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Abstract

Electro-convection in nematic liquid crystals is a paradifpr pattern formation in
anisotropic systems. In this paper we discuss the ampliggdetions obtained for this
pattern forming system close to the first instability in caktvo unbounded space direc-
tions. We prove error estimates showing the validity of éiesmal approximations for
a regularized version of the weak electrolyte model (WEM)WNnathematical aspects
occur due to the possible instability mechanisms of the WHid due to the external
time-periodic forcing.
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1 Introduction

In the experiments for electro-convection in nematic liharystals a thin layer of such a
material is contained in between two spatially extendedtedde plates, cf. fig. 1. When an
alternating current is applied to the electrodes an eldggdyodynamic instability occurs if
the voltage is above a certain threshold. The trivial spatimogeneous solution becomes
unstable and bifurcates into a non-trivial pattern [Chd&B98]. In this paper we discuss the
validity of the amplitude equations obtained for this patt®rming system close to the first
instability in case of two unbounded space directions.

D00/

Figure 1: Roll solutions in nematic crystals. The director field of thematic crystals is almost
parallel to the plates. The external time-periodic eledigld is perpendicular to the plates.

We consider a layer of nematic liquid crystals in betweenitviioitely extended horizon-
tal plates of heightr, i.e. in the following(z, y, z) € Q = R? x (0, 7). There are essentially
two models for the mathematical description of electroveation in nematic liquid crystals.
These are the standard model ([ZK85] and the referencesithend the weak electrolyte
model (WEM). The latter more advanced model is consideregl hehas been introduced by
Kramer and Treiber in [Tre96, TK98] to overcome a number siiificiencies of the standard
model.

The WEM, which can be found in detail in Section A.1, is based® continuum theory
of Ericksen [Eri61] and Leslie [Les68]. In this theory, ndioéiquid crystals are treated as in-
compressible fluids, in which the average molecular axi©iefmaterial is described locally
by a director fieldn of unit vectors which satisfy the so called Leslie-Ericksauations.
They are coupled with generalized Navier-Stokes equatmnthe fluid velocityv and the
pressure in the presence of an external time-periodic electric fiélt) = £, coswyt. The
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liquid crystal would be destroyed by electrolysisf is too small, especially iy = 0. As
usual the pressure is eliminated with a projectipinto the space of divergence-free vector
fields, see Lemma A.4. The second part of the WEM comes fronmaai¢piatic approxima-
tion of Maxwell’s equations describing the electromagnaspects of the experiment. The
equations fom andv are then completed by two balance equations for the charnystgde
and the deviationr of the local conductivity froml. Sincen? + n3 + n2 = 1, for our pur-
poses it is sufficient to consides andns. Thus, the WEM can be written as an evolutionary
system for the variables

V' = (ng, ng, v1, 2,3, p,0),

see (66)-(70) in Appendix A.1. It is abbreviated in the fallng by
OV = M)V + N(t, V) (1)

where M (t)V stands for the linear and¥ (¢, V') for the nonlinear terms with respect to
The set of partial differential equations (1) is completathwhe boundary conditions

ng=n3=v =v=0v3=0 at z=0,. (2)

These are derived in case of ideal conducting plates, rigaharing for the director and
finite viscosity, i.e. for (2) the coordinate system is chrosech that, = (1,0, 0) at the lower
and upper plates. Due to the anisotropy in the boundary tiondi(2) there is no rotational
symmetry of the WEM. However, the WEM is invariant under adly translations i and
y, and under the reflections

Sl : (x7n27n3uvl) - _(x7n27n37vl)7 (3)
Sy (y7n271}2) - _(97712,02), (4)
Ss3: (27n3av3) - —(27”3#}3)- (5)

For (1) we have the trivial solution
V = (ng,ns, v1,v2,vs3, p,0) = (0,0,0,0,0,0,0). (6)
In order to analyze its stability we consider the lineariggstem
o,V = M(t)V. (7)

Due to the translation invariance and the time periodicftyhe problem the solutions are
given by Floquet-Fourier modés = ((k, [, z, t)el b=+ W) AkDt with k1 € R and

@('7 ) 7t> = @(7 ) 7t+ 271'/0)0)-

Since for fixedk, ! € R the operatorV/(t) is elliptic on the compact cross sectifin 7] we
have discrete spectrum for fixéd! € R, hence the modeg and multipliersA come in
families

{Gm(k, 1, 2, t)elFett)rmEDE 1 e R m e N} (8)



The Floquet exponenss, form smooth surfaces as functions of the wave numbgdrs R as
long as they are simple. Moreover, the spectrum dependsthiyi@m the control parameter
Ep.

For V' = 0 asymptotically stable we have for all € N andk,! € R that the Floquet
exponents\,, satisfy

ReA, (k, 1) < 0.

Experimental and numerical observations show that clogaedhreshold of instability of
the trivial spatially homogenous solution there are esaliyntwo different regions in the
(w, Ep)-plane separated by a frequengy. Forw > w;, the instability occurs at some wave

voltage

oblique /' normal
rolls ’," ro”s

trivial solution

frequency
Figure 2:Schematic bifurcation diagram observed in experiments.

vector (k.,0) and due to the fact that we have a real-valued problem alse/at 0). This
region is called normal rolls (NR). Far < w; the instability occurs at some wave vector
(ke,l.) and due to the symmetries of the problem also at the waversdéto —I.), (—k., l.)
and(—k., —I.). Thisregion is called oblique rolls (OR). See Figures 2 ar8xperimentally,

in (OR) a Turing—Hopf bifurcation is observed, while in (NB)th, Turing or Turing—Hopf
bifurcations, may occur, cf. [Tre96].

The mathematical analysis of bifurcations over unboundedains is based very often
on the reduction of the governing partial differential etjas to amplitude equations which
are expected to capture the essential dynamics near thediifin. See [AK02, Mie02] for
general introductions. The most famous amplitude equaicmurring in a setup with two
unbounded space directions is the Ginzburg-Landau equgibe)

8TA = CoA + 0383(14 + 65812/14 + C6A|A‘2 (9)

with A = A(X,Y,T) € C and coefficients, 3, cs, ¢s € C, where the indices were chosen
for later comparison with more complicated amplitude eiquiat The GLe (9) is derived by
multiple scaling analysis and describes slow modulatiortsme 7" and spaceX, Y of the
amplitude of the linearly most unstable modes.

In the present paper we discuss how for a given experimenthwixes all other param-
eters of the system, the spectrum and the associated adgpétiuations have to look like
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a) Spectral surface in (NR) b) Spectral surface in (OR)
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Figure 3: Schematic sketches of the surfaces of the real parts of dguét exponents with largest
real part. a) In the parameter region (NR). There are neigidools of two wave vectorgtk,, 0)
where we have positive real part. b) In the parameter reddiR)( There are neighborhoods of four

wave vectorg+k., +1.) where we have positive real part. The surface in a) is doubtase I, due to
the symmetries (3) and (4) and the non vanishing imaginamg p@he surface in b) is always double.

in order to have Fig. 2 as a robust situation. In other wordsgdigcuss the scenarios which
are robust under changeswgfi.e. codimension one phenomena. We do not discuss scenaric
which are only stable if a second parameter is changed simedusly, i.e. codimension two
phenomena. Hence, especially the transition from (NR) tR)(@as to be analysed. The
only codimension two points which we will discuss in the éoling are the transition points
(Ep,w) = (Eoerit, wr,) between (NR) and (OR) at the threshold of instability.

It turns out that there are two cases, in the following callede I, with a Turing bifur-
cation in (NR), and Case IlI, with a Turing—Hopf bifurcatian (NR). There is no smooth
transition for the critical spectral surfaces between (HRJ (OR) in Case I, but in Case Il.

The single Ginzburg—Landau equation (9) also occurs in ooiblpm, namely in Case
I (NR), with ¢; € R. In the other cases we obtain more complicated amplitudat&ms.
They are systems of coupled equations of Ginzburg-Landae &and they still depend in a
singular way on the small bifurcation parameter. Howewar spatially localized solutions
this singular dependence vanishes and, moreover, all ardpelequations decouple.

Additional to the analysis of the instability scenario weye the validity of the associ-
ated amplitude equations. The validity of (9) in a situat@@enCase | is already covered by
the analysis of [BSUO06] where we discussed the validity ef@inzburg-Landau approxima-
tion in pattern forming systems with external time-perftircing described by semilinear
parabolic equations with one unbounded space directiomcéien the following we will
mainly concentrate on the other cases.

Notation. The Sobolev-spac#™(f2), the space ofrn-times weakly differentiable functions
Q — R, is equipped with the norfiu|| =) = 3|7 _, |02l 12(0)- Throughout the paper we
denote possibly different constaidtsvith the same symbol if they can be chosen independent



of the small bifurcation parametér< ¢ < 1.

Acknowledgments. The paper is partially supported by the Deutsche Forsclyemgsin-
schaft DFG under the grant Kr 690/18-1/2. The authors artefgilafor discussions with
Gerhard Dangelmayr, Lorenz Kramer, and lan Melbourne.

2 Two different instability mechanisms

In order to have Figure 2 as a robust situation for a given iexgaat, i.e. fork, andw, vari-
able and all other parameters of the system fixed, the speetnd the associated amplitude
equations have to look as follows. We define regions (NR) @l through

(NR) There exists an (w.l.o.g.m = 1), ak = k. # 0 and aEy, = Ej .., Such that

Re A (ke, 0 =0;

)’EO:EO,m‘it
(OR) There exists an (w.l.o.g letm = 1), (k,l) = (k. I.) with k. # 0, [. # 0 and a
Ey = Ey ¢rit, such that

Re Ay (ke L, — 0.

) ‘ Eo=FEo,crit

These assumptions have a number of consequences due tatthizgatave have a real-
valued problem and due to the symmetries (3) and (4). For ibguEt exponentd; with
largest real part of the linearized system we find, since we haeal valued problem,

Red (k1) = ReAy(—=k, —1),  TmAy(k,1) = —TmA,(—k, —1).

Thus, we also havBie A (—k, 0)|, _, =0for (NR) andRe Ai(—ke, —lo)|, =0

for (OR). Next we find ’ ’
Rely(k, 1) = ReXy(k, —1),  Reli(k,1) = Red(—F,1)

due to the reflection symmetries (3) and (4). Hence we alseRaw, (%, —lc)\EOZEO =0

andRe A\ (—k., L. = 0 for (OR). The symmetries also yield

) ‘EOZEO,crit

ImA; (=ke, o) = ImA (ke, l.) = ImAq (ke, —1.) = ImA (=K, —L.).

However, since at least in (OR) experimentally a Hopf bifi@n is observed there must be
a second surfack, with

Red(k,1) = Reda(k, 1), Imi(k,1) = —ImAa(k, 1) # 0

close to(k,l) = (k. £l.) in (OR), and close tqk,l) = (%k.0) in case of a Hopf-
bifurcation in (NR).

We assume that the associated eigenfunctions are invanaet the discrete symmetry
S3 such thatS; is irrelevant for the following considerations.
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We now discuss two generic cases, postponing the detaiteafdrivation of the respec-
tive amplitude equations to sec. 3. We refer to [DO04] for enarical investigation of the
spectral situation at the bifurcation point in a slightlyngiified model. There, for two dif-
ferent nematic crystal materials, the question which ofab@ve bifurcations occur in which
experiment is discussed, in particular the transition (MROR) in Case Il.

We also mention that in [Tre96] some other, presumably mes#stic, boundary condi-
tions have also been studied. For these boundary condthen&EM has a time-periodic, in
x, y spatially homogeneous solution of the form

‘/E)(t) = ‘/O(t + 27T/W0) = (07 0,0, anaPO(zvt)>UO(zat))' (10)

Qualitatively, this would not change our analysis, sina lthearization around (10) again
yields a system of the form (1). Moreover, according to [B,ep.38/39] the quantities
po(z,t) andoy(z, t) are small except close to the boundaries. Therefore, thariend weakly
nonlinear analysis for (10) is also quantitatively very iamto the one for (6).

2.1 Casel

(NR): Due to the fact that we have a real-valued problem we also Raxg(—%.,0) = 0.
We assume that faik, [) close to(k., 0) the surfaceRe); is simple. Due to (3) and (4) this
implies

Mk, 1) = M=k, 1) = Mi(k, =) = Mi(=k, =)

and sdmA, (k., 0) = 0 for these wave numbers. See Fig. 4. Moreover, we assumexttegite
of \; in a neighborhood of+k,, 0) the spectrum has strictly negative real part, i.e. all other
Floquet exponents have real parts less thap for ac, > 0. We introduce the bifurcation
parametee by

e = Eo — Eocrit-

Thus we obtain
M (ke + eK) = %(co — s K2 — esK2) + O(%), (11)

with K = (Kl, KQ), Co — a€2>\1(k6) c R, C3 — —%ngl(kc) eR andC5 = —%812)\1(1(6) € R,
while

0,0kM1(k.) =0 dueto Ai(k,—1) = A\ (k). (12)
The ansatz for the derivation of the Ginzburg-Landau equati (NR) is
ea(m,y, 2,t) = eA(X, Y, T)e* "5y (ke, 0, 2,t) + c.c. + O(g?), (13)

where
X =ex, Y = ey, and T = &%t

Inserting (13) into (1) shows that has to satisfy the Ginzburg-Landau equation (9), i.e.,

aTA = C()A —+ Cgag(A —+ 05352,14 -+ C6A|A‘27
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I=0 [ k=k

Figure 4:Case | (NR): The pictures show two cross sections througkuHace\;, namely af = 0
andk = k.. The Floquet exponents; are simple and touch the ax®e\ = 0 in (+k.,0). The
imaginary part of\; vanishes in a neighborhood of these wave vectors.

with ¢y, 3, ¢5 from (11), whilecg is determined by the nonlinearity.
(OR): Due to the symmetries (3)-(4) and the fact that we experialigrabtain a Hopf bifur-
cation in (OR) we get the spectral situation sketched in figHus, up ta0(e?) we have

‘ Sy . S,
N T N T S ImA
S ImA !
I=I c ‘\\ _'." kzkc “\ /"
k=‘kc 1=l
T
k |
° ’ .. Rel
. 1,2
ReA ,, .
- “Im A
ImA 2

2

Figure 5:Case | (OR): The pictures show two cross sections throughutfaces\; and\,, namely
atl = [, andk = k.. The Floquet exponents; and A\, are simple and touch the axiteA = 0 in
(+k., £l.). The imaginary parts of; and)\, are non zero in a neighborhood of these wave vectors.

A (ke+eK) = iwg+ie(e K+ Ky)+e%cy — e2(es K+, K Ko+ K3),

)\2(k6+6K) = —in — i€(ClK1+CQK2)+€2EO — 82(53K%+E4K1K2+E5K3),
/\1((k’c, —lc)—H-fK) = in + 18(01K1—02K2)+€200 — 82(03K%+E4K1K2+C5K§),
)\2((]%'0, —lc)+€K) = —’in—i€(ClK1—CQK2)+€QEO — 62(53K%+C4K1K2+E5K§).

The ansatz for the derivation of the Ginzburg-Landau equatin (OR) is

eha(m,y, z,t,e) = eA(X,Y,T)etertilevtivonty (b, 1, 2 t) (14)
+eAy(X, Y, T)ehertilev=ivnt s, (k1. 2,1)
+eAs(X,Y, T)erermilevtiwnt s (k. —1, 2 1)
+eA (X, Y, T)erer—tev=iwnt o) (K, —1,, 2, t) + c.c. + O(e?),

where X = e2,Y = ey andT = &%, see fig.6 for an illustration of the distribution of
these modes. Inserting (13) into (1) shows that4he. . ., A4 have to satisfy the set of four



Figure 6:Mode distribution in the ansatz (14).

coupled Ginzburg-Landau equations

1 1
8TA1 :gcﬁXAl + gcﬁyAl -+ CoAl -+ c38§(A1 —+ C48Xayz41 —+ 65812/141
+ Ai(cg|Ar]? + cr] Aa|” + cs| As|* + col Aul?) + 1042 A3 Ay, (15)
1 1
8TA2 = — gclaxAg — g026YA2 + EOAQ + Egag(Ag + 548)(8)/142 + 658}2/142

+ Ag(Ts| Ag|? + 7| A1) + Ts| As|? 4 Co| As|?) 4 1AL A3 Ay, (16)
OrAs :§018XA3 — écﬁyAg + coAs + 305 Az + C40x Oy Az + 505 Az

+ As(cg|As|* + cr| Aol + cs| Agl? + ol A1|?) + croA1 Az Ay a7
OpAy = — §018XA4 + §c28yA4 + CoAy + C30% Ay + c4Ox Oy Ay + G508 Ay

+ Ay(C|Agl® + T AL 4 | As|? + Co| Ag|?) + C10A1 Ax A3, (18)

with 4; = A;(X,Y,T) € C, j = 1,...,4, depending onX,Y € Rand7 > 0 and
with coefficientscy,co € R andcg,cs,...,c;0 € C. The form of the nonlinearity again
follows from equivariance under the two symmetries> —k and/ — —[, see [DW99]. The
appearance of, e.g:;04,A434, as the only purely mixed term in (15) follows from the fact
that this is the only combination which yield$-z+iv+iwnt and similar in (16)—(18). These
combinations can be read off from fig.6.

The amplitude equations (15)—(18) still depend in a singuéy on the small perturbation
parametef) < ¢ < 1. Moreover, we have the four complex conjugate equationshier
modes concentrated ét k., —1.) and(—k, l.).

2.2 Casell

In Case Il there are two surfaces and )\, in a neighborhood of the critical wave numbers
with
ReA;(k, 1) = ReXy(k, 1) and ImA; (k, 1) = —ImAy (K, 1).
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Thus, generically we hav@ \; (k.,0) # 0 andV A, (k., l.) # 0. At the bifurcation point we
have in (NR)
Re)\l(kc, 0) =0 and Im/\l(kc, 0) 7é 0,

see Fig. 7, while in (OR) we have the same situation as in Case |

. S1 .
‘\ ///\ ," Sz
PR o ImA
=0 . . /_\t ImA
s k:k - L
k=‘kc ¢
k7 I
. Re}‘l,z
Re)\ 12 Im )\ R
Im A

2

Figure 7:Case Il (NR): The pictures show two cross sections througlstinfaces\; and\s, namely
at! = 0 andk = k.. The Floquet exponents; and \; are simple and touch the axiteA = 0 in
(+kc,0). The imaginary parts of; and )\, are non zero in neighborhoods of these wave vectors.

(NR): Due to\(k,l) = A (k,—I) we again haveé)\,(k.,0) = 0 and 0,0\ (k.,0) = 0.
Therefore,

A (ke+eK) = iwg+ee Ky +e2cy — &2 (esKi+csK3) + O(e?),

- . 2 2 2 2 3 (19)
)\Q(kc—H—ZK) = —IlWHg — 1601K1+€ EO — & (53K1+E5K2) + 0(8 ),
with ¢; € R andc, c3, ¢5, € C. The ansatz
ca(z,y, z,t,e) = eA(X,Y,T)errtwnt s (k. 0,2t (20)

ey (X, Y, T)erer=wnt 5y (k. 0, 2, t) + c.c. + O(e?)
with X = ez, Y = ey andT = £?t yields
orA, = %8XA1 F oAy + 0% AL+ 502 AL + oA AL+ erAi|As?, (21)
Ords = —%aXAg + CoAy + C30% Ag + 502 Ay + CoAo| Ao|? + T Au| A2, (22)

with ¢, ¢1, ¢3, c5 from (19) andeg, ¢ € C,

(OR): In (OR) with the ansatz (14) we again obtain the system (18)-(

2.3 The transition points

In this subsection let,, respectively; ,, denote the critical surface(s) in (NR), and let again
A1,2 denote those in (OR). Also, Iéi:c, 0) denote the critical wave vector in (NR).

In Case |, is not related to the surfaces and )\, in (OR). Hence there is no transition
between (NR) and (OR) on the linear level, see fig. 8a) fosittion. Thus, a weakly

10



nonlinear analysis near the transition points yields aesysif 5 coupled amplitude equations,
namely (9) forA from (NR) and (15)—(18) for,, .. ., A, from (OR), with coupling between,
e.g.A and A,, of the formey;|A;|A in (9) andei| A2 A, in (15). Near the treshhold of first
instability the transition from (NR) to (OR) then esseritigdroceeds by changes of sign of
the coefficients, (from (9) (NR)) andc, (from (15)—(18), (OR)): on the (NR) side af;, we
havec, > 0 andRecy < 0, while on the (OR) side ab, it is vice versa.

In Case Il there are 2 subcases, lla and llbu4lf, are not related ta, ,, Case lla, see
again fig. 8a), then we have a similar situation as in Case lth@rweakly nonlinear level
we now obtain a system of six coupled amplitude equationsprd {NR) and 4 from (OR).
Again on the (NR) side ab;, we haveRec, > 0 andRecy < 0, and vice versa on the (OR)
side ofwy.

The other subcase is Case llb with(k, 1) = 1,(k, 1) nearw;, and for(k, 1) near(k., 0),
see fig. 8b). It follows thatk,,.) — (k. 0) as we approach, and atw = w; we have
Red? )\ (k.,0) = 0. Due toX; (k, —1) = X\, (k, 1) we thus altogether have

8l/\1(krc, 0) = Reaf)\l(kc, O) = 8{’/\1(166, 0) = 0

atw = wy. Ifwe also hadmd? ) (k., 0) = 0then we could scal® = ¢!/2y in order to obtain
two amplitude equations containing fourth ordéderivatives. See [RD98] for an example
where conditions equivalent fn\(k.,0) = Imd?A(k.,0) = 0 hold due to reversibility.
However, genericallymd?\, (k.,0) # 0, fig. 8c), and therefore at the transition point with
the same ansatz as in (NR) we again obtain (21)-(22) (Mt = 0). A consistent expansion
with Y = £'/2y in order to obtain fourth order derivative terms is therefaot possible,
and we again have to use the system of 6 coupled Ginzburg-auaeguations for a weakly
nonlinear analysis.

a) Cases | and lla b) Case llb c) Case Rbs k. fixed.
AN \ ; =
/'2&\\ ) . |m)\1 Im Wy
\ ) K
S \\\\\x\\\\ <AV R PN P
LR /"‘f’(t"":‘
51N N\‘ N7 ’#\\‘\\\\ .
-» RN
Y NN /e
W& AN ’ ... Re\ zRe
%”W’ '“\\ TRAISP
i ‘._
ImA s Im i,

Figure 8:Sketches oRep 2 (from (NR)) andRe); » (from (OR)) for two possible scenarios at the
transition between (NR) and (OR). In a) (Cases | and lla) thiasesy; and \; 2, respectivelyu; o
and A\ 2, are not related to each other. In b) we have= ); near(k.,0) and (k,l.) — (ke,0)
asw — wy, (Case lIb). Consequently?Re\;(k.,0) = 0 atw = wy. However, in general still
0?Im (k.,0) # 0, as illustrated in thé — p;(k., 1) section c).
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3 Formal derivation of the amplitude equations

In order to keep the notational complexity on a reasonabld kee concentrate on the Case
II (NR). The Case | (NR) already has been handled in [BSUOG]seS I-1l (OR) are very
similar to the subsequent lines.

3.1 Formal expansion in eigenfunctions

In Fourier space (1) yields
OV (k. t) = Mk, 1)V (k,t) + N(V)(k, 1), (23)

with k € R? andV (k, t) a vector-valued function of. We derive the GLe from (23) under the
assumptions from Case Il (NR). For the subsequent analysisufficient that the critical
Floquet exponents; of M(t) are simple neak., see Remark 4.1. However, in order to
make things less abstract, i.e., to illustrate an algotithapproach to the calculation of the
coefficients of the nonlinearity here we assume the follgwithe linear operatoM(k, t)
with M(k,t) = M(k,t 4+ 27/w,) has for everyk € R2 andt € [0,27/w,) a Floquet
Schauder basigp; (k, t)) jen Of L2((—m/2,7/2), C") of 27 /wo-periodic functionsp; (k, t) =
oi(k,t+ 2m/wy) solving

at@j (k7 t) = M(k7 t)@j <k7 t) - >‘j (k>¢J(k7 t),
i.e. the Floquet functions" ), (k, t) are solution oB, V' (k, t) = M (k, t)V (k, t) and); (k)
are the associated Floquet exponents. In other words, wenas®r simplicity that there are
no Jordan blocks in the monodromy operator idt). The functions); are normalized
by setting||¢;(k, 0)||.2=1. For defining projections on thg;(k, t) we consider the adjoint
problem—a,V (k,t) = M*(k, 1)V (k,t). Consequently also this problem has for evierg
R* andt € [0,27/wy) a Flogquet Schauder basig}(k,t))en of L*((—7/2,7/2),C") of
27 /wo-periodic functionsp’ (k, t) = ¢ (k, t + 27 /w) solving

—0:5(k, 1) = M (k, 1)@ (k, t) — X (k)5 (k. 1),
and satisfying the orthogonality
(75 @i) = 0ij (24)
where (i, 0) = [ a(z)0(z) dz. A solution V(k,t) of (23) is expanded in terms of the
Floquet functions; (k, t), i.e.

Vikt) =Y a;(k t)p;(k,t) with a;(kt) €C, (25)
JEN
such that
O <Z a;(k, t)p;(k, t)) = (9 (e, 1))k, 1) + 1 (k, 1) 9r 25 (k, 1))
jEN jEN

=3 (I, NI (k, )5,k £) + N (V) (k, ).

jEN
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In order to find the equations for the coefficient functiang, t) we apply the adjoint eigen-
function;(k, t) and find

Ora;(k,t) = Aj(k)a;(k, 1) + (P5(k, 1), N(k, ). (26)

We used (24) and

~

_<¢j(kv t), at@z(lg t)>+<¢;(kv t)? M(kv t)@z(kv t)>
= (95 (k. 1), A (K)@i(k, 1)) = A;(K) 3.

Our derivation of the GLe is now based on (26). For notatiemaplicity we avoid the
explicit notation of the small parametein the following. We make the ansatz

a(x,t) = A (X, T)ekextivnt 4 24,, (X, T)eQ(ikcxH“’Ht) + &2 Ag 1 (X, T)e?kex
+52A27,271(X, T)ewkcx_w’ft) + 82—2A07071(X, T)+ €2A072,1(X, T)e*™nt 4 cc.,
as(x,t) = eA; (X, T)elxnt 4 24, 5o (X, T)e2kextiont) o2 4, o (X, T')e™ >
2 Ay _90(X, T)e2likex—twnt) 4. %QAQO,Z(X, T) + e?Aga (X, T)e*™ut 4 c.c.,
aj(x,t) = &%Agq (X, T)e2ikextivnt) 1 22 4, (X, T)ekex
+e2 Ay g (X, T)ekex—twnt) 4. %QAOVOJ(X, T) 4 e?Ago (X, T)e*™ 1 4 c.c.,

wherewy = \i(k.), 7 € N\ {1,2}, X = (X,Y) = ex = ¢(x,y) € R?, k. = (k,0), and
T = ¢%t. The idea of the notation is as follows; ; (A, ) takes care of the critical modes

w
o o
A 5o Ao Asox
° °
Al ALa
A ox Ao Asox k
° °
A:l’_l Al
o o
A, s Ao on A, on

Figure 9:Mode distribution and notation in the extended ansatz.

concentrated gk, in the first (second) equation;, ;, ; with j;, j» € {0,4+1,4+2} andj € N
takes care of the noncritical modes in yhth equation obtained by an interactiondf ;, and
Aj. jo With j1 = j3+ js andjs = js + Je, i.€., of the noncritical modes multiplyirgyke izt
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in the j-th equation. See fig. 9. Since the are real valued we have, e.gl; 1(X,T) =
A71,71<X7 T)

With this ansatz we derive formally a GLe with time periodaetficients. We write the
nonlinearity of (1) in the form

N\V)=B(tV,V)+C(tV,V,V)+0O(V?), (27)

with bilinear and trilinear symmetric term8 andC, i.e., as inf(u) = v? = b(u,u) and

g(u) = u® = c(u,u,u) with

1 1
b(u,v) = =(uwv+ovu) and c(u,v,w) = é(uvw + uwv + vuw + vwu + wuv + wou).

Moreover, we introduce the abbreviations

1 _ikx ~ i(k—m)x ~ imx
BJl J2(t k k — m, m) 2 x B(t’ ¢j1(k_ m>t)e (fe—m) 790j2(m7t)6 )7

~ mx )

+ B(t, ¢j,(k — m, t)e'®™* 5 (m, t)e :
Ciy s K K =111 — 1, 1)

1 . .
= —e | O, @h(k—11>t)ez(k_h)x,¢j2(11 — 1y, 1)l 12x s (Lo, t)e ilax)

6
+ CO(t, 5, (k = 1y, )™ 1% @5 (1) — 1y, 1)/ 12% 55 (1, 1))
4+ ...

+ O, @ja (k= L, 1) g (I — T, £)e 1%, g (I, 1)e™) .

Fore2e* in the j-the equation we obtain
(Aj(0,0) + 2wx) Agpj = —2(j, Bia(t,0, ke, —ko)) A1 Ay,
)\J <07 O)AO,O,j = _2<¢;7 Bl,l(ta 07 kca _kc)> ‘Al,l |27 (28)
(Aj(0,0) — 2wy) Ag, 25 = —2(j, Bia(t,0, k., ko)) A1 Ay 1,

where we omit the argumefit, 0) of %, and similar in the following. For?e** < in the j-th
equation we obtain

()‘j(2kca O) + 2wH)A2727j = —2<¢;, 3171(15, ch, kc, kC))‘Ail’
Aj(2ke, 0)Ag o = —2(¢], Bia(t, 2ke, ke, ko)) Ar i A 1, (29)
()\]<2k07 O) — 2’(UH)A27,27]' = —2<¢;7 3272 (t, 2kc, kca kC)>Aifl'

14



For ?¢’*<* in the equation foj = 1 we obtain

OrAin=MA11+2 Z <<P17 Bl](t ke, ke, 0)Aq 1400, + BQ_]<t ke, k., 0)A;, 1A0,2,j>

JEN
237 (@1 Byt Ky ke, 2K Ay 1 Ao + Boj(t ke, —Ke 2K A 1140, )
JjEN
L 9e2iwnt Z <<p1, B (ke ke, 0)A11 Aoy + B, 4t ke, =k, 2kc)A71,1A2,2,j>
JEN
+26—2int Z <9017 Bl j(t k. k., O)A1 1A0 24 T BQ j(t k., ke, O)A 1A0707j>
JEN
| 9e-2iwnt Z <¢,{ B, it ke, —ke, 2k ) Ay 1 Asgj + BQ,j(t; k., —k, ch)A_l,lAQ,—2,j>
JjEN
+26—4int Z <<’01’ 32 j(t kc’ kc’ O)A 1, 1140 —2,5 + Bl j( kca _kC7 2kc)A—1,1A27—2,j>
JjEN

+3(37, Crp1(ke, ke, ke, — )|A1 1PA1 1 + 201 20 (ke, ke, ke, —ke) Ara] A 1]?)
+3e”t <<,01, Cri2(ke, ke, ke, — A% 141 1>
+3e” ! <901, Cro2(ke, ke, ke, _kc)Ai_lAfl,fl +2C1 1 2(ke, ke, ke, —kc)‘A1,1|2Ai_1>
+3e M (@t O (keo key ke, —ke) AT _J A1 1),
and a similar equation fair A, _,, taking into account the symmetries of the problem. If we
eliminate theA;, ;, ;, by the time dependent algebraic equations (28) and (29) waroa
system of Ginzburg-Landau equations for:= A, ; andB, := A, _; alone, namely
OrBy =coBy + c1e '0x By + c30% By + 502 By
+dg(t) B1|B1|? + dr(t) By | Ba|* + ds(t) Ba| By[*e ™" (30)
+ do(t) Bo| Bale™ 1" 4 dyo(t) By Bre™ 1" + dyy (1) BY Boe*™",
Or By =g By — 167 '0x By + €30% By + G505 By
+dg(t) Bo| Ba|? + d7(t) Bo| By |* + ds(t) By | By [e* (31)
+ do(t) By | By|e* ! + d1o(t) BEBye*™Ht + dy, (t) B3 Bie~ 2!
with co, ¢1, c3, ¢5 from (19), and with time-periodic coefficients(t), j = 6,...,11. In the

next step by some averaging argument we will eliminate thegewith thee?™~#t factors
and prove that only the mean values

wo
Cj = /O dj(t) dt, j = 6, 7,

of the highly oscillating termg/;(¢t) = d;(7/<?) play a role, while forj = 8,...,11 we
always have[™ d;(t)e"™ " dt = O(&?).
Thus, finally we consider (21),(22), which we repeat for amence,
8TA1 :CQA1 + 016_18)(141 + 0383(141 + 05832/141 + C6A1|A1|2 + C7A1|A2|2, (32)
8TA2 :EOAQ — C1€7laxA2 + 5383(142 + 65812/142 + 66A2|A2|2 + E7A2‘A1|2. (33)
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These equations still depend on the small bifurcation patama in a singular way. By
going into a moving frame these terms can be eliminated. Wew#; and A, then depend
on different variables, namelyX + ¢~ 'c,T,Y) respectively X — e~ '¢;T,Y). Thus it can
be expected that only the mean valuesdgfand A, over large intervals play a role and so
(32),(33) can be transfered into so called mean field coupladburg-Landau equations, see
[PW96]. In case thatd; and A, are spatially localized they simplify further and decouple
completely, cf. Remark 4.7 and [Sch97].

3.2 Comparison of the Ginzburg-Landau equations

The system (32),(33) of averaged Ginzburg-Landau equatipproximates the nonaveraged
system (30),(31) of Ginzburg-Landau equations in the Yalhg sense.

Theorem 3.1 Letm > 2. Then for allC; > 0 andTi, > 0 there existC; > 0, ¢, > 0 such
that the following holds. For alt € (0,1) let (A, Ay) € C([0,Ty], H™ x H™) be a solution
of the averaged system (32),(33) satisfying

sup HA](,T)”HWL < Cl-
T€[0,To]

Then for alle € (0, ¢y) the nonaveraged system (30),(31) has a solut®n B-) satisfying

sup [|A;(-,T) = Bj(, T)|gm < Cae® .
Te[0,To]

Proof. We write (30),(31) and (32),(33) as
B, A By Ci(t, B, B, B)
or = + | - ,
Bs AyBs Cy(t, B, B, B)
Ay A Ay C1(A A A)
aT = + 9
A2 AQAQ 02(147 A7 A)
respectively, with linear partd;, symmetric autonomous cubic pald, and symmetric

nonautonomous cubic pa@,j = 1,2, wheret = T'/&%.
Let B(T) = A(T) + *R(T). ThenR(T) = e *(B(T) — A(T)) fulfills

OrR=AR+3C(t,A, A, R) +3c2C(t,A,R,R) + *C(t, R, R, R) + ¢ 2I(A), (34)

where

I(A) = O(t, A, A, A) — C(A, A, A)

is an inhomogeneity. FaR(0) = 0 the variation of constant formula yields
T
R(T) = / eT=mA {30(75, A, A, R) +32C(t, A, R, R)
0

+&*C(t, R, R, R) + e 2I(A)| (1) dr.
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The crucial estimate is

< Cq. (35)

H"L

T
/ T2 (A(T)) dr
0

For instance, the term21}; := ¢ %(dgs(7/%) — cs)|A1|*A; in the first component; (A)
yields

672[11 = ‘

T
/ o= 4, 24,0, g6(7) dr
0

H"L
T
< H [G(TfT)Al ‘A1|2A196(7-)]0 ’

H"L

,  (36)

Hm

T
+ ‘ / MM (A A2 Ay — 200 A Ay|? — AT9r AL ) go(7) dr
0

where we seb, g5 = ¢ 2(ds(7/€*) — ¢g), hence

2

T/e
g6(T) = / de(s) — cg ds,
0

which isO(1) bounded by definition ofs = f01/w0 ds(s) ds sincedg is 2 /wy periodic. Next,
replacingdrA; anddrA; in (36) by the right hand side of (32) we find that’l;; < C.
Similar estimates for the remaining terms yield (35), aredtiieorem now follows by a simple
application of Gronwall's lemma. [

Remark 3.2 It is easy to see that for every > 4 we have||0;B;|| gm—2 = O(1),j = 1,2
by expressing for instand&-B; by the right hand side of (30), ba§.B; = O(s?). |

3.3 Estimates for the residual
For the proof of the approximation result we need estimatethk residual, defined by
Res(V) = =9,V + M(t)V + N(t,V),

i.e. for those terms which do not cancel after inserting thigreximation in (1). Since we
looses~! due to the scaling properties of tiié-norm inR?, we extend the above approxi-
mation as in the autonomous case [Sch99a] by higher ordestéiVe refrain from writing
down these terms and the lengthy calculation of the equafionthe functions appearing
in this extended ansatz. We only remark that the new amglitudctions in the ansatz sat-
isfy linearized inhomogeneous Ginzburg-Landau equatmassome inhomogeneous linear
algebraic equations.

Next we split the critical modes from the noncritical modes,the modes with positive
or slightly negative growth rates from the ones with styicttgative growth rates. In order to
do so we define

Ee = Xk—k.|<6 T X|ktke| <55

andFE, = 1 — E. for a small fixed) > 0 independent of.
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Remark 3.3 Due to the disjoint supports df. and B(E.V;, E.V3) in Fourier space we have
ECB(EC‘/l7 Ec‘/2) =0. J

Let i 4(-, t) be the approximation defined through the extended ansatz and

etha = et + €21, (37)
with F . = 0, E.1), = 0. Like in the autonomous case we have the following lemma.
Lemma 3.4 Fix C; > 0. Forall e € (0,1) let (A, Ay) € C([0, Ty, H¥(R?,C)) be a family

of solutions of (32,33) withkup sup || 4;(-,7)||z= < Cy. Then there exists@; > 0 such
€€[0,1] T€[0,To)

that, Ve € [0, 1],
sup [[a( ) =al Ol < Coe®s sup ([ O s+ [0 1) [[a1) < Co
t€[0,T0/e2] t€[0,T0/?]
sup || Es(Res(etha(-, 1)) || ma < Cae®, sup || E.(Res(etha, (-, 1)) || s < Chet
t€[0,Tp /2] t€[0,Tp /2]

4 The approximation results

System (1) for(ny, n3, v, p, o) is fully nonlinear and a mixture of different types of PDEs,
like quasilinear parabolic equations and balance lawss Télocal existence and uniqgueness
result for (1), which is fundamental for any approximatiesult, is highly non-trivial, and
we are not aware of one in the literature. Therefore we censidegularized version of the
WEM. In order to obtain a semilinear system, i.e., for puraigthematical reasons, we add
artificially a regularizing differential operator

AV = (_ﬁAQTLQ) _ﬁAQTIB) _ﬁQA2U7 _5A2pa _BA2U)
with small 3 > 0 to the right hand side of (1). Thus we consider
OV =AV + M@V + N, V) (38)

equipped with the boundary conditions from the non-regzgar system (2), and additional
artificial boundary conditions due to the regularizatioanrely

OPng = 0Pny = 0*v) = 020y = D2y = 0,0 = Do = p = 0*p = 0. (39)

For smallg > 0 the regularized system and the original system show qtiaditp the same
bifurcation behavior. In particular, all calculationsindections 2 and 3 also apply to (38).

Remark 4.1 Setting

V(x,2,t) =eA (X, T)e* @y (ke, 0, 2, 1) + e Ax (X, T)e™ " py ke, 0, 2, 1)
+c.c. + 2Wi(x, 2, 1),
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there exists &r/w, periodic bounded invertible transfor@(t) : L*(R? x (—7/2,7/2)) —
L*(R? x (—n/2,7/2)) such thatV,(t) = Q(¢t)Z(t) and Z(t) fulfills

OZ(t) = NZ(t) +e2N(V,1)

with A7t L?(R? x (—7/2,7/2)) — H*R? x (—m/2,7/2)) bounded, see, e.g. [Hen81,
Theorem 7.2.3], which can be applied to our regularizedesystThus, the contribution of
the quadratic terms to the cubic coefficied§$t), . . ., d1;(¢) via coupling with stable modes
is obtained via\ ! instead of (28) and (29). On the other hand, in practicalutatons only

a finite number of stable Floquet solutiopgk, ¢) at(k,!) = (0,0) and(k, ) = (2k.,0) are
calculated and the inversion is done via (28) and (29). Thishy in sec.3 w.l.0.g. we also
used this algorithmic approach. |

We have two kinds of approximation results. In Case | (NR)ergthe amplitude equations
are independent of the small parametgihe result is as follows, see [BSUOG].

Theorem 4.2 Letm > 8 and A = A(X,Y,T) be a solution of the GLe (9) f&F € [0, Ty],
satisfying

sup ||A(T)| gm < oo.
T€[0,Tp]

Then there are, > 0 andC' > 0, such that for all= € (0,¢,) we have solution¥” of (38)
satisfying
sup sup \V(z,y, 2,t) — ealx,y, 2, )] < Ce?.
te[0,To/e?] (z,y,2)ERZX(—7/2,7/2)
In case that the amplitude equations still depend on thel dnfiaication parameter, i.e.in

the Cases | (OR) and Il, the result is as follows, here fortedldor the amplitude equations
(32), (33), i.e., Case Il (NR).

Theorem 4.3 Letm > 8 and(A;, As) = (A1, A2)(X, Y, T, ¢) be a family of solutions of the
coupled Ginzburg-Landau equations (32),(33), satisfying

sup —sup ([|Ay(T)[[m + [|A2(T)|[am) < oo.
e€(0,1) T€[0,To]
Then there are, > 0 andC' > 0, such that for alls € (0,¢,) we have solution¥” of (38)
satisfying
Sup Sup |V(x7y7z7 t) _gwA(x7y7z7 t76)| S 082
tel0,To/e?] (z,y,2)ERZX(—7/2,7/2)
Remark 4.4 As a consequence of Theorems 4.2 and 4.3 the dynamics know@)fand
(15)-(18) can be found approximately in system (38), toce &hror of ordel?(¢?) is much
smaller than the approximatian, and the solutiori” which are both of orde®(¢) for all
T € [0,Ty) ort € [0,T,/<?], respectively. This fact should not be taken for grantedretare
modulation equations [Sch95b] which, although derived forimal perturbation analysis, do
not reflect the true dynamics of the original system. The podéd heorem 4.2 is not trivial
since solutions of ordeP (<) have to be bounded on a time interval of len@ttl /2). |
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Remark 4.5 Ginzburg—Landau equations have been derived for examptedotion-diffus-
ion systems and hydrodynamical stability problems, as theaBd and the Taylor-Couette
problem. For these examples these GLe have been justified@gwde equation by a num-
ber of mathematical results: so called approximation atrddiivity theorems have been
established by a several authors for model problems, batfatggeneral systems including
the Navier-Stokes equation, cf.[CE90, vH91, Eck93, Sch®h94a, Sch95a, TBM6].
Nowadays the theory is a well established mathematicaWibath can be used to prove sta-
bility results [Uec01, SUO03], upper semi-continuity ofratttors [MS95, Sch99b] and global
existence results [Sch94b, Sch99a]. As a consequence dappuoximation results, this
mathematical theory can be transfered almost one to onesm afasystems with external
time periodic forcing described by semilinear parabolioans, see [BSUO06] for discus-
sion. Hence, the Ginzburg-Landau equation really givepgrdescription of autonomous
and time-periodic systems near the bifurcation point. |

Remark 4.6 Theorem 4.2 can be improved in a number of directions. Ther @an be
made smaller by adding higher order terms to the approximatHowever the time scale
cannot be extended [vH91]. By a more involved analysis [8bh®ss regularity for the
solutions of the Ginzburg-Landau equation is needed. In/thmeElependent case the space
H™(R x (0,7)) can be replaced by the larger spa@g; (R x (0, 7)) equipped with the
norm |[ul| = sup,eg [l g ((@a+1)x0,x) Which contains constants, periodic functions, or
fronts in contrast td7™. The difficulties inR? x (0, 7) are due to the non smoothness of the
symbol of the inverse Stokes operator or of the projeatian case of two unbounded space
directions. See, e.g., the proof of Lemma A.4 and Remark A.5. |

Remark 4.7 For spatially localized solutions all amplitude equatidesouple. For instance,
assume thatl;, A, € H™(2) where H™(n) = {u € H™ : |[up"||gm < oo}, p(X) =
(1 + X*)Y2. Then introducingX; = X + 27 and X, = X — 2T the system (21),(22)
reduces to

6TA1 = CoAl + 0363(1141 + 05812/141 + C6A1‘A1|2 (40)
Ords = TogAs +C30%, As + C505 Ao + T Aa| Ao . (41)

The termsc; A;| As|? andc; Ay | A |? from (21),(22) no longer occur since their influence on
the dynamics can be estimated to be of or@ét). If A; and A, are spatially localized the
interaction time of these terms(3(<) due to the fact that they move with a relative velocity
of orderO(1/¢) through each other, cf. [Sch97].

Also note that the singular terms in the amplitude equatiang., c;e='0xA; and
—c1e710x Ay in (32) and (33) are no problem for the validity result, whatarts with a given
family of solutions of (32) and (33). The singular terms da oaccur in the error equations,
e.g., (44) below. |

Remark 4.8 For non small values dof, i.e. away from the bifurcation point other amplitude
equations take the role of the Ginzburg-Landau equationgeimeral the locally preferred
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patterns do not fit together globally, and so there will be sgrhase shifts in the pattern
which will be transported or transformed by dispersion affidision. For the description of
the evolution of the local wavenumbepf these pattern amplitude equations can be derived,
such as phase diffusion equations, conservation laws,ren&8urgers equation. Recently,
approximation results in the above sense have been provelisaeduction, see [MS04b,
MS04a, DSSS05]. For the modulation of the associated solsith the two-dimensional real
Ginzburg-Landau equation (9) the results from [MS04b] ¢fanalmost line for line. The
rescaled phase diffusion system for the evolution of thalle@ve numbers = (¢, q,) is
given by

0-q=Aq+ V(Y- f(q)) (42)

with coefficientsc;,c, € R and f : R? — R? a smooth mapping. Combining the trans-
fered approximation result from [MS04b] for this equatiothaTheorem 4.2 shows that the
dynamics of (42) can be found approximately in the reguéali&VEM, too. |

Finally, we state the approximation result in case (OR).

Theorem 4.9 Letm > 8, and let(A;, Ay, As, A4) be a family of solutions of the set coupled
Ginzburg-Landau equations (15)—(18), satisfying

sup sup (ATl + [ Ao(T) L + [ As(T) [+ [ As(T) ) < .
€€(0,1) TE[O,TO}

Then there are, > 0 andC' > 0, such that for all= € (0,¢,) we have solution¥” of (38)
satisfying

sup sup \V(z,y,2,t) — ehalx,y, z,t,¢)| < Ce2
tel0,To/e?] (z,y,2)ERZX(—7/2,7/2)

5 Local existence and uniqgueness

For the local existence and uniqueness of the solutionseoémilinear parabolic system
(38) we follow [Hen81]. The regularizing terfhis a sectorial operator in the space

X = L*(R* x [-7/2,7/2],R") N {Qu = u}
with domain of definition
X' = {U € H*| U satisfies the boundary conditio(® and(39)} N {Qu = u}.

ThereforeA generates an analytic semigroup in the sp&cdt is a lengthy but straightfor-
ward calculation (see Remark A.1) to prove that the remgitenmsM (t)V + N(t,V) on
the right hand side of (38) are smooth mappings fidfinto X c L2.

The interpolation spac&“ can be embedded int&® for a« > 3/4. Hence the term
N,enm is alocally Lipschitz-continuous mapping fro¥* into X' for o > 3/4. Therefore, all
assumptions of [Hen81, Theorem 3.3.3] are satisfied, whaldgythe following result.
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Theorem 5.1 Fix a € (3/4,1) and letl, € X“. Then there exists & > 0 and a unique
solutionV € C([0, to], X*) of (38) withV(0) = V4.

Remark 5.2 The existence of solutions to (38) and hence also to the eqoations (44)
below is guaranteed as long as the solution¥thare bounded. Thus it is sufficient to bound
the X“-norm of the error in the following. Sinc&“ can be embedded intd* for o > 3/4
and H? into C} in three space dimensions, the estimate in Theorem 4.2rslfoom the
associated estimate for the*-norm. |

6 The proof of the error estimates

As a major step of the proof of Theorem 4.3 we show that thetisoisi of (38) can be
approximated via the solutions of the non averaged Ginzbarglau equations.

Theorem 6.1 Let C; > 0. Let (B, By) = (By, B:)(X,T;e) € C([0,To], H® x H®), be

a family of solutions of the non averaged GLe (30),(31) wittb sup (||B:i(-,T)||ms +
€€[0,1] T€[0,To]
|B1(-,T)||zs) < Cy. Then there are, > 0 andC, > 0 such that for alk € (0, ¢¢) we have

solutionsV of (1) with

sup  [[V(t) — et (t)||xe < Coe®.
t€[0,To /2]

Proof. We write (38) as
OV =MV + B(t,V.V) +Ct,V,V,V) + O(|[V]|%a), (43)

whereM (t) = A 4+ M (t), and whereB andC contain the quadratic and cubic terms, respec-
tively, cf. (27). Inserting
V = ey + €, + e°R. + €°R,

with R. = E.R., R, = E,R,, Y. = E.)., andy, = E ), gives

8, R, = M(t)R, + €*Le(R) + € N.(R) + £2Res, ,

. (44)
O,R, = M(t)Ry + Ly(R.) + Ny(R) + Res, ,
where
Res. = ¢ *E,(Res(evp)) , Res, = ¢ °E,(Res(e¢p)) ,
Lo(R) = 2E.(B(Rs, ¥c) + B(Re,¥s)) ,  Ls(Re) = 2E,B(R.,v.)
and whereN..(R) and N,(R) satisfy
INGB)lx < C(De Dy)(|Relle + |1 Byll e (45)
IN{(R)llx < ClIR|lxe + C(De, D) (|| Rellace + 1Ryl 2)?, (46)
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as long as
|Rel|lxe < D. and ||Rs||xe < Dy . 47)

Here C(D., D) is a constant depending dn. and D, independent of) < ¢ < 1. The
constantsD,. and D, will be chosen later on independentaf System (44) is solved with
initial datum(R.(0), Rs(0)) = (0,0). The solutions of

OR=Mt)R, R|i—r = Ry

define viaR(t) = K(t,7)R, a linear evolution operatof(¢, 7) which satisfiesC(¢,7) =
K(t + 27 /w, T 4+ 27 /w) and whose properties are summarized in the following lemma.

Lemma 6.2 There exisC, >0 independent od < ¢ <« 1 such that for the stable part we
have
HK(t’ 7 )ESHXHXQ <’ maX(L (t — T)fa)e*"(m),

and for the critical part we have
||IC(t7 T)ECHX_,XQ S Cmax(17 (t . T)ia)QCEQ(th).

Proof. The operatorM (t) is a relatively bounded perturbation of the sectorial ofmera.
ThusM (t) generates an evolution operator whose growth propertietixad by the location
of the Floquet spectrum, see [Hen81, Theorem 7.1.3 and EBreton p.197]. This spectrum
already has been discussed in Section 2 and yields the abowéhgates. The constant
can be chosen independentafue to the fact that the critical eigenvalues for fixedeark..
are semisimple. [

To conclude the proof of Theorem 6.1 we apply the variatiooarfstant formula to (44)
and obtain

R.(t) = /0 t K(t, 7)E"(e*Le(R) + e*No(R) + °Res,)(1)dr ,
R,(t) = /0 t K(t,7)E"(Ly(R,) + eN,(R) + Res,)(7)dr .
Let S;(s) == supgyes || Ri(t)||xa, (i = 5, ¢). Using Lemma 3.4, (45) and
(/Otc max(1, T—a)e—”df) = 0(1)

for all ¢ > 0, we obtain that

Ss(t) < CSe(t) +e(CSs(t) + Cs(De, Ds)(Se(t) + Ss(t))?) + Cres,
S OSC(t) + 1 + C1Res> (48)

provided that
e(CD, + Cy(D,, D,)(D, + D,)?) < 1. (49)
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Similarly, we find

Se(t) §62/O C'max(1, (t —7)"%)(Se(7) + Ss(7))
4+ Cy(D,, Dy)(S.(T) + Ss(7))? + Cresdr,

<e? / CCmax(L (t — 7)) (Su(r) + Su(r)) + 1 + Crusdr,

provided that
eCy(D,, D,)(D. + D,)* < 1. (50)

Thus, (48) yieldsS,.(t) < &2 fot Cmax(1,(t — 7)7%)(S.(7) + 1 + Cres)dr. Rescaling time,
i.e.T = %t and applying Gronwall’s inequality [Hen81, Lemma 7.1.18Idis

S.(t) < O(1 + Cres)TpeC™ =: D,

forall t € [0,Ty/e?]. ThenS,(t) < CD.+ 1+ Cres =: D, by (48). Thus, Theorem 6.1
follows by choosing:, > 0 so small that for alk € (0, ¢¢) the conditions (49) and (50) are
satisfied. [

It remains to conclude Theorem 4.3 from Theorem 6.1 and Hme@.1. Let)4 be the
approximation constructed via the solutidn= (A;, A,) of the averaged GLe (32),(33), and
let )5 be the approximation constructed via the solutidr= (B, B,) of the non-averaged
GLe (30),(31). Moreover, leV be a solution from Theorem 6.1. Due to the embedding
X~ C CY we have

sup levp (-t e) = V(. t)llep = O(e?).

t€[0,Tp /2]
From Theorem 3.1 anl” C () we havesupyc( g [|A(+ T) = B(-, T) |l co = O(e?) which
impliessup,co 2 le¥B (s L, €)—eal-, t,€)|lco = O(e?). Hence, by the triangle inequality
we have

sup lega(t,e) =V t)llep <C sup  |lepal-t,8) = V(- 1)lleg

t€[0,Tp /2] t€[0,Tp /2]
<C( sup el t,e)=ep(-,t,e)llco+  sup lewns(-,t,e)=V(,1)]lcp)
t€[0,To /2] t€[0,To /2]
= 0(e?).
The proof of Theorem 4.3 is complete. [

7 Discussion

The electro-hydrodynamic instabilities of nematic liquigystals may lead to complicated
patterns. Here we analyzed three generic cases, namely Gageal rolls (NR) (single real
Ginzburg—Landau equation (9)) and Case Il NR (2 coupled ¢ex1pL equations (21),(22))
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and Case Il OR (oblique rolls) (4 coupled complex GL equatidrb)—(18)). In the latter two
cases the amplitude equations still depend in a singularonaie small bifurcation param-
etere, which however can be removed by going into (separately)ovamg frames, yielding
nonlocal amplitude equations. For spatially localizedisohs these decouple completely.

Moreover, for a regularized model we showed the validitynafse amplitude equations.
This puts studying the dynamics of the WEM using the respeamplitude equations on
firm mathematical grounds. Thus, as a next step one may studgtail the dynamics of
(21),(22) resp. (15)—(18). See [DO04] and the referenca®ih for some first results, which
show that these dynamics are very rich. A further open probteto remove the artificial
reguarization of the WEM. This will be subject of further easch.

A Appendix

A.1 Description of the WEM

The following presentation and non-dimensionalizatiortlted WEM follows [Tre96] and
[DOO04]. The director fieldn of unit vectors, the fluid velocity and the pressurgin the
presence of an electric field satisfy

(O 4+v-V)n = wxn+6-(NAn—h), (51)
Py(0;+v-Vv = —Vp—V - (T + 1)+ 1°pkE, (52)
Vv = 0, (53)

for (z,y,2) € Q =R? x (0, 7). Herein,
w=(Vxwv)/2 (54)

is the vorticity. The molecular field is given by

o (% . 9L L .
h_Q(% v avn) ea?(n- E)E (55)
where
2f = (V-n)? + Ky[n x (V xn))? + Ks[n- (V xn)?, (56)

is the elastic energy density describing splay, twist)( and bend k3) deformations. We
refer to [DOO04] for a physical interpretation of the conssaf,, A\, K, K3, ande,. The
electric fieldE = E(z, vy, z,t) € R? is considered to be quasistationary, i.e.fot= 0. It is
split into an external forcing and some potential part, i.e.

E = E,(t)(0,0,1)" — V¢, where E,(t)= Ey coswyt. (57)
The tensorsi, and7v*¢ are, respectively, the shear flow tensor
Aij = (aﬂ)j’ + 3]1)@)/2 (58)
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and the viscous stress tensor

3 3
—ﬂlj’.isc = (cqn;n ny, Z(nlAkl) + agnjm; + agnym; (59)
k=1 =1
+OZ4AZ‘J' + cz5njnkAki + OZGTLZ'TLkAkj)
with coefficientsoy, . . ., ag, and where
m = 0+(AAn — h) . (60)
The tensotl] is the nonlinear Ericksen stress tensor
3
of
I, = i 61
J Z i Tk, (61)
k=1 §
The projection tensor
(5; = 51] — nin; (62)

in (51) guarantees that| = 1 as long as the solution exists. The charge densdand the
deviation of the local conductivity from 1 satisfy

POy +v-V)p = =V -(uEo), (63)

Oy +v-V)o = —a*n*V - (uEp) — g (0 — 1 — Pimap?) . (64)

Finally the system is closed by Poisson’s law
p=V-(cE). (65)

The dielectric tensot and conductivity tensar are given bye;; = 6;; + €,nn; andp,;; =
0;j+o,n;nj, respectively. The parametdrsand P, are Prandtl-type time scale ratios. Again
we refer [DO04] for a physical interpretation of the conssafy, o,,, «, andr.

Using Poisson’s lawr, respectivelyy can be expressed in terms @find so (51)-(53)
and (63)-(64) can be rewritten as a system of dynamical emqmstorn, v, p, o.

Summary: Sincen? + n3 + n3 = 1 for our purposes it is sufficient to consider andns.
Hence we finally consider

omng = {eg,—(v-V)n+wxn+d6-(AAn — b)), (66)
omg = {es,—(v-V)n+wxn-+d-(AAn —h)), (67)
dw = PrQ(~(v-V)o— V- (T 4 TI) £ xpE) | (68)
op = —v-Vp—P 'V (uE0), (69)
oo = —v-Vo—ao*m’V - (uEp) — g (20 4+ 0 — Pimap?), (70)

under the boundary conditions

Ng=mng =0 =V =03 =¢ =0,
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where( is the projection on the divergence-free vector fidldg V - v = 0}, see Sec.A.3,
and whereEl = E(n, p, E,) is defined through (57) and (65) under the boundary condition
¢|.—0r = 0, see Sec. A.2. As already said the WEM equations are invausiader arbitrary
translations inc andy and under the reflectiors, S», andS; defined in (3), (4), and (5).

Remark A.1 The right hand side of the non regularized WEM is a smooth nmgpfsom
H? into L?. In order to see this let, n,v,o € H3. Then we haves € H? by (54), f € H?
by (56),F € H? by (57),h € H! by (55),6+ € H3 by (62),A € H? by (58),m € H' by
(60), T*c ¢ H! by (59), andll € H? by (61). Hence the right hand side of (51) is/ft
and the right hand side of (52) is if#°. We have: € H? andu € H3. Thenp € H! and so
the right hand side of (64) is if°. |

A.2 The definition of £ = E(n, p, E,)

To expresdy, respectivelyy, in terms ofp we have to solve

3 3 3
p = Z ak:(gkmEm) - Z Z ak((gLékm + ganknm)(Ep(smfﬂ - am¢))
k=1

k=1 m=1

with respect tap under the boundary conditions,—, . = 0. We find

where

3 3
F(na P, Ep) = p— Z ak((gi(skm + 5anknm)Ep5m3) )

k=1 m=1

3 3
M¢ = e1Ap+e,01016,  Go=ea ) > Oh(npnmOnd) — c.01016.

k=1 m=1
Lemma A.2 The linear operator// ~! is bounded frondZ* into H*+2.

Proof. We have to prove the invertibility of the operatdf with the boundary conditions
¢|._.a =0.Thus, to solve\ ¢(z,y, z) = f(z,y, z) we use Fourier series
2

o(x,y,z) = //(Zq@(k,l,m)eik”ilysin(mz))dk:dl,

meN

flz,y,2) = //(Z F(k, 1, m)e* ™ sin(mz)) dkdl.
meN
This yields(—e k2 — &, (k2 + 12 + m2))p(k, 1, m) = f(k,I,m), or equivalently

A

~ B f(k,l,m)
o(k,1,m) = TER TR E TR
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We use that théZ*-norm of a functionv(z) = > °_ v,,(x)e™ is equivalent to the?(s)-
norm of the Fourier coefficients, i.8.(vm)men, ) = 2o [vm[*(1 +m?)*, such that

olees = [ [ 318082 4 2 w2

meN

1 k% + 12 s+2
B //ZW R )

(eak? + ey (k2 + 12 +m?2))s

L+ k" + 1+ m? ? 212 2 2 2
L+ k" +1 s dkdl

b | 2k2 + €L (K2 + 12+ m?) //Z|f|( + k5 + 7+ m?)
= //Zlfl (14 k2 + 2 + m?)* dkdl = C| f|)2

meN

<

HS

Hence the electric potentialsatisfies
(1+GM™ )Mo = F(n,¢,p, Ep) ,

whereGM ! is small forn = n — (1,0,0)” small. By using Neumann’s series we finally
obtain
o= M (1+GM ) 'F(v,p, E). (71)

Lemma A.3 Let| V] 5= > 0 be sufficiently small. Then the operatef— (1 + GM ')t is
bounded fron’? into L.

Proof. The operatord/—':> — H?andG:H? — L?* are bounded. MoreovefGM |12 2
is small if ||[V]| z= > 0 is small. Neumann’s series gives the boundednegsofi /1)1
L? — [? butthenalsa/ ' (1+GM~1)~': L? — L*is bounded. [

A.3 The projection onto divergence free vector fields

In the following we restrict ourselves to the hydrodynamactf (1). We define the projec-
tion Q onto divergence free vector fields by= @ f, wherev solves

v—=Vp = f, V-v=0, wvs|m0.=0. (72)
Lemma A.4 The projectior() is continuous front/™ onto{v € H™ : V-v=0, v3|.—1./2=0}.
Proof. In order to solve (72) we consider the Fourier transformesiesy
v —tkp = f1, va—ilp=fo, wv3—0.p=f3, kv +ilvy+ O,v3 =0,
together with the boundary conditions. This can be solvethbyansatz

[e.e] o0 oo
v = Z U1m cos(mz), vy = Z Vg cOS(Mz), v = Z Ug 1 Sin(mz),
m=0 m=0 m=0

Zflmcos mz) Zfzmcos mz), f3= ngmsm mz)

p= Z Pm cos(mz).

m=0
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We obtain

V1,m — kam = fl,ma V2,m — lem = f2,m7 UV3m — MPm = f3,m7

1kv1 g 4 Vg — mvs = 0,

which is solved forn # 0 by

V1,m fl,m
V2,m = Am(k:, l) f2,m
U3,m f3.m

m? + 12 —lk —ikm fim

= m —lk  mP4+k* —ilm fom

ikm ilm — k* + 12 fam

The entries of the matriced,,(k, ) are bounded uniformly with respect te, k£ and/,

3
i.e. there exists &' such that for alin, k, andl |v; ,,,(k,1)| < C Y |fjm(k,1)|. Form =0
j=1

we obtain
V1,0 1 ? —lk 0 f1,0
V2,0 == m —lk k2 0 f270
1)370 0 0 k:2 + l2 f370

Again the entries of the matrice (k, 1) are bounded uniformly with respect kcand, i.e.
there exists &' such that for alk, andl

3
v;0(k, D) < C | fiolk, 1)

Jj=1

The solution is extended to=[=0 by v1 ,,, = fi.m, Vo;m = fo.m aNdvs,, = f3,,. The asser-
tion follows by using that thé7<-norm of a functiorv(z) = > °_, v, (z)e™* is equivalent

to the?(s)-norm||(vm)men, |2 = 2omeo [vm|*(1 +m?)* of the Fourier coefficients. W

Remark A.5 The extension td&=0 can be made smoothly iR x (0,7) such that multi-
plier theory inH;", spaces can be applied in order to extend these results frersntialler
H™ spaces to the largdi;’;, spaces. However, the extension is not smooth in case of twc
unbounded directions. Nevertheless, in this c@§eé: Hlf’;“ — Hj, is still a smooth op-
eration, cf. [SS01], such that the Navier-Stokes equatiisetf in R? can be solved i},
spaces, cf. [GMSO01] for a result ifi)-spaces. However, the terp# in (68) cannot be ex-
pressed as a derivative, i.e., with tRieoperator in front. Thus, this idea does not apply to
the equations of the weak electrolyte model (66)-(70). |

29



References

[AKO2]

[BSUO6]

[CE9O]

[Cha77]

[DO04]

I. S. Aranson and L. Kramer. The world of the complexn@&urg-Landau equa-
tion. Rev. Modern Phys74(1):99-143, 2002.

N. Breindl, G. Schneider, and H. Uecker. Mathenatikeory for the Ginzburg—
Landau approximation in semilinear pattern forming systevith time periodic
forcing applied to electro-convection in nematic liquigstals. Proceedings of
Equadiff 06, to appear., 2006.

P. Collet and J.-P. Eckmannstabilities and Fronts in Extended Systefgnce-
ton University Press, 1990.

S. Chandrashekariquid Crystals University Press, Cambridge, 1977.

G. Dangelmayr and I. Oprea. A bifurcation study of waatterns for electro-
convection in nematic liquid crystaldlol. Cryst. Liqu. Cryst.413:2441, 2004.

[DSSS05] A. Doelman, B. Sandstede, A. Scheel, and G. Scanéithe dynamics of mod-

[DW99]

[Eck93]

[Eri61]

[GMS01]

[Hen81]

[Les68]

[Mie02]

[MS95]

ulated wave trains, Preprint. 2005.

G. Dangelmayr and M. Wegelin. Hopf bifurcation in aoiropic systems. In
Pattern formation in continuous and coupled systems (Mipoés, MN, 1998)
volume 115 ofiMA Vol. Math. Appl, pages 33-47. Springer, New York, 1999.

W. Eckhaus. The Ginzburg—Landau equation is aacttir.J. Nonlinear Scienge
3:329-348, 1993.

J.L. Ericksen. Conservation laws for liquid crylstalTransactions of the Society
of Rheology5:23-34, 1961.

Y. Giga, S. Matsui, and O. Sawada. Global existerit@@-dimensional Navier-
Stokes flow with nondecaying initial velocityl. Math. Fluid Mech. 3(3):302—
315, 2001.

D. Henry.Geometric Theory of Semilinear Parabolic Equatio@pringer Lec-
ture Notes in Mathematics, Vol. 840, 1981.

F.M. Leslie. Some constitutive equations for lajarystals.Archive of Rational
Mechanics and Analysi28:265-283, 1968.

A. Mielke. The Ginzburg-Landau equation in its ra@e a modulation equation.
In Handbook of dynamical systems, Valpages 759-834. North-Holland, Am-
sterdam, 2002.

A. Mielke and G. Schneider. Attractors for modulatiequations on unbounded
domains—existence and comparisbdlonlinearity, 8(5):743-768, 1995,

30



[MS04a]

[MS04b]

[PB9S8]

[PWO6]

[RD98]

[Sch94a]

[Sch94b]

[Sch94c]

[Sch95a]

[Sch95b]

[Sch97]

[Sch99a]

[Sch99b]

[SS01]

[SUO3]

I. Melbourne and G. Schneider. Phase dynamics iadhglex Ginzburg-Landau
equation.J. Differential Equations199(1):22—-46, 2004.

I. Melbourne and G. Schneider. Phase dynamics irréhkGinzburg-Landau
equation.Mathem. Nachrichter263-264:171-180, 2004.

W. Pesch and U. Behn. Electrohydrodynamic convadtionematics. In F. H.
Busse and S. C. Mueller, editoiSyolution of Spontaneous Structures in Dissi-
pative Continuous Systen®pringer, 1998.

R.D. Pierce and C.E. Wayne. On the validity of meardfahplitude equations
for counterpropagating wavetrainsonlinearity, 8:433—-457, 1996.

Vivi Rottschafer and Arjen Doelman. On the trarmitifrom the Ginzburg-
Landau equation to the extended Fisher-Kolmogorov equaitys. O 118(3-
4):261-292, 1998.

G. Schneider. Error estimates for the Ginzburgdha approximationZAMP,
45:433-457, 1994.

G. Schneider. Global existence via Ginzburg—baanibrmalism and pseudo—
orbits of Ginzburg—Landau approximationrSomm. Math. Phys164:157-179,
1994,

G. Schneider. A new estimate for the Ginzburg—kanapproximation on the
real axis.J. Nonlinear Sciencet:23-34, 1994.

G. Schneider. Analyticity of Ginzburg—Landau re®dl. Diff. Eqns, 121:233-
257, 1995.

G. Schneider. Validity and Limitation of the New@lhitehead equationMath.
Nachr, 176:249-263, 1995.

G. Schneider. Justification of mean—field coupledulation equationsProc.
Royal Soc. Edinb127(A):639-650, 1997.

G. Schneider. Global existence results in pategming systems — Applications
to 3D Navier—Stokes problems 3. Math. Pures Appl., IX78:265-312, 1999.

G. Schneider. Some characterizations of the Ta@louette attractorintegral
and Differential equationgages 913-926, 1999.

Y. Shibata and S. Shimizu. A decay property of the ieouransform and its
application to the Stokes problem. Math. Fluid Mech.3(3):213-230, 2001.

G. Schneider and H. Uecker. Existence and stabifigxact pulse solutions for
Maxwell’'s equations describing nonlinear opti@AMP, 54.677-712, 2003.

31



[TBD*96] P. Takac, P. Bollerman, A. Doelman, A. van Harten, an8.Hiti. Analyticity of

[TK98]

[Tre96]

[Uec01]

[VHO1]

[ZK85]

essentially bounded solutions to semilinear parabolitesys and validity of the
Ginzburg-Landau equatioi®lIAM J. Math. Anal.27(2):424-448, 1996.

M. Treiber and L. Kramer. Coupled complex Ginzburgrfidau equations for the
weak electrolyte model of electroconvectidthys. Rev. F58:1973, 1998.

M. Treiber. On the theory of the electrohydrodynamstability in nematic liquid
crystals near onset. Ph.D. Thesis. Universitat Bayrei886.

H. Uecker. Stable modulating multi—pulse solusidor dissipative systems with
resonant spatially periodic forcing. of Nonlin. Sci.11(2):89-121, 2001.

A. van Harten. On the validity of Ginzburg—Landauguation. J. Nonlinear
Sciencel:397-422, 1991.

W. Zimmermann and L. Kramer. Oblique-roll electralrgdynamic instability in
nematics.Phys. Rev. Letter$5(4):402-405, 1985.

32



