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Abstract

The dynamics of the envelopes of spatially and temporarily oscillating wave packets
advancing in spatially periodic media can approximately be described by solutions of
a Nonlinear Schrödinger equation. Here we prove estimates for the error made by this
formal approximation using Bloch wave analysis, normal form transformations, and
Gronwall’s inequality.
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1 Introduction

Partial differential equations represent the main mathematical tool for researchers in many di-
verse fields of science and technology. Since, in general, the laws of nature are nonlinear, the
corresponding governing equations of motion are nonlinear as well. Moreover, the equations
often involve multiple scales. In these cases approximate methods for dealing with nonlin-
ear partial differential equations become very important. Through appropriate schemes, one
can reduce the original equations to simpler ones which describe the behaviour on the large
scales. In fact, this approach allows one to reduce the description of vastly different phys-
ical phenomena to only a few universal nonlinear partial differential equations, for which,
moreover, often a method of integration is known.

There is, however, an important issue concerning the solutions of the reduced nonlinear
partial differential equations. This is the problem of the structural stability of the mathemati-
cal models which stems from the approximations that have been made (i) in the derivation of
the equations of motion and (ii) in their reduction to an integrable mathematical model. The
neglected terms, even if they remain small, may significantly affect the behavior of the so-
lutions on different time and length scales. Therefore, it is not guaranteed that the solutions
of the reduced model are of any relevance for the original physical problem [FW98]. As a
result, it becomes very important to estimate the error introduced by these approximations
and to accurately determine the time and length scales for which the reduced model remains
valid.

In this paper, we discuss one of the most widely studied universal mathematical mod-
els, the Nonlinear Schr ödinger (NLS) equation and provide answers to the question of its
validity in the context of spatially periodic media. The NLS equation plays an important
role in plasma physics [DEGM82], statistical and condensed matter physics [BKT80], non-
linear optics [Ag01], hydrodynamics [ZK97], and magnetic systems [DHS01]. Recently,
the NLS equation has been derived as the modulation equation for wave packets in spa-
tially periodic media such as photonic band gap materials and Bose-Einstein condensates
[dSS88, DGPS99]. This provides our motivation to concentrate on wave propagation pro-
cesses in periodic media from a rigorous mathematical point of view. Without considering
any particular physical problem, this paper provides error estimates and justification of the
validity of the NLS equation in spatially periodic systems with either quadratic or cubic
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nonlinearities. In the presence of quadratic nonlinearities, the NLS equation is a relevant
model only when additional non-resonance conditions are fulfilled so that the nonlinear re-
sponse of system effectively becomes cubic [Lv94]. Clearly, this is the mathematically more
challenging case.

1.1 The main results

In order to keep the technicalities on a reasonable level we consider throughout the paper
semilinear wave equations

∂2
t u(x, t) = χ1(x)∂

2
xu(x, t) − χ2(x)u(x, t) − χ3(x)u

ϑ(x, t) (1)

with x ∈ R and t ∈ R, u = u(x, t) ∈ R, ϑ = 2 or ϑ = 3, in a spatially periodic medium.
That means that the smooth coefficient functions χj = χj(x) satisfy χj(x) = χj(x + L)

for j = 1, 2, 3. We assume χ1(x) > 0 and χ2(x) > 0 for all x ∈ [0, L), and without loss
of generality, L = 2π throughout the paper. The physically more relevant problem with
cubic nonlinearities (ϑ = 3) is mainly used as a warm-up for the mathematically much more
involved quadratic case (ϑ = 2).

The linearized problem

∂2
t v(x, t) = χ1(x)∂

2
xv(x, t) − χ2(x)v(x, t)

is solved by the Bloch waves

v(x, t) = fn(`, x)ei`xe±iωn(`)t

where n∈N, `∈(−1/2, 1/2], with ωn(`)∈R determined below, satisfying ωn+1(`) ≥ ωn(`),
see Fig. 1 on page 4, and fn(x, `) satisfying

fn(`, x) = fn(`, x + 2π) and fn(`, x) = fn(`+ 1, x)eix.

Slow modulations in time and space of such a Bloch mode (indexed with n0) are de-
scribed by the ansatz

u(x, t) = εA(ε(x+ cgt), ε
2t)fn0

(`0, x)e
i`0xeiωn0

(`0)t + cc + h.o.t, (2)

where cc means complex conjugate, where h.o.t means terms of order ε2 and higher, where
0 < ε � 1 is a small parameter, where cg = ∂`ωn0

(`0) is the negative group velocity, and
where A is the slowly varying envelope. Plugging the ansatz into (1) one finds that A has to
satisfy a NLS equation

∂TA = iν1∂
2
XA + iν2A|A|2 (3)

with coefficients ν1 ∈ R and ν2 ∈ R. This describes via the complex valued amplitude
A(X, T ) ∈ C slow modulations in time T = ε2t, and spaceX = ε(x+cgt), of the underlying
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Figure 1: The curve of eigenvalues in the spatially periodic case over the Bloch wave numbers, with
ω−n = −ωn for later use. Some spectral gaps occur.

wave fn0
(`0, x)ei`0xeiωn0

(`0)t. Here we show that to a solution A of (3) given for T ∈ [0, T0],
the difference between the formal approximation (2) and exact solutions of (1) stays small
for all t in the long time interval [0, T0/ε

2] under the validity of a number of assumptions to
be checked. For the sake of clarity the formulation of these rather technical non resonance
conditions is shifted behind the formulation of the approximation results.
Notation. Fourier transform is defined by û(k) = (Fu)(k) = 1

2π

∫

e−ikxu(x) dx. The
Sobolev space Hs is equipped with the norm

‖u‖Hs =
(

∫

|û(k)|2(1 + |k|2)s dk
)1/2

.

Moreover, let ‖u‖Cn
b

=
∑n

j=0 ‖∂j
xu‖C0

b
, where ‖u‖C0

b
= supx∈R |u(x)|. We use the spaces

L1(m) with u ∈ L1(m) ⇔ uρ ∈ L1, where ρ(k) = (1+k2)1/2, the weighted Sobolev spaces
Hs(m) equipped with the norm ‖u‖Hs(m) = ‖uρm‖Hs , and L2(m) = H0(m).

For ϑ = 3 we have the following approximation result.

Theorem 1.1 Let s ≥ 1, sA ≥ max{3, s}, and assume that the non resonance condition (4)
below holds. Then for all C1 and T0 > 0 there exist ε0 > 0 and C2 > 0 such that for all
solutions A ∈ C([0, T0], H

sA) of (3) with

sup
T∈[0,T0]

‖A(·, T )‖HsA ≤ C1

the following holds. For all ε ∈ (0, ε0) there are solutions u ∈ C([0, T0/ε
2], Hs) of (1) with

sup
t∈[0,T0/ε2]

∥

∥

∥
u(·, t) −

(

εA(ε(· + cgt), ε
2t)fn0

(·, `0)ei`0·eiω+
n0

(`0)t + cc
)

∥

∥

∥

Hs
≤ C2ε

3/2 .

For ϑ = 2 we have the following approximation result.
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Theorem 1.2 Assume that the χj are chosen such that the non resonance conditions (5)–(7)
below hold with α > 1/2, and let s ∈ (1/2, α+ 1/2), sA ≥ max{4, s}. Then for all C1 and
T0 > 0 there exist ε0 > 0 and C2 > 0 such that for all solutions A ∈ C([0, T0], H

sA) of (3)
with

sup
T∈[0,T0]

‖A(·, T )‖HsA ≤ C1

the following holds. For all ε ∈ (0, ε0) there are solutions u ∈ C([0, T0/ε
2], Hs) of (1) with

sup
t∈[0,T0/ε2]

∥

∥

∥
u(·, t) −

(

εA(ε(· + cgt), ε
2t)fn0

(·, `0)ei`0·eiω+
n0

(`0)t + cc
)

∥

∥

∥

Hs
≤ C2ε

3/2 .

Remark 1.3 The error of order O(ε3/2) in Theorem 1.1 and Theorem 1.2 is much smaller
than the solution and the approximation which are both of order O(ε) in L∞ and of order
O(ε1/2) in Hs. The long time interval [0, T0/ε

2] for (1) is necessary to cover nontrivial
dynamics of (3). For instance, Theorems 1.1 and 1.2 show that the soliton dynamics [ZS72]
of the NLS equation (3) approximately can be found in the original systems, too. c

Remark 1.4 Such approximation results are not obvious. There are counterexamples [Sch95,
GS01], where formally correctly derived modulation equations similar to (3) make wrong
predictions about the dynamics of the original system. For the spatially homogeneous hy-
perbolic case, approximation results can be found in [Kal88]; see also [KSM92, Sch98, La98,
Co02]. See [Schn04] for new ideas to handle systems with resonances. c

Remark 1.5 Locally in time the solutions of (1) can be chosen arbitrarily smooth. However,
long time existence and the error estimates are only guaranteed in the space H s with s ∈
(1/2, α + 1/2). The lower bounds on sA are explained in the proofs, see, e.g., the proof of
Lemma 4.3 where A ∈ H3 is used in the cubic case. c

Remark 1.6 We refrain from greatest generality and restrict ourselves to some model prob-
lems which already turned out in the spatially homogeneous case to cover all fundamental
non-technical difficulties of general systems. As noted above, there is an important differ-
ence between the cubic case (ϑ = 3 in (1)) and the quadratic case (ϑ = 2 in (1)). For cubic
nonlinearities the proof is based on a simple application of Gronwall’s inequality whereas in
the quadratic case before the application of Gronwall’s inequality the quadratic terms have
to be eliminated by a normal form transform. Fourier analysis used in the spatially homo-
geneous case is replaced in the spatially periodic case by Bloch wave analysis. A special
difficulty in case of spatially periodic medium lies in the fact that the approximation equa-
tion lives in a spatially homogeneous domain whereas the original system lives in a spatially
periodic domain. Hence, Fourier analysis and Bloch wave analysis have to be linked. c
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1.2 The non-resonance conditions

The non resonance condition

inf
n∈Z\{0},j∈{±3,±1},(n,j)6=±(n0,1)

|ωn(j`0) − jωn0
(`0)| > 0 (4)

is needed in case of cubic nonlinearities (ϑ=3) to derive the NLS equation and to obtain a
sufficiently small so called residual. This smallness of the residual is necessary in the proof of
the approximation result given in Section 4. In order to compute ωn(`) for ` 6∈ (−1/2, 1/2],
the ωn(`) are extended periodically in (4), i.e.ωn(`)=ωn(`+1).

Section 5 contains the proof of the approximation result for (1) in case of a quadratic
nonlinearity (ϑ=2). In order to transfer the proof from cubic nonlinearities to quadratic
nonlinearities and especially to prove estimates on the long time scale of order O(1/ε2) the
quadratic terms are eliminated by a normal form transform. This leads to the non-resonance
conditions

inf
n∈Z\{0},|j|≤4,(n,j)6∈{−(n0,1),(n0,1)}

|ωn(j`0) − jωn0
(`0)| > 0, (5)

inf
r,n∈Z\{0},`,m∈(− 1

2
, 1
2
],|`−m−`0|<δ

| − ωr(`) − ωn0
(`−m) + ωn(m)| > 0, (6)

for a δ > 0. Moreover, we need the following assumption on the quadratic interaction of the
Bloch modes fn(`): there exists an α > 1/2 and a C > 0 such that for all j, j1, j2 ∈ N and
`1, `2, `3 ∈ (−1/2, 1/2] we have

|〈fj(`1, ·), χ3(·)fj1(`2, ·)fj2(`3, ·)〉χ1
| ≤

(

C

1 + |j − j1 − j2|

)α

, (7)

where

〈ũ(`, ·), ṽ(`, ·)〉χ1
=

1

2π

∫ 2π

0

ũ(`, x)ṽ(`, x)
1

χ1(x)
dx . (8)

This assumption is verified in appendix A with an α = 2 − δ with an arbitrary δ > 0 in case
that χ1 is independent of x and that χ2 ∈ C0(0, 2π) and χ3 ∈ C2(0, 2π).

Conditions (4)-(6) are similar to ones of the spatially homogeneous case, see Remarks 2.1
and 4.2 for further comments. Assumption (7) trivially holds in the spatially homogeneous
case due to the orthogonality properties of trigonometric polynomials resulting there in

〈fj(`1, ·), χ3(·)fj1(`2, ·)fj2(`3, ·)〉χ1
= δ(j − j1 − j2).

So far it is not clear if (7) is really necessary or only an outcome of our proof. Moreover,
we are not aware of general conditions on χ1 and χ2 leading to the validity of (7). We will
discuss in some subsequent remarks the applicability of the assumptions (4)-(6). It will turn
out that the validity of (4) and (5) is easily checked due to the asymptotics |ωn| ∼ n for
|n| → ∞. In contrast, for the validity of (6) and also of (7) it is impossible to check the
infinitely many conditions in the assumptions (4) or (5)–(7) in concrete physical problems.
However, in physical problems dissipation plays a relevant role for modes above a certain
n0. Then the assumptions reduce to finitely many conditions.
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1.3 Maxwell’s equation

As mentioned above, this work is in part motivated by the fact that nonlinear wave equations
with spatially periodic coefficients describe the nonlinear dynamics of electromagnetic radi-
ation in so–called photonic band gap materials, i.e., periodically structured materials which
exhibit a gap in their linear spectrum; we refer to [Bu02] for a review of photonic band struc-
tures. For instance, the propagation of linearly polarized light in a fiber Bragg grating with
intensity dependent index of refraction (Kerr medium) can be modeled by the wave equation

−∂2
xE(x, t) + χ1(x)∂

2
tE(x, t) = −χ3(x)∂

2
tE

3(x, t), (9)

where χ1(x) denotes the square of the linear index of refraction. Both χ1(x) and the non-
linear Kerr-susceptibility χ3(x) are spatially periodic functions. In the case of a weak non-
linearity, a slowly varying envelope approximation reduces (9) to the NLS equation, if the
center frequency is not in a gap, see Remark 1.7 for this case. In contrast to homogeneous
dielectric media, adjusting the periodicity of the fiber Bragg grating allows one to tailor the
linear dispersion properties of this system. As a result, the dynamics of nonlinear waves
can also be controlled by this tailoring. Moreover, the unique dispersion properties of fiber
Bragg gratings allow novel kinds of localized excitations, the so-called gap solitons, which
are simply impossible to realize within homogeneous materials. Gap solitons are stable opti-
cal pulses with central (carrier) frequencies inside the photonic band gap of a photonic band
gap material [Ac00] and can exhibit propagation velocities ranging from zero all the way to
the speed of light. Nonlinear interaction processes between different pulses may be utilized
for controlling light with light opening novel possibilities in optical information processing
[Tke03, TPB04]. The main difference between (9) and our model (1) is that (9) is quasilin-
ear, and therefore semigroup theory and the variation of constant formula used for (1) have
to be replaced by energy estimates. Such energy estimates can be found in Section 6 in case
of an additional term −χ2(x)E(x, t) on the right hand side. The validity question for (9) as
original system remains open.

Remark 1.7 The NLS equation is a valid model if the nonlinear effects are sufficiently weak.
However, the NLS equation fails in the case when the central frequency of a nonlinear wave
lies inside a spectral gap but is sufficiently far from the band edge. In order to describe such
situations, nonlinear coupled mode equations (NLCME) should be employed [Tke03]. Here,
it is important to note that the NLCME allows one to account exactly for the systems linear
dispersion. For sufficiently wide pulses with narrow spectral content and central frequency
either near the band edge or within the allowed bands the NLCME can be reduced to the NLS
equation. However, we would like to emphasize that the NLCMEs allow one to analyze the
dynamics of nonlinear waves with central frequencies within and/or near a certain spectral
gap only. See [GWH01, SU01] for a mathematical justification of the NLCMEs. c

Remark 1.8 According to the Kramers-Kronig relations, in optics material dispersion al-
ways comes together with dissipation. However, the dispersion near a photonic band edge
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induced by the spatial periodicity of a photonic band gap material is orders of magni-
tudes larger than the dispersion of the constituent materials themselves and is not subject
to Kramers-Kronig relations. Therefore, very often dissipative effects can be neglected in
such systems. In this work, we, too, ignore dissipative effects. See [SU03] for a work
where dissipation has been taken into account and a complex Ginzburg-Landau equation for
Maxwell’s equations in homogeneous media has been justified. Similarly, material disper-
sion and dissipation effects within the NLS equation have been discussed in [BS01]. c

Remark 1.9 An approximation result for the approximation by a linear Schr ödinger equa-
tion in a nonlinear quantum mechanical context has been shown recently in [CMS04]. We
refer to this paper and to [Te03] for an overview about additional results which hold in case
that the original system is linear. c

Notation: Throughout this paper many different constants are denoted by C if they are
independent of the small perturbation parameter 0 < ε � 1. Bloch transform is defined in
(27). Functions u and operators M in Fourier space and Bloch space will be denoted with û,
ũ, M̂ and M̃ , respectively.

Acknowledgement: The work of Guido Schneider and Hannes Uecker is partially supported
by the Deutsche Forschungsgemeinschaft DFG under the grant Schn 520/3-1/2. Kurt Busch
and Lasha Tkeshelashvili acknowledge the support of the DFG under grant Bu 1107/2-3
(Emmy-Noether program) as well as the support by the Center for Functional Nanostructures
(CFN) of the DFG within project A1.3. We finally thank the anonymous referees for detailed
and very helpful comments on an earlier version of this paper.

2 Multiple scaling analysis

In order to understand the derivation of the NLS equation for (1) we first consider the cubic
constant coefficient case

∂2
t u(x, t) = ∂2

xu(x, t) − u(x, t) − u3(x, t). (10)

Here the linearized problems has solution v(x, t) = eikxe±iµ(k)t, where µ2(k) = k2 + 1. The
ansatz

u(x, t) = εψA(x, t) = εA(ε(x+ cgt), ε
2t)eik0xeµ(k0)t + cc, (11)

with 0 < ε � 1 a small parameter, and k0 > 0 the basic spatial wavenumber describes
via the complex valued amplitude A(X, T ) ∈ C slow modulations in time T = ε2t, and
space X = ε(x + cgt), of the underlying wave eik0xeiµ(k0)t). Plugging (11) into (10) and
equating the coefficients in front of εmein(k0x+µ(k0)t) to zero gives for (m,n) = (1, 1) the
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linear dispersion relation µ2(k0) = k2
0 + 1, for (m,n) = (2, 1) the negative group velocity

cg = ∂kµ(k)|k=k0
, and for (m,n) = (3, 1) the NLS equation

∂TA = iν1∂
2
XA + iν2A|A|2 (12)

with coefficients ν1 = −1
2
∂2

kµ(k0) and ν2 = 3
2µ(k0)

.

Remark 2.1 In order to show an approximation result for the description of solutions of (10)
via (11) and (12) we need to make the so called residual

Res(εψ) = ε(−∂2
t ψ + ∂2

xψ − ψ) − ε3ψ3

sufficiently small. Therefore we must eliminate the remaining O(ε3) terms obtained at
(m,n) = (3, 3) in the above calculation. This is achieved by adding

ε3A3(ε(x+ cgt), ε
2t)e3i(k0x+µ(k0)t) + cc

to the ansatz (11) and using the non resonance condition

|µ(3k0) − 3µ(k0)| > 0 (13)

to define A3 = (µ(3k0)−3µ(k0))
−1A3. Hence, in the constant coefficient case we only have

one non resonance condition instead of the (formally) infinitely many in (4). c

The classical approach in the (cubic) spatially periodic case proceeds the same way. The
main difference is that the carrier wave is no longer a Fourier mode eik0xeµ(k0)t but a Bloch
mode fn0

(`0, x)ei`0xeiωn0
(`0)t for some n0 ∈ Z\{0}, `0∈(−1/2, 1/2], and that the calculations

become somewhat more complicated. We use the normalization ‖fn0
‖L2

χ1
((0,2π]] = 1 and

make the ansatz

u(x, t) = εψA(x, t) = εA(ε(x+ cgt), ε
2t)fn0

(`0, x)e
i`0xeiωn0

(`0)t + cc, (14)

where again T = ε2t, X = ε(x + cgt), and A(X, T ) ∈ C. Substituting this into (1) and
equating the coefficients in front of εmein(`0x+iωn0

(`0)t)fn0
(`0, x) to zero we find the linear

dispersion relation, the negative group velocity cg = ∂`ωn0
(`0), and finally that A has to

solve the NLS equation
∂TA = iν1∂

2
XA + iν2A|A|2 (15)

with

ν1 = −1

2
∂2

l ωn0
(`0) and ν2 =

3

2ωn0
(`0)

∫ 2π

0

χ3(x)

χ1(x)
|fn0

(`0, x)|4 dx. (16)

These calculations are based on projection onto span{fn0
}, explicitly given via the inner

product (8), which usually has to be evaluated numerically (see [dSS88, HFBW01] for fur-
ther discussions). Since our approach to (1) is slightly different we skip here the details and
refer to the subsequent sections.
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To explain our approach to (1) we review the derivation of (12) from (10) from another
point of view. Essentially we want to consider (1) and (10) as first order systems. In order to
do so we first consider (10) in Fourier space. The Fourier transform û fulfills

∂2
t û(k, t) = −µ2(k)û(k, t) − û∗3(k, t), µ(k) =

√
k2 + 1, (17)

where û∗p denotes p times convolution, i.e. (û ∗ v̂)(k) =
∫∞
−∞ û(k−m)v̂(m) dm. To rewrite

this second order equation as a first order system we set ŵ(k) = (û(k), 1
µ(k)

∂tû(k)). Then

∂tŵ(k, t) = M̂(k)ŵ(k, t) + N̂(ŵ)(k, t), (18)

where

M̂(k) =

(

0 µ(k)

−µ(k) 0

)

, N̂(ŵ)(k, t) =

(

0
−1
µ(k)

û∗3(k, t)

)

.

The eigenvalues of M̂(k) are ±iµ(k), with eigenvectors φ1 = 1√
2
( 1

i ) and φ2 = 1√
2
( 1
−i )

independent of k. Hence, using the (k-independent) unitary transformation ẑ = Û∗ŵ, with
Û = 1√

2
( 1 1

i −i ), i.e. Û−1 = Û∗, we can diagonalize (18) to

∂tẑ = Λ̂ẑ + Û∗N̂(Û ẑ), (19)

with Λ̂(k) = diag(iµ(k),−iµ(k)).

Fourier transform of the ansatz (11) for (10) yields

û(k, t) = εε−1Â

(

k − k0

ε
, ε2t

)

eiµ(k0)teicg(k−k0)t + ccf, (20)

where ccf denotes the Fourier transform of the complex conjugate, i.e., û(k)+ ccf = û(k)+

û(−k), and where we do not cancel εε−1 into order to display the different origins of ε (from
the original amplitude scaling) and ε−1 (from the long wave scaling and the scaling laws for
Fourier transform). Then for (19) we use the ansatz

ẑ(k, t) = εε−1Â1

(

k−k0

ε
, ε2t

)

eiµ(k0)teicg(k−k0)t~e1

+εε−1Â−1

(

k+k0

ε
, ε2t

)

e−iµ(k0)teicg(k+k0)t~e2
, (21)

where ~e1 = ( 1
0 ) and ~e2 = ( 0

1 ). Hence the Fourier modes of the wave packet are con-
centrated in an O(ε) neighborhood of the basic wave numbers ±k0. Therefore, the evolu-
tion of the wave packet will be strongly determined by ±µ at ±k0. In detail we find for
eiµ(k0)teicg(k−k0)t~e1 with k = k0 + εK that

iµ(k0)Â1 + iεcgKÂ1 + ε2∂T Â1 = iµ(k0)Â1 + iε∂kµ(k0)KÂ1 +
i

2
ε2∂2

kµ(k0)K
2Â1

+ε2 3i

4µ(k0)
Â1 ∗ Â1 ∗ Â−1 + O(ε3),

10



where we used

∫

Â

(

k − `− k0

ε

)

eiµ(k0)teicg(k−`−k0)tÂ

(

`− k0

ε

)

eiµ(k0)teicg(`−k0)t d`

= ε

∫

Â

(

k − 2k0

ε
−m

)

Â(m)e2iµ(k0)teicg(k−2k0)t dm . (22)

At ε0 and ε1 we obtain the linear dispersion relation and the linear group velocity. At ε2 we
obtain a NLS equation which is the same as (12) except for an additional factor 1/2 in ν2

which is due to the normalization

û(k, t) = (Û ẑ(k, t))1 =
1√
2
(ẑ1(k, t) + ẑ2(k, t))

=
1√
2

[

Â1

(

k−k0

ε
, ε2t

)

eiµ(k0)teicg(k−k0)t+Â−1

(

k+k0

ε
, ε2t

)

e−iµ(k0)teicg(k+k0)t

]

(23)

Exactly the same thing happens in the spatially periodic case. The Bloch modes of the
ansatz are strongly concentrated in an O(ε) neighborhood of the basic Bloch wave numbers
±`0, hence the evolution of the wave packet will be determined by the associated curves
ω±n0

at ±`0. This point of view is not new, but it helps to understand the following sections.
Note that we need k0 > 0, but not `0 > 0.

Remark 2.2 The diagonalization (19) yields little advantage for the derivation of the NLS
equation. However, it turns out to be very useful for treating the error equation by semigroup
methods, and essentially, for removing quadratic terms by normal form transforms in case of
a quadratic nonlinearity; see below. c

3 The diagonalization

In this section we recall some basic facts about scalar Sturm–Liouville operators with pe-
riodic coefficients and provide the functional analytic tools used in the subsequent sections
4-6, in particular the diagonalization of our model (1) with respect to the Bloch modes. How-
ever, we start with an introductory section discussing the spectral propertias when the spatial
periodic operator differs only by a small perturbation from the spatially homogenous one.

3.1 Spectral properties

For fixed Bloch wave number ` the Bloch modes fn(`, x) satisfy the spatially periodic eigen-
value problem

−L̃(`, ∂x)fn(`, ·) = χ1(·)(∂x + i`)2fn(`, ·) − χ2(·)fn(`, ·) = −(ωn(`))2fn(`, ·). (24)

11



Since the operator L̃(`, ∂x) on the left hand side is elliptic in the bounded domain [0, 2π)

we have for fixed ` countable many eigenvalues λn, n ∈ N. In L2 equipped with the inner
product (8) the operator L̃(`, ∂x) is positive definite and self adjoint such that the eigenvalues
λn(`) = ω2

n(`) are real and positive. They are ordered in such a way that λn(`) ≤ λn+1(`).

Example 3.1 It is instructive to consider first the constant coefficient case

∂2
t v(x, t) = ∂2

xv(x, t) − v(x, t) (25)

i.e.χj = 1 for j = 1, 2 independent of x. The solutions are Fourier modes v(x, t) =

eikxe±iµ(k)t, where µ2(k) = k2 + 1. Artificially we consider the problem in a spatially
periodic set-up. In a Bloch wave representation we have

v(x, t) = einxei`xeiω±
n (`)t,

where k = n + `, with n ∈ Z here and ` ∈ (− 1
2
, 1

2
]. The eigenvalues are related by

ω±
n (`) = ±µ(n + `). See Figure 2.

-3

0

3

-2 -1 0 1 2

-4

0

4

-0.5 0 0.5

ω
+
2 (`) and ω

+
−2(`)

ω
+
1 (`) and ω

+
−1(`)

ω
−
1 (`) and ω

−
−1(`)

ω
−
2 (`) and ω

−
−2(`)

Figure 2: The curve of eigenvalues in the spatially homogeneous case over the Fourier wave numbers
(left) and over the Bloch wave numbers (right).

For all ` ∈ (−1/2, 1/2] except of ` = 0, 1/2 all eigenvalues in Example 3.1 are simple.
By classical perturbation arguments [Kat66], for periodic χj = 1 + O(δ) the eigenvalues
are smooth functions of δ and stay separated for δ > 0 sufficiently small. However, for
` = 0, 1/2 all eigenvalues are double and generically for small δ > 0 the eigenvalues will
split. This is exactly what happens in the spatially periodic case.

Example 3.2 Let χ2(x) = 1 + 2δ cos(mx) = 1 + δ(e2imx + e−2imx) with δ > 0 small and
m ∈ N fixed. Setting

fn(`, x) =
∑

k∈Z

v̂n
k (`)eikx,

12



the eigenvalue problem (24) is given by the infinitely many equations

(1 + (k + `)2)v̂n
k (`) + δ(v̂n

k+2m(`) + v̂n
k−2m(`)) − λn(`)v̂

n
k (`) = 0, k ∈ Z. (26)

For δ = 0 we have λ+
n (0) = λ−

n (0), where λ±
n (`) = µ(±n+`), i.e. a crossing of the curves of

eigenvalues at ` = 0. Due to the continuity of single eigenvalues or subspaces to eigenvalues
separated from the rest, for small δ > 0 and ` = 0 the infinite dimensional eigenvalue
problem for instance for λ±

m(0) can in lowest order be reduced to a two-dimensional problem
for v̂m

m and v̂m
−m, i.e., to

det

(

1 + (−m)2 − λ±m(0) δ

δ 1 +m2 − λ±m(0)

)

= 0.

Hence λ±
m(0) = 1+m2±δ. Thus λm(`) and λ−m(`) split at the crossing ` = 0 and recombine

in a different way, and similar at ` = 1
2
. The new curves are also denoted with λn(`), now

ordered such that λn+1(`) ≥ λn(`) and now and in the following indexed with n ∈ N. We
let ωn(`) =

√

λn(`) and ω−n(`) = −ωn(`) < 0. See Figure 1.

The computations in Example 3.2 are well documented in the literature [RS78], but we
recalled them here since Figure 1 is fundamental for the paper. Note that the splitting of
λm(`) and λ−m(`) in Example 3.2 yields a spectral gap. At the band edge we have a vanishing
group velocity ∂`λm(`) = 0. Usually the dispersion relation for a periodic dielectric medium
has to be calculated numerically, and spectral gaps occur for suitable periodic gratings. See
[Bu02] for a review of the photonic band structure computations.

3.2 Bloch transform and diagonalization

To derive and justify the NLS equation for (1) we adapt the Fourier space approach for
the constant coefficient problem (10) from Section 2 to Bloch space. Bloch transform is
(formally) defined by

ũ(`, x) = (T u)(`, x) =
∑

j∈Z
eijxû(`+ j),

u(x) = (T −1)ũ(x) =
∫ 1/2

−1/2
ei`xũ(`, x) d`.

(27)

By construction we have

ũ(`, x) = ũ(`, x + 2π) and ũ(`, x) = ũ(`+ 1, x)eix. (28)

Bloch transform is an isomorphism between H s(R,C) and L2((−1/2, 1/2], Hs([0, 2π),C))

[RS78, Sca99], where ‖ũ‖L2((−1/2,1/2],Hs([0,2π),C)) =
(

∫ 1/2

−1/2
‖ũ(`, ·)‖2

Hs[0,2π]d`
)1/2

. Multipli-

cation u(x)v(x) in x-space corresponds in Bloch space to the operation

(ũ ? ṽ)(`, x) =

1
2
∫

− 1
2

ũ(`−m, x)ṽ(m, x) dm, (29)
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where (28) has to be used for |`−m| > 1/2. However, if χ : R → R is 2π periodic, then

T (χu)(`, x) = χ(x)(T u)(`, x).

Similarly to (22) we need a rescaled version of (29). We define

(ũ ?ε ṽ)(`, x) =

1/(2ε)
∫

−1/(2ε)

ũ(`−m, x)ṽ(m, x) dm,

and (S1/εũ)(`, x) = ũ(`/ε, x) such that

(S1/εũ) ?ε (S1/εũ) = εS1/ε(ũ ? ũ). (30)

Applying Bloch wave transform to (1) gives

∂2
t ũ(`, x) = −L̃(`, ∂x)ũ(`, x) − χ3(x)ũ

?ϑ(`, x), (31)

where the Bloch operators L̃(`, ∂x) : H2([0, 2π)) → L2([0, 2π)) are given by

L̃(`, ∂x)ũ(`, ·)(x) = −χ1(x)(∂x + i`)2ũ(`, x) + χ2(x)ũ(`, x).

For fixed ` these operators are self adjoint and positive definite in the space L2
χ1

([0, 2π),C)

equipped with the inner product (8), i.e., 〈ũ(`, ·), ṽ(`, ·)〉χ1
=
∫

ũ(`, x)ṽ(`, x)/χ1(x) dx.
The induced norm ‖ · ‖L2

χ1
and the usual L2 norm are equivalent since χ1(x) ≥ γ > 0 for a

constant γ independent of x by assumption. The self-adjointness of L̃(`, ∂x) follows from

〈L̃(`, ∂x)ũ, ṽ〉χ1
=

∫

1

χ1(x)
(−χ1(x)(∂x + i`)2ũ(x) + χ2(x)ũ(x))ṽ(x) dx

=

∫

(−(∂x + i`)ũ(x))(−(∂x + i`)ṽ(x)) +
χ2(x)

χ1(x)
ũ(x)ṽ(x) dx

= 〈ũ, L̃(`, ∂x)ṽ〉χ1
,

and the positive definiteness from

〈L̃(`, ∂x)ũ, ũ〉χ1
=

∫

|∂xũ(x)|2 +

(

`2 +
χ2(x)

χ1(x)

)

|ũ(x)|2 dx > 0

for ũ 6= 0 in L2
χ1

. Thus, for each fixed ` there exists a Schauder base (fj(`, ·))j∈N of
L2([0, 2π)) of eigenfunctions of L̃(`, ∂x) with strictly positive eigenvalues λj(`) > 0, i.e.
L̃(`, ∂x)fj(`, ·) = λj(`)fj(`, ·). Moreover, the (fj(`, ·)) can be chosen smoothly in ` since
L̃(`, ∂x) is a relatively bounded perturbation of −χ1(·)∂2

x+χ2(·). We shall use this repeatedly
in the following, see e.g. Lemma 3.3.

We make the ansatz
ũ(`, x, t) =

∑

j∈N

ũj(`, t)fj(`, x),
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where, due to (28), ũj(`, t) = ũj(` + 1, t). Since L̃(`, ∂x) is self-adjoint in L2
χ1

, the eigen-
functions (fj(`, ·))j∈N can be chosen to form an orthonormal basis of L2

χ1
for each fixed `.

Hence ũj(`, t) = 〈fj(`, ·), ũ(`, ·, t)〉χ1
, and therefore

∂2
t ũj(`, t) = −λj(`)ũj(`, t) + 〈fj(`, ·), χ3(·)ũ?ϑ(`, ·, t)〉χ1

. (32)

To write these second order equations as diagonal first order systems, for j ∈ N we introduce

ωj(`) =
√

λj(`), ω−j(`) = −ωj(`), ṽj(`) = ∂tũj(`)/ωj(`), ṽ(`) = (ṽj(`))j∈N, and

Z̃j = Û∗

(

ũj

ṽj

)

, where Û =
1√
2

(

1 1

i −i

)

, Û∗ =
1√
2

(

1 −i

1 i

)

.

Here Z̃j(`, t) = Z̃j(`+1, t), due to ũj(`, t) = ũj(`+1, t) and ωj(`) = ωj(`+1). We denote
the mapping of (ũ, ṽ) to Z̃(`, t) = (Z̃j(`, t))j∈N by D, i.e., for ũ(`, x) =

∑

j∈N
ũj(`)fj(`, x)

and ṽ(`, x) =
∑

j∈N
ṽj(`)fj(`, x) we set

D(`)

(

ũ(`)

ṽ(`)

)

= (Z̃j(`))j∈N with Z̃j(`) =
1√
2

(

ũj(`) − iṽj(`)

ũj(`) + iṽj(`))

)

. (33)

Here D depends on ` via the orthonormal system fn(`).
It is also convenient to write

Z̃j =

(

z̃j

z̃−j

)

, j ∈ N,

which yields

D(`)−1((Z̃j(`))j∈N)(x) =
1√
2







∑

j∈N

(z̃j + z̃−j)(`)fj(`, x)

∑

j∈N

i(z̃j − z̃−j)(`)fj(`, x)






. (34)

Now (32) yields the diagonal first order system

∂tZ̃j(`, t) = Λj(`)Z̃j(`, t) − Û∗

(

0

s̃j(`, t)

)

, (35)

with Λ̃j(`) = diag(iωj(`), iω−j(`)) and

s̃j(`, t) = ω−1
j (`)

〈

fj(`, ·), χ3(·)ũ?ϑ(`, ·, t)
〉

χ1
,

where ũ is given by the first component of the right hand side of (34). In the quadratic case
ϑ = 2 we have

s̃j(`, t) =

1
2
∫

− 1
2

∑

j1,j2∈N

βj
j1,j2

(`, `−`1, `1)(z̃j1+z̃−j1)(`−`1, t)(z̃j2+z̃−j2)(`1, t) d`1,

βj
j1,j2

(`, `−`1, `1) =
1

2
ω−1

j (`)
〈

fj(`, ·), χ3(·)fj1(`− `1, ·)fj2(`1, ·)
〉

χ1
,
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which we abbreviate as

s̃j(`, t) =

1
2
∫

− 1
2

∑

j1,j2∈Z\{0}
b̃jj1,j2

(`, `−`1, `1)z̃j1(`−`1, t)z̃j2(`1, t) d`1, (36)

b̃jj1,j2
(`1, `2, `3) = β̃

|j|
|j1|,|j2|(`1, `2, `3)sgn(jj1j2). (37)

The cubic case ϑ = 3 yields

s̃j(`, t) =

1
2
∫

− 1
2

1
2
∫

− 1
2

∑

j1,j2,j3∈N

β̃j
j1,j2,j3

(`, `−`1, `1−`2, `2)

(z̃j1+z̃−j1)(`−`1, t)(z̃j2+z̃−j2)(`1−`2, t)(z̃j3+z̃−j3)(`2, t) d`2 d`1,

β̃j
j1,j2,j3

(`, `−`1, `1−`2, `2)=
1√
8
ω−1

j (`)
〈

fj(`, ·), χ3(·)fj1(`− `1, ·)fj2(`1 − `2, ·)fj3(`1, ·)
〉

χ1
,

i.e.

s̃j(`, t) =

1
2
∫

− 1
2

1
2
∫

− 1
2

∑

j1,j2,j3∈Z\{0}
b̃jj1,j2,j3

(`, `−`1, `1−`2, `2)

z̃j1(`−`1, t)z̃j2(`1−`2, t)z̃j3(`2, t) d`2 d`1, (38)

b̃jj1,j2,j3
(`1, `2, `3, `4) = β̃

|j|
|j1|,|j2|,|j3|(`1, `2, `3, `4)sgn(jj1j2j3). (39)

Equation (35) is abbreviated in the following with

∂tZ̃ = Λ̃Z̃ + Ñ (Z̃). (40)

It is obvious that we can also regard the nonlinearity Ñ (Z̃) as a symmetric bilinear or trilinear
mapping as in f(u) = u2 = b(u, u) with b(u, v) = 1

2
(uv + vu).

3.3 The function spaces

In this section we summarize the analytic properties of the mappings D(`) and give an esti-
mate for bilinear mappings of the form (36). Therefore we introduce

X s = L2((−1/2, 1/2], `2(s))

equipped with the norm

‖z̃‖X s =

(

∫ 1/2

−1/2

∑

j∈Z

|z̃j(`)|2|j|2s d`

)1/2

.
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In the space X s we have the trivial estimate

‖M̃(·)z̃(·)‖X s ≤ sup{|mj(`)| : ` ∈ (−1

2
,
1

2
], j ∈ Z} ‖z̃(·)‖X s

where M̃(`) is a diagonal operator with entries m̃j(`).

Lemma 3.3 For all ` ∈ (−1/2, 1/2], the diagonalization operator D(`) defined in (33),
is an isomorphism between Hs([0, 2π)) × Hs([0, 2π)) and `2(s) × `2(s) and there exists a
δ(`) > 0 with

‖D(`)‖, ‖D−1(`)‖ ≤ δ(`). (41)

Moreover, sup`∈(−1/2,1/2] δ(`) ≤ C <∞.

Proof. We use the equivalence of the spaces of fractional powers belonging to the sectorial
operators

L̃(`, ∂x)ũ(·)(x) = −χ1(x)(∂x + i`)2ũ(x) + χ2(x)ũ(x).

and
L̃0(`, ∂x)ũ(·)(x) = −(∂x + i`)2ũ(x) + ũ(x),

in the space Y = L2([0, 2π),C). These spaces are denoted in the following with Y α(`) and
Y α

0 (`). They are equipped with the norms ‖ũ‖Y α(`) = ‖L̃α(`, ∂x)ũ(`, ·))‖Y and ‖ũ‖Y α
0 (`) =

‖L̃α
0 (`, ∂x)ũ(`, ·))‖Y . The equivalence then follows from the estimate for the resolvents

C1‖(L̃0(`, ∂x) − λI)−1‖Y →Y ≤ ‖L̃(`, ∂x) − λI)−1‖Y →Y

≤ C2‖(L̃0(`, ∂; x) − λI)−1‖Y →Y

with constants C1, C2 > 0 independent of ` and λ in a suitable chosen sector and from the
alternative definition of the spaces of fractional powers given in [He81, sec. 1.4.].

It is well known that the space Y α
0 (`) is given by the Sobolev space H2α([0, 2π)). There-

fore, also the space Y α(`) is equivalent to H2α([0, 2π)). It remains to relate the space Y α(`)

with `2(s) where s = 2α. From the asymptotics of the eigenvalues it follows that there exist
C3, C4 such that

C3j ≤ ωj ≤ C4j, j ∈ N (42)

which holds uniformly in ` ∈ (−1/2, 1/2]. Then the assertion follows directly from the
spectral theorem for self adjoint operators, i.e.,

‖ũ‖Y α(`) =

(

∑

j∈N

|ũj|2|ωj(`)|2s

) 1
2

for ũ(`, x) =
∑

j∈N

ũj(`)fj(`, x).

Clearly, Lemma 3.3 implies that (ũ, ṽ) 7→ Z̃ with Z̃(`) = D(`)(ũ(`), ṽ(`)) is an isomor-
phism between L2((−1/2, 1/2), Hs([0, 2π)) ×Hs([0, 2π))) and X s.
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Lemma 3.4 For each s > 1/2 the nonlinearity Ñ (Z̃) in (40) is a smooth mapping from X s

into X s+1, i.e. we have ‖Ñ (Z̃)‖X s+1 ≤ C‖Z̃‖ϑ
X s .

Proof. This follows from Sobolev’s embedding theorem, i.e. ‖uϑ‖Hs ≤ C‖u‖ϑ
Hs , by going

back into x–space using T and Lemma 3.3. In detail, writing

D−1(Z̃) =

(

ũ

ṽ

)

∈ L2((−1/2, 1/2], Hs) × L2((−1/2, 1/2], Hs)

we have

‖Ñ (Z̃)‖X s+1 =

∥

∥

∥

∥

∥

DT
(

0

uϑ

)∥

∥

∥

∥

∥

X s+1

≤ C‖T (uϑ)‖L2((−1/2,1/2],Hs) ≤ C‖uϑ‖Hs ≤ C‖u‖ϑ
Hs

≤ C‖ũ‖ϑ
L2((−1/2,1/2],Hs) ≤ C‖Z̃‖ϑ

X s.

The gain in regularity is due to the the fact that the nonlinearity only depends on u and our
choice of ṽ, which yields the ω−1

j (`) in the representation

s̃j(`, t) = ω−1
j (`)

〈

fj(`, ·), χ3(·)ũ?ϑ(`, ·, t)
〉

χ1
.

3.4 Estimates for the normal form transform

This following estimate is used in Section 5.2 to estimate the normal form transform in case
of quadratic nonlinearities

Lemma 3.5 Nonlinear terms of the form s(x) = T −1(
∑

j∈Z
s̃jfj)(x) with s̃j(`) given by

(36) are bilinear mappings from Hq ×Hq to Hs if

sup
`,`1

∑

j,j1,j2∈Z\{0}
|b̃jj1,j2

(`, `− `1, `1)|j|s|j1|−q|j2|−q|2 <∞. (43)

Proof. Using Young’s inequality and the embedding L2((−1/2, 1, 2]) ⊂ L1((−1/2, 1, 2])

this follows by applying Schwarz’s inequality twice from

(

∑

j

(

|j|s
∑

mn

b̃jmn z̃mz̃n

)2
)1/2

=

(

∑

j

(

|j|s
∑

mn

b̃jmn|m|q|m|−q|n|q|n|−qz̃mz̃n

)2
)1/2

≤
(

∑

jmn

||j|sb̃jmn|m|−q|n|−q|2
)1/2(

∑

m

(|z̃m||m|q)2
)1/2(

∑

n

(|z̃n||n|q)2
)1/2

≤
(

∑

jmn

||j|sb̃jmn|m|−q|n|−q|2
)1/2

‖z̃‖2
`2(q).

Lemma 3.6 Assumption (7) on the nonlinear interaction of the Bloch modes implies that the
nonlinearity from Lemma 3.5 is smooth from H s ×Hs into Hs for every s ∈ (1/2, α+ 1/2).
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Proof: Under the validity of the assumption (7) we find

∑

j,j1,j2∈Z\{0}
|b̃jj1j2

|j|s|j1|−s|j2|−s|2

≤
∑

j,j1,j2∈Z\{0}

∣

∣

∣

∣

1

|j|
( C

1 + |j − j1 − j2|
)α|j|s|j1|−s|j2|−s

∣

∣

∣

∣

2

= s2 .

For the finiteness of the sums over j1 and j2 we need s > 1/2 and α > 1/2. Consider

s1 =
∑

j1

∣

∣

∣

∣

1

1 + |j − j1|α
|j1|−s

∣

∣

∣

∣

2

.

We have two cases:
1) Let 0 < j1 < j/2 or 3j/2 < j1, then, for s > 1/2,

s1 ≤
∑

j1

∣

∣

∣

∣

∣

1

1 + | j
2
|α |j1|

−s

∣

∣

∣

∣

∣

2

≤ C

|j|2α
.

2) Let j/2 < j1 < 3j/2, then, for α > 1/2,

s1 ≤
∑

j1

∣

∣

∣

∣

1

1 + |j − j1|α
|j
2
|−s

∣

∣

∣

∣

2

≤ C

|j|2s

Thus we have

s2 ≤ C
∑

j∈Z\{0}

∣

∣

∣

∣

1

|j|
( 1

1 + |j|
)min(s,α)

|j|s
∣

∣

∣

∣

2

which is finite for 1 + min(s, α) − s > 1/2, i.e.α ≥ s− 1/2.

4 The cubic case

In the following we use the abbreviation X = X s. As in the spatially homogeneous case for
cubic nonlinearities the proof of the approximation result is based on a simple application
of Gronwall’s inequality. However, the additional non-resonance conditions (4) have to be
satisfied to make the so called residual

Res(Z̃) = −∂tZ̃ + Λ̃Z̃ + Ñ (Z̃) (44)

sufficiently small in the prescribed norm in which we intend to measure the magnitude of
the error, i.e. here O(ε4) in X . This smallness of the residual is necessary in the proof of the
approximation result given in this section.
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4.1 Derivation and residual

The simple approximation (14) produces a number of O(ε3) terms which do not cancel.
Thus ‖Res(εΨ̃app)‖X = O(ε3), where εΨ̃app is the approximation for Z defined via (14).
As in [KSM92] these O(ε3) terms will be canceled by adding higher order terms to the
approximation. For notational simplicity and w.l.o.g. we choose n0 = 1, i.e. we derive the
NLS equation for the variable z̃1. With E

j = ejiω1(`0)teiω′
1(`0)(`−j`0)t, the extension εΨ̃ of

εΨ̃app is given by

z̃1 =εε−1Ã1

(

`− `0
ε

, ε2t

)

E + ε3ε−1Ã13

(

`− 3`0
ε

, ε2t

)

E
3

+ ε3ε−1Ã1−1

(

`+ `0
ε

, ε2t

)

E
−1 + ε3ε−1Ã1−3

(

`+ 3`0
ε

, ε2t

)

E
−3,

z̃−1 =εε−1Ã−1

(

`+ `0
ε

, ε2t

)

E
−1 + ε3ε−1Ã−1−3

(

`+ 3`0
ε

, ε2t

)

E
−3

+ ε3ε−1Ã−11

(

`− `0
ε

, ε2t

)

E
1 + ε3ε−1Ã−13

(

`− 3`0
ε

, ε2t

)

E
3,

z̃n =
∑

j=−3,−1,1,3

ε3ε−1Ãnj

(

`− j`0
ε

, ε2t

)

E
j, n ∈ Z \ {0,±1}.











































































(45)

Here, Ã1 = χε,`0Â and Ã−1 = χε,−`0Â, where χε,`0 is the cut off function

χε,`0(`) =

{

1 , ε−1(`− `0) ∈ (−1/2, 1/2],

0 , else.

The Ãij are variables in Bloch space, i.e., they satisfy the periodicity condition

Ãij

(

` + 1 − j`0
ε

)

= Ãij

(

`− j`0
ε

)

,

whereas Â is a variable in Fourier space. Inserting (45) into (40) and equating the coefficients
of ε3

E
1 in the equation for z̃1 to zero yields

∂T Ã1 =
iω′′(`0)

2
κ2Ã1 + γÃ1 ?ε Ã1 ?ε Ã−1, (46)

where ` = `0 + εκ and

γ = 3ib̃1111(`0, `0, `0,−`0) ∈ iR, (47)

while A−1 satisfies the complex conjugate equation. By (39) we have γ = iν2 with ν2 from
(16). In (46), the convolution ?ε means

(Ã1 ?ε Ã1 ?ε Ã−1)(κ) =

∫ 1/(2ε)

−1/(2ε)

∫ 1/(2ε)

−1/(2ε)

Ã1(κ − κ1)Ã1(κ1 − κ2)Ã−1(κ2) dκ2 dκ1.
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From (46) we find formally the NLS equation

∂T Â =
iω′′(`0)

2
κ2Â+ γÂ ∗ Â ∗ Â, (48)

by letting ε→ 0, in particular
∫ 1/(2ε)

−1/(2ε)
→
∫

R
.

Similarly, equating the coefficients of ε2
E

j in the equation for z̃n to zero, n ∈ Z \ {0}
and j = ±3,±1, yields

jω1(`0)Ãnj(κ) = ωn(j`0)Ãnj(κ)

+
∑

j1+j2+j3=j, ji∈{−1,1}
b̃nj1,j2,j3

(j`0, j1`0, j2`0, j3`0)Ãj1 ?ε Ãj2 ?ε Ãj3(κ).

(49)

Thus the Ãnj can be determined if the countably many non resonance conditions

|ωn(j`0) − jω1(`0)| > 0, (50)

for j = ±3,±1 and n ∈ Z\{0} except for (n, j) = ±(1, 1), hold, where again the argument
of ωn is to be taken modulo 1. More precisely, we need the existence of a C > 0 such that

inf
n∈Z,j∈{±3,±1},(n,j)6=±(1,1)

|ωn(j`0) − jω1(`0)| ≥ C . (51)

Remark 4.1 (51) automatically holds for |n| sufficiently large since ωn(`) ∼ |n|. Hence
(51) only needs to be checked for n ≤ N0 for some N0 > 0 which depends on χj. This
usually has to be done numerically. Moreover, for our choice u3 of the nonlinearity (without
derivatives) and for given ε > 0, N0 = O(1/ε) will always be sufficient since again due to
ωn ∼ |n| we have b̃nj1,j2,j3 ≤ Cε for n > 1/ε, hence (49) holds up to O(ε) even if we set
Ãnj = 0. However this remark is only useful for finite ε and not in the limit ε→ 0. A similar
remark holds in the quadratic case, too. c

Remark 4.2 In Remark 2.1 we explained that in the spatially homogeneous case, cf. (10),
we only have one non-resonance condition, namely | ± µ(3k0) − 3µ(k0)| > 0, to achieve
O(ε4) for the residual. If we consider (10) artificially in Bloch space, cf. Example 3.1, then
we find that similarly (51) reduces to

|ω1(3`0) − 3ω1(`0)| > 0. (52)

This holds due to fn(`, x) = einx, (with n ∈ Z as in Example 3.1), hence

β̃j
j1,j2,j3

(`, `1, `2, `3) =
1√
8
ω−1

j (`)
1

2π

∫ 2π

0

ei(j−j1−j2−j3)x dx

=

{

1√
8
ω−1

j (`) if j − j1 − j2 − j3 = 0

0 else
,

independent of `, . . . , `3, and consequently b̃nj1,j2,j3 = 0 in (49) except for n = j = 3. Thus
we can set Ãnj = 0 for n 6= 3. c
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From a formal point of view we now have that the residual is of order O(ε4). This immedi-
ately can be made rigorous by

Lemma 4.3 Let m, s ≥ 0 and let g(`) satisfy |g(`)| ≤ C|`− `0|s. Then

‖g(·)Â(ε−1(· − `0))‖L2(m) ≤ Cεs+1/2‖Â‖L2(m+s).

Proof. This follows immediately from the fact that the left hand side can be estimated by
sup`∈R |g(`)(1 + ε−1|`− `0|)−s|‖Â‖L1(m+s) and by the scaling properties of L2.

Lemma 4.4 Let Â ∈ C([0, T0], L
2(sA)) be a solution of (3). Then

sup
t∈[0,T0/ε2]

‖Res(εΨ̃)‖X ≤ CResε
7/2, sup

t∈[0,T0/ε2]

‖εΨ̃ − εΨ̃app‖X ≤ Cε3/2,

sup
t∈[0,T0/ε2]

‖Ψ̃‖L1((−1/2,1/2],Hs) ≤ C.

Proof. Applying Lemma 4.3 to, for instance,

|ωn(`) − ωn(`0) − ω′
n(`0)(`− `0) − ω′′

n(`0)(`− `0)
2/2| ≤ C(`− `0)

3,

and to

‖ε−1S1/ε(Ã1−Â)‖L2 = ‖ε−1(1−χ)S1/εÂ‖L2 ≤ ε−1/2 sup
`∈R

|(1−χ(ε`))(1+|`|)−3|‖Â‖L2(sA),

the formal arguments from above can be made rigorous. This also explains sA ≥ 3.
The last estimate in Lemma 4.4 is used to control convolutions that come from the non-

linearity, for instance,

‖Ψ̃ ? R̃‖L2((−1/2,1/2),`2) ≤ C‖Ψ̃‖L1((−1/2,1/2),`2)‖R̃‖L2((−1/2,1/2),`2),

which arises from interactions of the approximation with the error defined below. Note that
‖Ψ̃‖L2((−1/2,1/2),`2) ≤ Cε−1/2.

4.2 Error estimates

In order to justify the NLS equation we write a solution Z̃ of (40) as a sum of the approxi-
mation εΨ̃ and the error ε3/2R̃, i.e. Z̃ = εΨ̃ + ε3/2R̃. Inserting this into (40) gives

∂tR̃ = Λ̃R̃ + G̃(ψ̃, R̃) (53)

with

‖G̃(Ψ̃, R̃)‖X ≤ C1ε
2‖R̃‖X + C2ε

5/2‖R̃‖2
X + CResε

2 (54)

where C1 is independent of ‖R̃‖X , and C2 = C2(M) is independent of ‖R̃‖X as long as
‖R̃‖X ≤ M where M is a constant defined below independent of 0 < ε � 1. Obviously Λ̃
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generates a strongly continuous group S̃(t) = etΛ̃ : X → X where ‖S̃(t)‖X→X ≤ Cs with
C independent of t. For simplicity we assume R(0) = 0. Then the variation of constant
formula yields

R̃(t) =

t
∫

0

S̃(t− τ)G̃(Ψ̃, R̃)(τ)dτ .

By (54) we obtain local existence and uniqueness for (53), and, by Gronwall’s inequality,

sup
t∈[0,T0/ε2]

‖R̃(t)‖X ≤ CsT0(CRes + 1)eCsC1T0 =: M (55)

for all ε ∈ (0, ε0), if ε0 > 0 is chosen so small that

ε
1/2
0 C2M

2 ≤ 1. (56)

In detail, to M defined in (55) we have a constant C2 in (54) and then an ε0 > 0 defined in
(56). Thus we have shown the following theorem.

Theorem 4.5 Assume the non–resonance condition (4). For all C1 and T0 > 0 there exist
ε0 > 0 and C2 > 0 such that for all solutions Â ∈ C([0, T0], L

2(sA)) of (48) with

sup
T∈[0,T0]

‖Â(T )‖L2(sA) ≤ C1

the following holds. For all ε ∈ (0, ε0) there are solutions Z̃ ∈ C([0, T0/ε
2],X ) of (40) such

that
sup

t∈[0,T0/ε2]

‖Z̃(t) − εΨ̃(t)‖X ≤ C2ε
3/2 .

In x–space Lemma 4.4 and Theorem 4.5 yield Theorem 1.1 via

‖u(x, t)−εψ(x, t)‖Hs = ‖T −1
[

D−1(Z̃−εΨ̃app)
]

1
‖Hs = ‖T −1

[

D−1(Z̃−εΨ̃) + O(ε3/2)
]

1
‖Hs

≤ C‖
[

D−1ε3/2R̃]1‖L2((−1/2,1/2),Hs(0,2π)) + Cε3/2

≤ Cε3/2‖R̃‖X s + Cε3/2 ≤ Cε3/2

5 The quadratic case

This section contains the proof of the approximation result for (1) in case of a quadratic non-
linearity. In order to transfer the proof from cubic nonlinearities to quadratic nonlinearities,
and especially to prove estimates on the long time scale of order O(1/ε2) the quadratic terms
are eliminated by a normal form transform. This leads to the infinitely many non-resonance
conditions (5),(6), and to assumption (7) on the quadratic interaction of Bloch modes.
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5.1 Derivation and residual

In order to derive the NLS equation we now make the ansatz

z̃1 =εε−1Ã1

(

`− `0
ε

, ε2t

)

E + ε2ε−1Ã12

(

`− 2`0
ε

, ε2t

)

E
2

+ ε2ε−1Ã10

(

`

ε
, ε2t

)

+ ε2ε−1Ã1−2

(

`+ 2`0
ε

, ε2t

)

E
−2

z̃−1 =εε−1Ã−1

(

`+ `0
ε

, ε2t

)

E
−1 + ε2ε−1Ã−10

(

`

ε
, ε2t

)

+ ε2ε−1Ã−12

(

`− 2`0
ε

, ε2t

)

E
2 + ε2ε−1A−1−2

(

`+ 2`0
ε

, ε2t

)

E
−2

z̃n =
∑

j=0,−2,2

ε2ε−1Ãnj

(

`− j`0
ε

, ε2t

)

E
j, n ∈ Z \ {0,±1},

where Ã1 = χε,`0Â and Ã−1 = χε,−`0Â. The Ãij are variables in Bloch space, i.e., they
satisfy the periodicity condition

Ãij

(

` + 1 − j`0
ε

)

= Ãij

(

`− j`0
ε

)

,

whereas Â is a variable in Fourier space. Plugging this into (40) and equating the coefficients
of ε3

E in the equation for z̃1 at `0 to zero we find

∂T Ã1(κ, T ) =
ω′′

1(`0)

2
κ2Ã1(κ, T ) +

∑

n∈Z

2b̃1n1(`0, `0, 0)(Ã1 ?ε Ãn0)(κ, T )

+
∑

n∈Z

2b̃1n−1(`0,−`0, 2`0)(Ã−1 ?ε Ãn2)(κ, T ). (57)

Similarly, setting ε2Ej in the equation for z̃n at `0 to zero with n ∈ Z \ {0} and j = 0,−2, 2

we find

2ω1(`0)Ãn2 = ωn(2`0)Ãn2 + b̃n11(2`0, `0, `0)Ã1?εÃ1,

0Ãn0 = ωn(0)Ãn0 + 2b̃n1−1(0, `0,−`0)Ã1?εÃ−1.
(58)

Eliminating the Ãnj in the equation for Ã1 by these algebraic relations gives

∂T Ã1 =
iω′′

1(`0)

2
κ2Ã1 + γÃ1 ?ε Ã1 ?ε Ã−1

with

iR 3 γ =2i
∑

n∈Z\{0}

−2

ωn(0)
b̃1n1(`0, `0, 0)b̃n1−1(0, `0,−`0)

+ 2i
∑

n∈Z\{0}

2

2ω1(0) − ωn(2`0)
b̃1n−1(`0,−`0, 2`0)b̃n11(2`0, `0, `0).

(59)
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From this we find formally the NLS equation

∂T Â =
iω′′(`0)

2
κ2Â+ γÂ ∗ Â ∗ Â, (60)

by letting ε→ 0. For the elimination of Ãn0 and Ãn2 we used the non-resonance conditions

ωn(2`0) − 2ω1(`0) 6= 0, ωn(0) 6= 0 (61)

for all n ∈ Z \ {0} uniformly in n.
For the validity proof we again need that the residual for the approximation is sufficiently

small, here of order O(ε9/2) inX . Exactly as before this can be achieved by adding additional
terms of higher order to the approximation which is possible if the non resonance conditions

|ωn(j`0) − jω1(`0)| > 0

holds uniformly for |j| ≤ 4 and n ∈ Z \ {0} except for (n, j) = ±(1, 1).
In order to justify the NLS equation we again write the solution Z̃ as sum of such an

approximation εΨ̃ satisfying

sup
t∈[0,T0/ε2]

‖Res(εΨ̃)‖X ≤ CResε
9/2 (62)

and an error ε5/2R. The precise construction of the approximation is as in Section 4. The
smaller residual (O(ε9/2) in (62) in contrast to O(ε7/2) in Lemma 4.4) explains the more
restrictive lower bound sA ≥ 4 in Theorem 1.2.

5.2 Error estimates

Writing the nonlinear terms Ñ (Z̃) in (40) as a symmetric bilinear mapping B̃(Z̃, Z̃) we find
for the error

∂tR̃ = Λ̃R̃ + 2εB̃(Ψ̃, R̃) + ε5/2B̃(R̃, R̃) + ε−5/2Res(εΨ̃).

The main difficulty in proving a bound of order O(1) for R̃ on the long time scale O(1/ε2)

obviously stems from the term
2εB̃(Ψ̃, R̃).

As in the spatially homogeneous case this term will be eliminated by a normal form trans-
formation. In order to do so additional non-resonance condition have to be valid. We make
a near identity transformation

R̃ = W̃ + 2εQ̃(Ψ̃, W̃ ) (63)

with Q̃ also a symmetric bilinear mapping. This yields

∂tW̃ = Λ̃W̃ + 2ε[B̃(Ψ̃, W̃ ) + Λ̃Q̃(Ψ̃, W̃ ) − Q̃(Λ̃Ψ̃, W̃ ) − Q̃(Ψ̃, Λ̃W̃ )] + O(ε2).
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Hence, in order to eliminate the dangerous O(ε)-terms in this equation we have to find a
Q̃ such that the terms in the parenthesis [· · · ] vanish, i.e. find Q̃ such that

−Λ̃Q̃(Ψ̃, W̃ ) + Q̃(Λ̃Ψ̃, W̃ ) + Q̃(Ψ̃, Λ̃W̃ ) = B̃(Ψ̃, W̃ ).

The j-th component of Q̃(Ψ̃, W̃ ) can be written as

1
2
∫

− 1
2

∑

m,n∈Z\{0}
q̃j
m,n(`, `− `1, `1)ψ̃m(`− `1, t)W̃n(`1, t) d`1 ,

similar to the j-th component of B̃(Ψ̃, W̃ ) which we wrote in sec. 3 as

1
2
∫

− 1
2

∑

m,n∈Z\{0}
b̃jm,n(`, `− `1, `1)ψ̃m(`− `1, t)W̃n(`1, t) d`1,

cf. (36). Using the diagonal form of Λ̃(`) we find that Q can be defined if the equation

i(−ωj(`) + ωm(`− `1) + ωn(`1))q̃
j
mn(`, `− `1, `1) = b̃jmn(`, `− `1, `1)

can be resolved with respect to q̃j
mn. Since εψ̃(`) is only of order O(ε) in the z̃1 variable

close to `0 and in the z̃−1 variable close to −`0, the term b̃jmn has only to be eliminated for
these coordinates and wave numbers. Thus, applying Lemma 4.3, the order O(ε) terms can
be eliminated if the non resonance condition (6) is satisfied.

Due to Lemma 3.6 the assumption (7) implies

sup
`,`1

∑

j,j1,j2∈Z/{0}
|b̃jj1j2

(`, `− `1, `1)|j|s|j1|−s|j2|−2|2 <∞.

Thus, by (6),

sup
`,`1

∑

j,j1,j2∈Z/{0}
|q̃j

j1j2
(`, `− `1, `1)|j|s|j1|−s|j2|−s|2 <∞.

Lemma 3.5 then implies the boundedness of Q as a mapping from H s intoHs with an O(1)-
bound.

Therefore, the transformation (63) is an isomorphism in X for ε > 0 sufficiently small.
After the transformation we find

∂tW̃ = Λ̃W̃ + g̃(ψ̃, W̃ )

with
‖g̃(ψ̃, W̃ )‖X ≤ C1ε

2‖W̃‖X + C2ε
5/2‖W̃‖2

X + CResε
2

where C is independent of ‖W̃‖X if ‖W̃‖X ≤ M , with M independent of 0 < ε � 1. The
rest of the approximation result works then line for line as in Section 4.

Thus we have the following result:
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Theorem 5.1 Assume (5)–(7). Then for all C1 and T0 > 0 there exist ε0 > 0 and C2 > 0

such that for all solutions Â ∈ C([0, T0], L
2(sA)) of (60) with

sup
T∈[0,T0]

‖Â(T )‖L2(sA) ≤ C1

the following holds. For all ε ∈ (0, ε0) there are solutions z̃ ∈ C([0, T0/ε
2],X ) of (40) such

that
sup

t∈[0,T0/ε2]

‖z̃(t) − εψ̃(t)‖X ≤ C2ε
3/2 .

The rest of the proof of Theorem 1.2 now follows exactly as at the end of Section 4.

6 Estimates for Maxwell’s equations

In this section we prove the approximation property for the model coming from nonlinear
optics considered in Section 1.3. Here, for technical reasons we add a term −χ2(x)E(x, t)

on the right hand side of (9) which is needed for the equivalence of the norms ‖ · ‖Hs
t

and
Es,0(·) defined below. The validity question for (9) as original system remains open.

Thus, suppose that we constructed the approximation εψ for this model as in Section 4
such that the the following holds. The residual

Res(E) = −∂2
xE + χ1∂

2
tE + χ3∂

2
t (E

3) + χ2E

satisfies
sup

t∈[0,T0/ε2]

‖Res(εψ)‖Hs ≤ CResε
β+2

for chosen β > 1 and s > 1/2, if A ∈ C([0, T0], H
sA) satisfies the corresponding NLS,

sA ≥ max{3, s}.
In the following we use the notation

‖u‖Hs
t

=
s
∑

j=0

(
∫

|∂j
t u(x, t)|2 dx

)
1
2

.

Note that integration is with respect to x, but differentiation with respect to t. We use the
estimates

sup
x∈R

|∂j
tR| ≤ ‖∂j

tR‖H1 = ‖∂j
tR‖L2 + ‖∂j

t ∂xR‖L2 ,

∫

u1u2u3u4 dx ≤ sup
x∈R

|u1u2| ‖u3‖L2‖u4‖L2 .

We write a solution E of

∂2
xE = χ1∂

2
tE + χ3∂

2
t (E

3) + χ2E
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as a sum of an approximation εψ an an error function εβR. Then R satisfies

∂2
xR = χ1∂

2
tR + χ2R + 3ε2χ3∂

2
t (ψ

2R) + 3ε1+βχ3∂
2
t (ψR

2) + ε2βχ3∂
2
t (R

3)

+ ε−βRes(εψ).
(64)

We apply ∂n
t to (64), multiply by ∂n+1

t R and integrate with respect to x. For n ≥ 2 we find,
using the abbreviation R̃ = ∂n

t R,
∫

χ2R̃∂tR̃ dx =
1

2
∂t

∫

χ2R̃
2dx,

∫

χ1∂
2
t R̃∂tR̃ dx =

1

2
∂t

∫

χ1(∂tR̃)2 dx ,

∫

∂2
xR̃∂tR̃ dx = −

∫

(∂xR̃)∂t(∂xR̃) dx = − 1

2
∂t

∫

(∂xR̃)2 dx ,

∫

χ3∂
n+2
t (ψ2R)∂tR̃ dx = g1 +

∫

χ3ψ
2(∂tR̃)(∂2

t R̃) dx

= g1 +
1

2
∂t

∫

χ3ψ
2(∂tR̃)2 dx− 1

2

∫

χ3(∂t(ψ
2))(∂tR̃)2 dx,

∫

χ3∂
n+2
t (ψR2)∂tR̃ dx = g2 +

∫

χ3ψR∂t(∂tR̃)2 dx

= g2 + ∂t

∫

χ3ψR(∂tR̃)2 dx−
∫

χ3∂t(ψR)(∂tR̃)2 dx ,

∫

χ3∂
n+2
t (R3)∂tR̃ dx = g3 +

∫

(∂tR̃)3R2∂2
t R̃ dx

= g3 +
3

2
∂t

∫

R2(∂tR̃)2 dx− 3

2

∫

∂t(R
2)(∂tR̃)2 dx ,

with

|g1| ≤ C‖ψ‖2
Hn+2

t
‖R‖2

Hn+1
t

, |g2| ≤ C‖ψ‖Hn+2
t

‖R‖3
Hn+1

t
, |g3| ≤ C‖R‖4

Hn+1
t

.

Hence we define

Ẽ0(R) =

∫

(∂xR)2 dx+

∫

χ1(∂tR)2 dx +

∫

χ2R
2 dx

and

Ẽε(R, R̃) =

∫

(∂xR̃)2 dx+

∫

χ1(∂tR̃)2 dx +

∫

χ2R̃
2 dx + ε2

∫

χ3ψ
2(∂tR̃)2 dx

+ 6ε1+β

∫

χ3ψR(∂tR̃)2 dx + 3ε2β

∫

R2(∂tR̃)2 dx.
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Moreover, we define the final energies

Es,0(R) =
s
∑

j=0

Ẽ0(∂
j
tR), and Es,ε(R) =

s
∑

j=0

Ẽε(R, ∂
j
tR).

For a given M > 0 there exist ε0 > 0, C1, C2 > 0 such that for all ε ∈ (0, ε0) we have

C1Es,0(R) ≤ Es,ε(R) ≤ C2Es,0(R)

as long as Es,0(R) ≤M . For these ε > 0 the above estimates together with, e.g.,
∣

∣

∣

∣

∫

(∂tR̃)(∂n
t Res(εψ)) dx

∣

∣

∣

∣

≤ ‖∂tR̃‖L2‖Res(εψ)‖Hn
t
,

immediately show

∂tEs,ε(R) ≤ C3ε
2Es,ε(R) + C4ε

1+βEs,ε(R)3/2 + C5ε
2βEs,ε(R)2 + CResε

2

≤ (C3 + 1)ε2Es,ε(R) + CResε
2 ,

if
C4ε

β−1M1/2 + C5ε
2β−2M ≤ 1 (65)

with C4, C5 independent of 0 < ε� 1. Then by Gronwall’s inequality

Es,ε(R) ≤ (CResT0)e
(C3+1)T0 =: M .

Finally choose ε0 > 0 so small that (65) is satisfied for all ε ∈ (0, ε0). Since the spatial
derivatives of R are related to the temporal derivates of R through the equation for the error,
we have the following result:

Theorem 6.1 Let A ∈ C([0, T0], H
sA) be a solution of the NLS equation. Then there exist

ε0 > 0, C > 0 such that for all ε ∈ (0, ε0) we have solutions E of (9) such that

sup
t∈[0,T0/ε2]

‖E − εψ‖Hs ≤ Cε3/2 .

A Estimates for the Fourier expansion of Bloch modes

We show that our technical assumption (7) is at least satisfied if χ1 is constant, under mild
assumptions on χ2 and χ3.

Lemma A.1 Assumption (7) on the nonlinear interaction of the Bloch modes is satisfied
with α = 2−δ for every δ > 0 in the case that χ1 is independent of x, χ2 ∈ C0

b ((0, 2π)), and
χ3 ∈ C2

b ((0, 2π)).
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Proof. The proof consists of two steps. In a first step we give estimates for the Fourier
expansion of the Bloch modes fn (Lemma A.2). In a second step Lemma A.2 is used to
conclude (7).

Without loss of generality we set χ1 ≡ 1. Thus, with the abbreviation χ = χ2 we
consider the eigenvalue problem

∂2
xu− χ(x)u = −λu with χ(x) = χ(x + 2π), hence χ(x) =

∑

n∈Z

χneinx, (66)

with (χn) ∈ `2. The eigenfunctions are given by Bloch waves, and so we have to consider

(∂x + i`)2ũ− χ(x)ũ = −λũ with ũ(x) = ũ(x + 2π) .

For the nth
0 eigenfunction ũn0

we make the ansatz

ũn0
(x) =

∑

n∈Z

un0,neinx ,

and obtain

(in + i`)2un0,n −
∑

m

χn−mun0,m = −λn0
un0,n for all n ∈ Z . (67)

Lemma A.2 There exists a C > 0 such that for all n0 ∈ N the following holds. If un0
solves

(67) with ‖un0
‖`2 = 1 then

|un0,n| ≤
C

||n| + n0|(1 + ||n| − n0|)
for all n ∈ Z.

Proof. For small n0 the estimate holds due to the elliptic regularity ‖ũn0
‖H2 ≤ C‖ũn0

‖L2 ,
cf. the proof of Lemma 3.3. Hence it remains to consider large n0. We introduce

λn0
= (n0 + `)2 + λ̃.

With the abbreviation un = un0,n we then obtain

((n0 + n + 2`)(n0 − n) + λ̃)un −
∑

m

χn−mum = 0 for n 6= n0, (68)

λ̃un0
−
∑

m

χn0−mum = 0 for n = n0. (69)

We apply a Lyapunov–Schmidt reduction and resolve (68) with respect to

un = u∗n(χ, `, λ̃)un0

which is at least possible for n0 sufficiently large. Inserting this into (69) shows

(λ̃−
∑

m

χn0−mu
∗
m(χ, `, λ̃))un0

= 0 .
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We choose λ̃ such that (λ̃−∑m χn0−mu
∗
m(χ, `, λ̃)) = 0, i.e. for λ̃ chosen in this way we find

nontrivial solutions un0
6= 0.

In detail, we start with

|λ̃| = |
∑

m

χn0−mu
∗
m(χ)| ≤ ‖χ ∗ u∗m‖`∞ ≤ ‖χ‖`2‖u∗‖`2

≤ ‖χ‖`2‖u∗ · un0
‖`2 |un0

|−1 ≤ ‖χ‖`2 |un0
|−1.

Then from (68) we have

|un| ≤ 1

|n0 + n + 2`||n0 − n|
(∣

∣

∑

m

χn−mum

∣

∣+ |λ̃un|
)

≤ C

|n0 + n||n0 − n|(‖χ ∗ u‖`∞ + ‖χ‖`2|un||un0
|−1)

≤ C

|n0 + n||n0 − n|‖χ‖`2(‖u‖`2 + 1) ≤ C

|n0 + n||n0 − n|
where we used ‖u‖`2 = 1 and |un| ≤ C|un0

|.
Continuation of the Proof of Lemma A.1. For χ3(x) =

∑

p∈Z
χ̂pe

ipx ∈ C2
b we have

|χ̂p| ≤ C(1 + |p|)−2. By definition we have (omitting the arguments `1, `2, `3)

|〈fj, χ3fmfn〉χ1
| =

∣

∣

∣

∣

〈

∑

sj

fjsj
eisjx,

∑

sm

fmsm
eismx

∑

sn

fnsn
eisnx

∑

p∈Z

χ̂peipx

〉

χ1

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

sm

∑

sn

∑

p

fj(sm+sn+p)fmsm
fnsn

χ̂p

∣

∣

∣

∣

.

Thus, using Lemma A.2 we obtain

|〈fj, χ3fmfn〉χ1
| ≤ C

∑

sm

∑

sn

∑

p

1

(|j+sm+sn+p| + 1)(|j−sm−sn−p| + 1)(1+|p|)2)

× 1

(|m+sm| + 1)(|m−sm| + 1)(|n−sn| + 1)|(|n+sn| + 1)
.

Next we use that
∑

p

1

|j + p| + 1

1

|j − p| + 1

1

(1 + |p|)2

can be estimated as follows:
1) for |p| < j/2 or |p| > 3j/2 this is

≤
∑

p

2

|j|
2

|j|
1

|p|2 ≤ C

|j|2 ,

2) for j/2 < |p| < 3j/2 this is

≤
∑

p

1

(|j − |p|| + 1)2

4

|j|2 ≤ C

|j|2
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Finally, for given β ∈ (0, 1] we provide an estimate for

∑

s

1

(|k − s| + 1)β

1

(|k + s| + 1)β

1

(|m− s| + 1)β

1

(|m+ s| + 1)β
. (70)

Due to the symmetry of the sum we can restrict w.l.o.g. to k > m > 0, s > 0. Then
discarding the +1s and using

1

(k − s)(m− s)
≤ 1

(k −m)

and
∑

s

1

(k + s)(m + s)
≤
∑

s

1

kαs1−αs
≤ C

kα
≤ 2C

(k +m)α

for a α ∈ (0, 1) we find that the (70) can be estimated by C(k −m)−β(k +m)−αβ .
Using these inequalities |〈fj, χ3fmfn〉χ1

| can be estimated by

≤
∑

sm

∑

sn

1

|j + xm + sn| + 1

1

|j − sm − sn| + 1

1

|m + sm| + 1

1

|m− sm| + 1

× 1

|n− sn| + 1

1

|n+ sn| + 1

≤ C
∑

sm

( 1

|m+ sm| + 1

1

|m− sm| + 1

1

|j − n− sm| + 1

1

|n− j − sm| + 1

)β1

≤ C
( 1

|j − n−m| + 1

)2β2

for all 0 < β1 < β2 < 1 with different constants C depending on β1 and β2.
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