k (µ) sin δ)2

fm(k) gm(k, lk)
, (66)

Gm
k :=

um
k (µ)(k um

k (µ) − µwm
k (µ))

k fm(K) + µm
, (67)

H := −(J0(µ) sin δ + J1(µ) cos δ)2, (68)

and

fm(x) := x
I ′m(x)

Im(x)
, (69)
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gm(x, y) :=
(I ′m(y)K ′

m(x)

I ′m(x)K ′
m(y)

− 1
)(

1 − I ′m(y)Km(x)

Im(x)K ′
m(y)

)−1

, (70)

as well as
wm

k (µ) := µ J0(µ) − fm(K) J1(µ) . (71)

The quantities um
k (µ) and vm

k (µ) are defined in (61) and K is the square root
with positive real part of K2 = k2 − µ2. The special cases K = 0 and k = 0
(each with the further distinction m = 0 and m 6= 0) need not be considered
separately. As it turns out all these cases are already contained in (65) if one
takes the appropriate limits K → 0 and k → 0. Thus, the equilibrium solution
(29), (30) is a relaxed state if and only if for all m ∈ ZZ and all k ∈ 2π

L
ZZ we have

δ2W > 0.
Due to the complexity of δ2W the evaluation of this criterion has to be done

numerically. However, a number of simplifications and general statements can
be made beforehand. Let us begin with noting some properties of the functions
fm and gm following from those of the modified Bessel functions Im and Km

[11]: fm is an even, monotonically increasing function on the positive real axis
with fm(0) = m and fm(x) ∼ x for x → ∞. Especially for m = 0, we have
f0(x) ∼ x2/2 for x→ 0. For fixed l > 1, gm(x, lx) is a positive and even function
of x with the limits gm → 1 for x → ∞ and gm → (l2m − 1)/(l2m + 1) if m 6= 0
and g0 → l2 − 1 for x → 0. These properties imply, in particular, that Fm

k is a
nonnegative and hence stabilizing term. H is obviously nonpositive and Gm

k can
take either sign.

A first simplification is that δ2Wm
k need not be considered for all m ∈ ZZ;

m = 0 and m = 1 are sufficient. This follows from a different representation
of δ2W which allows the conclusion that the minimum of δ2W with respect to
m ∈ ZZ \ {0} is obtained for m = 1. This result is contained in Appendix B of
[12] and need not be repeated here. In fact, in [12] a slightly different functional
is considered; the modifications, however, do not affect the conclusion.

A second simplification arises if k is allowed to vary continuously over the real
line. Such a criterion corresponds to a cylinder of infinite length which is the the
large aspect ratio limit of an axisymmetric torus. For cylinders of finite length
the condition δ2Wm

k > 0 for m = 0, 1 and all k ∈ IR still represents a sufficient
condition for stability.

Next we consider the symmetries of δ2W with respect to µ, δ and k: δ2W is
invariant under the substitution

δ → δ + π (72)

as well as under the simultaneous substitutions

µ→ −µ, δ → −δ, k → −k . (73)

It is thus sufficient to investigate δ2W in the range µ ≥ 0, 0 ≤ δ ≤ π, k ∈ IR. A
further restriction on µ is well known from Taylor’s theory: consider the zeros of
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the denominator of G1
k. An obvious zero is obtained for k = −µ. Another one

may appear for |k| < µ. With x :=
√

µ2 − k2 the condition for a zero in this
k-range takes the real form

k x J0(x) + (µ− k) J1(x) = 0, (74)

which is precisely Taylor’s dispersion relation (cf. [2]). There are no zeros for
µ < µT ≈ 3.112 and there is always at least one zero kµ for any µ ≥ µT . The
obvious zero happens to be a zero of the numerator of G1

k, too, and G1
k remains,

in fact, bounded. For µT and kµT
=: kT ≈ 1.234, however, the numerator takes

the negative value (u1
kT

(µT ))2(k2
T −µ2

T )/kT , whereas the denominator approaches
zero from the positive side. Since in this limit all other terms in δ2W take finite
values we have for β 6= 1

lim
k→kT

δ2W 1
k (µT , δ, l, β) = lim

k→kT

G1
k(µT ) = −∞, (75)

which implies instability. It is easy to see that, in fact, instability prevails for all
µ ≥ µT . The field-free case β = 1 is considered below. It turns out to be at best
marginally stable.

It was a major finding in [7] that pressureless equilibria with a smooth interface
and ergodic field lines on that surface are relaxed states only if the pitch angle
δ of the magnetic field jumps across the interface. This property holds for the
present equilibrium with pressure as well. For δ = 0 we find

δ2W 1
k (µ, 0, l, β) ≤ 2π L |X|2

{

(u1
k(µ))2

f1(k) g1(k, lk)
+ (1 − β)

k (u1
k(µ))2

k f1(K) + µ

− (1 − β) u1
k(µ)

µw1
k(µ)

k f1(K) + µ

}

.

(76)

For β 6= 1, µ 6= µ0 ≈ 2.405, the lowest zero of J0, and k close to k0 :=
−J1(µ)/J0(µ), δ2W 1

k is dominated by the third term on the right-hand side of
(76), which takes both signs close to k0. Thus, with the above restrictions δ = 0
implies instability. For δ = 0 and µ = µ0 marginal stability can be obtained at
best.

In order to obtain a more complete description of the stability region in the
space of the parameters µ, δ, l and β we have evaluated δ2W numerically. More
precisely, δ2Wm

k (µ, δ, l, β) is minimized with respect to k ∈ IR for fixed values of
µ, δ, l and β, and for m = 0 and 1. The result is denoted by δ2Wm

min. Note that
δ2W simplifies considerably for m = 0, i.e.,

δ2W 0
k (µ, δ, l, β) =

k2

f0(k) g0(k, lk)
(J0(µ) cos δ − J1(µ) sin δ)2

+(1 − β)
(

J2
1 (µ)

K2

f0(K)
+ J0(µ)J1(µ) + J2

1 (µ)
)

−(J0(µ) sin δ + J1(µ) cos δ)2.

(77)
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The minimization procedure evaluates δ2Wm
k in the K-range −K ≤ k ≤ K,

starting with −K and using the constant k-step 4k. The procedure stops if a
negative value is found, otherwise the equilibrium is classified stable (with respect
to m). Typically we used K = 5, 4k = 0.005 for m = 0 and K = 20, 4k = 0.002
for m = 1. The minimizing k-value kmin always turned out to be of order one
(with one exception, see below). Larger k-ranges or smaller k-steps did not change
the sign of δ2Wm

min.
We present our results by indicating stable regions or lines of marginal stability

in the δ–µ–plane for fixed values of l and β, and separately for m = 0 and 1.
We first discuss pressureless equilibria (β = 0), which turn out to be the most
unstable.

5 Pressureless relaxed states

Figure 1a) presents the stable region (unhatched) in the δ–µ–plane with nondi-
mensional wall radius l = 1.5. The unstable region due to m = 1–modes (i.e.

a) b)

µ µ

δ δ

Figure 1: a) Stable region (unhatched) in the δ–µ–plane with l = 1.5 and β = 0.
Regions hatched from top left to bottom right are (m = 1)–unstable, regions hatched
the other way round are (m=0)–unstable. The figure has been produced by evaluating
δ2W for 200×200 points in the δ–µ–plane. In the minimization procedure with respect
to k we used K = 5, 4k = 0.005 for m = 0 and K = 20, 4k = 0.002 for m = 1. b)
Zero level lines of δ2W 1

min (corresponding to lines of marginal stability for µ < µ0) with
β = 0 and l = 1.5, 2, 3, 4, increasing inwards.

δ2W 1
min < 0) is hatched from top left to bottom right, that due to axisymmetric

modes (m = 0) is hatched from bottom left to top right. Obviously, the stabil-
ity region is predominantly bounded by m = 1; only close to the point (δ = 0,
µ = µ0), m = 0 adds a further restriction. In fact, δ2W 0

k is always stable for
β = 0 and 0 ≤ µ < µ0: with 2f0(x) ≤ x2 and J0(µ) > 0 for 0 ≤ µ < µ0 the
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second and third term in (77) allow the estimate

J2
0 (µ) K2

f0(K)
+ µJ0(µ)J1(µ) + J2

1 (µ) − (J0(µ) sin δ + J1(µ) cos δ)2

≥ J2
0 (µ)+J2

0 (µ)(1− sin2 δ)−J0(µ)J1(µ)(2 sin δ cos δ−µ)+J2
1 (µ)(1− cos2 δ)

≥ J2
0 (µ) + (J0(µ) cos δ − J1(µ) sin δ)2 > 0 ,

and hence δ2W 0
k > 0.

The point (δ = 0, µ = µ0) has another special feature. Numerically we find
minimizing values kmin for k of order 1 except at (δ = 0, µ = µ0), where kmin

becomes large. This corresponds to the fact that δ2Wm
k ∼ |k| for large |k| except

at (δ = 0, µ = µ0), as can be seen from (65)–(67).
Figure 1b) presents a series of zero level lines of δ2W 1

min with increasing l.
Below µ0 these lines are lines of marginal stability as follows from the above
remark. With increasing l the stable region shrinks to a “most stable point” in
the δ–µ–plane. From the symmetries (72), (73) follows that the stable region in
the δ–µ–plane is symmetric with respect to (δ = π/2, µ = 0). The “most stable
point” is thus (δ = π/2, µ = 0). It is reached for l = lc ≈ 4.983. Cylinder-
symmetric relaxed states with nondimensional wall radius greater than lc do not
exist.

Figure 2 illustrates the case of decreasing l. The most remarkable finding,

a) b)

µ µ

δ δ

Figure 2: Same as fig.1a) with a) l = 1.1 and b) l = 1.01.

which has no counterpart in plane geometry (cf. [7]), is an additional wedge-
shaped stability region in the upper-right corner of the stability diagram. With
decreasing l a (m = 1)–stable wedge “opens” at l ≈ 1.2. This wedge is, how-
ever, still (m=0)–unstable. With further decrease of l the (m=1)–stable wedge
increases, whereas the (m = 0)–unstable region decreases. At l ≈ 1.03 a com-
pletely stable wedge appears. In the limit of vanishing vacuum region (l → 1) the
(m= 0)–unstable region disappears and the stable wedge takes a limit position
marked by the points (δ ≈ 1.94, µ = µT ), (δ ≈ 2.52, µ = µT ) and (δ = π, µ = µ0).
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6 Relaxed states with pressure

The general case β 6= 0 has not been as thoroughly investigated as the pressureless
case. The overall impression is that the stability region always shrinks with
increasing β. This has been confirmed for a number of equilibria. However, it is
not obvious from the analytic form of δ2W and there is no simple relationship
between β and the other parameters, as we have in plane geometry (see the
appendix). Only the field-free limit case β = 1 is easy to treat. Minimization
with respect to m and k yields

δ2W 0
0 (µ, δ, l, 1) = −(J0(µ) sin δ + J1(µ) cos δ)2. (78)

Thus, there is instability for tan δ 6= −J1(µ)/J0(µ) and marginal stability other-
wise.

There is a remarkable difference between equilibria with and without pressure
concerning the connectivity of the main stable region. For β 6= 0 the (m= 0)–
unstable region is no longer restricted to the range µ0 ≤ µ ≤ µT (see fig. 3). In

a) b)

c) d)

µ µ

δ δ

µ µ

δ δ

Figure 3: Same as fig.1a) with l = 1.1 and a) β = 0.1, b) β = 0.4, c) β = 0.5, d)
β = 0.8.

fact, with increasing β the (m=0)–unstable region extends to lower values of µ,
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finally reaching the point (δ = π/2, µ = 0) for β = 1/2. The (m= 1)–unstable
region shrinks with increasing β qualitatively in the same way as with increasing
l to the “(m=1)–most stable point” (δ = π/2, µ = 0). This can lead to a doubly
connected stable region for β ≥ 1/2 as demonstrated in fig.3c). With further
increase of β the equilibrium becomes unstable even before the (m=1)–unstable
region has shrunk to (δ = π/2, µ = 0).

Let us, finally, consider the critical nondimensional wall radius lc beyond which
no cylinder-symmetric relaxed state exists. It depends now on β. For β ≤ 1/2
the “(m= 1)–most stable point” (δ = π/2, µ = 0) determines lc (as in the case
β = 0). Evaluating δ2W at that point yields

δ2W 0
min(0,

π

2
, l, β) = (1 − β) min

k

k2

f0(k)
− 1 = 1 − 2 β , (79)

δ2W 1
min(0,

π

2
, l, β) = min

k

( 1

f1(k) g1(k, lk)
+ (1 − β)

k2

f1(k)

)

− 1 . (80)

Equation (79) demonstrates that (δ = π/2, µ = 0) is for β < 1/2 always (m=0)–
stable, independently of l. Setting (80) to zero thus yields the critical curve lc(β)
(see fig.4). For β ≥ 1/2 the graph in fig. 4 still gives an upper bound on lc(β).

0 0.5 1
1

3

5
lc(β)

β

Figure 4: Critical nondimensional wall radius lc (solid line) versus plasma pressure β
for 0 < β ≤ 1/2, and an upper bound on lc (dashed line) for 1/2 < β < 1.

As expected lc(β) is a monotonically decreasing function of β, with lc(β) → 1 as
β → 1, and with a global maximum given by lc(0) = lc ≈ 4.983 (cf. section 5).

7 Conclusions

In this study the variational principle for relaxed plasma vacuum systems with
pressure has been applied to axially periodic circular cylinders. The emphasis
of the work is less on providing realistic stability boundaries for toroidal pinch
experiments than on a thorough exploration of the consequences of the varia-
tional principle in a nontrivial system. Systems with cylindrical symmetry are
simple enough to allow explicit calculations. Moreover, the cylinder results can
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be compared with Taylor’s original theory of plasma relaxation without vacuum
region. Still simpler systems, e. g. a plane slab as considered in [7], have serious
drawbacks. The magnetic axis is missing, and artificial boundary conditions have
to be used. Moreover, the dependence of stability boundaries on the equilibrium
parameters degenerates in an unrealistic way.

The over-all impression of our analysis is that relaxed states form a com-
plicated set in the space of all force-free plasma-vacuum states with cylindrical
symmetry. Nevertheless, a number of general features can be observed. Most im-
portant, there is no relaxed state without tangential discontinuity at the plasma-
vacuum interface. This result is in accordance with general ideas about the
relaxation process. However, as far as we know, it has not yet been demonstrated
in any system in a rigorous way.

If compared to the case without vacuum region the critical pinch parameter
of a plasma-vacuum relaxed state lies in an interval which is allways smaller
than that known from Taylor’s theory. This interval is shrinking with increasing
vacuum region or increasing plasma pressure. In particular, there is a critical ratio
of wall radius over interface radius (depending on the plasma pressure) beyond
which no relaxed states exist.

A Appendix

In the simplest possible geometry, the vessel is a topologically toroidal plane slab.
This situation, where all curvature effects are eliminated, has been discussed in
[7] for the case of vanishing pressure. We report here the modifications due to a
nonzero constant plasma pressure.

We use Cartesian coordinates (x, y, z), where x denotes the radial coordinate,
y the poloidal one and z the toroidal one. Physical quantities are assumed to be
periodic in y and z with periods Ly and Lz. The vessel is the domain 0 ≤ x ≤ Lx

with an inner wall at the plane x = 0 (simulating the magnetic axis) and the outer
wall at x = Lx. We assume at x = 0 the same boundary condition Bx = 0 as
at x = Lx. Additionally we require

∫ Ly

0
By dy = 0 at x = 0 in order to eliminate

the additional Neumann field present in a toroidal layer in comparison to a solid
torus.

The equilibrium to be considered depends only on the radial coordinate x.
The magnetic field has no radial component (Bx ≡ 0), and its poloidal component
vanishes at the “magnetic axis” (By = 0 at x = 0). If the plasma vacuum interface
is the plane x = L, then

By = BP sinµx, Bz = BP cosµx, (81)

for 0 ≤ x ≤ L (force-free field), and

By = BV sin(µL+ δ), Bz = BV cos(µL+ δ), (82)
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for L ≤ x ≤ Lx (vacuum field). Here, BP and BV are nonnegative constants
related by B2

V − B2
P = 2P with P denoting the constant plasma pressure, and δ

is an arbitrary angle which specifies the jump of the pitch angle of the magnetic
field across the interface. If the vessel (i.e. the three lengths Lx, Ly and Lz) is
given, then there are four nondimensional equilibrium parameters. These can be
chosen as the pinch ratio µL, the β-factor β = 2P/B2

V , the jump of the pitch
angle δ and the ratio l = (Lx − L)/L of vacuum over plasma layer thickness.

The evaluation of the stability criterion δ2W > 0 for the equilibrium (81),
(82) is completely analogous to the case without pressure (cf. [7]) and need not
be repeated here. In the limit of a thin slab the dispersion relation characterizing
the stability region in the parameter space takes the same form as in the case
without pressure with the only difference that the lengths ratio l is replaced with
l̃ := l(1− β), i.e. the equilibrium (81), (82) is stable if and only if the pinch ratio
µL is in the interval

µ−(δ, l̃)L < µL < µ+(δ, l̃)L,

where µ+(δ, l̃)L is the smallest positive root of the equation

l̃µL sinµL− 4 sin δ sin(µL+ δ) = 0

and µ−(δ, l̃)L := −µ+(−δ, l̃)L. Thus, the most remarkable finding in [7], i.e., that
stability implies a nonzero jump δ of the pitch angle, is preserved if pressure is
added. Nonzero pressure corresponds simply to an enlarged lengths ratio l, which
implies a shrinking stability region in the δ–µ–plane (cf. Fig.1 in [7]). The limit
case of a field-free plasma region (β = 1) corresponds to an unbounded vacuum
region (l = ∞), a situation which is known to be unstable.
Acknowledgments. The first author (R. K.) would like to thank G. Spies and D.
Lortz for numerous fruitful discussions.
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