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Abstract

The Lombardo–Imbihl–Fink (LFI) ODE model of the NO+NH3 reaction on a Pt(100) surface shows

stable relaxation oscillations with very sharp transitions for temperatures T between 404K and 433K.

Here we study numerically the effect of linear diffusive coupling of these oscillators in one spatial

dimension. Depending on the parameters and initial conditions we find a rich variety of spatio–

temporal patterns which we group into 4 main regimes: bulk oscillations (BO), standing waves (SW),

phase clusters (PC), and phase waves (PW). Two key ingredients for SW and PC are identified, namely

the relaxation type of the ODE oscillations and a nonlocal (and nonglobal) coupling due to relatively

fast diffusion of the kinetically slaved variables NH3 and H. In particular, the latter replaces the global

coupling through the gas phase used to obtain SW and PC in models of related surface reactions. The

phase waves exist only under the assumption of (relatively) slow diffusion of NH3 and H.

1 Introduction

Because of the deleterious effects of substances like NO in the atmosphere it is desirable

to reduce these substances. In [24] the catalytic reduction of NO with NH3 to the prod-

ucts N2 and H2O has been studied experimentally on a Pt(100) surface. This surface can

switch between two substrate configurations, a catalytically active 1×1 phase with a bulk–

like surface termination and a quasi–hexagonal reconstructed phase (”hex”) which is cat-

alytically inert. The stable state of the clean Pt(100) surface is the hex reconstruction but

above a critical adsorbate coverage the 1×1 phase is more stable and the reconstruction

is lifted. Thus an adsorbate-induced 1×1↔ hex phase transition is constituted. In [14]

a model for this reaction has been set up. Neglecting reaction intermediates like NH and

NH2 one arrives at a 7–dimensional system of ordinary differential equations (ODE) for

θ1×1
NO

, θhex
NO, θ1×1, θ

1×1
NH3

, θ1×1
O

, θ1×1
N

, θ1×1
H

, which correspond to, in that order, the local coverages

of NO on the 1×1–phase, of NO on the hex–phase, the fraction θ1×1 of the surface in 1×1–

phase, and to the local coverages of NH3, O, N and H on the 1×1–phase. We write the ODE

in abstract form as

d

dt
X = f(X; p, T ), X ∈ R

7, f = (f1, . . . , f7), (1.1)

where p ∈ R
11 is a vector of (fixed) temperature independent parameters. Moreover, (1.1)

contains 11 rate constants depending by Arrhenius-law on temperature T , which we therefore
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display explicitly. In p there are two external (tunable) parameters, pNO, and pNH3
, acting

as driving forces and corresponding to a constant supply of NO and NH3, respectively, from

the gas phase.

Similar to experimental data, the model shows oscillations in a temperature range from

404K to 433K. However, the oscillations in the model are strongly of relaxation type while in

the experiment they appear to be much more harmonic. In section 2 we plot typical periodic

orbits of (1.1), but we will not repeat in detail the properties of this ODE; see App.A for the

equations, and [14, 23] for discussion and detailed numerical analysis of (1.1). Here we study

numerically the effect of linear diffusive coupling of the ODE oscillators in one dimension,

i.e., we consider

d

dt
X(t, x) = f(X(t, x); p, T ) + M(T )∇2X(t, x), (1.2)

where M(T ) is the diagonal diffusion matrix depending on T . Depending on the parameters,

i.e., T and the diffusion constants D1×1
NO

, Dhex
NO

, DNH3
, DH (O and N are immobile in the

temperature ranges considered here and hence DO = DN = 0), we find 4 different regimes:

bulk oscillations (BO), standing waves (SW), phase clusters (PC), and phase–waves (PW).

Here BO means that the whole surface oscillates homogeneously in the limit cycle of (1.2),

while in both SW and PC the oscillations are organized into macroscopic areas of roughly

equal size in such a way that the phase changes from one area to the next in a regular way,

with phase shifts of half a period. Such macroscopic areas of equal phase will be called

clusters in the following. The difference between SW and PC is that in SW the phase–

pattern has an intrinsic spatial wave–length, while in PC the clusters have no intrinsic size

and grow until the whole domain is split into only 2 clusters. Here we follow [1, 18, 8, 3] in

the terminology, while sometimes both SW and PC are just called clustering. Both SW and

PC require substantial deviations from the periodic ODE orbits in particular at the cluster

boundaries, while in PW the phase changes smoothly and each individual oscillator is always

close to the periodic ODE orbit.

Due to the large number of parameters in the problem, the transitions between the differ-

ent regimes are rather delicate. The system is most sensitive with respect to the (relatively

small) NO diffusions on the 1×1 and the hex phase, respectively. This agrees well with the

analysis in [23] where it is shown that θ1×1
NO

, θhex
NO

and θ1×1 are the important dynamic variables

for (1.1) (in the oscillatory regime) while the remaining four are slaved. However, θ1×1 does

not diffuse, which gives NO–diffusion its special importance.

One effect of SW and PC is that both reduce the periods of oscillations of macroscopic

(i.e. spatially averaged) quantities by a factor of roughly 2. This might explain a mismatch in

periods [14, fig.7] between the experimentally observed oscillations and the numerical simu-

lations of (1.1). Moreover, while (1.1) has relaxation oscillations with very sharp transitions,

the averaged quantities oscillate more harmonically which also fits much better to the exper-

imental data.
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Of course, BO, SW, PC and PW (and the competition between these patterns) are also

very interesting from a theoretical point of view. Phase waves (and phase turbulence) for

oscillators close to a Hopf point are usually analyzed using phase diffusion equations; see [12,

section 4] for an introduction. However, relaxation oscillators may behave quite differently

under (weak) coupling than harmonic oscillators [22, 9]. This theory has been mainly devel-

oped using models related to neurobiology. In particular, for certain classes of weakly coupled

relaxation oscillators there are no PW solutions, while BO, SW and PC may be exponen-

tially stable [9]. In contrast, stationary solutions of diffusion equations (on large domains)

are at best diffusively stable [15], i.e., perturbations decay with an algebraic rate. Yet the

theoretical understanding of SW and PC is still quite limited. Additional to [22, 9] see [16,

section 5] and the references therein for a description of clustering (and chaos) in chains and

circles of bistable oscillators, containing some analytical results.

In chemistry, SW and PC have been intensively studied for the CO oxidation on Pt(110),

both experimentally and theoretically [1, 7, 8, 19, 18, 3, 5, 4]. Here the reaction–diffusion

models have considerably simpler (3 dimensional or, in a refined version, 4 dimensional) ODE

dynamics than (1.1), but additional to the surface diffusion there is a global coupling through

the gas phase in the spatially extended system. Moreover, external forcing [18] and/or global

delayed feedback [10, 3, 5, 4] have been used to control the pattern formation in this system.

Similarly, in [25] a global feedback has been used to obtain clustering in a reaction–diffusion

model of the Belousov–Zhabotinsky reaction with 2 dimensional kinetics.

In [23] we show that the ODE (1.1) can also be reduced to a 3 dimensional system

d

dt
y = g(y; p, T ), y =









θ1×1
NO

θhex
NO

θ1×1









, g(y) =









f1(θ
1×1
NO

, θhex
NO

, θ1×1, h(y))

f2(θ
1×1
NO

, θhex
NO

, θ1×1, h(y))

f3(θ
1×1
NO

, θhex
NO

, θ1×1, h(y))









(1.3)

for the slow variables y by adiabatic elimination of the fast variables z=(θ1×1
NH3

, θ1×1
O

, θ1×1
N

, θ1×1
H

).

Chemically, the key role of NO is due to the fact that in (1.1) the lifting of the hex recon-

struction proceeds through NO adsorption, i.e., NO induces the hex→ 1×1 phase transition.

Naively, we may then study the reaction diffusion problem

d

dt
y = g(y; p, T ) + Mred∇2y, Mred = diag(D1×1

NO
, Dhex

NO, 0). (1.4)

However, although the error between (1.1) and (1.3) is very small, obviously all the influence

of the (relatively fast) diffusion of NH3 and H is lost in going from (1.2) to (1.4), which

corresponds to (1.2) in the limit DNH3
, DH = 0. Here we find that SW or PC do not occur

in this limit or even for relatively slow diffusion of NH3 and H, and, moreover, that only for

slow or vanishing diffusion of NH3 and H we find PW. This shows that, additional to the

relaxation type of the oscillations, a key ingredient for SW and PC in (1.2) is a nonlocal (and

nonglobal) coupling due to the relatively fast diffusion of the kinetically slaved variables θ1×1
NH3

and θ1×1
H

.
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In sec.2 we show typical periodic orbits for (1.1) and in sec.3 we review results about weak

coupling of relaxation vs. harmonic oscillators. Section 4 contains preparatory remarks about

the diffusion constants, the numerical method and the choice of initial conditions for (1.2).

In sections 5 and 6 we present our main results. Conclusions and open questions are given

in sec.7. In App.A we present the ODE (1.1), and in App.B, related to (1.3), we comment

on adiabatic reduction in (1.2).

2 The periodic ODE–orbits

Figure 1 shows periodic orbits for (1.1) at temperatures T=410, 420, 430 K. The partial

pressures are pNO = 1.1×10−6 mbar and pNH3
= 4.7×10−6 mbar, as in [14]. The tem-
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Figure 1: (a) periodic ODE–orbits at T = 420K, (b) production rates at T = 420K, (c)

θ1×1
NO , θhex

NO , θ1×1, rN2
at T = 410, 430K; time in s, coverages are dimensionless, production rates rN2

,

rH2O in 1014cm−2s−1.

peratures were chosen for no particular reason, except that they are well in the oscillatory

regime (404K≤ T ≤ 433K) with stable relaxation oscillations. We will consider the reaction–

diffusion problem most thoroughly at T = 420K and only briefly comment on lower and

higher temperatures. Fig.1(a) shows all 7 dynamic variables, and (b) the chemically inter-

esting production rates rN2
= 0.5Nsk9(θ

1×1
N

)2/θ1×1 of N2 and rH2O = Nsk8θ
1×1
O

θ1×1
H

/θ1×1 of

H2O, where Ns = 1.3×1015 cm−2 is the concentration of surface sites.
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We repeat the most important conclusions from [14, 23]. As in [23] we divide a period

into four segments. The reason why we plot θ1×1 first is that the decay of θ1×1 in segment 1

sets the slowest time scale in the largest segment; here all other variables follow θ1×1 adiabat-

ically. This breaks down in segment 2, where adsorbtion of NO starts the hex→1×1 phase

transformation in segment 3. In segment 4 the so called ”surface explosion” occurs with a

rapid production of N2 and H2O. This leads to the build–up of an NHx,ad/Had layer, which

is unable to stabilize the 1×1 phase. This yields the slow relaxation to the hex phase in

segment 1 again. The different roles of the variables during the different segments and the

associated different time–scales are analyzed in more detail in [23].

In fig.1(c) we only plot θ1×1, θ
1×1
NO

, θhex
NO

and rN2
. Lowering the temperature from 420K to

410K has two main effect: the (average) fraction θ1×1 of the 1×1 phase increases, while the

amplitude of the oscillations and the reaction rates decrease. Increasing T to 430K has the

opposite effect. The period also depends on T but only slightly in the middle of the oscillatory

regime considered here. Below the lower threshold (T ≈ 404K) for oscillations the surface is

completely in the 1×1 phase (θ1×1 = 1), while above the upper threshold (T ≈ 433K) it is

in the hex phase (θ1×1 = 0). In both cases, the production rates rN2
and rH2O are zero.

For (1.2) two observations from fig.1 turn out to be most important. First, the smaller

amplitudes at lower temperatures yield smaller spatial gradients for oscillators with shifted

phases. Second, the transitions become less sharp for lower T ; see sec.6 and 7.

3 Weak coupling of relaxation vs. harmonic oscillators

Given an ODE d
dtX = f(X), X ∈ R

d, with an asymptotically stable periodic orbit γ with

period α, we can associate a scalar quantity φ called phase and defined by d
dtφ = ω = 2π/α

in such a (normalized) way that φ changes from 0 to 2π along one period of γ. Thus we

may assign a phase φq to every point q on γ. Next, φ can be extended in a natural way to a

neighborhood U(γ) ⊂ R
d of γ (a ”tube” around γ) by the method of asymptotic phase (see,

e.g., [12]): let p ∈ U(γ) \ γ, and let q ∈ γ be the unique point such that ‖p(t) − q(t)‖ → 0 as

t → ∞; then set φp = φq. The (d−1)–dimensional subsets (hypersurfaces) of U(γ) consisting

of points of equal phase are called isochrons.

Now let

d

dt
Xi = f(Xi) + εg(X1, X2), i = 1, 2, (3.1)

be a weakly coupled system of two such oscillators, where 0 < ε � 1 is the coupling strength.

Then we can introduce a slow time τ = εt such that (3.1) can be reduced (averaged) to

d

dτ
χ = H(χ) + O(ε), (3.2)

where χ = χ(τ) = φ2(τ) − φ1(τ) is the phase difference in slow time and H is a 2π–periodic

scalar function. Ignoring the O(ε) terms (i.e., setting ε = 0) in (3.2), each root χ∗ of H(χ) = 0
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corresponds to an in–phase solution of (3.1), which is stable if H ′(χ∗) < 0. For harmonic

oscillators, H is smooth and H(0) = 0 (and also H(π) = 0 but usually H ′(π) > 0). This is

the starting point of the derivation of the phase–diffusion equation [12, section4] in the limit

of infinitely many diffusively coupled oscillators, where in this continuum limit the (linear)

stability of BO can be evaluated from the associated dispersion relation.

Weakly coupled relaxation oscillators can behave fundamentally different. In particular,

let 0 < µ � 1 be the ratio of the slow to the fast timescale(s) in the relaxation oscillation.

Then the function H in (3.2) may become discontinuous in the limit µ → 0, with a negative

jump at χ = 0; see [9], where also explicit formulas for limµ→0 H are given. As a consequence,

solutions χ = 0 of (3.2) persist with a rapid convergence even for ε > 0. This implies that

these in–phase solutions with χ = 0 persist for (3.1), and moreover, that traveling phase–

waves do not exist for the generalization of (3.1) to (certain) fields of relaxation oscillators [9,

Cor.4.4]. Moreover, in [9], explicit formulas are given such that anti–phase solutions (χ∗ = π)

are exponentially stable. These results hold in the singular limit 0 < µ � ε � 1. Similar

results were obtained in [22] for 0 < µ, ε � 1 using the more geometric FTM (fast threshold

modulation) theory; see also [11] and the references therein.

In the present paper, we will not explicitly apply these results to (1.2). However, the

connection of the simulations of (1.2) to the theory above is striking: very rapid convergence

to in–phase (χ = 0) solutions (BO) or anti–phase (χ = π) solutions (SW or PC). This is

further discussed in sec.7.

4 Setup for the reaction–diffusion system

4.1 The diffusion constants

Surface diffusion constants are notoriously difficult to measure and the results of different

experimental methods for the same system often vary over orders of magnitude; see [20, 2] for

a review on the determination of diffusion constants from experiments and/or first principles.

For Pt(100)/H,N,O,NO,NH3 no diffusion data are available. Hence, here we approximate the

diffusion constants of the various species using, as usual, the Arrhenius–law Di = νe−Ẽi/RT ,

where R = 8.3144 J K−1mol is the universal gas constant, ν = 0.001 cm2s−1 is a common

prefactor, and where the activation energies for diffusion Ẽi in kJmol−1 were chosen as follows.

For NO1×1, NOhex, and NH3 we use the rather crude assumption that the activation energy

for surface diffusion often amounts to about 20% of the bond strength of the adsorbate-metal

bond. Using the values E1 = 37, E4 = 28.5, E5 = 18 kcal mol−1 from table 2 (page 19),

this yields Ẽ1×1
NO

= 31, Ẽhex
NO

= 22, ẼNH3
= 15 kJmol−1. For diffusion of N and H we may

use the experimental values [2] ẼN = 87 and ẼH = 18 kJmol−1 from the chemically similar

systems W(110)/N and Rh(111)/H. In the temperature range considered here, N, as well as

O with ẼO ≈ 150, cf.[2], may then be considered to be immobile, hence we set DN = DO = 0.

Moreover, in our problem we have D3 = D1×1 = 0 since the 1×1 ↔ hex transition is not
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process parameter Ẽ

(kJ mol−1)

value at 420K

(cm2 s−1)

NO–diffusion (1×1) D1 = D1×1
NO 28 3.3×10−7

NO–diffusion (hex) D2 = Dhex
NO 22 1.8×10−6

N.A. D3 = 0 N.A always=0

NH3–diffusion D4 = DNH3
15 1.4×10−5

O–diffusion D5 = DO N.A. always set to 0

N–diffusion D6 = DN N.A. always set to 0

H–diffusion D7 = DH 18 5.7×10−6

N.A. means not applicable

Table 1: The standard diffusion energies (SDE) and constants

diffusive but encoded in the ODEs (1.1).

We remark again that these diffusion energies are rough estimates only. Moreover, more

realistic models might need coverage–dependent diffusion energies, i.e. nonlinear diffusion

div(M(t,X)∇X) (the data in [2] was given at 0.1 local coverage). In fact, there are nonlinear

corrections (A.2) to the bonding energies E1 and E5, and the average E1 along the periodic

orbits is between 26.5 kJmol−1 (T = 410) and 28.3 kJmol−1 (T = 430). Thus, we take

the freedom to change Ẽ1×1
NO

from 31 kJmol−1 to 28 kJmol−1 in table 1, summarizing our

data. Henceforth, this data will be called standard diffusion energies (SDE), and will be our

starting point to study how changes in Di can change the behavior of the system.

Note that these diffusion constants differ quite significantly in magnitude, which is why

we call diffusion of NO1×1 and NOhex relatively slow and that of H and NH3 relatively fast.

In this sense (strictly speaking for D1×1
NO

= Dhex
NO

= 0) (1.2) is related to the model problem in

[13] where a field of oscillators is coupled by diffusion through a passive medium. Previewing

section 5, we remark that the ”typical pattern size” lp of SW for (1.2) with SDE at T=420

will be of the order of 0.01cm. Hence
√

DNH3
τ≈3.7×10−3cm and

√
DHτ ≈ 2.4×10−3cm,

where τ = 1s is our time–scale, are roughly of the magnitude as lp and diffusions of θhex
NO

and

θ1×1
N

introduce a nonlocal but also nonglobal coupling, where local (global) coupling would

correspond to
√

DNH3
τ � lp (

√

DNH3
τ � lp). On the other hand, we will find phase waves

for (1.2) for smaller DNH3
, DH, e.g., when DNH3

=DH ≈ 0.8×10−6 cm2s−1 (
√

DNH3
=
√

DH ≈
0.9×10−3 cm s−1), that is, when we approach the local coupling regime.

Henceforth, T , Ẽi and Di will be given without units; it is understood that T is in Kelvin

and that the diffusion energies are in kJmol−1 and the diffusion constants in cm2 s−1.

4.2 Numerical method and system size

To discretize (1.1) we choose a system size L (in cm), and consider n oscillators X(·, i)=X(·, xi)

at xi = idx, i=1, . . . , n, dx = L/(n−1), with periodic boundary conditions. The discretized
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system is then solved using a second order split–step method: we choose an effective time

step dt > 0, alternatingly integrate by dt the ODE–part using the linearly implicit solver

limex [6, section 6.4] (available online at www.zib.de/SciSoft/CodeLib/ivpode.en.html)

and the linear PDE–part d
dtX = M∇2X using an implicit Fourier spectral method; this is

followed by Richardson extrapolation in order to obtain a second order method and to have

error and time step control. Convergence in dx was checked by reducing dx by a factor of

two and comparison. In our simulations we use dx = 0.0005cm and the average effective time

steps were about dt = 0.001 ∼ 0.01 s (depending on T and the other parameters). Note that

the implicit Fourier time-stepping for the diffusion is always stable, while limex already uses

internal stepsize control. In fact, due to the rather small diffusion constants the stiffness in

(1.2) coming from the ODE–part is as bad as that coming from diffusion. The ODEs can be

integrated very efficiently using limex, and the difficulty here is the interplay between the

surface explosion in the ODE and diffusion.

During the integrations we also monitored the various mass balance constraints; the

simplest are 0 ≤ Xj(t, x) ≤ 1 for all t, x, j = 1, . . . , 7, but there are several more, e.g.,

θ1×1
NO

+ θ1×1
NH3

+ θ1×1
O

+ θ1×1
N

+ θ1×1
H

≤ θ1×1, for obvious reasons. For the ODE these conditions

are always fulfilled, but due to diffusion we have to introduce an error tolerance for them

in (1.2), which was chosen as δ = 10−4. This was only a problem for high temperatures:

for T ≥ 426 typical (nontrivial) solutions yield θ1×1
O

, θ1×1
H

≤ −δ and the integrations were

aborted.

The experimental data in [24] was reported for a sampled area of size about 1mm2. Here,

because we are in particular interested in SW and PC, we consider smaller samples (n=80,

dx = 0.0005 cm, and hence L=0.0395 cm in most of the simulations). Using n=80 gives

sufficiently many oscillators to show the mechanism and gives fast results with typically short

transient behavior which hence can be suitably plotted. Hence we consider these small scale

simulations a good starting point for a numerical exploration of the model, though the rather

few oscillators together with the periodic boundary conditions do introduce constraints; see

sections 5.3 and 5.4 for larger scale simulations and further discussion. On the other hand,

periodic boundary conditions have numerical advantages, and the obtained patterns can be

thought of clips from larger patterns. This is usually justified if the internal wavelength is

much smaller than the whole (unclipped) domain.

4.3 Choice of initial conditions and method of presentation

The initial conditions (IC) for (1.2) were chosen as localized perturbations of the point

Z0 = (0.03, 0.24, 0.22, 0.5×10−6, 0.01, 0.02) which is roughly near the end of segment 1 of

the periodic orbit γ(420), cf. fig.1. That means, we first assign X(t = 0, xi) = Z0 to all

oscillators, then choose k ∈ N , l ∈ {0, . . . , 7} and a ∈ R, and add a step of width 2k and
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amplitude a to the lth component in the middle of the domain, i.e., we set

Xl(t=0, xmid+i∗dx) = zl + a, i = n/2−k, . . . , n/2+k−1, xmid = (n/2−1)dx. (4.1)

Combinations of step-like perturbations in multiple components and at multiple x–positions

were also used but yield no essential new results which however become more difficult to

present.

It turns out that the BO solution XBO is stable in the parameter regime given by table 1.

Hence, in (4.1) we need sufficiently large k and/or a, depending on l, to push the system at

least transiently away from XBO. As should be expected from the ODE reduction (1.3), the

easiest way to perturb the system away from XBO is to introduce perturbations in θ1×1
NO

, θhex
NO

or θ1×1, i.e., to choose l ∈ {1, 2, 3}. Choosing l ∈ {4, 5, 6, 7} requires relatively large |a|,
which tends to violate the mass constraints above. For the sake of brevity we restrict to

perturbations in θ1×1 (l = 3), fix k = 4, and vary a. Note that this way we add a perturbation

to a non diffusive component and hence the system can only be driven away from from XBO

by coupling to the diffusive components.

We focus on plotting θ1×1(t, x) as the main diagnostic for (1.2). As explained in sec.2,

θ1×1 sets the timescale in the largest segment 1 of the ODE–orbits. Hence, for the reaction–

diffusion problem we expect that for given θ1×1 the remaining variables can roughly be read

from fig.1, at least at values in segment 1 of the ODE–orbit. This turns out to be true for

θ1×1
NO

, θhex
NO

, θ1×1
O

, θ1×1
N

, and some special care is taken for θ1×1
NH3

and θ1×1
H

due to their fast diffu-

sion. Moreover, θ1×1 gives easily comprehensible plots, which however will be complemented

with additional diagnostics like the chemically important spatial averages 〈θ1×1〉 and 〈rN2
〉,

where, e.g, 〈θ1×1〉(t) = 1
n

∑n
i=1

θ1×1(i, t).

5 Simulations at T = 420

5.1 Standard diffusion energies

Figure 2 shows greyscale plots of our first simulation of the PDE (1.2). The parameters

(a) θ1×1, zscal = 0.15, 0.7 (b) θ1×1
NO , zscal = 0, 0.4 (c) θhex

NO , zscal = 0, 0.3

Figure 2: Reaction–diffusion problem (1.2) at T=420, standard diffusion energies (SDE) from table 1,

dx=0.0005cm, n=80 (L=0.0395cm), IC according to (4.1) with a = 0.06: fast synchronization of the

whole surface; zscal as noted.

are T = 420, SDE (table 1), dx = 0.0005cm, n = 80 (hence system size L = 0.0395cm),
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and IC according to (4.1) with a = 0.06. This yields the BO solution XBO. Additional to

θ1×1 we also plot θ1×1
NO

, θhex
NO

. The greyscales are linear interpolations between zmin=black and

zmax=white. The effect of the diffusive coupling is to even out the small phase perturbation

introduced by the (small) perturbation of θ1×1 at t = 0. In particular, the convergence to

XBO is very rapid (only 3 ODE cycles), in accordance with the theory outlined in sec.3.

However, for slightly larger initial perturbation a = 0.1 (a = 0.07 is sufficient) the solution

does not relax to XBO but to a SW solution XSW, see fig.3. Here, the larger value of θ1×1 at

t = 0, x = xmid inhibits the NO adsorption; this then inhibits the 1×1↔ hex phase transition

at xmid until θ1×1 has sufficiently decayed at t ≈ 60, and eventually leads to the evolution

of a regular grid of phase–clusters. The surface organizes into areas where it is in a periodic

(a) θ1×1, zscal = 0.15, 0.8 (b) θ1×1
NO , zscal = 0, 0.4

(c) θhex
NO , zscal = 0, 0.3 (d) θ1×1

NH3
, zscal = 0, 0.13

(e) θ1×1
O , zscal = 0, 0.05 (f) θ1×1

N , zscal = 0, 0.05

(g) θ1×1
H , zscal = 0, 0.13 (h) profiles at t = 750

0

0.5

-0.02 0.02
0

0.05

-0.02 0.02

Figure 3: Same parameters as in fig.2 but with initial perturbation of amplitude a = 0.1; in (h)

the left panel shows (top down, i.e., decreasing in magnitude) θ1×1, θ
hex
NO , θ1×1

NO and the right panel

θ1×1
NH3

, θ1×1
H , θ1×1

N and θ1×1
O (≈ 10−6).

orbit near γ(420), but the phase of this periodic orbit changes in a regular fashion from one

area to the next. Here we remark again that by definition the solution in fig.3 is a SW, since

it has an intrinsic spatial wavelength (see sec.5.3), but that nevertheless for simplicity we call

areas of equal phase clusters.

The phase–shift is exactly π, i.e., half a period, cf. sec.3. The process is almost complete at

t ≈ 750, and for t > 1000 we have a perfectly periodic solution. There is a phase balancing,
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i.e., the area of the surface in each phase is equal. From θ1×1
NO

, θhex
NO in (b),(c) we see the

inhibition of NO adsorption at initial time, and how the evolution towards the SW looks

in these variables. In contrast to (a–c) where we have rather sharp interfaces between the

clusters, these are smoothed out for θ1×1
NH3

, θ1×1
H

in (d),(g) due to the fast diffusion of these

variables. The non diffusive θ1×1
O

, θ1×1
N

in (e,f) have sharp interfaces again. Finally in (h) we

plot the solution at t = 750. The right panel shows again that θ1×1
NH3

, θ1×1
H

are smoother than

the other variables.

In fig.4(a) we show θ1×1(t, i), i = 1, 8, 12, and in (b),(c) the averages 〈θ1×1〉, 〈rN2
〉 together

with the respective values θODE
1×1 , rODE

N2
from the ODE orbit. The evolution towards the SW

(a) θ1×1(t, xi), i = 1, 8, 12 (b) 〈θ1×1〉, θODE
1×1 (dots) (c) 〈rN2

〉, rODE
N2

(dots)

0.2

0.6

500 1000

0.2

0.6

500 1000

1

3

500 1000

Figure 4: Time series for fig.3, with comparison to ODE solution; (a) θ1×1(t, x1), θ1×1(t, x8) (dashed)

and θ1×1(t, x12)(dots).

can be well observed in 〈θ1×1〉 at about t = 600, where 〈θ1×1〉 starts to oscillate in half of the

period of the individual oscillators. This might explain why (after a temperature translation)

the periods measured experimentally are about half as long as the periods in (1.1) [14, fig.7].

The period of the oscillations in the PDE is somewhat longer than in the ODE, i.e., the SW

introduces a small time lag for each individual oscillator. Finally, the sharp peaks in, e.g.,

rN2
are smoothed out in 〈rN2

〉 which also fits better with experimental data [14, fig.3].

The ”phase–jumps” from one cluster to the next, together with the needed significant

decrease of amplitude (here, e.g., θ1×1(1) has higher amplitude than θ1×1(8) and θ1×1(12),

which ”see” two clusters) from the center of the cluster to its boundaries, have the important

consequence that this situation can never be described by a phase–diffusion equation (which

requires smooth changes in phase).

5.2 Dependence on the diffusion constants

Next we study how XSW depends on the diffusion constants (energies) and show a transition

between SW and PC. We start with the rather sensitive dependence on Ẽ1×1
NO

and Ẽhex
NO

. In

fig.5 we only show two simulations. In (a) we set Ẽ1×1
NO

= 30 (D1×1
NO

= 1.9 × 10−7), remaining

parameters and IC as in fig.3, and obtain a SW with 6 clusters, in contrast to the SW with

4 clusters in fig.3 with Ẽ1×1
NO

= 28. Here, as always, all diffusion energies are in kJmol−1 and

all diffusion constants in cm2 s−1. On the other hand, in (b) we set Ẽ1×1
NO

= 28 again but

Ẽhex
NO

= 24 (Dhex
NO

= 1.0×10−6), which yields only 2 clusters; for t > 750 the system evolves

further to 2 clusters of equal size, hence fulfilling the principle of phase balance. In fact,

11



(a) (Ẽ1×1
NO , Ẽhex

NO ) = (30, 22), 6 clusters. (b) (Ẽ1×1
NO , Ẽhex

NO ) = (28, 24), 2 clusters.

Figure 5: Influence of Ẽ1×1
NO and Ẽhex

NO on cluster size; θ1×1, zscal = 0.13, 0.9 (a), zscal = 0.18, 0.73 (b);

IC and remaining parameters from fig.3.

previewing sec.5.3 we remark that this is a PC solution since the cluster size is not intrinsic:

using larger scale simulations we find that the system again evolves to only 2 clusters.

The effect exemplified in fig.5 has been confirmed by several further simulations, using

different initial conditions, system sizes, and rather small changes in Ẽ1×1
NO

, Ẽhex
NO

: for SW,

larger Dhex
NO

gives smaller clusters, i.e., a smaller spatial wavelength, while larger D1×1
NO

gives

larger clusters or may induce a transition from SW to PC. Hence it is natural to call diffusion

of θ1×1
NO

stabilizing and diffusion of θhex
NO

destabilizing. In fact, increasing (decreasing) D1×1
NO

(Dhex
NO

) can switch from SW or PC to BO, and decreasing (increasing) D1×1
NO

(Dhex
NO

) acts the

other way round. In particular, it is possible to go from fully developed SW or PC to BO

by increasing (decreasing) D1×1
NO

(Dhex
NO

) by less than ±4 during the simulation. Finally we

remark that, as might be expected, for large Ẽ1×1
NO

(i.e. for small stabilization by diffusion of

θ1×1
NO

) or small Dhex
NO

(large destabilization by diffusion of θhex
NO

) there exists an irregular regime

where (small) clusters appear and disappear in a turbulent way. This regime, however, we

leave for future work.

The dependence on ẼNH3
and ẼH is somewhat less sensitive than that on Ẽ1×1

NO
, Ẽhex

NO
. In

a series of simulations with (mainly) lower diffusions of H and NH3 we found 2 effects. First,

near the parameter regime from table 1, decreasing DNH3
, DH increases the cluster size and

may induce a transition from SW to PC. Secondly, decreasing DNH3
, DH also destabilizes

XBO towards nontrivial solutions.

This is illustrated in fig.6, where we consider the joint effect of setting ẼNH3
=ẼH=25

(DNH3
=DH=7.8×10−7), remaining parameters as in fig.3. For initial perturbations of ampli-

tude a = 0.1 in (a) we obtain a PC solution (since we also obtain only 2 clusters for larger

domains), in contrast to the SW with 4 clusters in fig.3. Moreover, a further bifurcation

has occurred, and unlike in fig.5(b) the system does not eventually relax to 2 clusters of

equal size. Instead, we have oscillating clusters (OPC): the cluster boundaries oscillate with

a period much longer than the ODE period, as illustrated in fig.6(b), and this behavior goes

on forever. For initial perturbations with a = 0.05 in (c) there is no clustering. However the

system does not relax to XBO as in fig.2 either, but a nontrivial phase wave evolves. For

t > 750 the system is periodic with the wave profile that can be seen near t = 700; (d) shows

θ1×1
NO

from (c). Hence, while in fig.3 we have competition between BO and SW (depending

on the IC), here we have competition of PW and OPC. It is tempting to speculate that these

12



(a) a = 0.1, θ1×1, 2 clusters (PC), (b) with oscillating boundaries

(c) a = 0.05, phase wave (PW), θ1×1 (d) θ1×1
NO from (c).

Figure 6: ẼNH3
=ẼH=25, θ1×1, remaining parameters from fig.3, zscal=0.18, 0.73 (a,b), zscal=0.2, 0.7

(c), zscal=0, 0.4 (d)

phenomena are related.

As for the dependence on Ẽ1×1
NO

, Ẽhex
NO

, these effects have been confirmed in a series of fur-

ther simulations using different initial conditions, different values for Ẽ1×1
NO

, Ẽhex
NO

, and more-

over, using larger scale simulations. The effect of (artificially) setting DNH3
= DH = 0 will

be studied in sec.5.4.

5.3 The distinction between SW and PC

To illustrate and support our distinction between SW and PC we show the results of repeating

the simulations from fig.3 and fig.5(b) for a domain twice as large, i.e., n = 160. For SDE in

(a) θ1×1, SDE, zscal = 0.15, 0.8 (b) large time for (a), SW with 8 clusters

(c) (Ẽ1×1
NO , Ẽhex

NO )=(28, 24), θ1×1, zscal=0.18, 0.73 (d) large time for (c), PC

Figure 7: System size n=160, L=0.0795 cm, T = 420, initial conditions from (4.1) with a = 0.1; SDE

in (a), (Ẽ1×1
NO , Ẽhex

NO )=(28, 24) in (b).

fig.7(a,b) we see that (after a rather long transient) the system relaxes to 8 clusters. Hence,
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here the cluster–size is independent of n and the solution is a SW. The same happens, e.g.,

for (Ẽ1×1
NO

, Ẽhex
NO

) = (30, 22) (SW with 12 clusters in accordance with 6 clusters in fig.5(a)).

On the other hand, for (Ẽ1×1
NO

, Ẽhex
NO

) = (28, 24) the system needs a very long transient

t ≈ 4000 to relax to 2 clusters as in fig.5(b). Hence, here the cluster size is not intrinsic

and the solutions in fig.5(b) and fig.7(c,d) are PC. Similarly, it can be checked that also on

a larger domain the solution from fig.6(a,b) yields an OPC. Therefore, in theses regimes the

periodic boundary conditions and the system size do add significant constraints. These will

be even more important in the PW regime studied in sec.5.4.

5.4 Phase waves for vanishing diffusion of NH3 and H

In fig.6(c,d) we found phase waves for relatively small diffusion of NH3 and H. Here we consider

the extreme case of DNH3
= DH = 0, in particular because of the relation to the naively

reduced model (1.4). In order to minimize the effects of the periodic boundary conditions

we run large scale simulations n=160 and also increase dx = 0.001cm, hence L=0.159cm.

As usual, convergence in dx was checked. In fig.8 (a) with (Ẽ1×1
NO

, Ẽhex
NO

)=(28, 22) the initial

perturbation triggers two short counter propagating fronts. For large time we obtain a phase

wave pattern with a periodic profile. Figure 8(b-c) shows that in a different parameter regime,

(a)

(b) (c) (d)

Figure 8: DNH3
= DH = 0, n = 160 points, greyscale plots of θ1×1, zscal = 0.15, 0.75; (Ẽ1×1

NO , Ẽhex
NO ) =

(28, 22) in (a), (Ẽ1×1
NO , Ẽhex

NO ) = (31, 29) in (b-d).

we can also produce longer fronts (D1×1
NO

= 1.4 × 10−7, Dhex
NO

= 2.5 × 10−7). During a very

long transient, the short and straight initial fronts (b) bend and eventually spread over the

whole domain (c). Using even larger domains we find that for large time we always obtain

solutions as in (c), which hence should be seen as phase fronts and not as phase waves with

a periodic profile. Panel (d) shows 〈θ1×1〉 (top) and 〈rN2
〉 (bottom) in this front regime.

In spite of extensive numerical simulations we could not find SW or PC for DNH3
=DH=0.

The existence of PW in this regime does not contradict the results about non–existence of
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PW from [9], outlined in sec.3, but rather confirms them. This theory holds for 0 < µ �
ε � 1, and we expect µ � ε to be violated for the small coupling strength (via D1×1

NO
, Dhex

NO
)

considered in this section, or even for the situation in fig.6(c,d). The phase waves suggest a

description by a phase diffusion equation, and the periodic PW in fig.8(a) is very likely due

to a Turing bifurcation for this phase diffusion equation. However, we postpone this analysis

to future work, see sec.7.

6 Temperature dependence

Roughly speaking, lowering temperature has a similar effect as decreasing (increasing) D1×1
NO

(Dhex
NO

), i.e., it becomes more difficult to obtain clustered solutions. In fig.9(a,b) with T = 415

and SDE from table 1 we need an initial perturbation of amplitude a = 0.3 in order to push

the system away from XBO. As in fig.5(b) and fig.7(c,d) the solution depends on the system

size, i.e., also for larger domains we obtain 2 clusters, hence we have a PC solution. At

T = 410 in fig.9(c) the system relaxes back to XBO even for a = 0.4.

(a) T = 415, a = 0.2 (b) T = 415, a = 0.3, PC (c) T = 410, a = 0.4

Figure 9: BO vs. PC at lower temperature; SDE, θ1×1, zscal = 0.3, 0.8 in (a,b), zscal = 0.4, 0.9 in (c).

This behavior is somewhat counterintuitive since one might expect that less diffusion

makes XBO less stable and also leads to smaller clusters, hence SW rather than PC. On

the other hand, we have two processes which might counteract. First, the periodic ODE

orbit at T=415 has less sharp transitions and lower amplitude than at T=420. Second, as

noted in sec.5.1, the diffusions of NO1×1 (stabilizing), of NOhex (destabilizing) and NH3, H

(nonlocal coupling) play different roles; here all diffusion constant are lowered uniformly with

T (though in a nonlinear way). Therefore we redid the simulations in fig.9(a,b) with T=415

but using the diffusion constants from T=420, which yields qualitatively the same results.

This is a strong hint that the sharper transitions and the larger amplitudes in the ODE orbits

at higher temperatures are important for both SW and PC, and, moreover, favor SW over

PC.

For ẼNH3
= ẼH = 25, where at T = 420 we have competition between OPC and PW

(fig.6), the latter become dominant at lower temperatures. At T = 415 we obtain PW for

initial perturbations of amplitude a = 0.2, fig.10(a), while only for a = 0.3 we obtain OPC.

At T = 410, only PW remain for these lower values of NH3 and H diffusion; see fig.10(b)

with a = 0.5 for an example. As usual, these findings have been confirmed by several further

simulations.
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(a) T = 415, a = 0.2, θ1×1, zscal = 0.3, 0.8 (b) T = 410, a = 0.5, θ1×1, zscal = 0.4, 0.9

Figure 10: Dominance of PW at lower temperatures; (Ẽ1×1
NO , Ẽhex

NO )=(28, 22), ẼNH3
=ẼH=25.

Increasing temperature has the opposite effect. For instance, for T = 423 and SDE we

obtain a SW with 4 clusters for initial perturbation of small amplitude a = 0.02. However,

for higher T the numerics also become more and more difficult, i.e., dt has to be significantly

decreased, and at T = 426 the system fails (for SDE) in the sense that θ1×1
O

and θ1×1
H

fall

below the threshold −δ = −10−4 (cf. sec.4.2). Hence the integrations were aborted.

7 Discussion

Depending on temperature, the diffusion energies (constants) and the initial conditions we

obtained bulk oscillations (BO), standing waves (SW), phase clusters (PC), oscillating phase

clusters (OPC) or phase waves (PW) for (1.2). We found that diffusion of θ1×1
NO

(stabilizing

BO) and θhex
NO

(destabilizing BO) though small are the most sensitive parameters. The system

is somewhat less sensitive with respect to DNH3
, DH; decreasing these may lead to SW with

larger clusters or PC (with oscillating cluster boundaries) and also destabilizes BO towards

PW. For small DNH3
, DH no more SW or PC exist but only PW. In particular, the nonlocal

coupling by the relatively fast diffusion of NH3 and H is found to be a key ingredient for SW

and PC: it replaces the global coupling through the gas phase in related models [1, 7, 8, 18].

Changes of temperature first of all affect the periodic ODE–orbits. At high temperatures

they have a large amplitude and are highly anharmonic, which seems to be the second in-

gredient for SW and PC; at lower temperatures the orbits are less anharmonic and have a

smaller amplitude which seems to favor BO or (for smaller DNH3
, DH) PW.

Essentially, we have picked points in parameter space (rather few) and given phenomeno-

logical descriptions. Mathematical explanations, relating the observed phenomena to the

vector–field for the underlying ODE (1.1), seem rather difficult because of the complicated

structure of (1.1). The results fit well with the mathematical theory for coupled relaxation

oscillators [22, 9] outlined in sec.3. Hence, for a mathematical evaluation of, for instance, the

different roles of Ẽ1×1
NO

, . . . , ẼH it looks promising to follow, e.g., [9] and calculate the function

H in the pertinent generalization

d

dt
φi = H(φi−N , . . . , φi−1, φi, φi+1, . . . , φi+N ), i = 1, . . . , n, (7.1)

of (3.2) and study how H and hence the system depends on T, Ẽ1×1
NO

, Ẽhex
NO

, . . .. Here φi is

the phase of the ith oscillator and the nonlocal interactions N > 1 incorporate fast diffusion
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of NH3 and H. However, there are several difficulties in this approach. Technically, the

derivation of (7.1) is impaired by the fact that the right hand side of (1.1) is only piecewise

differentiable. More physically, in between the clusters in both SW and PC for (1.2) the

oscillations are quite far from the periodic ODE orbits; see, e.g., fig.4(a). Hence it not clear

whether (7.1) works in the SW/PC regime. On the other hand, it will be interesting to see

whether a phase diffusion equation approach (continuum limit n → ∞, dx → 0 in (7.1),

cf. sec.3) can be used to study, e.g., the instability of BO towards PW for lower diffusion of

NH3, H (fig.6(c,d), fig.8, fig.10).

Finally, it remains to study the 2–dimensional diffusion problem. In particular it will be

interesting to see how that relates to experimental data [24, 14]. Also, although we showed

that the role of global coupling through the gas phase in SW and PC is taken here by relatively

fast diffusion of NH3 and H, for comparison with experimental data it might be important

to add a global coupling through the gas phase to (1.2).

These questions –including the approach (7.1) to (1.2)– will be subject to future work.
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A The ODE

In order to make the paper sufficiently self contained, here we give the ODE (1.1); see [14, 23] for the

chemical origins of the various terms and discussion:

d

dt
θ1×1
NO =FNOpNO(θ1×1 − θ1×1

NO − 4θ1×1
NH3

) − k1θ
1×1
NO − k2

θ1×1
NO θ1×1

empty

θ1×1

+ k3θ
hex
NOθ1×1 , (A.1a)

d

dt
θhex
NO =FNOpNO(θhex − θhex

NO) − k3θ
hex
NOθ1×1 − k4θ

hex
NO , (A.1b)

d

dt
θ1×1 =















( d
dtθ

1×1
NO )/θ1×1

grow if d
dt

θ1×1
NO > 0 and θ1×1

NO ≥ θ1×1
growθ1×1 and θ1×1 < 1 ,

−k11(θ1×1 − θhex
def )(1 − c) if θ1×1 > θhex

def and c < 1 ,

0 otherwise ,

(A.1c)

d

dt
θ1×1
NH3

=FNH3
pNH3

(θ1×1 − 3θ1×1
NH3

− 1.6θ1×1
NO ) − k5θ

1×1
NH3

− k6

θ1×1
NH3

[θ1×1 − θ1×1
H − 2.5(θ1×1

O + θ1×1
N )]

θ1×1

+ k7

θ1×1
N θ1×1

H

θ1×1

, (A.1d)

d

dt
θ1×1
O =k2

θ1×1
NO θ1×1

empty

θ1×1

− k8

θ1×1
O θ1×1

N

θ1×1

, (A.1e)

d

dt
θ1×1
N =k2

θ1×1
NO θ1×1

empty

θ1×1

+ k6

θ1×1
NH3

[θ1×1−θ1×1
H −2.5(θ1×1

O +θ1×1
N )]

θ1×1

− k7

θ1×1
N θ1×1

H

θ1×1

− k9

(θ1×1
N )2

θ1×1

, (A.1f)
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d

dt
θ1×1
H =FH2

pH2

[θ1×1−θ1×1
H −2.5(θ1×1

O +θ1×1
N )]2

θ1×1

+ 3k6

θ1×1
NH3

[θ1×1−θ1×1
H −2.5(θ1×1

O +θ1×1
N )]

θ1×1

− 3k7

θ1×1
N θ1×1

H

θ1×1

− 2k8

θ1×1
O θ1×1

H

θ1×1

− k10

(θ1×1
H )2

θ1×1

. (A.1g)

The three conditions on the right hand side of (A.1c) have to be read top down and the first one

fulfilled determines the right hand side. The rate constants k1, . . . , k11 are determined by Arrhenius–

law ki = νie
−Ei/RT , where the νi and most of the Ei are constants, given in table 2. For E1 and E5

coverage–dependent nonlinear corrections are used in the form

E1 = E0
1 − 24(θ1×1

NO /θ1×1)
2, E5 = E0

5 − 30(θ1×1
NH3

/θ1×1)
2. (A.2)

The auxiliary functions in (A.1) are given by

θ1×1
empty = max

[

(θ1×1−
θ1×1
NO

θinh
NO

−θ1×1
O

θinh
O

), 0

]

+ max[(θ1×1
def − θ1×1

O ), 0],

c =

(

θ1×1
NO

θcrit
NO

+
θ1×1
O

θcrit
O

)

/θ1×1, θ1×1 + θhex = 1, θ1×1
def = θ1×1θdef , θhex

def = θhexθdef ,

and the further parameters are given in table 3.

B Adiabatic reduction

For illustration, we eliminate θ1×1
N from (1.2), i.e., we solve f5(X) = 0 for θ1×1

N and obtain

θ1×1
N = − α1 +

√

α2
1/4− β1,

α1 = (k7θ
1×1
H − k2θ

1×1
empty + 2.5k6θ

1×1
NH3

θ1×1
O )/k9,

β1 = k6θ
1×1
NH3

(θ1×1
H + 2.5θ1×1

O − θ1×1)/k9,
(B.1)

where we take the positive root for obvious reasons. This yields a system

d

dt
X̃ = f̃(X̃) + M̃∇2X̃, X̃=(θ1×1

NO , θhex
NO , θ1×1, θ

1×1
NH3

, θ1×1
O , θ1×1

H ), f̃=(f1, f2, f3, f4, f6, f7), (B.2)

where M̃ = diag(D1×1
NO , Dhex

NO , 0, 0, DN, DH). Fig.11 compares the solutions of (B.2) and (1.2) at

t = 750. The error even at this large lime is quite small, and in fact it is essentially due to a slightly

longer period for the solutions of (B.2). As noted, θ1×1
O (and in fact, all θ1×1

NH3
, θ1×1

O , θ1×1
N , θ1×1

H ) too can

0

0.5

-0.02 0.02

Figure 11: θ1×1
NO (×), θ1×1 (+) and θ1×1

N (∗) at t = 750 for the solution of (B.2), initial conditions and

remaining parameters from fig.3; the lines show the solution of (1.2).

be eliminated from (1.1), though it is algorithmically more complicated than the simple formula (B.1).

However, in the SW and PC regimes elimination of θ1×1
O yields a larger error, which must be attributed
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to the fact that in these regimes many oscillators are far away from γ(420) where elimination works

best. Finally, in spite of the simple formula (B.1) the speedup in integration from (1.2) to (B.2) is

very small. On the other hand, θ1×1
NH3

, θ1×1
H due to their fast diffusion could only possibly be eliminated

using a nonlocal reduction, which is of no computational benefit at all; see, e.g., [21, 13, 17] for such

reductions in simpler model problems. For these reasons we consider adiabatic elimination, though it

gives important insight into the ODE (1.1) [23], to be only of rather theoretical interest for the PDE

(1.2) and ran our simulations for the full system (1.2).

reaction step param. νi

(s−1)

Ei

(kcal × mol−1)

value at 420K

(s−1)

NO–desorption 1x1 k1 1.7× 1014 37.0a 9.7 × 10−6

NO–dissociation 1x1 k2 2.0× 1015 28.5 3.0

NO–trapping on 1x1 k3 2.2 × 104 8.0 1.52

NO–desorption hex k4 4.0× 1012 26.0 0.12

NH3–desorption 1x1 k5 1.0 × 109 18.0a 0.43

NH3–dissociation 1x1 k6 1.0× 1015 27.5 4.98

NH3–formation 1x1 k7 1.0× 1010 16.0 47.7

H2O–formation 1x1 k8 1.0× 1013 13.0 1.73× 106

N2–desorption 1x1 k9 1.3× 1012 19.0 1.70× 102

H2–desorption 1x1 k10 8.0× 1012 23.0 8.72

Transition 1x1→hex k11 2.5× 1011 25.0 2.48× 10−2

a for zero local coverage, see (A.2).

Table 2: Rate constants for the NO+NH3 reactions on Pt(100).

description param. value

NO–adsorption flux 1×1, hex FNO 2.21× 105(mbar−1s−1)
NH3–adsorption flux 1×1 FNH3

2.84× 105(mbar−1s−1)
H2–adsorption flux 1×1 FH2

8.28× 105(mbar−1s−1)
Inhibition coverage of NO for NO–dissociation θinh

NO 0.61
Inhibition coverage of O for NO–dissociation θinh

O 0.399
Critical coverage of NO for the 1×1→ hex phase transf. θcrit

NO 0.3
Critical coverage of NO for the 1×1→ hex phase transf. θcrit

O 0.4
Coverage for island growth in the hex→ 1×1 phase transf. θ1×1

grow 0.5
Amount of surface defects θdef 1.0 × 10−4

partial pressures (tunable, but kept fixed here) pNO 1.1×10−6 mbar
pNH3

4.7×10−6 mbar

Table 3: Temperature independent parameters.
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