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Abstract

In this survey article we discuss a number of mathematical questions related to the
behavior of light pulses in dispersive media. Mathematically, we analyze the dynamics
of modulating pulse solutions of a nonlinear wave equation.Such solutions consist of
a pulse-like envelope advancing in the laboratory frame andmodulating an underlying
wave-train. We explain the role of the Nonlinear Schrödinger equation in the description
of pulses with the same carrier wave. We show that there is almost no interaction of
well prepared pulses with different carrier waves. Finally, we discuss the question: Do
modulating pulse solutions exist for all times? We discuss the relevance of the presented
results for fiber optics and photonic crystals.

1 Introduction

The transport of information over long distances through optical fibers is one of the key
technologies of the post-industrial society. Informationis encoded digitally by ones and
zeroes, i.e., by sending a light pulse through the optical fiber or not. Physically such a light
pulse is a complicated structure. It consists of an underlying electromagnetic carrier wave
moving with phase velocitycp and of a pulse-like envelope moving with group velocitycg
and modulating the underlying carrier wave, see Fig. 1.

Figure 1: 0s and1s are encoded physically by sending a light pulse or not; thus, for instance, the
above electromagnetic wave encodes the sequence 101101.

The analysis of the evolution of such a light pulse is a nontrivial task. The system shows
dispersion and (weak) dissipation, i.e., harmonic waves with different wave numbers travel
at different speeds and energy is lost in a wave number dependent way. Moreover, there is a
nonlinear response by the optical fiber. Thus, at a first glance it looks like a typical example
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for the application of numerical methods. However, a directsimulation of Maxwell’s equa-
tions which describe these electromagnetic waves is beyondany present possibilities. This
can be seen as follows: The wavelength of the underlying carrier wave is around10−7 m.
Resolving this structure in a fiber of10 km =104 m gives in uniform one dimensional spa-
tial discretization1011 points, not to speak about the transverse directions and thetemporal
discretization. Therefore, before making any numerical investigations, the system has to be
analyzed and simpler, numerically more suitable, models have to be derived. Interestingly,
by using only a pencil and a sheet of paper a lot of things can beconcluded without using
any computer. This will be the subject of this survey article.

Using multiple scaling analysis we derive a formula for the optimal shape of the enve-
lope of the pulse. Optimal means that it is more or less of a permanent form, i.e., in the ideal
case the pulse is time periodic in a frame moving with the group velocity of the envelope.
We will explain that the dynamics of pulses with the same carrier wave, i.e. with the same
wave length, can be described by the dynamics of the envelopealone which is governed by
a Nonlinear Schrödinger equation (NLS equation). The NLS equation is a universal non-
linear partial differential equation. Universal here means that additional to nonlinear optics
it appears in the above sense in many contexts, for instance water waves, plasma physics,
and lattice vibrations. Moreover, the NLS equation is a completely integrable Hamiltonian
system. As a result, the NLS equation can (in principle) be solved explicitly. The method is
called the inverse scattering scheme. In particular, the NLS equation has explicit so-called
N-soliton solutions. These are special localized waves withN humps,N ∈ N, where the
humps interact asymptotically in a very unexpected way which is similar to the superposition
principle in linear equations.

We will also explain that pulses with different carrier waves, i.e. different wave lengths,
do not interact in lowest order. This fact allows to increasethe information rate through the
fiber by using different bands, i.e. a number of different carrier waves.

Photonic crystals play an important role in nanotechnological devices. One of the ulti-
mate goals is to use them as optical storage. We will explain the possibility of standing light
pulses in photonic crystals.

Finally, we will explain that the formula for the pulses of permanent form is correct to
any polynomial order in the amplitude parameter, but that exponentially small terms will
hinder the existence of a modulating pulse of permanent formwith finite energy. However,
it turns out that such modulating pulses of permanent form exist with infinite energy and
exponentially small tails.

The paper starts with a short description of the physical background in order to motivate
the description of nonlinear optics by nonlinear wave equations. We concentrate on rigorous
mathematical results and skip in our presentation almost all purely formal results. We use
ideas from finite and infinite dimensional dynamical systemstheory, from perturbation the-
ory and from a functional analytic treatment of partial differential equations over unbounded
domains in Sobolev spaces.

The subsequent methods and results are not restricted to models from nonlinear optics.
They essentially apply to all equations for which a NLS equation can be derived as an ampli-
tude equation. For systems with (significant) dissipation the role of the NLS equation is taken
by other but related amplitude equations, for instance of Ginzburg–Landau type. We refrain
from any details in case of dissipation and refer to the literature, for instance [Sch99, Mie02]
and the references therein.
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2 Physical background

Light pulses are electromagnetic waves and described by Maxwell’s equations, namely

∇ · ~B = 0 , ∇× ~E + ∂t
~B = 0,

∇ · ~D = ρ , ∇× ~H − ∂t
~D = ~J,

with ~D = ε0
~E + ~P and ~H = ~B/µ0 − ~M . Here ~E = ~E(~x, t) is the electric field,~x =

(x, y, z) ∈ R
3, t ∈ R is the time,ε0 the permittivity of vacuum,~P the material polarization,

~B the magnetic flux,µ0 the magnetic permeability of vacuum,~M the material magnetization,
ρ the charge density and~J the electric current. These equations have to be closed with
constitutive laws~P = ~P ( ~E, ~H) and ~M = ~M( ~E, ~H) describing the behavior of the medium.
Depending on this choice there are linear and nonlinear, instantaneous and history dependent,
dispersive and dissipative models.

In typical optical fibers there is no magnetization~M , no charge densityρ, and no electric
current~J , and therefore, using∇×∇ ~E = ∆ ~E −∇(∇ · ~E), Maxwell’s equations for light
in nonlinear optical material are given by

△ ~E −∇(∇ · ~E) − ∂2
t
~E = ∂2

t
~P , (1)

where we scaled the speed of light in vacuum and the dielectric constant to1.
The constitutive law for the polarization~P = ~Pl + ~Pnl splits into a linear and a nonlinear

part, which in general both depend on the history of the electric field. In centrosymmetric
isotropic bulk material, the constitutive law for the linear response~Pl is given by an instan-
taneous part~P i

l (~x, t) = ~P i
l (~x,

~E(~x, t)) and a history dependent term

~P h
l (~x, t) = (χ1 ∗t

~E)(~x, t) =

∫ ∞

−∞

χ1(t− τ) ~E(~x, τ) dτ, (2)

whereχ1 in (2) is a scalar function, independent of~x, withχ1(t) = 0 for t < 0 due to causal-
ity, and similar for the nonlinear polarization. In case of optical fibersχ1 does also depend
on the transverse directionsy, z, and in case of photonic crystals also on the longitudinal
directionx.

In the simplest case~E is linearly polarized and only depends onx, i.e.,

~E(~x, t) = u(x, t)k̂ with ‖k̂‖R3 = 1, (1, 0, 0) · k̂ = 0. (3)

Then, (1) simplifies to

∂2
t u(x, t) = ∂2

xu(x, t) − ∂2
t pl(x, t) − ∂2

t pnl(x, t), (4)

with u(x, t), pl(x, t), pnl(x, t) ∈ R such that~Pl(t, ~x) = pl(x, t)k̂, ~Pnl(t, ~x) = pnl(x, t)k̂.
The symmetry(y, z) 7→ −(y, z), which is present in most optical materials, prevents the
occurrence of even terms inp with respect tou, thus, in generalpnl starts with cubic terms.
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Due to the fact that we are mainly interested in the underlying mathematical structures,
throughout the rest of the paper we choose

∂2
t p(x, t) = u(x, t) − u3(x, t)

as constitutive law, thus the toy problem for this paper is

∂2
t u = ∂2

xu− u+ u3. (5)

This choice is rather unphysical; however, it delivers a system with all properties in which we
are interested, namely dispersive and nonlinear behavior.We refer to [SU03] for a mathemat-
ical discussion of a physically more realistic choice whichincludes dissipation and history
dependence additional to dispersion and nonlinearity. Dissipation, i.e., wave number depen-
dent damping, is usually very weak in the so-called transmission windows of optical fibers.
However, it may become important over very long scales, while history dependence does not
alter the analysis in an essential way.

3 Single pulses I

The description of light pulses, i.e. here of localized solutions of (5), is based on the deriva-
tion of a NLS equation by formal perturbation analysis. Therefore we introduce a small
perturbation parameter

0 < ε≪ 1

which will relate the amplitude with the spatial and temporal scales. We seekO(ε)-amplitude
solutions which are slow spatial and temporal modulations of an underlying wave train
ei(k0x−ω0t), wherek0 andω0 are related by the dispersion relationω2

0 = k2
0 + 1 of the lin-

earized problem∂2
t u = ∂2

xu− u. Thus we substitute the ansatz

uA(x, t) = ε(A(X, T )ei(k0x−ω0t) + c.c.) + O(ε2), (6)

into (5), whereX = ε(x − ct) with c to be determined, whereT = ε2t, wherec.c. means
complex conjugate, and whereA(X, T ) is a complex-valued amplitude. We sort the coeffi-
cients of the carrier waveei(k0x−ω0t) with respect to powers ofε and obtain

O(ε1) : −ω2
0A = −(k2

0 + 1)A, dispersion relation,

O(ε2) : 2icω0AX=2ik0AX ⇒ c = k0/ω0=ω
′(k0)= : c′g, linear group velocity,

while atO(ε3ei(k0x−ω0t)) we find thatA should satisfy the NLS equation

2iω0∂TA+ (1 − (c′g)
2)∂2

XA+ 3|A|2A = 0. (7)

In fact, the Fourier transform of the ansatz (6) is strongly localized aroundk0. Therefore,
only the local shape ofω1,2 = ±

√
k2 + 1 neark0 is important to determinec = c′g in (6) and

the coefficients of the linear terms in (7), see Fig. 2.
Equation (7) has a four dimensional family of solutions of the form

A(X, T ) = Ã(X − vT −X0)e
i(ṽX−γ0T+φ0), ṽ = (ω0v)/(1 − (c′g)

2),
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ω1(k)

ω2(k)

kk0−k0

|û(k)|

Figure 2:The two curves of eigenvaluesω1,2 = ±i
√

1 + k2. The Fourier transform of (6) is con-
centrated in anO(ε) neighborhood around±k0, Therefore, the dynamics of (6) is determined by

the expansion ofω1 at k0. ω′
1(k0) gives the linear group velocityc′g, and the group velocity disper-

sionω′′
1 (k0) occurs as coefficient in the NLS equation. The concentrationof Fourier modeŝu(k) is

respected by the nonlinear interaction, i.e. convolution in Fourier space.

in which the real-valued functioñA satisfies the second-order ordinary differential equation

∂2
XÃ = C1Ã− C2Ã

3, (8)

where

C1 = ṽ2 − 2γ0ω0

1 − (c′g)
2
, C2 =

3

(1 − (c′g)
2)
.

Sincec′g < 1, we always haveC2 > 0, and forC1 > 0 there exist the two explicit solutions

Ãpulse(X) = ±
(

2C1

C2

)1/2

sech (C
1/2
1 X) (9)

to (8). These are called homoclinic since they connect the origin (0, 0) as a fixed point of the
first order formulation of (8) with itself, see the left panelof Fig. 3, while solutions which
connect different fixed points of a dynamical system are called heteroclinic.

The derivation of the NLS equation (7) was only formal in the sense that we simply
ignored terms that are higher order w.r.t.ε or appeared at a different wave-number. They are
contained in the residual, i.e.

Res(u) := − ∂2
t u+ ∂2

xu− u+ u3

contains the terms which do not cancel after inserting an approximation into (5). IfRes(u)=0,
thenu is an exact solution of (5). It is important to note that due toa possible ’accumulation
of errors’ the smallness of the residual alone does not implythe so-called validity of the ap-
proximation where validity means that there are solutions of (5) which behave as predicted
by the NLS equation on the relevantO(1/ε2) time–scale.

However, there are a number of mathematical validity results for (5), see [Kal88, KSM92,
Sch98] and also§4. The above procedure thus identifies modulating pulse solutions of (5)
which are described by the approximate formula

upulse(x, t) = ε
(

Ãpulse(X − vT −X0)e
i(ṽX−γ0T+φ0)ei(k0x−ω0t) + c.c.

)

+ O(ε2)

= ε
(

Ãpulse(ε(x− c′gt− x0 − εvt))ei((k0+εṽ)x−(ω0+ε2γ0)t+φ0) + c.c.
)

+ O(ε2)
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accurately over time-scales of orderO(1/ε2). In particular, for w.l.o.g.v = 0, x0 = 0 and
φ0 = 0 we have

upulse(x, t) = ε
(

Ãpulse(ε(x− c′gt))e
ik0(x−(c′p+γ1ε2)t) + c.c.

)

+ O(ε2),

wherec′p = (1 + k2
0)

1/2/k0 is the linear phase velocity andγ1 = γ0/k0.

 0

 0

cg

cp

O(ε)

O(ε−1)

Figure 3:The(Ã, ∂XÃ)-phase portrait for (8), and a modulating pulse for (5) described by the NLS

equation.

For the transport of information the global existence of modulating pulse solutions would
be an important goal, i.e., we investigate if there are exactsolutions to equation (5) of the
form

u(x, t) = v(x− cgt, k0(x− cpt)),

wherev is 2π-periodic in its second argument with

lim
ξ→±∞

v(ξ, y) = 0.

This question will be discussed in detail in§7. As a first result we note [GS01] that such
solutions can be computed approximately to any polynomial order in ε by extending the
ansatz (6) by higher order terms and applying a small correction to the linear group speed,
i.e., usingcg = c′g + O(ε2), see the right panel of Fig. 3. In other words, the following
Lemma allows to find modulating pulse solutions which make the residual arbitrarily small.

To measure the residual we use Sobolev spaces [Ada75]Hs = Hs(R,C). For simplicity
we restrict tos ∈ N. ThenHs consists of all functionsf : R → C which together with their
distributional derivatives up to orders are square integrable, equipped with the norm

‖u‖Hs =

s
∑

j=0

‖∂j
xu‖L2.

In our spatially one-dimensional setting,Hs is a subset of the space of uniformly bounded
andm times continously differentiable functionsCm

b (R,C) if s > m+ 1/2,m ∈ N, and the
embedding is continuous, i.e.,‖u‖Cm

b
≤ C‖u‖Hs. These so–called Sobolev embeddings can

be used to show that nonlinear terms such asu3 are well-defined and continuous mappings
fromHs → Hs if s > 1/2.

Lemma 3.1 Lets ≥ 2, k0 > 0, n ∈ N, andγ1 < 0. For sufficiently smallε > 0 there exists a
two-dimensional family, parameterized by envelope shiftx0 ∈ R and phase shiftφ ∈ [0, 2π),
of approximate modulating pulse solutions to (5) of the form

u(x, t) = εvk0
(x− cgt− x0, k0(x− cpt) + φ),
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wherev is 2π-periodic in its second argument,cp = c′p + γ1ε
2, cg = 1/cp, and where, for

somer > 0, εvk0
(ξ, y) = εÃpulse(εξ)e

iy + O(ε3e−rε|ξ|) + c.c., and

‖Res(εvk0
)‖Hs ≤ Cεn+1/2.

4 Interaction of pulses with the same frequency

By the derivation of the NLS equation for the nonlinear wave equation (5) not only modu-
lating pulse solutions of the nonlinear wave equation are identified. The complete dynamics
known for the NLS equation can also be expected to be found approximately in the nonlinear
wave equation.

We refer to the excellent textbooks [AS81, DJ89, SS99] aboutthe various dynamics
known for the NLS equation. For our purposes the fact is essential that the NLS equation
is a completely integrable Hamiltonian system. Hamiltonian means that (7) can be written
as∂TA = JδH(A) whereJ = −i/(2ω0) is a skew symmetric operator andδ denotes the
variational derivative of the Hamiltonian

H(A) =

∫
[

1 − c′2g
2

|∂XA|2 −
3

4
|A|4

]

dX.

An immediate consequence is that the HamiltonianH(A) is conserved by the flow of (7),
but in fact various further properties follow. Completely integrable means here that there are
infinitely many independent conserved quantities for (7), and that there exists a transforma-
tion which is called inverse scattering scheme and which uses these conserved quantities to
map (7) to a linear system which can (in principle) be solved explicitly. As a result, there
are explicit though somewhat lengthy formulae (similar to (9)) for so-calledN-soliton solu-
tions of the NLS equation. In general,N-solitons are localized solutions which consist ofN

humps and which fort → ±∞ asymptote toN solitons with different speeds. In particular,
the individual humps interact in a very special way which is rather unexpected in a nonlinear
equation: asymptotically fort → ±∞ the interaction preserves the shapes and speeds of
the individual humps, and only alters the relative positions. Thus, the humps are similar to
elastic particles, and this motivates the name soliton. Thechange of position after interac-
tion isO(1) in the NLS equation and is called a pulse shift. Formally, theN-solitons yield
modulatingN-pulse solutions for the nonlinear wave equation (5) withO(1/ε) pulse-shifts
after interaction, see Fig. 4.

However, as already said in§3, the formal derivation of the NLS equation for the nonlin-
ear wave equation (5) alone does not imply that the dynamics found in the NLS equation can
also be found in the nonlinear wave equation (5): There are amplitude equations derived in a
formally correct way by multiscale analysis which do not reflect the dynamics of the original
system, see, e.g., [Sch95]. We now discuss the validity of the approximation, that is, how
well solutions of the nonlinear wave equation (5) can be approximated via the solutions of
the NLS equation.

LetA ∈ C([0, T0], H
sA(R,C)) be a solution of the NLS equation (7) withsA ≥ 1 defined

below. Then
εψc(x, t) = εA(ε(x− c′gt), ε

2t)ei(k0x−ω0t) + c.c. (10)
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a)ReA b) |A|

X = 0 X = O(1)

c) u(x, t) (in co-moving frame with speedcg) d) ReÃ.

x = 0 x = O(ε−1)

T = O(1)

T = 0

t = O(ε−2)

t = 0

Figure 4: A 2-soliton A with interaction in the NLS equation and the associated modulating 2-

pulse solution in the nonlinear wave equation (a)–(c), withinteraction at(X,T ) = (0, 0), and a time
periodic2-solitonÃ in the NLS equation (d). For graphical reasons, black has been assigned tou = 0

in c).

defines a formal approximation of the solutionsu of the nonlinear wave equation (5). For
our purposes it turns out to be advantageous to consider the extended approximation

εψ(x, t) = εA(ε(x− c′gt), ε
2t)ei(k0x−ω0t) + ε3A3(ε(x− c′gt), ε

2t)e3i(k0x−ω0t) + c.c. (11)

whereA3 = A3/(9ω2
0 − 9k2

0 − 1) is also inC([0, T0], H
sA(R,C)), if sA ≥ 1. In summary, if

sA > m+ 1/2, then there existC, ε0 > 0 such that for allε ∈ (0, ε0)

sup
t∈[0,T0/ε2]

‖εψ(·, t) − εψc(·, t)‖Cm
b
≤ C sup

t∈[0,T0/ε2]

‖ε3A3(ε·, ε2t)e3i(k0x−ω0t) + c.c.‖Cm
b

≤ Cε3 sup
t∈[0,T0/ε2]

‖A3(ε·, ε2t)‖Cm
b
≤ Cε3 sup

T∈[0,T0]

‖A3(·, T )‖Cm
b

≤ Cε3 sup
T∈[0,T0]

‖A3(·, T )‖HsA

due to Sobolev’s embedding theorem. As a consequence, ifu can be approximated byεψ up
to an error of orderO(εβ) then it can also be approximated up to an error of orderO(εmin(3,β))

by ψc. In detail this means that

‖u− εψc‖Cm
b
≤ ‖u− εψ‖Cm

b
+ ‖εψ − εψc‖Cm

b
≤ Cεβ + Cε3 ≤ 2Cεmin(3,β).
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In order to estimate the differenceu−εψ =: ε3/2R we derive an equation forR and estimate
R. In order to do so we need estimates for the residualRes(εψ). By the choice ofA andA3

all terms up to formal orderO(ε4) are eliminated in the residual. Therefore there existC,
ε0 > 0 such that for allε ∈ (0, ε0)

sup
t∈[0,T0/ε2]

‖Res(εψ(t))‖Hs ≤ Cε7/2.

The loss ofε1/2 comes from the scaling properties of theL2-norm.
With u = εψ + ε3/2R we find

∂2
t (εψ + ε3/2R) = ∂2

x(εψ + ε3/2R) − (εψ + ε3/2R) − (εψ + ε3/2R)3

such thatR satisfies
∂2

tR = ∂2
xR− R+ f (12)

with
f = −3ε2ψ2R− 3ε5/2ψR2 − ε3R3 + ε−3/2Res(εψ).

Thus,
‖f‖Hs ≤ C1ε

2‖R‖Hs + C2(CR)ε5/2‖R‖2
Hs + C3ε

2 (13)

as long as‖R(t)‖Hs ≤ CR with a constantCR determined below, constantsC1, C3 indepen-
dent ofCR andε ∈ (0, 1) and a constantC2 depending onCR but independent ofε ∈ (0, 1).

The equation forR is solved here for simplicity with zero initial conditions.We use
energy estimates and define the energy

E(R) =

s
∑

j=0

∫ ∞

−∞

(∂t∂
j
xR)2 + (∂j+1

x R)2 + (∂j
xR)2dx.

For j = 0 and
∫

=
∫∞

−∞
we obtain

1

2
∂t

∫

(∂tR)2 + (∂xR)2 +R2dx =

∫

(∂tR)(∂2
tR) + (∂xR)(∂t∂xR) +R(∂tR)dx

=

∫

[(∂tR)(∂2
xR) − (∂tR)R+ (∂tR)f + (∂xR)(∂t∂xR) +R(∂tR)]dx

=

∫

(∂tR)fdx

which can be estimated with the Cauchy Schwarz inequality by
∣

∣

∣

∣

∫

(∂tR)fdx

∣

∣

∣

∣

≤ ‖∂tR‖L2‖f‖L2 ≤ ‖∂tR‖L2(C1ε
2‖R‖Hs + C2(CR)ε5/2‖R‖2

Hs + C3ε
2)

≤ C1ε
2E(R) + C2(CR)ε5/2E(R)3/2 + C3ε

2E(R)1/2

≤ (C1 + C3)ε
2E(R) + C2(CR)ε5/2E(R)3/2 + C3ε

2.

Since exactly the same estimates hold forj = 1, . . . , s we finally find

∂tE(R) ≤ (C1 + C3)ε
2E(R) + C2(CR)ε5/2E(R)3/2 + C3ε

2. (14)

9



Now assume thatε1/2C2(CR)E1/2(R) ≤ 1. Then, for0 ≤ t ≤ T0/ε
−2,

E(R(t)) ≤ C3e
(C1+C3+1)T0 =: C2

R (15)

by Gronwall’s lemma which translates differential inequalities like (14) into pointwise esti-
mates like (15), see, e.g., [Hen81, Lemma 7.1.1] for a very general version.

Choosingε0 > 0 so small that

ε
1/2
0 C2(CR)C

1/2
R ≤ 1 (16)

we are done. In detail, to a givenCR = CR(T0, C1, C3) defined in (15) we have aC2(CR)

by (13) and to thisC2 we have anε0 > 0 by (16). Hence, there are solutionsu of (5) which
behave for allt ∈ [0, T0/ε

2] as predicted by the NLS equation (7).

Theorem 4.1 Fix sA ≥ s + 3 ≥ 4. Let A ∈ C([0, T0], H
sA) be a solution of the NLS

equation (7). There existC, ε0 > 0, such that for allε ∈ (0, ε0) there exist solutionsu of (5)
such thatsupt∈[0,T0/ε2] ‖u(·, t) − εψ(·, t)‖Hs ≤ Cε3/2.

Remark 4.2 The time scaleO(T0/ε
2) is necessary to describe non-trivial dynamics. The er-

ror of orderO(ε3/2) is much smaller than the approximation which is of orderO(ε). Adding
higher order terms, likeA3, to the approximationεψ allows to decrease the magnitude of
the residual further, in particular we can obtainO(ε11/2). This results in an error of order
O(ε7/2) instead ofO(ε3/2). However, the time scaleO(1/ε2) of validity in general can not
be extended.

As a consequence of Theorem 4.1 modulating pulse solutions for the nonlinear wave equa-
tion (5) with the same carrier wave interact as predicted by the NLS equation, i.e., we have
approximately the persistence of the modulating pulse solutions after the nonlinear interac-
tion andO(1/ε) pulse-shifts in the nonlinear wave equation (5). For the transport of infor-
mation through optical fibers the interaction of pulses is ingeneral undesirable. However,
even if the envelopes are in a very general form, like in real world technical devices, the NLS
equation can now be used to compute numerically how far the modulating pulse solutions
have to be separated such that there is no nonlinear interaction during the journey through
the fiber.

5 Interaction of pulses with different frequencies

The information rate through the fiber can be increased by using different bands, i.e., differ-
ent basic wave numbers, cf. [Ace00]. As explained in Remark 5.1 below (after fixing some
notation), there is a simple argument why wave packets with different wave numbers do not
interact in lowest order w.r.t.ε. Moreover, for pulses from Lemma 3.1 the argument can
be refined, and in this section we explain that there is almostno interaction of such pulses
associated to different carrier waves by giving anO(ε)-bound for the possible shift of the
envelope resulting from the interaction. For general wave packets the shift of the envelope
will be in generalO(1). Thus, it is advantageous to use well-prepared pulses for the transport
of information.

We introduce subscriptsA andB to indicate the wave numberskA 6= kB of each pulse,
the associated group velocitiescg,A andcg,B, the envelope shiftsxA andxB and so on. If the
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two pulses are separated initially, and, say,xA > xB andkA < kB such thatcg,A < cg,B and
the faster pulse is in front, then, since the pulses are exponentially localized, it is natural to
expect that the dynamics of the two pulses can be described bythe sum of the two individual
pulses, at least on the naturalO(1/ε2) time–scale. However, if the two pulses are, say,
O(1/ε) separated initially, withxA > xB andkA > kB, then, since the group velocities
differ by O(1), the two pulses must interact on anO(1/ε2) time–scale. Clearly this is the
mathematically more interesting case.

For notational simplicity we assume thatφA = φB = 0 and thus study the interaction of

εvkA
(x−cg,At+xA, kA(x−cp,At)) and εvkB

(x−cg,Bt+xB, kB(x−cp,Bt)), kA 6= kB.

We prove that the form of the pulses is almost preserved and that the interaction mainly leads
to phase-shiftsεΩA andεΩB with ΩA,ΩB ∈ R bounded independent ofε.

Remark 5.1 That the amplitude equations forεvkA
andεvkB

decouple in lowest order can
be seen as follows. Going into the scaling of the envelope,εvkA

andεvkB
have an amplitude

and a width of orderO(1). But since the group velocities differ by an order1/ε in this
scaling the interaction time ofεvkA

andεvkB
is only O(ε). Thus, the influence of a term

vkA
vkB

on the dynamics ofvkA
andvkB

is O(ε) in the NLS scaling and therefore in lowest
order the evolution equations forvkA

andvkB
decouple. This argument is not restricted tovkA

andvkB
. It holds for all wave-packets. Moreover, this property canbe observed in a number

of problems. For modulating pulse solutions such a statement can be found for instance in
[PW96] where it has been shown that the two NLS equations for counter-propagating waves
decouple.

The estimates from [PW96] still only transfer intoO(1)-bounds for the possible envelope
shifts of the pulses forε→0. However, for well-prepared pulses, i.e.,n≥5 in Lemma 3.1, by
extracting explicitly the phase shift of the underlying carrier wave we can refine the bound
on the envelope shifts toO(ε). In detail, we show that after interaction the solution is close
to

εvkA
(x− cg,At+ xA, kA(x− cp,At) + εΩA(ηB))

+ εvkB
(x− cg,Bt+ xB, kB(x− cp,Bt) + εΩB(ηA)), (17)

with explicit functionsΩA,ΩB, given by

ΩA =

ηB
∫

−∞

3|B1|2
ωA(cA − cB)

dη̃B + Ω0
A + O(ε2e−r|ηB |), ηB = ε(x+ xB − cg,Bt), (18)

ΩB =

ηA
∫

−∞

3|A1|2
ωB(cB − cA)

dη̃A + Ω0
B + O(ε2e−r|ηB|), ηA = ε(x+ xA − cg,At), (19)

whereB1 andA1 are given by (9) with constantsC1,B, C2,B andC1,A, C2,A, respectively, and
whereΩ0

A andΩ0
B are constants which normalize the initial phases, see Fig. 5. Note thatΩA

depends onx − cg,Bt andΩB on x − cg,At as the phase shift accounts for so-called cross
phase modulation.

11



ΩB
ΩA

cg,A
cg,B

−xA −xB

cg,A cg,B

t = 0

ΩB
ΩA

after interaction

Figure 5:Illustration of the interaction of two pulsesεvkA
andεvkB

with the associated cross–phase
modulationsΩA andΩB. HerekA > kB and the slower pulse is in front. Thus,cB − cA < 0 in (19),
andΩB is a decaying function ofx. The constantsΩ0

A andΩ0
B have been chosen in such a way that

at t = 0 (upper two pictures) there are no phase-shift for the pulses, i.e.,ΩB is exponentially small
near the position−xB of εvkB

, while ΩA is exponentially small near the position−xA of εvkA
. Note

thatΩB travels withεvkA
andΩA with εvkB

.

Theorem 5.2 Let s ≥ 2, kA, kB > 0, kA 6= kB, γ1,A, γ1,B < 0, xA, xB ∈ R in Lemma 3.1,
andT0 > 0. There existε0 > 0 andC > 0 such that for allε ∈ (0, ε0) there exist solutions
u of (5) such that

sup
t∈[0,T0/ε2]

‖u(x, t)−εvkA
(x−cg,At+xA, kA(x−cp,At)+εΩA(ηB))

− εvkB
(x−cg,Bt+ xB, kB(x−cp,Bt+εΩB(ηA))‖Cs−1

b
≤ C2ε

3 (20)

with vkA
, vkB

from Lemma 3.1 andΩA,ΩB given by (18),(19).

Remark 5.3 To obtain an estimate for the physically relevant shift of the envelope, suppose
that the error comes from a shift of the envelope. Then, due tothe long wave form of the
envelope, “vertical” estimates of orderO(ε3) in L∞ can lead on a pulse of amplitudeO(ε)

only to a possible envelope shiftεa of orderO(ε), due to

εg(ε(x+ εa)) − εg(εx) = εg′(εx)ε2a + O(ε(ε2a)2) = O(ε3).

Idea of the proof of Theorem 5.2(See [CBSU06] for more details.) We make the ansatz

u(x, t) = εψ(x, t) :=εA1(ηA)E + εB1(ηB)F

+ ε3A2(ηA, T )E + ε3B2(ηB, T )F + c.c. + h.o.t. (21)

12



whereT = ε2t, and where

E = ei(kAx−ωAt+εΩA(ηB)), F = ei(kBx−ωBt+εΩB(ηA)), ηA = ε(x−cg,At), ηB = ε(x−cg,Bt).

In (21), h.o.t. stands for terms of higher order inε, which are algebraically determined similar
to A3 in (11), and which do not lead to new aspects compared to Section 3. We chooseA1

andB1 as given by Lemma 3.1. If we chooseΩA,ΩB to satisfy

∂ηB
ΩA =

3|B1|2
ωA(cg,A − cg,B)

and ∂ηA
ΩB =

3|A1|2
ωB(cg,B − cg,A)

(22)

which yields (18) and (19), then the coefficients atε3E andε3F vanish. Atε5E andε5F we
find thatA2, B2 satisfy the linear equations

2iωA∂TA2 + (1 − c2g,A)∂2
ηA
A2 +GA = 0 , (23)

2iωB∂TB2 + (1 − c2g,B)∂2
ηB
B2 +GB = 0 , (24)

with, by construction, zero initial data, and where

GA = 6|A1|2A2 + 3A2
1A−2 + 6(B1B−2 +B2B−1)A1

+ε−1[i(1 − c2g,A)∂2
ηB

ΩAA1 + 2i(cg,Acg,B − 1)(∂ηB
ΩA)(∂ηA

A1)) ],

GB = 6|B1|2B2 + 3B2
1B−2 + 6(A1A−2 + A2A−1)B1

+ε−1[i(1 − c2g,B)∂2
ηA

ΩBB1 + 2i(cg,Acg,B − 1)(∂ηA
ΩB)(∂ηB

B1) ].

The argument given in Remark 5.1 applied to the terms multiplied byε−1 shows

Lemma 5.4 There exists aC > 0 such that for allε ∈ (0, 1] there exists a unique solution
(A2, B2) ∈ C([0, T0], H

s ×Hs) to (23)-(24) with zero initial data. It satisfies

sup
T∈[0,T0]

‖(A2, B2)(T )‖Hs×Hs ≤ C.

This shows that‖Res(εψ)‖Hs = O(ε11/2). Similar to the proof of Theorem 4.1 we write
u(x, t) = εψ(x, t) + ε7/2R, where we can employ the higher weight ofR due to the smaller
residual. The equation forR looks exactly as (12). Thus,supt∈[0,T0/ε2] ‖R‖Hs ≤ C as above,
which concludes the proof of Theorem 5.2.

Theorem 5.2 can be extended in at least two directions. On a time scaleO(1/ε2) a
modulating pulse can pass at mostO(1/ε) many modulating pulses of widthO(1/ε). The
interaction of such a modulating pulse withO(1/ε) many modulating pulses with a different
carrier wave can lead at most to anO(1)-pulse shift. Thus, with respect to the question of
the transport of information through optical fibers the influence of different frequencies to
the dynamics at some frequency is negligible. Finally, a possibility to increase the rate of
information through the fibers is to decrease the gap betweenthe wave numbers. Formally
we find forkA − kB = O(εµ) with 0 ≤ µ ≤ 1 a pulse shift of orderO(ε1−2µ). Thus we must
expect a certain payoff between the number of different carrier frequencies1/(kA − kB) and
the spacing of bits.
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6 Pulses in photonic crystals: Standing light

One of the major goals of nanotechnology is photonics, i.e. the construction of ’electronic’
devices where the electrons are completely replaced by photons. In this context, the question
of optical storage plays a major role. One theoretical possibility are photonic crystals. These
are optical materials with a periodic structure with a wave length comparable to the wave
length of light. Due to the periodic structure the linearized problem is no longer solved
by Fourier modes, but by so-called Bloch modes. The curves ofeigenvalues plotted as a
function over the Bloch wave numbers can now possess horizontal tangencies, i.e. vanishing
group velocities. Thus, in principle, standing light pulses are possible. This will be explained
in detail in the following, see also [BSTU06] for more details.

Again we consider a semilinear wave equation

∂2
t u(x, t) = χ1(x)∂

2
xu(x, t) − χ2(x)u(x, t) − χ3(x)u

3(x, t) (25)

with x ∈ R and t ∈ R, u = u(x, t) ∈ R, but now in a spatially periodic medium. This
means that the coefficient functionsχj = χj(x) satisfyχj(x) = χj(x + L) for j = 1, 2, 3.
We assume here that theχj are smooth functions, thatχ1(x) > 0 and thatχ2(x) > 0 for all
x ∈ [0, L), and, without loss of generality,L = 2π throughout this section. The linearized
problem

∂2
t v(x, t) = χ1(x)∂

2
xv(x, t) − χ2(x)v(x, t)

is solved by the Bloch waves

v(x, t) = ṽn(ℓ, x)eiℓxeiωn(ℓ)t

wheren ∈ Z \ {0}, ℓ ∈ (−1/2, 1/2], with ṽn andωn determined by (27) below. Here,
ωn(ℓ) ∈ R satisfiesωn+1(ℓ) ≥ ωn(ℓ), ω−n(ℓ) = −ωn(ℓ), andṽn(x, ℓ) satisfies

ṽn(ℓ, x) = ṽn(ℓ, x+ 2π) and ṽn(ℓ, x) = ṽn(ℓ+ 1, x)eix. (26)

The Bloch wave transform of a functionu : R → C is a generalization of Fourier transform
and formally given by

ũ(ℓ, x) =
∑

j∈Z

eijxû(ℓ+ j).

By construction,ũ satisfies (26), andℓ ∈ (−1/2, 1/2] is called a Bloch or pseudo wave
number. From Parseval’s identity‖u‖L2 = ‖û‖L2 it follows that Bloch transform is an iso-
morphism fromHm(R,C) to the Bloch spaceL2((−1/2, 1/2], Hm

per((0, 2π))), and its inverse
is given by

u(x) =

∫ 1/2

−1/2

eiℓxũ(ℓ, x) dℓ.

See [RS78, Sca99] for further properties and applications of Bloch transform.
For fixed Bloch wave numberℓ the Bloch modes̃vn(ℓ, x) satisfy the spatially periodic

eigenvalue problem

−Λ̃(ℓ, ∂x)ṽn(ℓ, ·) = χ1(·)(∂x + iℓ)2ṽn(ℓ, ·) − χ2(·)ṽn(ℓ, ·) = −(ωn(ℓ))2ṽn(ℓ, ·). (27)
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Since the operator̃Λ(ℓ, ∂x) is elliptic in the bounded domain[0, 2π) with periodic boundary
conditions we have for fixedℓ countable many eigenvaluesλn = ω2

n, n ∈ N. In the space
L2

χ1
(0, 2π) where

〈ũ(ℓ, ·), ṽ(ℓ, ·)〉χ1
=

1

2π

∫ 2π

0

ũ(ℓ, x)ṽ(ℓ, x)
1

χ1(x)
dx , (28)

the operator̃Λ(ℓ, ∂x) is positive definite and self adjoint such that the eigenvaluesλn(ℓ) are
real and positive. They are ordered byλn(ℓ) ≤ λn+1(ℓ).

We now explain the possibility of horizontal tangencies forthe curvesℓ 7→ ωn(ℓ) by
discussing periodic coefficients as perturbation of the spatially homogeneous case.

Example 6.1 The solutions of the constant coefficient case

∂2
t v(x, t) = ∂2

xv(x, t) − v(x, t) (29)

are given by the Fourier modesv(x, t) = ei(kx±µ(k)t), where(µ(k))2 = k2 + 1. We consider
artificially the problem in a spatially periodic set-up. In aBloch wave representation we have

v(x, t) = einxeiℓxeiω±
n (ℓ)t,

wherek = n + ℓ, with n ∈ Z here andℓ ∈ (−1
2
, 1

2
]. The eigenvalues are related by

ω±
n (ℓ) = ±µ(n + ℓ), i.e., they are obtained from wrapping±µ(·) around a cylinder, see the

left panel of Fig. 6.

For all ℓ ∈ (−1/2, 1/2] except forℓ = 0, 1/2 all eigenvalues of̃Λ(ℓ, ∂x) in Example 6.1 are
simple. By classical perturbation arguments [Kat66], for periodicχj = 1 + O(δ) the eigen-
values are smooth functions ofδ and stay separated forδ > 0 sufficiently small. However,
for ℓ = 0, 1/2 all eigenvalues are double and generically for smallδ > 0 the eigenvalues will
split. This is exactly what happens in the spatially periodic case.

Example 6.2 Let χ2(x) = 1 + 2δ cos(2nx) = 1 + δ(ei2nx + e−i2nx) with δ > 0 small and a
fixedn ∈ N. Setting

ṽn(ℓ, x) =
∑

k∈Z

v̂n
k (ℓ)eikx,

the eigenvalue problem (27) is given by the infinitely many equations

(1 + (k + ℓ)2)v̂n
k (ℓ) + δ(v̂n

k+2n(ℓ) + v̂n
k−2n(ℓ)) − λn(ℓ)v̂n

k (ℓ) = 0, (k ∈ Z). (30)

For δ = 0 we have (with some abuse of notation)λn(0) = λ−n(0), i.e. a crossing of the
curves of eigenvalues atℓ = 0. Due to the continuity of single eigenvalues or subspaces
to eigenvalues separated from the rest, for smallδ > 0 andℓ = 0, the infinite dimensional
eigenvalue problem in lowest order can be reduced to the two-dimensional problem

det

(

1 + (−n)2 − λn(0) δ

δ 1 + (n)2 − λn(0)

)

= 0,

for v̂n
n andv̂n

−n. Henceλ±n(0) = 1 + n2 ± δ. Thus,λn(ℓ) andλ−n(ℓ) split at the crossings,
i.e. atℓ = 0, and recombine in a different way. These new curves are also denoted withλn(ℓ)

now ordered such thatλn+1(ℓ) ≥ λn(ℓ) but now and in the following indexed withn ∈ N.
As before we letλn(ℓ) = ω2

n(ℓ) andωn(ℓ) = −ω−n(ℓ) > 0, see the right panel of Fig. 6.
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Figure 6: The curves of eigenvalues for the homogeneous case (29) in Bloch-representation, and
the splitting of eigenvalues for (30). The Bloch modes of theansatz (31) are strongly concentrated on
anO(ε) neighborhood of the basic Bloch wave numbers±ℓ0 and the evolution of the wave packet

will be strongly determined by the associated curvesω±n0
at±ℓ0. Thus, the occurrence of horizontal

tangencies as explained in Example 6.2 corresponds to vanishing group velocityc′g, i.e. to standing

light pulses.

Thus, on a linear level we have a situation as in the spatiallyhomogeneous case: we have
curves of eigenvalues over wave numbers except that associated eigenfunctions are no longer
Fourier modes, but Bloch modes. Then, similar to the spatially homogeneous case, slow
modulations in time and space of such a Bloch mode (indexed with n0) may be described by
the ansatz

u(x, t) = εA(ε(x− c′gt), ε
2t)ṽn0

(ℓ0, x)e
iℓ0xeiωn0

(ℓ0)t + c.c., (31)

wherec.c. means complex conjugate, where0 < ε ≪ 1 is a small parameter, and where
c′g = ∂ℓωn0

(ℓ0) is the linear group velocity. The complex valued amplitudeA(X, T ) ∈ C

describes slow modulations in timeT = ε2t, and spaceX = ε(x − c′gt), of the underlying
wave ṽn0

(ℓ0, x)e
iℓ0xeiωn0

(ℓ0)t. The Bloch modes of the ansatz are strongly concentrated in
anO(ε) neighborhood of the basic Bloch wave numbers±ℓ0 and the evolution of the wave
packet will be strongly determined by the associated curvesω±n0

at±ℓ0. Plugging the ansatz
into (25) one finds thatA has to satisfy a NLS equation

∂TA = iν1∂
2
XA + iν2A|A|2 (32)

with coefficientsν1 = −1
2
∂2

ℓωn0
(ℓ0) ∈ R and

ν2 =
3

2ωn0
(ℓ0)

∫ 2π

0

χ3(x)

χ1(x)
|vn0

(ℓ0, x)|4 dx ∈ R.

The occurrence of the nonlinear termiν2A|A|2 is a priori not clear at all. However, the
nonlinear interaction corresponds in Bloch space to a convolution with respect to the Bloch
wave numbers. Thus, the concentration of modes is respectedby the nonlinear interaction
which can be described in lowest order byiν2A|A|2.

In general, the dispersion relationℓ 7→ ωn(ℓ) and hence the coefficientν1 as well asν2

have to be calculated numerically. On the other hand, for a given material, these coefficients
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can be tailored by adjusting the grating, i.e. the periodic functionsχj . This is a highly
nontrivial optimization problem [HFBW01].

The justification of (32) for (25) in the sense of error estimates proceeds similar to the
proof of Theorem 4.1, but the functional analysis becomes somewhat more complicated
[BSTU06]. The physical detection of the pulses predicted by(32) is a nontrivial task, since
they are localized in the photonic crystal and cannot be ’seen’. One possibility would be
the interaction with other modulating pulses. However, similar to the analysis in§5, only
pulses with carrier waves close to the carrier wave of the standing pulse will have any rel-
evant, in terms ofε, effect on the standing pulse, and vice versa. Nevertheless, due to the
higher dispersion, the influence is in general much larger than in homogeneous optical fibers,
cf. [TPB04].

7 Single pulses II

We found approximate modulating pulse solutions with the help of the NLS equation up
to a time-scale of orderO(1/ε2). Since these solutions are essential for the transport of
information the following question occurs: do these solutions exist for allt ∈ R? More
precisely, are there ’breather solutions’, which are time-periodic solutions in a moving frame
and which are spatially localized, i.e., which decay to zerofor |x| → ∞? Such solutions are
known explicitly for the sine-Gordon equation

∂2
t u = ∂2

xu− sin(u),

which first appeared in differential geometry in the description of surfaces with constant neg-
ative curvature [Enn70], but which also appears in crystallography and in particle physics. In
fact, like the NLS equation, the sine-Gordon equation is a completely integrable Hamiltonian
system. See [DJ89] for more background and references.

Thus, the question is whether ’breathers’ can also exist in other nonlinear wave equations,
for instance of the type

∂2
t u = ∂2

xu− u+ g(u),

whereg : R → R is a smooth, odd function which satisfiesg(u) = O(u3) andg′′′(0) > 0.
It turns out that forg(u) close tou − sin(u) the sine-Gordon equation is the only such
equation. For a precise statement see [BMW94, Den93]. In thefollowing we explain why
this ’non existence of breathers’ result holds. Moreover, we will explain positive results for
generalized breather solutions.

The solutions we are interested in are obtained from the ansatz

u(x, t) = v(x− cgt, x− cpt) = v(ξ, y),

wherev is periodic iny with period2π/k0 for somek0 > 0. They are homoclinic solutions
of the evolutionary system

(1 − c2g)∂
2
ξv + (1 − c2p)∂

2
yv − v + g(v) = 0, (33)

which generalizes the spatial dynamics approach of Kirchg¨assner [Kir82], i.e., we look forv
with

lim
ξ→±∞

v(ξ, y) = 0.
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In order to obtain (33) we have chosencg = 1/cp according to the linear relationc′g = 1/c′p.
Hence,v has to be in the intersection of the stable and unstable manifold of the origin.

The stable and unstable manifolds are the nonlinear counterparts to the stable and unstable
subspaces in case of linear equations and are tangential to these subspaces. Therefore, we
look at the linearization around the fixed point(v, ∂ξv) ≡ (0, 0) in order to compute the
dimensions of these manifolds. The linearization of (33) isgiven by

(1 − c2g)∂
2
ξ v + (1 − c2p)∂

2
yv − v = 0. (34)

Since we are interested in periodic solutions w.r.t.y we use Fourier series

v(ξ, y) =
∑

m∈Z

vm(ξ)eimk0y

and find∂2
ξvm = −λ2

mvm which is solved byum(x) = eiλmxum(0) whereλ2
m =

m2k2
0(1−c2p)+1

(1−c2g)
.

Due to the cubic nonlinearity we can restrict to oddm ∈ Z. Therefore, forcp close toc′p the
eigenvaluesλm are on the imaginary axis for|m| > 3. The eigenvaluesλ±1 are on the real
axis forcp < c′p. Hence we have a two-dimensional stable and a two-dimensional unstable
manifold. These manifolds intersect for the sine-Gordon equation, but in general two two-
dimensional manifolds will not intersect in an infinite-dimensional phase space. This makes
the sine-Gordon equation exceptional in this class of equations.

ε=0 >0 ε

Re

Im Im

Re

Figure 7: The spectrum of the linearization (34), whereε is defined in Theorem 7.1.

A time-periodic solution in a moving frame is called generalized moving breather or
generalized modulating pulse solution if not necessarily

lim
ξ→±∞

v(ξ, y) = 0,

but v(ξ, y) is small for|ξ| → ∞. In [GS01], the existence of generalized modulating pulse
solutions withO(εn)-tails has been established. For simplicity we restrict tog(u) = u3.

Theorem 7.1 Fix a positive integern and a positive real numberk0. For sufficiently small
ε > 0 (depending uponn andk0) there exists an infinite-dimensional, continuous family of
modulating pulse solutions to equation (5) of the form

u(x, t) = v(x− cgt, x− cpt),

wherev is 2π/k0-periodic in its second argument andcp = c′p + γ1ε
2, cg = 1/cp. These

solutions satisfy

v(ξ, y) = v(−ξ, y), |v(ξ, y)− 2h(ξ, y, ε)| ≤ εn+1, ξ, y ∈ R,

whereh(ξ, y, ε) = εBpulse(εξ) sin k0y + c.c. + O(ε2) and limξ→±∞ h(ξ, y, ε) = 0.
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Figure 8: A generalized modulating pulse solution.

The modulating pulse solutions of Theorem 7.1 are found in the intersection of the
infinite-dimensional center stable and infinite-dimensional center unstable manifold. For
|ξ| → ∞ the solutions converge with some exponential rate towards the center manifold.
Thus, a secular growth of the solutions is possible. However, for this special equation the
boundedness for|ξ| → ∞ follows with the help of the Hamiltonian structure due to thefact
that the Hamiltonian restricted to the center manifold is positive definite.

For general, especially quasilinear, systems the norm induced by the Hamiltonian is too
weak compared with the norm used for the construction of the invariant manifolds. Thus, in
general, generalized modulating pulse solutions can only be constructed for|ξ| ≤ 1/εn, cf.
[GS05]. This result has been improved in [GS06] to exponentially small tails and exponen-
tially large intervals, i.e.,|ξ| ≤ exp(−1/ε).

8 Outlook and related fields

The above analysis can be extended into a number of directions. First we may consider
different constitutive laws for the polarization, as for instance

∂2
t p(x, t) = u(x, t) + ∂2

t (u(x, t)
3)

leading to quasilinear systems, cf. [GS05].
Recently so-called ultra-short pulses have attracted a lotof interest, cf. [SW04]. They

play an important role in spectroscopy. For such pulses the length of the envelope and the
wavelength of the underlying carrier wave have a comparablesize.

In materials with broken up–down symmetry also quadratic terms are present. Then,
from a mathematical point of view, the proof of the above approximation results is a much
more challenging task. The idea is to use normal form transforms or averaging methods to
eliminate the quadratic terms and to reduce the proof to the cubic case, cf. [Sch98, BSTU06].
The case of quadratic resonant media has been treated recently in [Sch05].

There is another famous system with dispersive behavior forwhich the NLS equation
can be derived, namely the water wave problem, cf. [Zak68]. Estimates for the residual can
be found in [CSS92]. Here, quadratic terms are present. The elimination of these terms is
complicated due to some resonance at the wavenumberk = 0 and other resonances present
in case of small positive surface tension. Estimates for model problems can be found in
[DS05]. A first attempt for the water wave problem as been madein [SW06] where the
validity of the approximation over at least the right time scale has been shown.
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More generally, as already pointed out in the introduction,the methods reviewed here can
be applied to all dispersive nonlinear equations for which the NLS equation can be derived.

There are still many open questions. A serious difficulty in the description of photonic
crystals comes from the fact that the coefficient functionsχj very often are step functions,
i.e., they are not smooth. Another challenging problem is the justification of the NLS equa-
tion when the original equation possesses quasilinear quadratic terms. The elimination of
these terms by normal form transforms gives a loss of regularity complicating the local exis-
tence and uniqueness theory of solutions substantially.
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