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Abstract

The Lombardo–Imbihl–Fink (LFI) model of the NO+NH3 reaction on a Pt(100) surface consists of

7 coupled ODE. It shows stable relaxation oscillations with very sharp transitions. Here we study

numerically the effect of linear diffusive coupling of these oscillators in 2D. We find different types of

patterns, in particular phase clusters and standing waves, and a regime of standing wave turbulence.

In models of related surface reactions such clustered solutions are known to exist only under a global

coupling through the gas phase. This global coupling is replaced here by relatively fast diffusion of

two variables which are kinetically slaved in the ODE.

1 Introduction

The deleterious effects of substances like NO in the atmosphere make it desirable to reduce

these substances. The catalytic reduction of NO with NH3 to the products N2 and H2O

on a Pt(100) surface has been studied experimentally in [25]. This surface can switch

between two substrate configurations, the catalytically active 1×1 phase with a bulk–like

surface termination and a catalytically inert quasi–hexagonal reconstructed phase (”hex”).

The stable state of the clean Pt(100) surface is the hex reconstruction but above a critical

adsorbate coverage the 1×1 phase is more stable and the reconstruction is lifted. Thus

an adsorbate-induced 1×1↔ hex phase transition is constituted. A realistic model for this

reaction has been set up in [14]. It consists of 7 coupled ordinary differential equations

(ODE) for θ1×1

NO
, θhex

NO
, θ1×1, θ

1×1

NH3
, θ1×1

O
, θ1×1

N
, θ1×1

H
, which correspond to, in that order, the

local coverages of NO on the 1×1–phase, of NO on the hex–phase, the fraction θ1×1 of the

surface in 1×1–phase, and to the local coverages of NH3, O, N and H on the 1×1–phase.

We write the ODE in abstract form as

d

dt
X = f(X; p, T ), X ∈ R

7, f = (f1, . . . , f7), (1.1)

where p ∈ R
11 is a vector of (fixed) temperature independent parameters. Moreover,

(1.1) contains 11 rate constants depending by Arrhenius-law on temperature T , which we

therefore display explicitly. In p there are two external (tunable) parameters, pNO, and

pNH3
, acting as driving forces and corresponding to a constant supply of NO and NH3,

respectively, from the gas phase.

The model shows oscillations in a temperature range from 404K to 433K, similar to the

experiment. However, the oscillations in the model are strongly anharmonic while in the

experiment they appear to be much more harmonic. In section 2.1 we plot typical periodic
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orbits of (1.1), but we will not repeat in detail the properties of this ODE; see App.A for

the equations, and [14, 24] for discussion and numerical analysis of (1.1). Here we continue

work [23] on the effect of linear diffusive coupling of these ODE oscillators and consider the

2D case

d

dt
X(t, x) = f(X(t, ~x); p, T ) + M(T )∆X(t, ~x), (1.2)

where M(T ) is the diagonal diffusion matrix depending on T . The patterns obtained in 1D

in [23] were classified into 4 groups (see sec.2.4 for illustration): bulk oscillations (BO) aka

synchronization, standing waves (SW), phase clusters (PC), and phase waves (PW). Even

in 1D a systematic study of the dependence of the patterns on the various parameters and

the initial conditions is hard. In 2D, additional geometric effects play an important role

and for SW and PC lead to very long transients, and to a turbulent SW regime. Hence,

here we essentially restrict to presenting examples of these patterns.

Bulk oscillations (synchronization) means that the whole surface oscillates homoge-

neously in the limit cycle of (1.1), while in both SW and PC the oscillations are organized

into macroscopic areas (clusters) in such a way that the phase changes from one area to the

next in a regular way, with phase shifts of half a period. The difference between SW and

PC is that in SW the phase–pattern has an intrinsic spatial wave–length, while in PC the

clusters have no intrinsic size and grow until the whole domain is split into only 2 clusters.

Here we follow [1, 18, 8, 3] in the terminology, but also loosely term both SW and PC as

clustering. This clustering requires substantial deviations from the periodic ODE orbits at

the cluster boundaries. Phase waves (PW) means that the phase changes smoothly and

each individual oscillator is always close to the periodic ODE orbit.

One effect of the clustering is that it reduces the periods of oscillations of macroscopic

(i.e. spatially averaged) quantities by a factor of (roughly) 2. Moreover, while (1.1) has

relaxation oscillations with very sharp transitions, the averaged quantities oscillate more

harmonically. Both effects together yield a much better agreement of the model with

experimental data [14, fig.7].

The transitions between the different regimes are rather delicate. The system is most

sensitive with respect to the (relatively small) NO diffusions on the 1×1 and the hex phase,

respectively. This agrees well with the analysis in [24] where it is shown that θ1×1

NO
, θhex

NO

and θ1×1 are the ”master” dynamic variables for (1.1) (in the oscillatory regime) while the

remaining four are ”slaved”. However, θ1×1 does not diffuse, which gives NO–diffusion its

special importance.

Of course, synchronization, PC, SW and PW (and the competition between these pat-

terns) are also very interesting from a theoretical point of view. Phase waves for oscillators

close to a Hopf point can be analyzed using phase diffusion equations; see, e.g., [12, 15, 26].

However, relaxation oscillators may behave quite differently under (weak) coupling than

harmonic oscillators [21, 9, 16]; in particular, under certain assumptions phase waves cease
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to exist; see [23] for discussion and further references. On the other hand, SW can be

generated in simple reaction–diffusion systems via the so called wave–bifurcation [28, 11].

However, this again corresponds to a (roughly) harmonic time (and space) dependence.

In surface catalysis, clustering has been intensively studied for the CO oxidation on

Pt(110), both experimentally and theoretically [1, 7, 8, 19, 18, 3, 5, 4]. Here the reaction–

diffusion models have considerably simpler ODE dynamics than (1.1) (3 dimensional or, in

a refined version, 4 dimensional), but additional to the surface diffusion there is a global

coupling through the gas phase in the spatially extended system. Moreover, external forcing

[18] and/or global delayed feedback [10, 3, 5, 4] have been used to control the pattern

formation in this system; see also [27] for clustering in a reaction–diffusion model of the

Belousov–Zhabotinsky with 2 dimensional kinetics and a global feedback.

The ODE (1.1) can also be reduced to a 3 dimensional system

d

dt
y = g(y; p, T ), y =









θ1×1

NO

θhex
NO

θ1×1









, g(y) =









f1(θ
1×1

NO
, θhex

NO
, θ1×1, h(y))

f2(θ
1×1

NO
, θhex

NO
, θ1×1, h(y))

f3(θ
1×1

NO
, θhex

NO
, θ1×1, h(y))









, (1.3)

for the slow variables y by elimination of the fast variables z=(θ1×1

NH3
, θ1×1

O
, θ1×1

N
, θ1×1

H
) [24].

Chemically, the key role of NO is due to the fact that in (1.1) the lifting of the hex recon-

struction proceeds through NO adsorption. The reduction of dimension in (1.3) is of course

advantageous both analytically and numerically. Naively, we may then study the reaction

diffusion problem

d

dt
y = g(y; p, T ) + Mred∆y, Mred = diag(D1×1

NO
, Dhex

NO, 0). (1.4)

However, as already discussed in [23], although the error between (1.1) and (1.3) is very

small, obviously all the influence of the (relatively fast) diffusion of NH3 and H is lost in

going from (1.2) to (1.4). On the other hand, the elimination of kinetically slaved variables

from PDE like (1.2) can be done analytically only in special cases, see, for instance [17],

and numerically yields little advantage.

Note that (1.4) corresponds to (1.2) in the limit DNH3
, DH = 0. We find that no

clustering occurs in this limit or even for relatively slow diffusion of NH3 and H. This shows

that, additional to the relaxation type of the oscillations, a key ingredient for clustering in

(1.2) is a nonlocal (or long range) coupling due to relatively fast diffusion of the kinetically

slaved variables θ1×1

NH3
and θ1×1

H
.

The most important difference between the 1D simulations in [23] and the 2D simula-

tions presented here are curvature effects. The net result is that in 2D, curved SW (which

may look similar to target patterns) are unstable and slowly relax to quasi–1D SW in a

very long transient process. Moreover, while in the parameter regimes considered in [23]

all solutions are quite regular and eventually become periodic in 1D, in 2D for the same
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parameters we find very irregular SW on large domains, i.e., we find a turbulent standing

wave regime.

The preparatory sec.2 contains remarks on the periodic orbits for (1.1), the diffusion

constants, the numerical method, and the choice of initial conditions for (1.2). In sec.3 we

present our results. Conclusions are summarized in sec.4, while App.A contains the ODE

(1.1). Some movies of the solutions are available via internet [22].

2 The setup

2.1 The periodic ODE–orbits

Figure 1, taken from [23], shows periodic orbits γ(T ) for (1.1) at T = 410, 420, 430K. In (a)

we present all 7 dynamic variables, while (b) shows the chemically interesting production

rates rN2
= 0.5Nsk9(θ

1×1

N
)2/θ1×1 of N2 and rH2O = Nsk8θ

1×1

O
θ1×1

H
/θ1×1 of H2O, where

Ns = 1.3×1015 cm−2 is the concentration of surface sites. The most important conclusions
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Figure 1: (a) periodic ODE–orbits at T = 420K, (b) production rates at T = 420K, (c)

θ1×1
NO , θhex

NO , θ1×1, rN2
at T = 410, 430K; time in s, coverages are dimensionless, production rates

rN2
, rH2O in 1014cm−2s−1. Quantities from these ODE orbits will henceforth be refered as, e.g.,

θODE
1×1 .

from [14, 24] are as follows. One period is divided into four segments. We plot θ1×1 first
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process parameter Ẽ

(kJ mol−1)

value at 420K

(cm2 s−1)

NO–diffusion (1×1) D1 = D1×1
NO 28 3.3×10−7

NO–diffusion (hex) D2 = Dhex
NO 24 1×10−6

N.A. D3 = 0 N.A always=0

NH3–diffusion D4 = DNH3
15 1.4×10−5

O–diffusion D5 = DO N.A. always set to 0

N–diffusion D6 = DN N.A. always set to 0

H–diffusion D7 = DH 18 5.7×10−7

N.A. means not applicable

Table 1: Diffusion energies and constants. For convenience we write ~E = (Ẽ1×1
NO , Ẽhex

NO , ẼNH3
, ẼH).

since the decay of θ1×1 in segment 1 sets the slowest time scale in the largest segment;

here all other variables follow θ1×1 adiabatically. This breaks down in segment 2, where

adsorbtion of NO starts the hex→1×1 phase transformation in segment 3. In segment

4 the so called ”surface explosion” occurs with a rapid production of N2 and H2O. The

NHx,ad/Had layer built up this way is unable to stabilize the 1×1 phase, and the process

repeats with the slow relaxation to the hex phase in segment 1.

The temperature dependence is illustrated in (c). For lower T the (average) fraction

θ1×1 of the 1×1 phase increases, while the amplitude of the oscillations and the reaction

rates decrease, and vice versa for higher T . The period t0 also depends on T but only

slightly in the middle of the oscillatory regime considered here. We have t0(420) ≈ 97s.

Below the lower threshold (T ≈ 404K) for oscillations the surface is completely in the

1×1 phase (θ1×1 = 1), while above the upper threshold (T ≈ 433K) it is in the hex

phase (θ1×1 = 0). In both cases, the production rates rN2
and rH2O are zero. For the

reaction diffusion problem (1.2) two observations from fig.1 are most important: the smaller

(larger) amplitudes at lower (higher) temperatures yield smaller (larger) spatial gradients

for oscillators with shifted phases, and the transitions become less (more) sharp for lower

(higher) T ; see [23] and sec.4.

2.2 The diffusion constants

In choosing the diffusion constants for Pt(100)/H,N,O,NO,NH3 we follow the arguments

given in [23], based on [20, 2]. In the temperature range considered here, O and N can be

considered immobile. As usual, we approximate the remaining Di using the Arrhenius–law

Di = νe−Ẽi/RT , where R = 8.3144 J K−1mol is the universal gas constant, ν = 0.001 cm2s−1

is a common prefactor, and Ẽi is the activation energy for diffusion of the respective species.

This yields the data in table 1. However, these data should be seen as rough estimates only,

hence as a starting point for the numerical simulations.
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The diffusion constants differ quite significantly in size. We call diffusion of NO1×1 and

NOhex relatively slow and that of H and NH3 relatively fast. In this sense (strictly speaking

for D1×1

NO
= Dhex

NO
= 0) (1.2) is related to the model problem in [13] where a field of oscillators

is coupled by diffusion through a passive medium. In sec.3 we find that the ”typical pattern

size” lp for (1.2) at T=420 is of the order of 0.01cm. Hence
√

DNH3
τ≈2.4×10−3cm and√

DHτ ≈ 1.8×10−3cm, where τ = 1s is our time–scale, are roughly of the magnitude as

lp and diffusions of θhex
NO

and θ1×1

N
introduce a nonlocal but also nonglobal coupling, where

local (global) coupling would correspond to
√

DNH3
τ � lp (

√

DNH3
τ � lp).

Henceforth, T , Ẽi and Di will be given without units; it is understood that T is in Kelvin

and that the diffusion energies are in kJmol−1 and the diffusion constants in cm2 s−1.

2.3 Numerical method and system size

To discretize (1.2) we choose a system size L (in cm), and consider n × n oscillators

X(·, i, j) = X(·, xi, yj) at (xi, yj) = (iδ, jδ), i, j = 1, . . . , n, δ = L/(n − 1), with periodic

boundary conditions. The numerical scheme is the same as in [23]: a split–step method,

where the ODE–part is integrated using the linearly implicit solver limex [6, section 6.4]

(available online at www.zib.de/SciSoft/CodeLib/ivpode.en.html) and the linear PDE–

part d

dtX = M∆X using an implicit Fourier spectral method. In our simulations we use

δ = 0.0005cm and the average effective time steps are about dt = 0.001 ∼ 0.01 s (depending

on the parameters).

The experimental data in [25] was reported for a sampled area of about 1mm2. Here we

consider smaller samples (n = 64, δ = 0.0005 cm, and hence L=0.032 cm in all simulations

except the last). Using 64 × 64 gives sufficiently many oscillators to show the mechanism.

The initial conditions (IC) for (1.2) were chosen as localized perturbations of the point

Z0 = (0.03, 0.24, 0.22, 0.5×10−6, 0.01, 0.02) which is roughly near the end of segment 1 of

the periodic orbit γ(420), cf. fig.1. That means, we first assign X|t=0(i, j) = Z0 to all

oscillators, then choose l ∈ {0, . . . , 7} and a ∈ R, and add a perturbation of amplitude a to

the lth component in part of the domain. In formulas, we set

Xl|t=0(i, j) =







zl + a, (i, j) ∈ I,

zl elsewhere,
(2.1)

where I ⊂ N
2 is an index set. For some k < n we set I = Ik = {(i, j) : 0 ≤ i, j ≤ k}, i.e.,

we perturb in a square in the upper left. Some random initial conditions were also used.

The synchronized solution XBO is asymptotically stable in the parameter regime given

by table 1. Hence, in (2.1) we need sufficiently large k and/or a, depending on l, to push the

system at least transiently away from XBO. As should be expected from the ODE reduction

(1.3), the easiest way to perturb the system away from XBO is to introduce perturbations

in θ1×1

NO
, θhex

NO
or θ1×1, i.e., to choose l ∈ {1, 2, 3}. For the sake of brevity we restrict to
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perturbations in θ1×1 (l = 3), fix k = n/4, and vary a. Note that this way we add a

perturbation to a non diffusive component and hence the system can only be driven back

to or further away from XBO by coupling to the diffusive components.

We focus on plotting θ1×1(t, x, y) as the main diagnostic for (1.2). As explained in

sec.2.1, θ1×1 sets the timescale in the largest segment 1 of the ODE–orbits. Hence, for

the reaction–diffusion problem we expect that for given θ1×1 the remaining variables can

roughly be read from fig.1, at least at values in segment 1 of the ODE–orbit. This turns

out to true [23]. To visualize the spatio–temporal patterns we a use 2d–plots of θ1×1 at

fixed time, and space–time plots of θ1×1 along lines through the 2d domain. These plots

are further complemented with diagnostics like local time series and the spatial average

〈θ1×1〉(t) = 1

n2

∑n
i,j=1

θ1×1(t, i, j).

2.4 Classification in 1D

In figure 2 we show greyscale plots from [23] illustrating synchronization, PC, SW and PW,

in 1D, where the initial conditions are the 1D–analog of (2.1). All the solutions become

periodic after a rather short time transient.

(a) synchronization (left θ1×1, right θ1×1
NO ): (b) PC: larger initial perturbation yields phase

small initial perturbation is quickly repaired clusters that split the domain into two halfs

(c) SW: clustering with intrinsic spatial length (d) PW: smooth phase changes

Figure 2: Examples from [23] for synchronization, PC, SW and PW in 1D; T = 420, greyscale plots

of θ1×1(t, x) (and θ1×1
NO (t, x) in (a)); horizontal axis t, vertical axis x, spatial size L = 0.0395cm. The

parameters are ~E = (28, 24, 15, 18) in (a),(b); ~E = (30, 22, 15, 18) in (c), ~E = (28, 22, 25, 25) in (d).

3 Simulations

We restrict to presenting examples of different patterns at T = 420. Temperature de-

pendence is discussed below. The synchronized solution is asymptotically stable near the

parameter regime given in table 1. Hence we directly start with a more interesting solution.
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3.1 Phase clusters

In our first simulation we use the diffusion data from table 1, n = 64, and initial conditions

according to (2.1) with k = 16 and a = 0.1. This yields the 2D analog of PC as we checked

t = 0 t = 20 t = 40 t = 60 t = 80 t = 100

t = 120 t = 140 t = 160 t = 180 t = 200 t = 220

Figure 3: δ = 0.0005cm, n = 64, ~E = (28, 24, 15, 18), greyscale snapshots of θ1×1 zscal = 0.2, 0.9.

The small initial perturbation evolves into two phase clusters with phase shift of half a period. The

white dot and the diagonal line at t = 0 mark the position ~x1 for the local time series and the

diagonal for the space-time plots in fig.4.

by running the simulation on a larger domain. Figure 3 shows snapshots of θ1×1(t, ·). The

greyscales are linear interpolations between zmin=black=0.2 and zmax=white=0.8; in the

following this is denoted by zscal = zmin, zmax. Near t = 0, the larger value of θ1×1 in the top

left corner inhibits the NO adsorption; this then inhibits the 1×1↔ hex phase transition in

this part of the surface until θ1×1 has sufficiently decayed at t ≈ 62. For larger t we thus

obtain a PC solution: one circular cluster roughly fills the top left quarter of the domain

and the other fills the rest of the domain. In fig.4(a),(b) we show space-time plots of the

solution in fig.3 along the left boundary (vertical line data) and the diagonal. Both clearly

show the evolution towards the PC solution. During this process the cluster size slowly

adjusts. Unlike the 1d case there is no phase balancing: the cluster in the top left quarter

stays smaller in area than the other one. This is probably due to curvature since one cluster

is convex while the other is concave. For t > 1400 and up to simulation time t = 4000 this

solution stays nearly perfectly time periodic. However, in light of sec.3.3 this may still be

a transient regime with an extremely long transient, see below. The time series in fig.4(c)

illustrates that the solution at the marked point is close to (but not identical) to the limit

cycle γ(420) of the ODE. More detailed inspection of the solution shows that this is not

true for oscillators at the cluster boundaries, as should be expected. The average 〈θ1×1〉 is

a very simple diagnostic for clustering (as opposed to phase waves, see sec.3.2): it has two

maxima during one ODE period. Finally we show diagonal space time plots of two other

components of the solution from fig.3 (a,b), and also 3D plots of the solution at t = 730 and

t = 775 (c–e). Figure 5 (a),(b) show that θ1×1

NO
, θ1×1

H
do indeed follow θ1×1 according to the
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(a) space–time plot of θ1×1 at the left boundary

(b) space–time plots of θ1×1 along the diagonal

(c) time–series, 〈θ1×1〉, θ1×1(~x1) (dashed),

θODE
1×1 (points)

0.2

0.4

0.6

0.8

0 400 800

Figure 4: Diagnostics for fig.3, zscal = 0.2, 0.9; ~x1 is the point marked in fig.3.

ODE orbit, except at the cluster boundaries. This also holds for the remaining components

(not shown). Moreover, (b) (and also (d)) illustrates that θ1×1

N
is more smooth than the

non–diffusive component θ1×1 or the component θ1×1

NO
with its slow diffusion. The plots

(c–e) correspond to a time–difference of about half an ODE period and further illustrate

the clustering seen in fig.4 and (a,b) near t = 800.

(a) θ1×1
NO on the diagonal, zscal = 0, 0.37 (b) θ1×1

H on the diagonal, zscal = 0, 0.13
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(c) t = 730, θ1×1 (d) t = 730, θ1×1
H (e) t = 775, θ1×1

Figure 5: Diagonal space time plots (a,b) illustrating that θ1×1
NO , θ1×1

H follow θ1×1 according to the

ODE orbit except at the cluster boundaries. 3D plots (c–e), illustrating the clustering near t = 800

and the higher smoothness of θ1×1
H compared to θ1×1.

3.2 Phase waves

Figure 6 gives an example of a phase wave (PW). We use the same IC as in fig.3 but now
~E = (28, 24, 30, 30). Hence diffusion of θ1×1

NH3
and θ1×1

N
is now slower than that of θ1×1

NO
and

θhex
NO

. Consider the bottom line of fig.6: θ1×1(~x1) has started to grow at t ≈ 190, where ~x1
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is the same point as in fig.3. This triggers a circular front which sweeps the domain. At

t ≈ 202 this front collides with itself due to the periodic boundary conditions. We conclude

t = 0 t = 20 t = 40 t = 60 t = 80 t = 100

t = 190 t = 195 t = 200 t = 205 t = 210 t = 215

Figure 6: n = 64, M=(28,24,30,30), greyscale snapshots of θ1×1, zscal = 0.2, 0.9. The bottom line

shows the sweeping of a phase wave through the domain.

that it is the nonlocal coupling by fast diffusion of θ1×1

NH3
, θ1×1

N
that prevents, for instance,

the solution at t = 80 in fig.3 to trigger a similar front. Hence this fast diffusion is a key

ingredient for the clustering.

Figure 7 presents the diagnostics for fig.6. For t > 450 the profiles in the line data

roughly keep their shape and the solution is essentially periodic. The time–series shows

that 〈θ1×1〉 is slightly smeared out by the PW compared to the sharp transitions in θODE
1×1 .

On larger domains we can also produce longer fronts which further smear out the transitions

0.2

0.4

0.6

0 200 400

Figure 7: Diagnostics for fig.6; ~x1 is the same point as marked in fig.3. From left: vertical line data,

diagonal line data (zscal = 0.2, 0.9), time–series, 〈θ1×1〉(t), θ1×1(t, ~x1) (dashed), θODE
1×1 (t) (points).

in 〈θ1×1〉 (see [23] for 1d examples). In PW, every oscillator is always quite close to γ(420),

with some small deviations only during the collisions of the fronts (e.g., t = 205, 210 in

fig.6). Hence, in contrast to clustered solutions this situation should be describable by pure

phase models [12, section 4]. Here we are more interested in clustered solutions, and now

turn to SW.

3.3 Standing waves

In [23] it was found that in 1D (in the clustering regime, i.e., for large DNH3
, DH) the

diffusions of θ1×1

NO
and θhex

NO
play the following roles: decreasing (increasing) D1×1

NO
(Ẽ1×1

NO
)
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may switch the system from PC (clustering with no intrinsic length scale) to SW (clustering

with intrinsic length scale) and for SW decreases the spatial size of the clusters. Decreasing

(increasing) Dhex
NO

(Ẽhex
NO

) acts the other way round. See also fig.2(b,c) for illustration in 1D.

We now illustrate the similar effect in 2D.

In fig.8 we set ~E = (30, 22, 15, 18) and use the same initial conditions as in fig.3. The

initial evolution looks roughly the same as in fig.3. However, at t = 160 we see that now

t = 0 t = 40 t = 80 t = 120 t = 160 t = 200

t = 240 t = 280 t = 320 t = 360 t = 400 t = 440

Figure 8: n = 64, ~E = (30, 22, 15, 18), greyscale snapshots of θ1×1, zscal = 0.2, 1. The initial

evolution yields the SW analog to fig.2(c) in 2D, i.e., a solution with small clusters with intrinsic

width of about 0.005cm. However, this is a transient behavior, see fig.10.

the top left corner itself starts to split into annular clusters, similar to a target pattern.

Likewise, in the remaining part of the domain a banded structure appears where the bands

of equal phase have a width of approximately 0.005cm. Hence we conclude that the clusters

now have an intrinsic spatial scale. Therefore this solution is called a standing wave. This

evolution can also be clearly seen in the space–time plots of fig.9. The average 〈θ1×1〉
again oscillates with approximately half the ODE period. Moreover, the small clusters are

associated with substantial deviations of individual oscillators from the ODE orbit also in

the center of clusters; see, e.g., θ1×1(~x1) around t = 200 to 280, which has about twice

the amplitude of θODE
1×1 . The annular SW centered in the top left quadrant determines the

0.2

0.4

0.6

0.8

1

0 400 800

Figure 9: Diagnostics for fig.8; vertical (top left) and diagonal (bottom left) line data (zscal = 0.2, 1),

〈θ1×1〉, θ1×1(~x1) (dashed), θODE
1×1 (points), where ~x1 is the same point as marked in fig.3.

dynamics up to t ≈ 1000. However, it is not stable. Therefore, triggered by unavoidable

11



numerical errors the solution looses its symmetry across the diagonal for t > 1000. A

second transient regime sets in, where the clusters appear in interesting shifting patterns

that become gradually more irregular. However, near t ≈ 2400 a new structure appears

which consists of horizontal bands of equal phase. This is clearly visible at t = 3000 in

fig.10. For t > 3000 these bands slowly smooth out and adjust their spacing, and for

t > 4000 we have a quasi 1–dimensional SW.

t = 1000 t = 1200 t = 1400 t = 1600 t = 1800 t = 2000

t = 3000 t = 3200 t = 3400 t = 3600 t = 3800 t = 4000

Figure 10: The solution from fig.8 at larger time: during the second transient regime (top row) the

clusters appear in shifting patterns that lose symmetry and gradually become more irregular; in

the third transient regime (bottom row) the horizontal bands smooth out and slowly adjust their

spacing. This yields a quasi 1–dimensional SW for t > 4000.

0.2

0.4

0.6

0.8

2800 3200 3600 4000

Figure 11: Diagnostics for fig.10. Left: diagonal line data; right: time–series, 〈θ1×1〉(t), θ1×1(t, ~x1)

(dashed), θODE
1×1 (t) (short dashes); ~x1 is the same point as marked in fig.3.

3.4 Random initial conditions

In 1D, random initial data yields, depending on the parameters, regular periodic PC, SW

or PW, similar to the solutions in fig.2: after a rather short transient the solutions become

periodic. Since, as illustrated in section 3.3, in 2D transients may be very long, it is

worthwhile to study how random initial data evolve in 2D. Therefore, we set

Xl|t=0(i, j) = ri,j,l zl (3.1)

where each ri,j,l is a (pseudo)random number between 0.5 and 1.5. Choosing a new ri,j,l

for each (i, j) tends to yield the synchronized solution XBO. Hence the initial data was

preclustered by choosing the same ri,j,l on squares of certain side lengths q.
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t=0 t=80 t=160 t=240 t=1320 t=1370

long

transient

−→

Figure 12: ~E = (28, 24, 15, 18), random initial data according to (3.1) with q = 8; greyscale snapshots

of θ1×1, zscal = 0.2, 1. Initial evolution and large time 1-dimensional PC; the vertical clusters

smoothen out for still larger t and yield a perfectly periodic solution.

In the parameter regime of table 1, this yields, after a sufficiently long transient, quasi-

1D PC solutions with either horizontal or vertical clusters. Again it was checked that these

are really PC and not SW by running the simulations on larger domains and with different

values q for the preclustering. An example with q = 8 is shown in fig.12.

More interesting solution are obtained in the standing wave regime ~E = (30, 22, 15, 18)

on large domains. In fig.13 we set n = 128 and q = 8. The top row shows how initially

the random initial data is locally smoothed out. Then rather irregular clusters appear on a

spatial scale of again approximately 0.005cm. This is further illustrated in the bottom row

and in the diagnostics in fig.14. This clustering continues in an irregular way (no qualitative

change was observed up to simulation time t = 4000). Moreover, the individual clusters

can only roughly be grouped into two common phases. In the time series this results in a

very smeared out and irregular 〈θ1×1〉 which only roughly ”oscillates” with twice the ODE

period and with a rather small amplitude. It appears reasonable to call this regime standing

wave turbulence since on smaller domains the parameters yield standing wave solutions as

illustrated in sec.3.3. However, correlation and further statistical analysis for these solutions

remains to be done.

t = 0 t = 40 t = 80 t = 120 t = 160 t = 200

t = 700 t = 720 t = 740 t = 760 t = 780 t = 800

Figure 13: n = 128, δ = 0.0005cm, ~E = (30, 22, 15, 18), random initial data according to (3.1) with

q = 8; greyscale snapshots of θ1×1, zscal = 0.2, 1. Initial evolution (top row) and irregular small

scale clustering at larger time (bottom row); see also fig.14.
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0.2

0.4

0.6

0.8

0 400 800

Figure 14: Diagnostics for fig.13: vertical (top left) and diagonal (bottom left) line data, 〈θ1×1〉,
θ1×1(~x1) (dashed), θODE

1×1 (points), with ~x1 = (8δ, 8δ) as in fig.3.

4 Conclusions

We have presented examples for 4 different types of behavior of solutions of (1.2). In a

number of further simulations we confirmed for the 2D case studied here the conclusions

about the parameter dependence of (1.2) studied in 1D in [23]. Briefly, these can be

summarized as follows:

(a) For the diffusion energies in table 1 we obtain PC solutions, provided the initial

perturbations of a homogenous surface near the periodic ODE orbit are large enough.

(b) Decreasing diffusion of θ1×1

NO
and/or increasing diffusion of θhex

NO
first introduces and

then decreases a spatial length scale for the clusters, i.e., it shifts the system to the

SW regime.

(c) One key ingredient of both PC and SW is the relatively fast diffusion of θ1×1

NH3
and

θ1×1

H
. For slower diffusion of θ1×1

NH3
, θ1×1

H
no clustering appears but phase waves. This

is in contrast to CO+O2 on Pt(110) [1, 7, 8, 19, 18, 3, 5, 4], where clustering has only

been reported under a global coupling through the gas phase. This global coupling is

replaced here by the fast diffusion of θ1×1

NH3
, θ1×1

H
.

(d) Temperature dependence: at lower temperatures, synchronization and PW dominate

over PC and SW. Conversely, at higher temperatures clustering dominates over syn-

chronization and PW. This shows that the second key ingredient for the clustering

is the relaxation type of the ODE oscillations, which becomes sharper at larger T .

However, the numerics also become more difficult at larger T and the system may fail

due to violation of certain mass balances; see [23] for more details (in the 1D case).

The most important new feature in 2D are curvature effects. For generic initial data in the

PC regime or the SW regime on small domains, the solution relaxes to quasi 1-dimensional

PC or SW. This happens after a possibly very long transient during which the cluster

boundaries slowly adjust. For small diffusion of θ1×1

NO
and/or high diffusion of θhex

NO
on a

large domain, a turbulent standing wave regime appears.
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Here we gave phenomenological descriptions. Some ideas for the mathematical analysis

of these patterns have been proposed in [23]. This will be subject of further research. It

also remains to compare the 2D results reported here with experimental data [25]. To make

this comparison more realistic a global coupling should possibly be included into the model.

Acknowledgments. The author thanks R. Imbihl and A. S.Mikhailov for stimulating

discussions.

A The ODE

To make the paper somewhat self contained, we give the ODE (1.1); see [14, 24] for the chemical

meanings and discussion:

d

dt
θ1×1
NO =FNOpNO(θ1×1 − θ1×1

NO − 4θ1×1
NH3

) − k1θ
1×1
NO − k2

θ1×1
NO θ1×1

empty

θ1×1

+ k3θ
hex
NOθ1×1 , (A.1a)

d

dt
θhex
NO =FNOpNO(θhex − θhex

NO) − k3θ
hex
NOθ1×1 − k4θ

hex
NO , (A.1b)

d

dt
θ1×1 =















( d
dtθ

1×1
NO )/θ1×1

grow if d
dt

θ1×1
NO > 0 and θ1×1

NO ≥ θ1×1
growθ1×1 and θ1×1 < 1 ,

−k11(θ1×1 − θhex
def )(1 − c) if θ1×1 > θhex

def and c < 1 ,

0 otherwise ,

(A.1c)

d

dt
θ1×1
NH3

=FNH3
pNH3

(θ1×1 − 3θ1×1
NH3

− 1.6θ1×1
NO ) − k5θ

1×1
NH3

− k6

θ1×1
NH3

[θ1×1 − θ1×1
H − 2.5(θ1×1

O + θ1×1
N )]

θ1×1

+ k7

θ1×1
N θ1×1

H

θ1×1

, (A.1d)

d

dt
θ1×1
O =k2

θ1×1
NO θ1×1

empty

θ1×1

− k8

θ1×1
O θ1×1

N

θ1×1

, (A.1e)

d

dt
θ1×1
N =k2

θ1×1
NO θ1×1

empty

θ1×1

+ k6

θ1×1
NH3

[θ1×1−θ1×1
H −2.5(θ1×1

O +θ1×1
N )]

θ1×1

− k7

θ1×1
N θ1×1

H

θ1×1

− k9

(θ1×1
N )2

θ1×1

,

(A.1f)

d

dt
θ1×1
H =FH2

pH2

[θ1×1−θ1×1
H −2.5(θ1×1

O +θ1×1
N )]2

θ1×1

+ 3k6

θ1×1
NH3

[θ1×1−θ1×1
H −2.5(θ1×1

O +θ1×1
N )]

θ1×1

− 3k7

θ1×1
N θ1×1

H

θ1×1

− 2k8

θ1×1
O θ1×1

H

θ1×1

− k10

(θ1×1
H )2

θ1×1

. (A.1g)

The three conditions on the right hand side of (A.1c) have to be read top down and the first one

fulfilled determines the right hand side. The rate constants k1, . . . , k11 are determined by Arrhenius–

law ki = νie
−Ei/RT , where the νi and most of the Ei are constants, given in table 2. For E1 and

E5 coverage–dependent nonlinear corrections are used in the form

E1 = E0
1 − 24(θ1×1

NO /θ1×1)
2, E5 = E0

5 − 30(θ1×1
NH3

/θ1×1)
2. (A.2)

15



The auxiliary functions in (A.1) are given by

θ1×1
empty = max

[

(θ1×1−
θ1×1
NO

θinh
NO

−θ1×1
O

θinh
O

), 0

]

+ max[(θ1×1
def − θ1×1

O ), 0],

c =

(

θ1×1
NO

θcrit
NO

+
θ1×1
O

θcrit
O

)

/θ1×1, θ1×1 + θhex = 1, θ1×1
def = θ1×1θdef , θhex

def = θhexθdef ,

and the further parameters are given in table 3.

reaction step param. νi

(s−1)

Ei

(kcal× mol−1)

value at 420K

(s−1)

NO–desorption 1x1 k1 1.7× 1014 37.0a 9.7× 10−6

NO–dissociation 1x1 k2 2.0× 1015 28.5 3.0

NO–trapping on 1x1 k3 2.2 × 104 8.0 1.52

NO–desorption hex k4 4.0× 1012 26.0 0.12

NH3–desorption 1x1 k5 1.0 × 109 18.0a 0.43

NH3–dissociation 1x1 k6 1.0× 1015 27.5 4.98

NH3–formation 1x1 k7 1.0× 1010 16.0 47.7

H2O–formation 1x1 k8 1.0× 1013 13.0 1.73× 106

N2–desorption 1x1 k9 1.3× 1012 19.0 1.70× 102

H2–desorption 1x1 k10 8.0× 1012 23.0 8.72

Transition 1x1→hex k11 2.5× 1011 25.0 2.48× 10−2

a for zero local coverage, see (A.2).

Table 2: Rate constants for the NO+NH3 reactions on Pt(100).

description param. value

NO–adsorption flux 1×1, hex FNO 2.21× 105(mbar−1s−1)
NH3–adsorption flux 1×1 FNH3

2.84× 105(mbar−1s−1)
H2–adsorption flux 1×1 FH2

8.28× 105(mbar−1s−1)
Inhibition coverage of NO for NO–dissociation θinh

NO 0.61
Inhibition coverage of O for NO–dissociation θinh

O 0.399
Critical coverage of NO for the 1×1→ hex phase transf. θcrit

NO 0.3
Critical coverage of NO for the 1×1→ hex phase transf. θcrit

O 0.4
Coverage for island growth in the hex→ 1×1 phase transf. θ1×1

grow 0.5
Amount of surface defects θdef 1.0× 10−4

partial pressures (tunable, but kept fixed here) pNO 1.1×10−6 mbar
pNH3

4.7×10−6 mbar

Table 3: Temperature independent parameters.
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