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Abstract

In this survey article we discuss a humber of mathematicattipns related to the
behavior of light pulses in dispersive media. Mathemdijicate analyze the dynamics
of modulating pulse solutions of a nonlinear wave equati®uch solutions consist of
a pulse-like envelope advancing in the laboratory frameraadulating an underlying
wave-train. We explain the role of the Nonlinear Schrodingguation in the description
of pulses with the same carrier wave. We show that there igstlmo interaction of
well prepared pulses with different carrier waves. Finallg discuss the question: Do
modulating pulse solutions exist for all times? We dischssélevance of the presented
results for fiber optics and photonic crystals.

1 Introduction

The transport of information over long distances throughcap fibers is one of the key
technologies of the post-industrial society. Informatisrencoded digitally by ones and
zeroes, i.e., by sending a light pulse through the optical fids not. Physically such a light
pulse is a complicated structure. It consists of an undeglglectromagnetic carrier wave
moving with phase velocity,, and of a pulse-like envelope moving with group velocity
and modulating the underlying carrier wave, see Fig. 1.

Figure 1:0s andls are encoded physically by sending a light pulse or not;, ttuusnstance, the
above electromagnetic wave encodes the sequence 101101.

The analysis of the evolution of such a light pulse is a neiatask. The system shows
dispersion and (weak) dissipation, i.e., harmonic wavek diifferent wave numbers travel
at different speeds and energy is lost in a wave number depémgy. Moreover, there is a
nonlinear response by the optical fiber. Thus, at a first glanooks like a typical example



for the application of numerical methods. However, a diggctulation of Maxwell’s equa-
tions which describe these electromagnetic waves is begopgresent possibilities. This
can be seen as follows: The wavelength of the underlyinderamave is around0~" m.
Resolving this structure in a fiber @f km =10* m gives in uniform one dimensional spa-
tial discretizationl0'! points, not to speak about the transverse directions angthgoral
discretization. Therefore, before making any numericagatigations, the system has to be
analyzed and simpler, numerically more suitable, modele @ be derived. Interestingly,
by using only a pencil and a sheet of paper a lot of things cacobeluded without using
any computer. This will be the subject of this survey article

Using multiple scaling analysis we derive a formula for tipgimal shape of the enve-
lope of the pulse. Optimal means that it is more or less of mpaent form, i.e., in the ideal
case the pulse is time periodic in a frame moving with the greelocity of the envelope.
We will explain that the dynamics of pulses with the sameieawave, i.e. with the same
wave length, can be described by the dynamics of the envelope which is governed by
a Nonlinear Schrodinger equation (NLS equation). The NfBat¢ion is a universal non-
linear partial differential equation. Universal here me#mat additional to nonlinear optics
it appears in the above sense in many contexts, for instaater waves, plasma physics,
and lattice vibrations. Moreover, the NLS equation is a cleteby integrable Hamiltonian
system. As a result, the NLS equation can (in principle) beesbexplicitly. The method is
called the inverse scattering scheme. In particular, th& Hguation has explicit so-called
N-soliton solutions. These are special localized waves Withumps,N € N, where the
humps interact asymptotically in a very unexpected way tvlssimilar to the superposition
principle in linear equations.

We will also explain that pulses with different carrier wayee. different wave lengths,
do not interact in lowest order. This fact allows to incretseinformation rate through the
fiber by using different bands, i.e. a number of differentieawaves.

Photonic crystals play an important role in nanotechnalalgilevices. One of the ulti-
mate goals is to use them as optical storage. We will exptempossibility of standing light
pulses in photonic crystals.

Finally, we will explain that the formula for the pulses ofrpenent form is correct to
any polynomial order in the amplitude parameter, but thaoeentially small terms will
hinder the existence of a modulating pulse of permanent foitim finite energy. However,
it turns out that such modulating pulses of permanent formst exith infinite energy and
exponentially small tails.

The paper starts with a short description of the physicakimauind in order to motivate
the description of nonlinear optics by nonlinear wave eiguat \WWe concentrate on rigorous
mathematical results and skip in our presentation alméguakly formal results. We use
ideas from finite and infinite dimensional dynamical systénesry, from perturbation the-
ory and from a functional analytic treatment of partial éiéntial equations over unbounded
domains in Sobolev spaces.

The subsequent methods and results are not restricted telsnfoodm nonlinear optics.
They essentially apply to all equations for which a NLS emumatan be derived as an ampli-
tude equation. For systems with (significant) dissipati@rble of the NLS equation is taken
by other but related amplitude equations, for instance azurg—Landau type. We refrain
from any details in case of dissipation and refer to thedit@re, for instance [Sch99, Mie02]
and the references therein.
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2 Physical background

Light pulses are electromagnetic waves and described bywdldis equations, namely

—

B=0 , VxE+8B=0,

D=p , VxH-0D=1],
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with D = ¢oE + PandH = B/uy — M. Here E = E(Z,t) is the electric field,7 =
(z,y,2) € R3 t € Ris the time g, the permittivity of vacuump’ the material polarization,
B the magnetic fluxy, the magnetic permeability of vacuut, the material magnetization,
p the charge density and the electric current. These equations have to be closed with
constitutive lawsP = P(E, H) andM = M(E, H) describing the behavior of the medium.
Depending on this choice there are linear and nonlineagmtsneous and history dependent,
dispersive and dissipative models.

In typical optical fibers there is no magnetizatibh no charge density, and no electric
current., and therefore, using x VE = AE — V(V - E), Maxwell's equations for light
in nonlinear optical material are given by

AE —V(V-E)—0?E = 8P, (1)

where we scaled the speed of light in vacuum and the dietemtnistant td.

The constitutive law for the polarizatidﬁ =P+ P, splits into a linear and a nonlinear
part, which in general both depend on the history of the atetield. In centrosymmetric
isotropic bulk material, the constitutive law for the limeasponse? is given by an instan-
taneous parP;(z,t) = P\(Z, E(Z,t)) and a history dependent term

o
—

PR 1) = (v e B) (1) = / it — 7)E(#,7) dr, @)
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wherey; in (2) is a scalar function, independentifwith x, (£) = 0 for ¢ < 0 due to causal-
ity, and similar for the nonlinear polarization. In case pfioal fibersy; does also depend
on the transverse directionsz, and in case of photonic crystals also on the longitudinal
directionz.

In the simplest casé is linearly polarized and only depends oni.e.,

E(Z,t) = u(z,t)k  with |[k|jgs =1, (1,0,0)-k = 0. (3)
Then, (1) simplifies to

Ofu(w,t) = dju(w,t) — Fpi(x,t) — O pm(a, 1), (4)
with w(z,t), pi(z,t), pu(z,t) € R such thatP(t,7) = pi(x,t)k, Pu(t,T) = pu(z,t)k.

The symmetry(y, z) — —(y, z), which is present in most optical materials, prevents the
occurrence of even terms inwith respect tay, thus, in generab, starts with cubic terms.
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Due to the fact that we are mainly interested in the undeglyimathematical structures,
throughout the rest of the paper we choose

3t2p(x, t) = U(.T, t) - u3(x, t)
as constitutive law, thus the toy problem for this paper is
Otu = Pu —u + u’. (5)

This choice is rather unphysical; however, it delivers aesyswith all properties in which we
are interested, namely dispersive and nonlinear behaderefer to [SUO3] for a mathemat-
ical discussion of a physically more realistic choice whintludes dissipation and history
dependence additional to dispersion and nonlinearitysipagion, i.e., wave number depen-
dent damping, is usually very weak in the so-called transimiswindows of optical fibers.
However, it may become important over very long scales,ahigtory dependence does not
alter the analysis in an essential way.

3 Single pulses |

The description of light pulses, i.e. here of localized sohs of (5), is based on the deriva-
tion of a NLS equation by formal perturbation analysis. Efiere we introduce a small
perturbation parameter

0<exl

which will relate the amplitude with the spatial and tempecales. We seeR(=)-amplitude
solutions which are slow spatial and temporal modulatioharounderlying wave train
eilkor—wot) “wherek, andw, are related by the dispersion relatiop = k2 + 1 of the lin-
earized problend?u = 9*u — u. Thus we substitute the ansatz

ua(z,t) = e(A(X, T)elkor=0t) 4 ¢ ¢) + O(2), (6)

into (5), whereX = e(z — ct) with ¢ to be determined, wherE = %, wherec.c. means
complex conjugate, and wherg X, T') is a complex-valued amplitude. We sort the coeffi-
cients of the carrier wave*oz—«o?) with respect to powers afand obtain

O(h): —wiA=—(ki+1)A, dispersion relation
O(e?) : 2cwgAx=2ikoAx = c = ko/wo=w'(ko)=": ¢,

> linear group velocity

while atO(eeikor=wot)) we find thatA should satisfy the NLS equation
2iwedrA + (1 — ()05 A + 3|APA = 0. (7)

In fact, the Fourier transform of the ansatz (6) is stronglyalized around:;,. Therefore,
only the local shape a#, » = =v/k* + 1 neark, is important to determine = c, in (6) and
the coefficients of the linear terms in (7), see Fig. 2.

Equation (7) has a four dimensional family of solutions @& trm

A(X,T) = A(X —vT — Xo)e@X70TH00) - 5 = (wow) /(1 — (c))?),
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Figure 2: The two curves of eigenvalues » = +iv/1 + k2. The Fourier transform of (6) is con-
centrated in arO(s) neighborhood around-k,, Therefore, the dynamics of (6) is determined by
the expansion of at ky. wj (ko) gives the linear group velocity,, and the group velocity disper-
sionw{ (ko) occurs as coefficient in the NLS equation. The concentraifdrourier modegi(k) is
respected by the nonlinear interaction, i.e. convolutioRaurier space.

in which the real-valued functiod satisfies the second-order ordinary differential equation
DA =CLA — C A3, (8)
where
270wo c 3
VR 2= T o
1= (c)? (1 —=(c)?)
Sincec’g < 1, we always havé€’; > 0, and forC’; > 0 there exist the two explicit solutions

Oy = v?

~ 201\ 1/2
Apuise(X) = £ (72) sech (C"°X) 9)
to (8). These are called homoclinic since they connect tiggro(0, 0) as a fixed point of the
first order formulation of (8) with itself, see the left pamélFig. 3, while solutions which
connect different fixed points of a dynamical system aresddileteroclinic.

The derivation of the NLS equation (7) was only formal in tlemse that we simply
ignored terms that are higher order wa.br appeared at a different wave-number. They are
contained in the residual, i.e.

Res(u) := — 0?u + O2u — u + u®

contains the terms which do not cancel after inserting anceqapation into (5). IfRes(u)=0,
thenu is an exact solution of (5). It is important to note that dua fmossible 'accumulation
of errors’ the smallness of the residual alone does not intif@yso-called validity of the ap-
proximation where validity means that there are solutidn®pwhich behave as predicted
by the NLS equation on the relevaft1/s?) time—scale.

However, there are a number of mathematical validity redalt(5), see [Kal88, KSM92,
Sch98] and als@4. The above procedure thus identifies modulating pulsdisakiof (5)
which are described by the approximate formula

Upuise(T, 1) = € (flpulso(X — 0T — X)elPX =0T +d0)gilkoz—wot) | c.c.) + 0(e?)

= <flpulso(5(x — Gyt — 20 — evt))el(ko+ed)a—(wote?o)itdo) 4 c.c.) + O(&?)
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accurately over time-scales of ord®(1/<?). In particular, for w.l.o.gv = 0, z, = 0 and
¢o = 0 we have

upulso(xp t) =¢ <Apulsc(5<x _ Cét))eiko<z_(%+%€2)t) + C.C.) + 0(62),

whered, = (1 + k3)'/?/kq is the linear phase velocity and = ~o/ko.

= @

Figure 3:The (A, dx A)-phase portrait for (8), and a modulating pulse for (5) descr by the NLS
equation.

O

For the transport of information the global existence of mating pulse solutions would
be an important goal, i.e., we investigate if there are egalttions to equation (5) of the
form

u(z,t) = v(r — cot, ko(x — cpt)),

wherev is 27-periodic in its second argument with
li =0.
L v(E,y)

This question will be discussed in detail §id. As a first result we note [GS01] that such
solutions can be computed approximately to any polynonmdéin by extending the
ansatz (6) by higher order terms and applying a small coore¢o the linear group speed,
i.e., usingc, = ¢, + O(g?), see the right panel of Fig. 3. In other words, the following
Lemma allows to find modulating pulse solutions which malkergsidual arbitrarily small.
To measure the residual we use Sobolev spaces [Add75] H*(R, C). For simplicity
we restrict tos € N. ThenH*® consists of all functiong : R — C which together with their
distributional derivatives up to orderare square integrable, equipped with the norm

S
e =Y |0l 2.
j=0

In our spatially one-dimensional setting;’ is a subset of the space of uniformly bounded
andm times continously differentiable functiod” (R, C) if s > m +1/2, m € N, and the
embedding is continuous, i.¢ly(|c;» < Cl|u| gs. These so—called Sobolev embeddings can
be used to show that nonlinear terms such’aare well-defined and continuous mappings
from H* — H*if s > 1/2.

lul

Lemma 3.1 Lets > 2, ky > 0,n € N, and~; < 0. For sufficiently smalt > 0 there exists a
two-dimensional family, parameterized by envelope shit R and phase shii € [0, 27),
of approximate modulating pulse solutions to (5) of the form

u(z,t) = evg,(x — ¢t — o, ko(z — cpt) + @),



wherew is 27-periodic in its second argument, = ¢, + 1e?, ¢ = 1/¢,, and where, for
somer > 0, evg, (€, ) = eApuse(€€)e? + O(3e Ky + c.c., and

|Res(evg, ) || gs < Ce™ /2.

4 Interaction of pulses with the same frequency

By the derivation of the NLS equation for the nonlinear wageaation (5) not only modu-
lating pulse solutions of the nonlinear wave equation ageatified. The complete dynamics
known for the NLS equation can also be expected to be founappately in the nonlinear
wave equation.

We refer to the excellent textbooks [AS81, DJ89, SS99] alteaitvarious dynamics
known for the NLS equation. For our purposes the fact is eésdehat the NLS equation
is a completely integrable Hamiltonian system. Hamiltomaeans that (7) can be written
asorA = JOH(A) whereJ = —i/(2wy) is a skew symmetric operator anddenotes the
variational derivative of the Hamiltonian

1_ c/2 3
H(A):/[ S lox AR = Tl dX.

An immediate consequence is that the Hamiltont&f) is conserved by the flow of (7),
but in fact various further properties follow. Completetyagrable means here that there are
infinitely many independent conserved quantities for (7§l that there exists a transforma-
tion which is called inverse scattering scheme and whicl tleese conserved quantities to
map (7) to a linear system which can (in principle) be solvedieitly. As a result, there
are explicit though somewhat lengthy formulae (similardy) or so-calledV-soliton solu-
tions of the NLS equation. In genera¥;-solitons are localized solutions which consist\of
humps and which fotr — +o0o asymptote taV solitons with different speeds. In particular,
the individual humps interact in a very special way whichaither unexpected in a nonlinear
equation: asymptotically for — +oco the interaction preserves the shapes and speeds of
the individual humps, and only alters the relative posgiomhus, the humps are similar to
elastic particles, and this motivates the name soliton. cditaange of position after interac-
tion is O(1) in the NLS equation and is called a pulse shift. Formally, Ahsolitons yield
modulating/V-pulse solutions for the nonlinear wave equation (5) Wit /=) pulse-shifts
after interaction, see Fig. 4.

However, as already said §3, the formal derivation of the NLS equation for the nonlin-
ear wave equation (5) alone does not imply that the dynaraiasd in the NLS equation can
also be found in the nonlinear wave equation (5): There aiarde equations derived in a
formally correct way by multiscale analysis which do noteeflthe dynamics of the original
system, see, e.g., [Sch95]. We now discuss the validity @fftproximation, that is, how
well solutions of the nonlinear wave equation (5) can be exiprated via the solutions of
the NLS equation.

LetA € C([0,Ty], H*4(R, C)) be a solution of the NLS equation (7) with > 1 defined
below. Then

ete(z,t) = eA(e(z — ct), e2t)ellkor—wol) 4 ¢ ¢, (10)



a)ReA
T=001)

. 3

X=0 X=0(Q)

¢) u(z, t) (in co-moving frame with speed,) d) ReA.

x=0 r=0(E")

Figure 4: A 2-soliton A with interaction in the NLS equation and the associated radithg 2-
pulse solution in the nonlinear wave equation (a)—(c), witaraction at X, 7") = (0,0), and a time
periodic2-soliton A in the NLS equation (d). For graphical reasons, black has hssigned ta = 0

in c).

defines a formal approximation of the solutian®f the nonlinear wave equation (5). For
our purposes it turns out to be advantageous to considexteeded approximation

e(z,t) = eA(e(x — cyt), %) Fore0l) 4 &3 Ay (e(x — cit), e2t)ePFor—ol) 4 e (11)

whereA; = A3/(9w? — 9k% — 1) is also inC'([0, Ty], H*4(R, C)), if s4 > 1. In summary, if
sa > m+ 1/2, then there exist’, ¢, > 0 such that for alk € (0, ¢)

op <O sup [|e*Ag(e-, %)l Mmoo fcc |

sup e+, 1) — e, 1)

m
Cb

t€[0,Tp /2] t€[0,To /2]
< Ce® sup  |As(e-,et)|lop < C® sup || As(-, T)|lcp
t€[0,To /€] T€[0,T0]
< Ce sup || As(-, T)|| zroa
T€[0,To]

due to Sobolev’'s embedding theorem. As a consequenceaih be approximated ky) up
to an error of orde®(<?) then it can also be approximated up to an error of ofigr™»>:9))
by v.. In detail this means that

|u —etellem < lu—edllep + [lev — edellep < CeP + Ce® < 20e™B0)
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In order to estimate the differenae- ey =: ¢*/? R we derive an equation fd? and estimate
R. In order to do so we need estimates for the resiteals1)). By the choice ofA and A;
all terms up to formal orde®(s*) are eliminated in the residual. Therefore there e&ist
go > 0 such that for alk € (0, &)

sup ||[Res(ev(t))]|gs < Ce"/2,
te[0,To /2]

The loss of:!/2 comes from the scaling properties of th&-norm.
With v = e1) + £3/2 R we find

O} (eh + 53/2R) = (e + 53/2R) — (etp + ES/ZR) — (e + 53/2R)3

such thatR satisfies
OZ#R=0R—-R+f (12)

with
f=—3e2*R — 3”2 R* — 3 R3 + c73/?Res(ev)).

Thus,
1 fllzs < C1&°||R||1s + Co(Cr)e™?|| Rl + Cse? (13)

as long ag| R(t)|| g < Cg with a constant; determined below, constants, C'; indepen-
dent of Cr ande € (0,1) and a constant’; depending or’; but independent of € (0, 1).

The equation forR is solved here for simplicity with zero initial conditiondVe use
energy estimates and define the energy

E(R) = Z / h (0P R)? + (P R)? + (0°.R)*dx.
Forj =0and[ = [*_ we obtain
1
20, / (O.R)? + (D,R)? + R2da — / (O,R)(O2R) + (0, R) (B0, R) + R(9,R)da
- [10r@R) - @RR+ @R + O.R)00.7) + ROR

_ / (O.R) fdx

which can be estimated with the Cauchy Schwarz inequality by

' / (OR) fdz| < |0,R 2]l fllze < [8R ] 12(Cae®| Rl + Co(Cr)e™2 | Rll%s + Cie?)
< C12E(R) 4+ Cy(CR)e?E(R)*? 4+ C4e2 E(R)Y?
< (Cy + C3)e2E(R) + Co(CR)e**E(R)3? + Cse”.
Since exactly the same estimates holdjfet 1, . .., s we finally find
O E(R) < (Cy 4 Cs)eE(R) 4 Cy(Cr)e®*E(R)*? 4 Cye. (14)



Now assume that'/2C,(Cr) EY?(R) < 1. Then, for0 < t < T,/ 72,
E(R(t)) < Cael@ Tt = % (15)

by Gronwall’'s lemma which translates differential inedties like (14) into pointwise esti-
mates like (15), see, e.g., [Hen81, Lemma 7.1.1] for a venggd version.
Choosingsy > 0 so small that

e 2Co(Cr)CH? < 1 (16)

we are done. In detail, to a giverly = Cg(1y, C1, C3) defined in (15) we have @5(CRr)
by (13) and to this”; we have arzy > 0 by (16). Hence, there are solution®f (5) which
behave for alt € [0, T,/<?] as predicted by the NLS equation (7).

Theorem 4.1Fix s, > s+ 3 > 4. LetA € C(|0,Ty], H°#) be a solution of the NLS
equation (7). There exist, o > 0, such that for alk € (0, ¢q) there exist solutions of (5)
such thatup,cp 7, /o2 [u(-, 1) — e (-, t) || e < C¥2.

Remark 4.2 The time scal€(T;/£?) is necessary to describe non-trivial dynamics. The er-
ror of order©(£%/?) is much smaller than the approximation which is of orée). Adding
higher order terms, likels, to the approximation allows to decrease the magnitude of
the residual further, in particular we can obt&dis!'/2). This results in an error of order
O(¢7/?) instead ofO(%/?). However, the time scal@(1/<?) of validity in general can not
be extended.

As a consequence of Theorem 4.1 modulating pulse solutmrsé nonlinear wave equa-
tion (5) with the same carrier wave interact as predictedhieyNLS equation, i.e., we have
approximately the persistence of the modulating pulsetieois after the nonlinear interac-
tion andO(1/¢) pulse-shifts in the nonlinear wave equation (5). For thegpart of infor-
mation through optical fibers the interaction of pulses ig@meral undesirable. However,
even if the envelopes are in a very general form, like in realavechnical devices, the NLS
equation can now be used to compute numerically how far théutating pulse solutions
have to be separated such that there is no nonlinear intavatiring the journey through
the fiber.

5 Interaction of pulses with different frequencies

The information rate through the fiber can be increased bygudifferent bands, i.e., differ-
ent basic wave numbers, cf. [Ace00]. As explained in Rematkbglow (after fixing some
notation), there is a simple argument why wave packets witbrdnt wave numbers do not
interact in lowest order w.r.t. Moreover, for pulses from Lemma 3.1 the argument can
be refined, and in this section we explain that there is almoshteraction of such pulses
associated to different carrier waves by giving@ce)-bound for the possible shift of the
envelope resulting from the interaction. For general waaekpts the shift of the envelope
will be in generalD(1). Thus, itis advantageous to use well-prepared pulseséddrahsport
of information.

We introduce subscriptd and B to indicate the wave numbeks, # kg of each pulse,
the associated group velocities, andc, 5, the envelope shifts, andxz and so on. If the
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two pulses are separated initially, and, say,> xz andk, < kg such that, 4 < ¢, p and
the faster pulse is in front, then, since the pulses are exgally localized, it is natural to
expect that the dynamics of the two pulses can be describgtelsum of the two individual
pulses, at least on the natui@(1/s*) time—scale. However, if the two pulses are, say,
O(1/¢) separated initially, withv, > x5 andk, > kg, then, since the group velocities
differ by O(1), the two pulses must interact on &1/<?) time—scale. Clearly this is the
mathematically more interesting case.

For notational simplicity we assume that = ¢z = 0 and thus study the interaction of

eV, (X —cgat+xa,ka(x—cpat)) and cevy,(r—cypt+ap, kp(v—c,pt)), ka# ks

We prove that the form of the pulses is almost preserved aidhh interaction mainly leads
to phase-shifts{2, and=Q 3 with Q 4, Q5 € R bounded independent of

Remark 5.1 That the amplitude equations fer,, andsv,,, decouple in lowest order can
be seen as follows. Going into the scaling of the envelepg, andev,,, have an amplitude
and a width of orde®(1). But since the group velocities differ by an ordef: in this
scaling the interaction time a@fv,, andecvy, is only O(e). Thus, the influence of a term
vk, Uk ON the dynamics ofy,, andvy, is O(¢e) in the NLS scaling and therefore in lowest
order the evolution equations fof, andvy,, decouple. This argument is not restrictea{o
anduwy,. It holds for all wave-packets. Moreover, this property bamobserved in a number
of problems. For modulating pulse solutions such a statecasnbe found for instance in
[PW96] where it has been shown that the two NLS equationsdonter-propagating waves
decouple.

The estimates from [PW96] still only transfer in€®(1)-bounds for the possible envelope
shifts of the pulses for—0. However, for well-prepared pulses, i.ex5 in Lemma 3.1, by
extracting explicitly the phase shift of the underlyingrear wave we can refine the bound
on the envelope shifts t0(<). In detail, we show that after interaction the solution issel
to

eV, (T — cgat + x4, ka(x — cp at) +eQa(np))
+€Uk5<.7}—Cg,Bt+$B,]€B(JJ—Cp,Bt)+€QB(T}A)), (17)

with explicit functions2 4, (2, given by

nB

3| By |2

Oy = / _ BB dijp + Q4 + O(%e"EN g =c(x +xp —c,p5t),  (18)
walca —cp)

—00

nA 9

Qp = / _3AE dija + Q% + O(%e7N, na=clx+aa—cyat), (19)
wp(cp — ca)

whereB; andA, are given by (9) with constants, z, C> 5 andC} 4, Cs 4, respectively, and

whereQ% andQ9 are constants which normalize the initial phases, see Figofe that(2,

depends o — ¢, gt andQp onz — ¢, 4t as the phase shift accounts for so-called cross

phase modulation.
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Figure 5:lllustration of the interaction of two pulsesy,, andevy,, with the associated cross—phase
modulations2 4 and€2g. Herek 4 > kg and the slower pulse is in front. Thuss — c4 < 0in (19),
and()p is a decaying function aof. The constantQ?4 andQ?B have been chosen in such a way that
att = 0 (upper two pictures) there are no phase-shift for the pulsesQp is exponentially small
near the position-x g of cvy,,, while Q2 4 is exponentially small near the positienc 4 of ev,,. Note
thatQ g travels withevy,, andQ 4 with cvy,.

Theorem 5.2 Lets > 2, ka, kg > 0, ka # kg, v1.4.11.8 <0, z4,2p € Rin Lemma 3.1,
andT; > 0. There exist, > 0 andC > 0 such that for alle € (0, () there exist solutions
u of (5) such that

sup  |u(x,t)—evg, (x—cgat+za, ka(x—cp at)+eQa(np))
t€[0,To /2]

— EVgp (.T—C%Bt + xp, kB(x_Cp,Bt+5QB<7]A))| 05—1 < 0263 (20)
with vy, , v, from Lemma 3.1 an@ 4, Q25 given by (18),(19).

Remark 5.3 To obtain an estimate for the physically relevant shift & &mvelope, suppose
that the error comes from a shift of the envelope. Then, dubddong wave form of the
envelope, “vertical” estimates of ordéX(?) in L> can lead on a pulse of amplitud#(<)
only to a possible envelope shift of orderO(¢), due to

eg(e(z +ca)) — eg(ex) = eg'(ex)e®a + O(e(e%a)?) = O(&%).
Idea of the proof of Theorem 5.2(See [CBSUO06] for more details.) We make the ansatz

u(z,t) = ep(x,t) :=eA1(na)E + eB1(np)F
+&3A5(na, T)E + 2 By(np, T)F + c.c. + h.o.t. (21)
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whereT = £%t, and where

E = elbarmwatte@alm)) - [ = gilkprowstte@na)) =y, — e(x—cgat), np = e(x—cg Bt).

In (21), h.o.t. stands for terms of higher ordet javhich are algebraically determined similar
to A; in (11), and which do not lead to new aspects compared tode8ti We choosel,;
andB; as given by Lemma 3.1. If we chooSg, (25 to satisfy

3| By|?

wa(cga — cgB)

3| Aq]?

wp(cgB — Cg.a)

0y, 04 = and 8, Qp = (22)

which yields (18) and (19), then the coefficientsaf ands3F vanish. Ats5E ande® F we
find thatA,, B, satisfy the linear equations

2iw07pAs + (1 — c )82 Ay+Gy = 0, (23)
2%)307“32 —+ (1 — C )02 By, +Gg = 0 , (24)

with, by construction, zero initial data, and where

Ga = 6|A|]PAy+3A2A 5+ 6(B1B_y+ BoB_1)A,

e i1 = ¢ )02, Q2a A1 + 2i(cgac0 8 — 1)(0;024) (0, A1),
Gp = 6|Bi|*By +3B?B_y + 6(A1A_y + AyA_1) By

+e Mi(1 — Cy B)BZ QpBy + 2i(cgacq.5 — 1)(0,,28) (0, B1) ].

The argument given in Remark 5.1 applied to the terms midtiddy=—! shows

Lemma 5.4 There exists &' > 0 such that for alls € (0, 1] there exists a unique solution
(Ag, B2) € C([0,Ty], H® x H®) to (23)-(24) with zero initial data. It satisfies

sup |[(Az, B2)(T)]

Te[0,T0]

mexnas < C.

This shows that|Res(e1))||gs = O(¢'/?). Similar to the proof of Theorem 4.1 we write
u(z,t) = ey(x,t) + /2R, where we can employ the higher weight®fdue to the smaller
residual. The equation fdt looks exactly as (12). Thusup,c(o 7, /.2 [ R|lzs < C as above,
which concludes the proof of Theorem 5.2. [

Theorem 5.2 can be extended in at least two directions. Oma sicaleO(1/£?) a
modulating pulse can pass at m@3l/<) many modulating pulses of widt(1/¢). The
interaction of such a modulating pulse with1 /) many modulating pulses with a different
carrier wave can lead at most to @f1)-pulse shift. Thus, with respect to the question of
the transport of information through optical fibers the iafiae of different frequencies to
the dynamics at some frequency is negligible. Finally, asflity to increase the rate of
information through the fibers is to decrease the gap betweewave numbers. Formally
we find fork 4 — kg = O(e#) with 0 < < 1 a pulse shift of orde©(s'~%*). Thus we must
expect a certain payoff between the number of differenieairequencies / (k4 — k) and
the spacing of bits.
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6 Pulses in photonic crystals: Standing light

One of the major goals of nanotechnology is photonics,heecbnstruction of 'electronic’
devices where the electrons are completely replaced byphotn this context, the question
of optical storage plays a major role. One theoretical filetsiare photonic crystals. These
are optical materials with a periodic structure with a wasegth comparable to the wave
length of light. Due to the periodic structure the lineatizgoblem is no longer solved
by Fourier modes, but by so-called Bloch modes. The curvesigsnvalues plotted as a
function over the Bloch wave numbers can now possess haaliamgencies, i.e. vanishing
group velocities. Thus, in principle, standing light p@see possible. This will be explained
in detail in the following, see also [BSTUOG6] for more desail
Again we consider a semilinear wave equation

8t2u(x, t) = X1 (x)@iu(x, t) - XQ({L')U(Z‘, t) - Xg(l')ug(l', t) (25)

with z € R andt € R, u = u(x,t) € R, but now in a spatially periodic medium. This
means that the coefficient functions = x,(x) satisfyx;(z) = x;(z + L) for j = 1,2, 3.
We assume here that the are smooth functions, that (z) > 0 and thaty,(z) > 0 for all
x € [0, L), and, without loss of generality, = 27 throughout this section. The linearized
problem

0fv(x,t) = x1(2)0;0(x,t) — xa(w)v(z,t)

is solved by the Bloch waves
v(x,t) = 0, (¢, x)eelen (O

wheren € Z \ {0}, ¢ € (—1/2,1/2], with ©,, andw,, determined by (27) below. Here,
wy(¢) € R satisfiesv, 1 () > wy(£), w_n(f) = —w,(£), andv, (z, ¢) satisfies

Op(l,2) = 0,(0,z +27) and (L, x) = 0,(0 + 1, 2)e™. (26)

The Bloch wave transform of a functian: R — C is a generalization of Fourier transform
and formally given by
a(l,x) =Y eIl + ).
JEZ
By construction,u satisfies (26), and € (—1/2,1/2] is called a Bloch or pseudo wave
number. From Parseval’s identity:|| ;2 = ||a||.2 it follows that Bloch transform is an iso-
morphism fromH ™ (R, C) to the Bloch spacé*((—1/2,1/2], Hpe((0,27))), and its inverse
is given by
1/2
u(z) :/ (e, x) de.
~1/2
See [RS78, Sca99] for further properties and applicatib®axh transform.
For fixed Bloch wave numbefthe Bloch modes, (¢, x) satisfy the spatially periodic
eigenvalue problem

—A(0,82)0a (L, ) = X2 ()00 +10)*00(L, ) = x2(V0u(€, ) = —(wn())*Ta(L, ). (27)

14



Since the operatak (¢, d,) is elliptic in the bounded domain, 27) with periodic boundary
conditions we have for fixed countable many eigenvaluas = w?, n € N. In the space
L2 (0,2m) where

L[ — 1

(), 0o = 50 [ 6@l 2) s

dx . (28)

the operator\ (¢, ,) is positive definite and self adjoint such that the eigeresiy (¢) are
real and positive. They are ordered by(¢) < \,11(¢).

We now explain the possibility of horizontal tangencies ttoe curves! — w,, (¢) by
discussing periodic coefficients as perturbation of théialhahomogeneous case.

Example 6.1 The solutions of the constant coefficient case
O*v(z,t) = Ov(x,t) —v(x,t) (29)

are given by the Fourier modegr, t) = ei*>+1(k)) 'where(u(k))? = k% + 1. We consider
artificially the problem in a spatially periodic set-up. IBbch wave representation we have

. 4
U(.T, t) — em:pelé:pelwn (Z)t7

wherek = n + ¢, with n € Z here and! € (—3,3]. The eigenvalues are related by

wE(l) = +u(n +¢), i.e., they are obtained from wrappigg:(-) around a cylinder, see the

n

left panel of Fig. 6.

For all¢ € (—1/2,1/2] except fort = 0,1/2 all eigenvalues o\ (¢, d,) in Example 6.1 are
simple. By classical perturbation arguments [Kat66], feripdic y; = 1 + O(J) the eigen-
values are smooth functions &fand stay separated for> 0 sufficiently small. However,
for ¢ = 0, 1/2 all eigenvalues are double and generically for small 0 the eigenvalues will
split. This is exactly what happens in the spatially pegaddise.

Example 6.2 Let x5 (x) = 1 + 2§ cos(2nz) = 1 + §(e?* + ¢71277) with § > 0 small and a

fixedn € N. Setting
T(l,x) =Y o (0)e,
kEZ
the eigenvalue problem (27) is given by the infinitely manyadopns

(L+ (k + O3 (0) + 0(07 420 (0) + B0 (0) — Aa(O)3(0) =0, (k€Z).  (30)

Ford = 0 we have (with some abuse of notatiox)(0) = A_,(0), i.e. a crossing of the
curves of eigenvalues @ = 0. Due to the continuity of single eigenvalues or subspaces
to eigenvalues separated from the rest, for stal 0 and¢ = 0, the infinite dimensional
eigenvalue problem in lowest order can be reduced to thedimensional problem

ot < 1+ (=n)% — A, (0) 5 ) o
) 1+ (n)* — \.(0)

for o7 ando”,,. Hencel,,(0) = 1+ n? £+ 6. Thus,\,(¢) andX_,(¢) split at the crossings,
i.e. at! = 0, and recombine in a different way. These new curves are aisotdd with\,,(¢)
now ordered such that,  ;(¢) > \,(¢) but now and in the following indexed with € N.
As before we let\,,(¢) = w?(¢) andw,(¢) = —w_,(¢) > 0, see the right panel of Fig. 6.
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Figure 6: The curves of eigenvalues for the homogeneous case (29pthBépresentation, and
the splitting of eigenvalues for (30). The Bloch modes ofdhsatz (31) are strongly concentrated on
an O(e) neighborhood of the basic Bloch wave numbei& and the evolution of the wave packet
will be strongly determined by the associated cuwves, at+/,. Thus, the occurrence of horizontal
tangencies as explained in Example 6.2 corresponds tohiagigroup velocityc’g, i.e. to standing
light pulses.

Thus, on a linear level we have a situation as in the spatiaigogeneous case: we have
curves of eigenvalues over wave numbers except that agsoeigenfunctions are no longer
Fourier modes, but Bloch modes. Then, similar to the spatir@dmogeneous case, slow
modulations in time and space of such a Bloch mode (indexddnwy) may be described by
the ansatz

u(z,t) = eA(e(x — d4t), €7) T, (Lo, x)e 0" el + e (31)

wherec.c. means complex conjugate, where< ¢ < 1 is a small parameter, and where
¢y = Oiwn,(bo) is the linear group velocity. The complex valued amplitutleX, ') € C
describes slow modulations in timié = <%, and spaceX = e(x — cyt), of the underlying
wave o, (Lo, r)eoreino (0)t - The Bloch modes of the ansatz are strongly concentrated in
anO(e) neighborhood of the basic Bloch wave numbig and the evolution of the wave
packet will be strongly determined by the associated cunvgs at+¢,. Plugging the ansatz
into (25) one finds that! has to satisfy a NLS equation

8TA = ZV18§<A + iV2A|A‘2 (32)

with coefficients/, = —107wy, (¢) € R and

3 2 X3 () 4
vy = 2o (7o) /0 e |Uno (0o, )|* dz € R.
The occurrence of the nonlinear terim A|A|* is a priori not clear at all. However, the
nonlinear interaction corresponds in Bloch space to a datieo with respect to the Bloch
wave numbers. Thus, the concentration of modes is respbygtdte nonlinear interaction
which can be described in lowest orderdy A| A|2.
In general, the dispersion relatidn— w,,(¢) and hence the coefficient as well as/,

have to be calculated numerically. On the other hand, fovanginaterial, these coefficients

16



can be tailored by adjusting the grating, i.e. the perioditcfionsy,. This is a highly
nontrivial optimization problem [HFBWO1].

The justification of (32) for (25) in the sense of error estiesgproceeds similar to the
proof of Theorem 4.1, but the functional analysis becomeasesthat more complicated
[BSTUO6]. The physical detection of the pulses predicted38) is a nontrivial task, since
they are localized in the photonic crystal and cannot ben’se®ne possibility would be
the interaction with other modulating pulses. However,ilginto the analysis 5, only
pulses with carrier waves close to the carrier wave of thedstey pulse will have any rel-
evant, in terms ot, effect on the standing pulse, and vice versa. Neverthetiegsto the
higher dispersion, the influence is in general much largan th homogeneous optical fibers,
cf. [TPBOA4].

7 Single pulses I

We found approximate modulating pulse solutions with thip loé the NLS equation up

to a time-scale of orde®(1/£%). Since these solutions are essential for the transport of
information the following question occurs: do these solusi exist for allt € R? More
precisely, are there 'breather solutions’, which are tpeeiodic solutions in a moving frame
and which are spatially localized, i.e., which decay to Zerdx| — oo? Such solutions are
known explicitly for the sine-Gordon equation

O*u = 0%u — sin(u),

which first appeared in differential geometry in the des@ipof surfaces with constant neg-
ative curvature [Enn70], but which also appears in crysggiphy and in particle physics. In
fact, like the NLS equation, the sine-Gordon equation israpletely integrable Hamiltonian
system. See [DJ89] for more background and references.
Thus, the question is whether 'breathers’ can also exighiermonlinear wave equations,
for instance of the type
Otu = u —u+ g(u),

whereg : R — R is a smooth, odd function which satisfig&:) = O(u?) andg”(0) > 0.
It turns out that forg(u) close tou — sin(u) the sine-Gordon equation is the only such
equation. For a precise statement see [BMW94, Den93]. Ifall@ving we explain why
this 'non existence of breathers’ result holds. Moreoverwill explain positive results for
generalized breather solutions.

The solutions we are interested in are obtained from theansa

U(J}, t) = U('I - Cgt, T — Cpt) = U(£7 y)u
wherew is periodic iny with period2r/k, for somek, > 0. They are homoclinic solutions
of the evolutionary system
(1—=c2)dFv+ (1 —c2)d2v —v+g(v) =0, (33)
which generalizes the spatial dynamics approach of Kaskgeér [Kir82], i.e., we look fowr
with

Jm v(&y) =0.
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In order to obtain (33) we have chosen= 1/c, according to the linear relatiat) = 1/c,,.
Hence,v has to be in the intersection of the stable and unstable oidrof the origin.
The stable and unstable manifolds are the nonlinear cquartsrto the stable and unstable
subspaces in case of linear equations and are tangentte¢te subspaces. Therefore, we
look at the linearization around the fixed point d;v) = (0,0) in order to compute the

dimensions of these manifolds. The linearization of (33)iven by

(1—=c)0v+ (1—c)d2v—v=0. (34)
Since we are interested in periodic solutions wyrive use Fourier series

V(&) =) vm(€)e™Y

MEZL

and findd2v,, = —\2,v,, which is solved bys,, (x) = e*»u,,(0) where)?, = W

Due to the cubic nonlinearity we can restrict to oddc Z. Therefore, fok, close toc, the
eigenvalues\,, are on the imaginary axis fom| > 3. The eigenvalued., are on the real
axis forc, < c¢/,. Hence we have a two-dimensional stable and a two-dimealsiorstable
manifold. These manifolds intersect for the sine-Gordoma¢ign, but in general two two-
dimensional manifolds will not intersect in an infinite-dinsional phase space. This makes
the sine-Gordon equation exceptional in this class of egsit

Im Im

£=0 €>0

Figure 7: The spectrum of the linearization (34), where defined in Theorem 7.1.

A time-periodic solution in a moving frame is called geneed moving breather or
generalized modulating pulse solution if not necessarily

L v(&,y) =0,
butv(,y) is small for|¢| — oo. In [GS01], the existence of generalized modulating pulse
solutions withO(¢™)-tails has been established. For simplicity we restrigt(to = u?>.

Theorem 7.1 Fix a positive integer and a positive real numbeét,. For sufficiently small
e > 0 (depending upom and k) there exists an infinite-dimensional, continuous family o
modulating pulse solutions to equation (5) of the form

u(z,t) = v(r — cot, x — cpt),

wherew is 27/ ko-periodic in its second argument ang = ¢, + 11, ¢, = 1/¢,. These
solutions satisfy

v(&y) =v(=&y), (€ y) —2h(Ey. ) <™, LyER,
whereh(¢,y,e) = e Bpuse(£€) sin koy + c.c. + O(e?) and limg_ 1o h(&, y,€) = 0.
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Oe™™)
Figure 8: A generalized modulating pulse solution.

The modulating pulse solutions of Theorem 7.1 are found @ithersection of the
infinite-dimensional center stable and infinite-dimenalocenter unstable manifold. For
|¢] — oo the solutions converge with some exponential rate towdrdscénter manifold.
Thus, a secular growth of the solutions is possible. Howdwerthis special equation the
boundedness fd¢| — oo follows with the help of the Hamiltonian structure due to thet
that the Hamiltonian restricted to the center manifold isifpee definite.

For general, especially quasilinear, systems the nornciedlby the Hamiltonian is too
weak compared with the norm used for the construction ofrili@riant manifolds. Thus, in
general, generalized modulating pulse solutions can oalydmstructed fof¢| < 1/&™, cf.
[GSO05]. This result has been improved in [GS06] to expoadgtsmall tails and exponen-
tially large intervals, i.e.[¢| < exp(—1/¢).

8 Outlook and related fields

The above analysis can be extended into a number of directi6irst we may consider
different constitutive laws for the polarization, as fostance

O p(x,t) = u(xw,t) + 0 (u(zx, t)?)

leading to quasilinear systems, cf. [GS05].

Recently so-called ultra-short pulses have attracted aflotterest, cf. [SW04]. They
play an important role in spectroscopy. For such pulsesehgth of the envelope and the
wavelength of the underlying carrier wave have a comparsibe

In materials with broken up—down symmetry also quadratimgeare present. Then,
from a mathematical point of view, the proof of the above agpnation results is a much
more challenging task. The idea is to use normal form tramsfwr averaging methods to
eliminate the quadratic terms and to reduce the proof todb&case, cf. [Sch98, BSTUO6].
The case of quadratic resonant media has been treatedlyaod®ich05].

There is another famous system with dispersive behaviowfoch the NLS equation
can be derived, namely the water wave problem, cf. [Zak68]intates for the residual can
be found in [CSS92]. Here, quadratic terms are present. Tiiménation of these terms is
complicated due to some resonance at the wavenuinbeb and other resonances present
in case of small positive surface tension. Estimates forehpdoblems can be found in
[DSO05]. A first attempt for the water wave problem as been mad&WO06] where the
validity of the approximation over at least the right timalschas been shown.
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More generally, as already pointed out in the introductibe methods reviewed here can
be applied to all dispersive nonlinear equations for whithNILS equation can be derived.

There are still many open questions. A serious difficultyh@ tlescription of photonic
crystals comes from the fact that the coefficient functighsery often are step functions,
i.e., they are not smooth. Another challenging problemesjtistification of the NLS equa-
tion when the original equation possesses quasilinearrgtiaderms. The elimination of
these terms by normal form transforms gives a loss of regyulesmplicating the local exis-
tence and uniqueness theory of solutions substantially.
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