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Abstract

We give a detailed analysis of the interaction of two modulating pulse solutions of
a nonlinear wave equation. These solutions consist of pulse-like envelopes satisfying
approximately a Nonlinear Schrödinger equation, advancing in the laboratory frame,
and modulating underlying wave-trains. We improve the bound for the possible shift of
the envelopes caused by the interaction of two well preparedpulses from orderO(1) to
orderO(ε). Thus we manifest the statement that there is almost no interaction of pulses
with different carrier waves.

1 Introduction

The transport of information over long distances through optical fibers is encoded digitally
by sending a light pulse or not. Physically such a light pulseis a complicated structure. It
consists of an underlying electromagnetic carrier wave moving with phase velocitycp and of
a pulse like envelope moving with group velocitycg and modulating the underlying carrier
wave. The fact that there is very few interaction of pulses with different carrier waves allows
to increase the information rate through the fiber by using different bands, cf. [Ace00].

In most theoretical descriptions the dynamics of the envelope of the modulating pulses is
approximately described by a Nonlinear Schrödinger (NLS)equation. In such a description
the envelope has an amplitude of orderO(ε) and a width of orderO(1/ε), whereε > 0 is a
small perturbation parameter. See Figure 1.

cg

cp

O(ε)

O(ε−1)

Figure 1:A modulating pulse described by the NLS-equation, see Lemma3.1 below.
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It is the purpose of this paper to show in detail that there is almost no interaction of
two such NLS-described modulating pulses if they possess different carrier waves. It has
been known for long time that pulses with different carrier waves do not interact in lowest
order, see [PW96] for a rigorous proof and Remark 3.3 for the heuristic argument. Here
we improve this statement by giving anO(ε)-bound for the possible envelope shift resulting
from the interaction. In order to do so we give a mathematicalanalysis of the interaction
of two such modulating pulse solutions of a nonlinear wave equation. For well prepared
NLS-described modulating pulse solutions we improve the bound for the physically relevant
possible envelope shift caused by the interaction of the pulses from orderO(1), cf. [PW96],
to orderO(ε) on anO(1/ε2) time scale. The proof of the bound is based on an explicit
description of the phases and on the consideration of pulsesconstructed with the help of
higher order approximations.

On aO(1/ε2) time scale, the natural time scale of the NLS–approximation, a modulating
pulse of widthO(1/ε) can pass at mostO(1/ε) many modulating pulses of widthO(1/ε).
As a consequence of our result, the interaction of such a modulating pulse withO(1/ε) many
modulating pulses with a different carrier wave can lead at most to anO(1)-pulse shift. Thus,
with respect to the question of the transport of informationthrough glass fibers the influence
of different frequencies to the dynamics in one band is negligible w.r.t. to the transport of
digital information.

The plan of the paper is as follows. In Section 2 the relevanceof the NLS-equation and
the associated NLS-pulses is explained. The precise resultis stated in Section 3. The proof is
based on a number of Lemmas which are also stated in Section 3,but proved subsequently. In
Section 4.1 we construct approximate modulating pulses with the help of the NLS-equation.
A high order formal approximation of the interaction of two NLS-described modulating
pulses with different carrier waves is constructed in Section 4.2, and the validity of this
approximation on a time scaleO(1/ε2) is established in Section 4.3.

Although we restrict our analysis to a semilinear wave equation with cubic nonlinearity
the statement can be transfered to all systems where the NLS-equation has been justified,
i.e. semilinear wave equations with a quadratic nonlinearity in case of no resonances [Kal88,
KSM92] and in case of resonances [Sch98b, Sch05], water wavemodels [Sch98a] and finally
wave equations in periodic media [BSTU06].
Notation. Many possibly different constants that are independent ofε are denoted byC.
The spaceHs(m) consists ofs-times weakly differentiable functions for which‖u‖Hs(m) =

‖uρm‖Hs = (
∑s

j=0

∫

|∂j
x(uρm)|2dx)1/2 with ρ(x) =

√
1 + x2 is finite, where we do not

distinguish beween scalar and vector–valued functions or real- and complex-valued func-
tions. The spaceCs

b consists ofs-times continuously differentiable functions for which
‖u‖Cs

b
=
∑s

j=0 supx∈R
|∂j

xu| is finite. We sometimes write, e.g.,‖u(x)‖Cs
b

for theCs
b norm

of the functionx 7→ u(x).
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2 The NLS-pulses

As a prototype of a nonlinear wave equation possessing approximate modulating pulse solu-
tions we consider throughout this paper the semilinear waveequation

∂2
t u = ∂2

xu − u + u3, (1)

with x ∈ R, t ∈ R, andu(x, t) ∈ R. It is well known that on time-scales of orderO(1/ε2)
equation (1) hasO(ε)-amplitude solutions which are slow spatial and temporal modulations
of an underlying carrier waveei(k0x−ω0t), whereε > 0 is a small perturbation parameter and
wherek0 andω0 are related by the linear dispersion relationω2

0 = k2
0 + 1. Such solutions are

described by the formula

uA(x, t) = ε(A(X, T )ei(k0x−ω0t) + c.c.) + O(ε2).

HereX = ε(x − c′gt) andT = ε2t are the long spatial and temporal scales, respectively,
c′g = k0/(1 + k2

0)
1/2 is the linear group velocity, and the complex envelopeA satisfies

2iω0∂T A + (1 − (c′g)
2)∂2

XA + 3|A|2A = 0. (2)

The nonlinear Schrödinger equation (2) has a three-parameter family of time-periodic
solutions of the form

A(X, T ) = Ã(X − X0)e
−iγ0T eiφ0 ,

in which the real-valued functioñA satisfies the second-order ordinary differential equation

∂2
XÃ = C1Ã − C2Ã

3, (3)

whereC1 = −2γ0ω0/(1 − (c′g)
2), C2 = 3/(1 − (c′g)

2). Forγ0 < 0 andω0 > 0 this equation
has two homoclinic solutions

Ãpulse(X) = ±
(

2C1

C2

)1/2

sech (C
1/2
1 X) (4)

which connect the origin of the(Ã, ∂XÃ)-phase plane with itself and which fulfill

|Ãpulse(X)| ≤ Ce−r|X|, r =

√

−2γ0ω0

1 − (c′g)
2
. (5)

This procedure therefore gives modulating pulse solutionsof the nonlinear wave equation
which are described by the approximate formula

upulse =ε(Ãpulse(X − X0)e
−iγ0T ei(k0x−ω0t) + c.c.)

=ε(Ãpulse(ε(x − c′gt) − εx0)e
i(k0x−(ω0+γ0ε2)t) + c.c.) (6)

over time-scales of orderO(1/ε2).
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3 The result

In contrast to the formal analysis of Section 2 the well known’non-existence of breathers’
result [Den93, BMW94] does not allow the global existence ofmodulating pulse solutions,
i.e. there are no solutions to (1) of the form

u(x, t) = v(x − cgt, k0x − ω0t),

wherev is 2π-periodic in its second argument andlimξ→±∞ v(ξ, y) = 0. However, to any
polynomial order such solutions can be computed. This meansthat there are approximate
modulating pulse solutions for which the residual

Res(u) = − ∂2
t u + ∂2

xu − u + u3

can be made small to any power ofε. The residual contains the terms which do not cancel
after inserting an approximation into (1). IfRes(u) = 0 thenu is an exact solution of (1).
For our purposes we need the following approximate modulating pulses.

Lemma 3.1 Let s ≥ 2, k0 > 0 and γ0 < 0. For sufficiently smallε > 0 there exists a
two-dimensional family of approximate modulating pulse solutions to (1) of the form

u(x, t) = εvk0
(x − cgt + x0, k0x − ωt + φ), (7)

parametrized by envelope shiftx0 ∈ R and phase shiftφ ∈ [0, 2π), wherevk is 2π-periodic
in its second argument,ω = ω0 + γ0ε

2 +O(ε4) = k0cp with phase velocitycp = c′p + γ1ε
2 +

O(ε4), γ1 = γ0/k0, and group velocitycg = k0/ω = 1/cp. Moreover,

εvk0
(ξ, y) = εÃpulse(εξ)e

iy + c.c. + O(ε3e−rε|ξ|) (8)

with Ãpulse andr > 0 given by the homoclinic solution of (4) and (5). The residualfulfills
∥

∥Res(εvk0
)
∥

∥

Hs ≤ Cε11/2. (9)

Proof. See Section 4.1.

Remark 3.2 For upulse defined in (6) we have‖Res(upulse)‖Hs = O(ε5/2). In particular,
to achieve (9) we need theO(ε2) correction to the linear group velocityc′g = k0/ω0 from
Section 2, i.e.,cg = c′g + O(ε2) in (7) and in Fig.1.

To analyze the interaction of two approximate modulating pulses from Lemma 3.1 with
different carrier waves we introduce subscriptsA andB to indicate the wave numberskA 6=kB

of each pulse, the associated group velocitiescg,A andcg,B, the envelope shiftsxA andxB

and so on. Note thatkA 6= kB impliescg,A 6= cg,B. If the two pulses are separated initially,
and, say,xA > xB andkA < kB such thatcg,A < cg,B and the faster pulse is in front, then,
since the pulses are exponentially localized, it is naturalto expect that the dynamics of the
two pulses can be described by the sum of the two individual pulses, at least on anO(1/ε2)
time–scale, which is the natural time scale to approximate solutions of (1) by solutions of
the NLS, cf. [KSM92]. However, if the two pulses are, say,O(1/ε) separated initially, with
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xA > xB andkA > kB, then, since the group velocities differ byO(1), the two pulses must
interact on anO(1/ε2) time–scale. Clearly this is the mathematically more interesting case.

For notational simplicity we assume thatφA = φB = 0 and thus study the interaction of

εvkA
(x − cg,At + xA, kAx − ωAt) and εvkB

(x − cg,Bt + xB , kBx − ωBt), kA 6= kB.

We prove that the form of the pulses is almost preserved and that the interaction mainly leads
to phase-shiftsεΩj and to envelope shiftsεδA, i.e. after interaction the solution looks like

εvkA
(x−cg,At+xA+εδA, kAx−ωAt+εΩA)+εvkB

(x−cg,Bt+xB +εδB, kBx−ωBt+εΩB),

for someδA, δB, ΩA, ΩB ∈ R.

Remark 3.3 There is a simple argument why the evolution equations forvkA
andvkB

de-
couple in lowest order in terms ofε. Going into the scaling of the envelope,vkA

andvkB
have

an amplitude and a width of orderO(1). But since the group velocities differ by an order
O(1/ε) in this scaling the interaction time ofvkA

andvkB
is only of orderO(ε). Therefore,

the influence of a termvkA
vkB

on the dynamics ofvkA
andvkB

isO(ε) and so in lowest order
the evolution equations forvkA

andvkB
decouple. This property can be observed in a number

of problems, cf. [PW96].

However, transfering as in the subsequent Remark 3.7 the estimates from [PW96] gives an
O(1)-bound for the possible shift of the envelope forε → 0. Here we improve the bound for
the physically relevant envelope shift from orderO(1) to orderO(ε) in case of well prepared
approximate modulating pulses from Lemma 3.1. Thus we quantify the statement that there
is almost no interaction of pulses with different carrier waves. We do this by extracting
explicity the shift of the phase of the underlying carrier wave.

The idea is to construct an approximation

εΨ̃(x, t) = εΨ(x, t) + ε3h(x, t), (10)

of the pulse interaction, where

εΨ(x, t) :=εvkA
(x − cg,At + xA, kAx − ωAt + εΩA(ηB))

+ εvkB
(x − cg,Bt + xB, kBx − ωBt + εΩB(ηA)), (11)

with explicit functionsΩA, ΩB, given by

ΩA =

ηB
∫

−∞

3|B1|2
ωA(cA − cB)

dη̃B + Ω0
A + O(ε2e−r|ηB|), ηB = ε(x + xB − cg,Bt), (12)

ΩB =

ηA
∫

−∞

3|A1|2
ωB(cB − cA)

dη̃A + Ω0
B + O(ε2e−r|ηB |), ηA = ε(x + xA − cg,At), (13)

whereB1 andA1 are given by (4) with constantsC1,B, C2,B andC1,A, C2,A, respectively, and
whereΩ0

A andΩ0
B are constants which normalize the initial phases. Note thatΩA depends on

x−cg,Bt andΩB onx−cg,At as the phase shift accounts for so called cross phase modulation.
In (10),h(x, t) are higher order terms, and the ansatz leads to estimates forthe residual simi-
lar to the ones of Lemma 3.1, i.e.,‖Res(εΨ̃)‖Hs = O(ε11/2), andh(x, t) isO(1)–bounded on
the naturalO(1/ε2) time scale. We remark that‖Res(εΨ)‖Hs = O(ε5/2) would not allow to
prove estimates for the approximation of solutions of (1) byεΨ on theO(1/ε2) time scale.
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ΩB
ΩA

cg,A cg,B

−xA −xB

cg,A
cg,B

t = 0

ΩB
ΩA

after interaction

Figure 2: Illustration of our main result, as detailed in Lemma 3.4 andTheorem 3.6 below. Here
kA > kB and the slower pulse is in front. Thus,cB − cA < 0 in (13), andΩB is a decaying function
of x. The constantsΩ0

A andΩ0
B have been chosen in such a way that att = 0 (upper two pictures)

there are no phase-shifts for the pulses, i.e.,ΩB is exponentially small near the position−xB of vkB
,

while ΩA is exponentially small near the position−xA of vkA
. Note thatΩA moves with theB–pulse,

while ΩB moves with theA–pulse.

Lemma 3.4 Let s ≥ 2, kA, kB > 0, kA 6= kB, γ0,A, γ0,B < 0, xA, xB ∈ R in Lemma 3.1,
andT0 > 0. Then there existε0 > 0 andC, Cres > 0 such that for allε ∈ (0, ε0) there exists
an approximationεΨ of the pulse interaction in the form (10), where

‖h(·, t)‖Cs−1

b
≤ C, (14)

and
sup

t∈[0,T0/ε2]

‖Res(εΨ̃)‖Hs ≤ Cresε
11/2. (15)

Proof. See Section 4.2.
Using (15) it is easy to show that given initial data close toεΨ̃(x, 0) the solutionu to (1)

stays close to the approximationεΨ̃ of the pulse interaction.

Lemma 3.5 Under the assumptions of Lemma 3.4 there existε0 > 0 andC1, C2 > 0 such
that for all ε ∈ (0, ε0) the following holds: if

∥

∥

∥

∥

u(·, 0) − εΨ̃(·, 0)

∥

∥

∥

∥

Hs

+

∥

∥

∥

∥

∂tu(·, 0)− ε
d

dt
Ψ̃(·, 0)

∥

∥

∥

∥

Hs−1

≤ C1ε
7/2 (16)
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with εΨ̃ from (10), then

sup
t∈[0,T0/ε2]

(
∥

∥

∥

∥

u(·, t) − εΨ̃(·, t)
∥

∥

∥

∥

Hs

+

∥

∥

∥

∥

∂tu(·, t) − ε
d

dt
Ψ̃(·, t)

∥

∥

∥

∥

Hs−1

)

≤ C2ε
7/2 , (17)

Proof. See Section 4.3.
The triangle inequality with (14) and (17) and Sobolev’s embedding theorem,Hs ⊂

Cs−1
b , immediately gives the main result, see fig. 2 for illustration.

Theorem 3.6 Let s ≥ 2, kA, kB > 0, kA 6= kB, γ0,A, γ0,B < 0, xA, xB ∈ R in Lemma
3.1, andT0 > 0. Then there existε0 > 0 andC1, C2 > 0 such that for allε ∈ (0, ε0) the
following holds: if
∥

∥

∥

∥

u(x, 0) − vkA
(x+xA, kAx+εΩA(ηB|t=0)) − vkB

(x+xA, kBx+ΩB(ηA|t=0))

∥

∥

∥

∥

Hs

+

∥

∥

∥

∥

∂tu(x, 0) − d

dt

[

vkA
(x+xA, kAx+εΩA(ηB|t=0)) + vkB

(x+xA, kBx+ΩB(ηA|t=0))
]

∥

∥

∥

∥

Hs−1

≤ C1ε
7/2. (18)

whereΩA, ΩB are given by (12),(13), then

sup
t∈[0,T0/ε2]

∥

∥u(x, t)−vkA
(x−cg,At+xA, kAx−ωAt+εΩA(ηB))

− vkB
(x−cg,Bt + xB, kBx−ωBt+εΩB(ηA))

∥

∥

Cs−1

b

≤ C2ε
3. (19)

Remark 3.7 If xA − xB ≥ Cε−(1+δ) for a δ > 0, then initially, i.e., att = 0, ΩA is expo-
nentially small near−xA andΩB is exponentially small near−xB , see fig. 2 for illustration,
and we may replace (18) by the more readable condition

∥

∥

∥

∥

u(x, 0) − vkA
(x+xA, kAx) − vkB

(x+xA, kBx)

∥

∥

∥

∥

Hs

+

∥

∥

∥

∥

∂tu(x, 0) − d

dt

[

vkA
(x+xA, kAx) + vkB

(x+xA, kBx)
]

∥

∥

∥

∥

Hs−1

≤ C1ε
7/2, (20)

which means thatu is really close to the sum of two pulses. It finally remains to transfer the
result (19) into an estimate for a possible shift of the envelope. Suppose that the error comes
from a shift of the envelope. Then due to the long wave form of the envelope “vertical”
estimates of orderO(ε3) in L∞ can lead on a pulse of amplitudeO(ε) only to a possible
envelope shiftεa of orderO(ε), due to

εg(ε(x + εa)) − εg(εx) = εg′(εx)ε2a + O(ε(ε2a)2) = O(ε3).

This, together with Theorem 3.6 means that there is almost nointeraction of well prepared
modulating pulse solutions to carrier waves with differentwave numbers, i.e., the physically
relevant envelopes are almost not affected by the interaction.
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4 The proofs

4.1 Construction of well-prepared pulses

Lemma 3.1 can be proved as in [GS01] with the help of spatial dynamics and invariant
manifold theory. In order to keep the paper as self-contained and as simple as possible, here
we give a proof only using simple perturbation analysis. We make the ansatz

εvk0
= εA1E + ε3A3E

3 + ε5A5E
5 + c.c.

where theAj depend on the variableξ = ε(x − cgt) and whereE = ei(k0x−ωt). With
A−1 := Ā1 this yields

Res(εvk0
) =ε(ω2 − k2

0 − 1)A1E + 2ε2(−iωcg + ik0)∂XA1E

+ ε3((1 − c2
g)∂

2
XA1 + 3A1|A1|2)E + ε5(3A3A

2
−1)E

+ ε3((9ω2 − 9k2
0 − 1)A3 + A3

1)E
3 + 2ε4(−3iωcg + 3ik0)∂XA3E

3

+ ε5((1 − c2
g)∂

2
XA3 + 6A3|A1|2)E3

+ ε5((25ω2 − 25k2
0 − 1)A5 + 3A3A

2
1)E

5 + O(ε6) + c.c.

(21)

We chooseω2 − k2
0 − 1 = γ2ε

2, γ2 = 2ω0γ0 + ε2γ2
0 , which cancels theO(ε)E term in

Res(vk0
) and addsγ2A1E to theO(ε3)E term. Next we choosecg = k0/ω which cancels

theO(ε2)E andO(ε4)E3 terms. Now we proceed in a somewhat non standard way which
however will simplify the estimates of the pulse–pulse interactions, cf. Remark 4.1 below.
DefineA5 by

(25ω2 − 25k2
0 − 1)A5 + 3A3A

2
1 = 0,

which cancels theO(ε5)E5 term.A3 can be defined by

A3 = −αA3
1 − ε2α((1 − c2

g)∂
2
XA3 + 6A3|A1|2), α = (9ω2 − 9k2

0 − 1)−1

which means thatA3 = Ã3 + O(ε2), Ã3 = −αA3
1. So in order to cancel terms up toO(ε5)

it suffices to set

A3 = −αA3
1 + ε2α2((1 − c2

g)∂
2
XA3

1 + 6A3
1|A1|2). (22)

Now this is used to defineA1 as the solution of

0 = (1 − c2
g)∂

2
XA1 + γ2A1 + 3A1|A1|2 + 3ε2Ã3A

2
−1

= (1 − c2
g)∂

2
XA1 + γ2A1 + 3A1|A1|2 − 3ε2α|A1|4A1.

For all values0 < ε ≪ 1 andγ2 < 0 this equation has two solutions homoclinic to the origin
in the(A1, ∂XA1)-plane which yield the approximate pulse solutions.

Thus, all terms up toO(ε5) in the residual cancel such that formallyRes(vk0
) = O(ε6).

We obtain‖Res(εΨ)‖Hs ≤ Cε11/2 due to‖A(ε·)‖L2 = ε−1/2‖A‖L2 while ‖∂xA(ε·)‖L2 =
ε1/2‖∂XA‖L2 and similar for the higher order derivatives, i.e., the lossof ε1/2 comes from
the way theL2-norm scales in terms ofε. The exponential bound in (8) follows directly from
(5) and the definition ofεvk0

.
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4.2 Construction of a formal approximation for the pulse interaction

To prove Lemma 3.4 we make the ansatz

εΨ̃(x, t) =εA1E + ε3A3E
3 + ε5A5E

5 + εB1F + ε3B3F
3 + ε5B5F

5

+ ε3YAE + ε3YBF + ε3Mmixed + c.c.
(23)

whereT = ε2t,

E = ei(kAx−ωAt+εΩA(ηB)), F = ei(kBx−ωBt+εΩB(ηA)),

ηA = ε(x + xA − cAt), ηB = ε(x + xB − cBt),

whereA1 andB1 depend onηA resp.ηB, whereYA = YA(ηA, T ) andYB = YB(ηB, T ),
and whereA3, A5, B3, B5 depend onηA, ηB andT . Although only two ofηA, ηB andT are
independent, for notational clarity we writeA3 = A3(ηA, ηB, T ) and so on. In (23),A1 and
B1 are chosen as in Section 4.1, whileA3, B3, A5 andB5 will be small corrections compared
to (22). Thus, the first line in (23) essentially correspondsto εΨ from (11).

The termMmixed = Mmixed(A1, A3, A5, B1, B3, B5, YA, YB, E, F ) accounts for terms in-
volving bothE andF , i.e., for the mixed frequencies, which are generated by thenonlinear-
ity according to the formula

(εA1E + ε3A3E
3 + ε5A5E

5 + εB1F + ε3B3F
3 + ε5B5F

5 + ε3YAE + ε3YBF + c.c.)3

=
∑

k1+...+k16=3, kj≥0

3!

k1! · · · k16!
(εA1E)k1 · · · (ε3YBF )k16 .

At ε3E2F for example the termA2
1B1 appears. To cancel this we extend the ansatz by

α21ε
3A2

1B1E
2F and get an algebraic equation forα21 of the form

(1 + (2iωA + iωB)2 + (2ikA + ikB)2)α21 = 3.

The procedure is essentially the same for each such term yielding

(1 + (lωA + jωB)2 + (lkA + jkB)2)αlj = βlj.

Now Mmixed contains all these extensions, which means that we can concentrate on the re-
maining terms of the residual.

Exactly as in Sec.4.1 we chooseω2
A − k2

A − 1 = γA
2 ε2 andω2

B − k2
B − 1 = γB

2 ε2. The
group velocities can also be set analogously tocA = kA/ωA andcB = kB/ωB.

At ε3E andε3F we obtain

(2(kA−ωAcB)∂ηB
ΩA−6|B1|2)A1 + (1−c2

A)∂2
ηA

A1 + γA
2 A1−3A1|A1|2 + 3ε2A3A

2
−1 = 0,

(2(kB−ωBcA)∂ηA
ΩB−6|A1|2)B1 + (1−c2

B)∂2
ηB

B1 + γB
2 B1−3B1|B1|2 + 3ε2B3B

2
−1 = 0.

By associating the coupling terms|B1|2A1 resp.|A1|2B1 with ∂ηB
ΩA resp.∂ηA

ΩB this cou-
pled system splits into a decoupled set of equations. Moreover, by replacingA3, B3 by
Ã3 = −αA3

1 andB̃3 = −βB3
1 , α = (9ω2

A − 9k2
A − 1)−1, β = (9ω2

B − 9k2
B − 1)−1, we choose

A1 andB1 as the solutions of

(1 − c2
A)∂2

ηA
A1 + γA

2 A1 − 3A1|A1|2 + 3ε2Ã3A
2
−1 = 0,

(1 − c2
B)∂2

ηA
B1 + γB

2 B1 − 3B1|B1|2 + 3ε2B̃3B
2
−1 = 0.
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Thus,A1, B1 only depend onηA, ηB, respectively. Finally we chooseΩA andΩB to satisfy,
respectively,

∂ηB
ΩA =

3|B1|2
ωA(cA − cB)

and ∂ηA
ΩB =

3|A1|2
ωB(cB − cA)

. (24)

Thus

ΩA =

ηB
∫

−∞

3|B1|2
ωA(cA − cB)

dη̃B + Ω0
A and ΩB =

ηA
∫

−∞

3|A1|2
ωB(cB − cA)

dη̃A + Ω0
B ,

with suitable constants of integrationΩ0
A andΩ0

B, cf. Fig. 2.
At ε5E3 andε5F 3 we chooseA3 andB3 as

A3 = −αA3
1 + α2ε2(6|A1|2A3

1 + 6|B1|2A3
1 + (c2

A − 1)∂2
ηA

A3
1 + 3A2

1YA),

B3 = −βB3
1 + β2ε2(6|B1|2B3

1 + 6|A1|2B3
1 + (c2

B − 1)∂2
ηB

B3
1 + 3B2

1YB).

Compared to Section 4.1, in the equation forA3 there are new coupling termsε2(6|B1|2A3
1 +

3A2
1YA), and similar forB3. As long asYA andYB areO(1) bounded, which we will show

below, these terms do not make any diffuculties as they only appear in theO(ε2) part and the
defining equations forA1 andB1 only useÃ3 andB̃3. TheO(1)–boundedness ofYA andYB

also yieldsA3 − Ã3, B3 − B̃3 = O(ε3).
At ε5E andε5F we get, respectively,

2iωA∂T YA + (1 − c2
A)∂2

ηA
YA + γA

2 YA + GA = 0, (25)

2iωB∂T YB + (1 − c2
B)∂2

ηB
YB + γB

2 YB + GB = 0, (26)

with

GA = 6|A1|2YA + ((1 − c2
B)(∂ηB

ΩA)2 + 6YBB−1)A1

+ε−1(i(1 − c2
B)(∂2

ηB
ΩA)A1 + 2i(cAcB − 1)(∂ηB

ΩA)(∂ηA
A1)) ,

GB = 6|B1|2YB + ((1 − c2
A)(∂ηB

ΩB)2 + 6YAA−1)B1

+ε−1(i(1 − c2
A)(∂2

ηA
ΩB)B1 + 2i(cAcB − 1)(∂ηA

ΩB)(∂ηB
B1)) .

Finally, atε5E5 andε5F 5 we chooseA5 andB5 to satisfy

(25ω2
A − 25k2

A − 1)A5 + 3A3A
2
1 = 0 and (25ω2

B − 25k2
B − 1)B5 + 3B3B

2
1 = 0.

Hence formally all terms up to orderO(ε5) in the residual cancel. Therefore, to prove (15)
and the second estimate in (14) it remains to show thatYA andYB areO(1) bounded for
T ≤ T0, where, by construction, we may chooseYA|T=0 = YB|T=0 = 0. This is done in
Lemma 4.2 below. Thus, the proof of Lemma 3.4 is complete. Theloss ofε1/2 in (15) again
comes from the way theL2-norm scales underX = εx.

Remark 4.1 Here we need well prepared pulses. As already said, cf. Remark 3.3, in lowest
order the NLS-equations forA1 andB1 decouple. However, ifA1 resp.B1 would have been
chosen to be time–dependent solutions of (2), thenGA resp.GB would have contained the
termsε−12cg,A∂T ∂ηA

A1 resp.ε−12cg,B∂T ∂ηB
B1, which can not be handled by the subsequent

analysis, i.e. the estimates would become worse.
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Lemma 4.2 For all s ≥ 2 there exists aC > 0 such that for allε ∈ (0, 1] the following
holds. System (25)-(26) with zero initial data has a unique solutionYA, YB ∈ C([0, T0], H

s).
It satisfies

sup
T∈[0,T0]

‖(YA, YB)(T )‖Hs ≤ C.

Proof. We rewrite (25)-(26) as

∂T

(

YA

YB

)

= M

(

YA

YB

)

+
i

2

(

ω−1
A GA

ω−1
B GB

)

,

whereM is the linear part of (25),(26). The operatorM : D(M) → Hs with D(M) = Hs+2

generates a uniformly boundedC0 semigroup inHs, i.e., ‖etM‖L(Hs,Hs) ≤ 1. We want to
apply the variation of constant formula and thus it remains to estimate the inhomogeneous
terms.

SinceYA(·, T ) depends onηA but GA also contains, e.g.,∂2
ηB

ΩA which depends onηB

we introduce the notation

‖A1‖Hs(m,dηA) :=

(

s
∑

j=0

∫

|∂j
ηA

(ρ(ηA)mA1(ηA, T ))|2dηA

)1/2

, ρ(ηA) =
√

1 + η2
A,

‖A1‖Hs(dηA) = ‖A1‖Hs(0,dηA), and similar for‖B1‖Hs(m,dηB), ‖B1‖Hs(dηB). SinceA1, B1

decay with some exponential rate in space we haveA1, B1 ∈ Hs(4). This implies∂2
ηB

ΩA,
∂2

ηA
ΩB ∈ Hs(2) and so terms likei(c2

B − 1)(∂2
ηB

ΩA)A1 in GA can be estimated as follows.
We have

T
∫

0

‖(∂2
ηB

ΩA)A1‖Hs(dηA)dτ

≤
T
∫

0

‖∂2
ηB

ΩA‖Hs(2,dηB)‖A1‖Hs(2,dηA)‖̺−2
A ̺−2

B ‖Hs(dηA)dτ

≤
T
∫

0

‖̺−2
A ̺−2

B ‖Hs(dηA)dτ‖∂2
ηB

ΩA‖Hs(2) sup
τ∈[0,T0]

‖A1‖Hs(2) .

Since̺A(ηA)̺B(ηB) = (1+η2
A)(1+(ηA−(cA−cB))

τ

ε
)2) the time integral is of orderO(ε).

Applying the variation of constant formula to the equationsfor YA andYB with zero ini-
tial conditions and using Gronwall’s inequality yieldssupT∈[0,T0] ‖(YA, YB)(T )‖Hs ≤ C =
O(1).

Remark 4.3 A way to increase the rate of information through the fibers isto choose the
wave numberskA andkB close together. ForkA − kB = O(εµ) with 0 ≤ µ ≤ 1 we formally
find a shift of the envelope of orderO(ε1−2µ) by looking at the way (24), (25), and (26) scale.
Thus we must expect a certain trade off between the wish to decrease|kA − kB| to use more
channels and the need for larger spacing of bits in a given channel, i.e., the need to increase
|xA,1 − xA,2| to account for possibly larger envelope shifts.
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4.3 Validity of the approximation

The proof of Lemma 3.5 is relatively easy due the fact that ourchoice of an original system
(1) does not contain quadratic terms, cf. [KSM92]. There area number of mathematical
papers proving error estimates for the approximation of theoriginal system by the NLS
equation also in case of quadratic nonlinearities. See [Kal88, Sch98b, Sch98a, Sch05] for
the spatially homogenous case and [BSTU06] for some first results in the spatially periodic
case. The following proof is an easy adaption of the one from [KSM92]. A similar adaption
holds in case of quadratic terms in the nonlinearity.

We define the deviationε7/2R from the solutionu by

u = εΨ + ε7/2R

and findR to solve

∂2
t R = ∂2

xR − R + f, R|t=0 = R0, ∂tR|t=0 = R1,

with ‖R0‖Hs = ε−7/2‖u(x, 0) − εΨ(x, 0)‖Hs ≤ C1 and‖R1‖Hs−1 = ε−7/2‖∂tu(x, 0) −
ε∂tΨ(x, 0)‖Hs−1 ≤ C1, and with

f = −ε−7/2(3ε11/2Ψ2R + 3ε8ΨR2 + ε21/2R3 + Res(εΨ))

satisfying

‖f‖Hs ≤ C3ε
2‖R‖Hs + C4(CE)ε9/2‖R‖2

Hs + CResε
2 , (27)

as long as‖R‖Hs < CE with CE a constant defined below independent of0 < ε ≪ 1.
For the time derivative of

E(R) =
s
∑

j=0

∫

R

(∂t∂
j
xR)2 + (∂j+1

x R)2 + (∂j
xR)2dx

we find, using (27) and‖R‖Hs ≤ (E(R))1/2,

1

2
∂tE(R) =

s
∑

j=0

{
∫

(∂t∂
j
xR)(∂j+2

x R − ∂j
xR + ∂j

xf)

+ (∂j+1
x R)(∂t∂

j+1
x R) + (∂j

xR)(∂t∂
j
xR)

}

dx

=

s
∑

j=0

∫

(∂t∂
j
xR)∂j

xf dx

≤ E(R)1/2(C3ε
2E(R)1/2 + C4(CE)ε9/2E(R) + CResε

2)

≤ (C3 + CRes)ε
2E(R) + C4(CE)ε9/2E(R)3/2 + CResε

2,

as long asE(R) ≤ C2
E. If we chooseε > 0 so small that

ε5/2C4(CE)CE < 1 , (28)
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then

1

2
∂tE(R) ≤ (C3 + CRes + 1)ε2E(R) + CResε

2.

By Gronwall’s inequality we find

E(R) ≤ E(R(0))e2(C3+CRes+1)T0 +
CRes

C3 + CRes + 1
(e2(C1+CRes+1)T0 − 1) =: C2

E .

Since‖R‖Hs ≤ E(R)1/2 we are done if we defineε0 > 0 through (28).
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