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Abstract

Electro-convection in nematic liquid crystals is a paradigm for pattern formation in
anisotropic systems. In this paper we discuss the amplitudeequations obtained for this
pattern forming system close to the first instability in caseof two unbounded space direc-
tions. We prove error estimates showing the validity of these formal approximations for
a regularized version of the weak electrolyte model (WEM). New mathematical aspects
occur due to the possible instability mechanisms of the WEM and due to the external
time-periodic forcing.
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1 Introduction

In the experiments for electro-convection in nematic liquid crystals a thin layer of such a
material is contained in between two spatially extended electrode plates, cf. fig. 1. When an
alternating current is applied to the electrodes an electro-hydrodynamic instability occurs if
the voltage is above a certain threshold. The trivial spatially homogeneous solution becomes
unstable and bifurcates into a non-trivial pattern [Cha77,PB98]. In this paper we discuss the
validity of the amplitude equations obtained for this pattern forming system close to the first
instability in case of two unbounded space directions.

Figure 1: Roll solutions in nematic crystals. The director field of thenematic crystals is almost

parallel to the plates. The external time-periodic electric field is perpendicular to the plates.

We consider a layer of nematic liquid crystals in between twoinfinitely extended horizon-
tal plates of heightπ, i.e. in the following(x, y, z) ∈ Ω = R

2 × (0, π). There are essentially
two models for the mathematical description of electro-convection in nematic liquid crystals.
These are the standard model ([ZK85] and the references therein) and the weak electrolyte
model (WEM). The latter more advanced model is considered here. It has been introduced by
Kramer and Treiber in [Tre96, TK98] to overcome a number of insufficiencies of the standard
model.

The WEM, which can be found in detail in Section A.1, is based on the continuum theory
of Ericksen [Eri61] and Leslie [Les68]. In this theory, nematic liquid crystals are treated as in-
compressible fluids, in which the average molecular axis of the material is described locally
by a director fieldn of unit vectors which satisfy the so called Leslie-Ericksonequations.
They are coupled with generalized Navier-Stokes equationsfor the fluid velocityv and the
pressurep in the presence of an external time-periodic electric fieldEp(t) = E0 cosω0t. The
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liquid crystal would be destroyed by electrolysis ifω0 is too small, especially ifω0 = 0. As
usual the pressure is eliminated with a projectionQ into the space of divergence-free vector
fields, see Lemma A.4. The second part of the WEM comes from a quasi-static approxima-
tion of Maxwell’s equations describing the electromagnetic aspects of the experiment. The
equations forn andv are then completed by two balance equations for the charge density ρ
and the deviationσ of the local conductivity from1. Sincen2

1 + n2
2 + n2

3 = 1, for our pur-
poses it is sufficient to considern2 andn3. Thus, the WEM can be written as an evolutionary
system for the variables

V = (n2, n3, v1, v2, v3, ρ, σ),

see (66)-(70) in Appendix A.1. It is abbreviated in the following by

∂tV = M(t)V + Ñ(t, V ) (1)

whereM(t)V stands for the linear and̃N(t, V ) for the nonlinear terms with respect toV .
The set of partial differential equations (1) is completed with the boundary conditions

n2 = n3 = v1 = v2 = v3 = 0 at z = 0, π. (2)

These are derived in case of ideal conducting plates, rigid anchoring for the director and
finite viscosity, i.e. for (2) the coordinate system is chosen such thatn = (1, 0, 0) at the lower
and upper plates. Due to the anisotropy in the boundary conditions (2) there is no rotational
symmetry of the WEM. However, the WEM is invariant under arbitrary translations inx and
y, and under the reflections

S1 : (x, n2, n3, v1) → −(x, n2, n3, v1), (3)

S2 : (y, n2, v2) → −(y, n2, v2), (4)

S3 : (z, n3, v3) → −(z, n3, v3). (5)

For (1) we have the trivial solution

V = (n2, n3, v1, v2, v3, ρ, σ) = (0, 0, 0, 0, 0, 0, 0). (6)

In order to analyze its stability we consider the linearizedsystem

∂tV = M(t)V. (7)

Due to the translation invariance and the time periodicity of the problem the solutions are
given by Floquet-Fourier modesV = ϕ̂(k, l, z, t)ei(kx+ly)eλ(k,l)t with k, l ∈ R and

ϕ̂(·, ·, ·, t) = ϕ̂(·, ·, ·, t+ 2π/ω0).

Since for fixedk, l ∈ R the operatorM(t) is elliptic on the compact cross section[0, π] we
have discrete spectrum for fixedk, l ∈ R, hence the modeŝϕ and multipliersλ come in
families

{ϕ̂m(k, l, z, t)ei(kx+ly)eλm(k,l)t : k, l ∈ R, m ∈ N}. (8)
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The Floquet exponentsλm form smooth surfaces as functions of the wave numbersk, l ∈ R as
long as they are simple. Moreover, the spectrum depends smoothly on the control parameter
E0.

For V = 0 asymptotically stable we have for allm ∈ N andk, l ∈ R that the Floquet
exponentsλm satisfy

Reλm(k, l) < 0.

Experimental and numerical observations show that close tothe threshold of instability of
the trivial spatially homogenous solution there are essentially two different regions in the
(ω,E0)-plane separated by a frequencyωL. Forω > ωL the instability occurs at some wave

oblique

trivial solution

normal 

frequency

voltage

rolls rolls 

Figure 2:Schematic bifurcation diagram observed in experiments.

vector(kc, 0) and due to the fact that we have a real-valued problem also at(−kc, 0). This
region is called normal rolls (NR). Forω < ωL the instability occurs at some wave vector
(kc, lc) and due to the symmetries of the problem also at the wave vectors (kc,−lc), (−kc, lc)

and(−kc,−lc). This region is called oblique rolls (OR). See Figures 2 and 3. Experimentally,
in (OR) a Turing–Hopf bifurcation is observed, while in (NR)both, Turing or Turing–Hopf
bifurcations, may occur, cf. [Tre96].

The mathematical analysis of bifurcations over unbounded domains is based very often
on the reduction of the governing partial differential equations to amplitude equations which
are expected to capture the essential dynamics near the bifurcation. See [AK02, Mie02] for
general introductions. The most famous amplitude equationoccurring in a setup with two
unbounded space directions is the Ginzburg-Landau equation (GLe)

∂TA = c0A+ c3∂
2
XA+ c5∂

2
YA+ c6A|A|

2 (9)

with A = A(X, Y, T ) ∈ C and coefficientsc0, c3, c5, c6 ∈ C, where the indices were chosen
for later comparison with more complicated amplitude equations. The GLe (9) is derived by
multiple scaling analysis and describes slow modulations in timeT and spaceX, Y of the
amplitude of the linearly most unstable modes.

In the present paper we discuss how for a given experiment, which fixes all other param-
eters of the system, the spectrum and the associated amplitude equations have to look like
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a) Spectral surface in (NR) b) Spectral surface in (OR)

k

lReλ

Figure 3:Schematic sketches of the surfaces of the real parts of the Floquet exponents with largest

real part. a) In the parameter region (NR). There are neighborhoods of two wave vectors(±kc, 0)

where we have positive real part. b) In the parameter region (OR). There are neighborhoods of four

wave vectors(±kc,±lc) where we have positive real part. The surface in a) is double in case II, due to

the symmetries (3) and (4) and the non vanishing imaginary parts. The surface in b) is always double.

in order to have Fig. 2 as a robust situation. In other words, we discuss the scenarios which
are robust under changes ofω, i.e. codimension one phenomena. We do not discuss scenarios
which are only stable if a second parameter is changed simultaneously, i.e. codimension two
phenomena. Hence, especially the transition from (NR) to (OR) has to be analysed. The
only codimension two points which we will discuss in the following are the transition points
(E0, ω) = (E0,crit, ωL) between (NR) and (OR) at the threshold of instability.

It turns out that there are two cases, in the following calledCase I, with a Turing bifur-
cation in (NR), and Case II, with a Turing–Hopf bifurcation in (NR). There is no smooth
transition for the critical spectral surfaces between (NR)and (OR) in Case I, but in Case II.

The single Ginzburg–Landau equation (9) also occurs in our problem, namely in Case
I (NR), with cj ∈ R. In the other cases we obtain more complicated amplitude equations.
They are systems of coupled equations of Ginzburg-Landau type and they still depend in a
singular way on the small bifurcation parameter. However, for spatially localized solutions
this singular dependence vanishes and, moreover, all amplitude equations decouple.

Additional to the analysis of the instability scenario we prove the validity of the associ-
ated amplitude equations. The validity of (9) in a situationas Case I is already covered by
the analysis of [BSU06] where we discussed the validity of the Ginzburg-Landau approxima-
tion in pattern forming systems with external time-periodic forcing described by semilinear
parabolic equations with one unbounded space direction. Hence in the following we will
mainly concentrate on the other cases.
Notation. The Sobolev-spaceHm(Ω), the space ofm-times weakly differentiable functions
Ω → R, is equipped with the norm‖u‖Hm(Ω) =

∑m
|j|=0 ‖∂

j
xu‖L2(Ω). Throughout the paper we

denote possibly different constantsC with the same symbol if they can be chosen independent
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of the small bifurcation parameter0 < ε≪ 1.

Acknowledgments. The paper is partially supported by the Deutsche Forschungsgemein-
schaft DFG under the grant Kr 690/18-1/2. The authors are grateful for discussions with
Gerhard Dangelmayr, Lorenz Kramer, and Ian Melbourne.

2 Two different instability mechanisms

In order to have Figure 2 as a robust situation for a given experiment, i.e. forE0 andω0 vari-
able and all other parameters of the system fixed, the spectrum and the associated amplitude
equations have to look as follows. We define regions (NR) and (OR) through

(NR) There exists am (w.l.o.g.m = 1), a k = kc 6= 0 and aE0 = E0,crit, such that

Reλ1(kc, 0)
∣

∣

E0=E0,crit
= 0 ;

(OR) There exists am (w.l.o.g letm = 1), (k, l) = (kc, lc) with kc 6= 0, lc 6= 0 and a
E0 = E0,crit, such that

Reλ1(kc, lc)
∣

∣

E0=E0,crit
= 0.

These assumptions have a number of consequences due to the fact that we have a real-
valued problem and due to the symmetries (3) and (4). For the Floquet exponentsλ1 with
largest real part of the linearized system we find, since we have a real valued problem,

Reλ1(k, l) = Reλ1(−k,−l), Imλ1(k, l) = −Imλ1(−k,−l).

Thus, we also haveReλ1(−kc, 0)
∣

∣

E0=E0,crit
=0 for (NR) andReλ1(−kc,−lc)

∣

∣

E0=E0,crit
= 0

for (OR). Next we find

Reλ1(k, l) = Reλ1(k,−l), Reλ1(k, l) = Reλ1(−k, l)

due to the reflection symmetries (3) and (4). Hence we also haveReλ1(kc,−lc)
∣

∣

E0=E0,crit
= 0

andReλ1(−kc, lc)
∣

∣

E0=E0,crit
= 0 for (OR). The symmetries also yield

Imλ1(−kc, lc) = Imλ1(kc, lc) = Imλ1(kc,−lc) = Imλ1(−kc,−lc).

However, since at least in (OR) experimentally a Hopf bifurcation is observed there must be
a second surfaceλ2 with

Reλ1(k, l) = Reλ2(k, l), Imλ1(k, l) = −Imλ2(k, l) 6= 0

close to(k, l) = (±kc,±lc) in (OR), and close to(k, l) = (±kc, 0) in case of a Hopf-
bifurcation in (NR).

We assume that the associated eigenfunctions are invariantunder the discrete symmetry
S3 such thatS3 is irrelevant for the following considerations.
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We now discuss two generic cases, postponing the details of the derivation of the respec-
tive amplitude equations to sec. 3. We refer to [DO04] for a numerical investigation of the
spectral situation at the bifurcation point in a slightly simplified model. There, for two dif-
ferent nematic crystal materials, the question which of theabove bifurcations occur in which
experiment is discussed, in particular the transition (NR)to (OR) in Case II.

We also mention that in [Tre96] some other, presumably more realistic, boundary condi-
tions have also been studied. For these boundary conditionsthe WEM has a time-periodic, in
x, y spatially homogeneous solution of the form

V0(t) = V0(t+ 2π/ω0) = (0, 0, 0, 0, 0, ρ0(z, t), σ0(z, t)). (10)

Qualitatively, this would not change our analysis, since the linearization around (10) again
yields a system of the form (1). Moreover, according to [Tre96, p.38/39] the quantities
ρ0(z, t) andσ0(z, t) are small except close to the boundaries. Therefore, the linear and weakly
nonlinear analysis for (10) is also quantitatively very similar to the one for (6).

2.1 Case I

(NR): Due to the fact that we have a real-valued problem we also haveReλ1(−kc, 0) = 0.
We assume that for(k, l) close to(kc, 0) the surfaceReλ1 is simple. Due to (3) and (4) this
implies

λ1(k, l) = λ1(−k, l) = λ1(k,−l) = λ1(−k,−l)

and soImλ1(kc, 0) = 0 for these wave numbers. See Fig. 4. Moreover, we assume that except
of λ1 in a neighborhood of(±kc, 0) the spectrum has strictly negative real part, i.e. all other
Floquet exponents have real parts less than−σ0 for a σ0 > 0. We introduce the bifurcation
parameterε by

ε2 = E0 −E0,crit.

Thus we obtain

λ1(kc + εK) = ε2(c0 − c3K
2
1 − c5K

2
2) + O(ε3), (11)

with K = (K1,K2), c0 = ∂2
ελ1(kc) ∈ R, c3 = −1

2
∂2

kλ1(kc) ∈ R andc5 = −1
2
∂2

l λ1(kc) ∈ R,
while

∂l∂kλ1(kc) = 0 due to λ1(k,−l) = λ1(k, l). (12)

The ansatz for the derivation of the Ginzburg-Landau equation in (NR) is

εψA(x, y, z, t) = εA(X, Y, T )eikcxϕ̂1(kc, 0, z, t) + c.c. + O(ε2), (13)

where
X = εx, Y = εy, and T = ε2t.

Inserting (13) into (1) shows thatA has to satisfy the Ginzburg-Landau equation (9), i.e.,

∂TA = c0A+ c3∂
2
XA+ c5∂

2
YA+ c6A|A|

2,
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Re 1λ

l=0

k=kc
1λIm Im

Re 1λ

1

k=kc

Figure 4:Case I (NR): The pictures show two cross sections through thesurfaceλ1, namely atl = 0

andk = kc. The Floquet exponentsλ1 are simple and touch the axisReλ = 0 in (±kc, 0). The

imaginary part ofλ1 vanishes in a neighborhood of these wave vectors.

with c0, c3, c5 from (11), whilec6 is determined by the nonlinearity.
(OR): Due to the symmetries (3)-(4) and the fact that we experimentally obtain a Hopf bifur-
cation in (OR) we get the spectral situation sketched in fig. 5. Thus, up toO(ε3) we have

k=kc

1λIm

2λIm

k=kc

l=l c

Reλ 1,2

Reλ 1,2

1λIm

2λIm

k l

S

l=l

1

c

S2

Figure 5:Case I (OR): The pictures show two cross sections through thesurfacesλ1 andλ2, namely

at l = lc andk = kc. The Floquet exponentsλ1 andλ2 are simple and touch the axisReλ = 0 in

(±kc,±lc). The imaginary parts ofλ1 andλ2 are non zero in a neighborhood of these wave vectors.

λ1(kc+εK) = iωH+iε(c1K1+c2K2)+ε
2c0 − ε2(c3K

2
1+c4K1K2+c5K

2
2),

λ2(kc+εK) = −iωH − iε(c1K1+c2K2)+ε
2c0 − ε2(c3K

2
1+c4K1K2+c5K

2
2),

λ1((kc,−lc)+εK) = iωH + iε(c1K1−c2K2)+ε
2c0 − ε2(c3K

2
1+c4K1K2+c5K

2
2),

λ2((kc,−lc)+εK) = −iωH−iε(c1K1−c2K2)+ε
2c0 − ε2(c3K

2
1+c4K1K2+c5K

2
2).

The ansatz for the derivation of the Ginzburg-Landau equations in (OR) is

εψA(x, y, z, t, ε) = εA1(X, Y, T )eikcx+ilcy+iωH tϕ̂1(kc, lc, z, t) (14)

+εA2(X, Y, T )eikcx+ilcy−iωH tϕ̂2(kc, lc, z, t)

+εA3(X, Y, T )eikcx−ilcy+iωH tϕ̂1(kc,−lc, z, t)

+εA4(X, Y, T )eikcx−ilcy−iωH tϕ̂2(kc,−lc, z, t) + c.c.+ O(ε2),

whereX = εx, Y = εy andT = ε2t, see fig.6 for an illustration of the distribution of
these modes. Inserting (13) into (1) shows that theA1, . . . , A4 have to satisfy the set of four
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k

Figure 6:Mode distribution in the ansatz (14).

coupled Ginzburg-Landau equations

∂TA1 =
1

ε
c1∂XA1 +

1

ε
c2∂YA1 + c0A1 + c3∂

2
XA1 + c4∂X∂YA1 + c5∂

2
YA1

+ A1(c6|A1|
2 + c7|A2|

2 + c8|A3|
2 + c9|A4|

2) + c10A2A3A4, (15)

∂TA2 = −
1

ε
c1∂XA2 −

1

ε
c2∂YA2 + c0A2 + c3∂

2
XA2 + c4∂X∂YA2 + c5∂

2
YA2

+ A2(c6|A2|
2 + c7|A1|

2 + c8|A3|
2 + c9|A4|

2) + c10A1A3A4, (16)

∂TA3 =
1

ε
c1∂XA3 −

1

ε
c2∂YA3 + c0A3 + c3∂

2
XA3 + c4∂X∂YA3 + c5∂

2
YA3

+ A3(c6|A3|
2 + c7|A2|

2 + c8|A4|
2 + c9|A1|

2) + c10A1A2A4 (17)

∂TA4 = −
1

ε
c1∂XA4 +

1

ε
c2∂YA4 + c0A4 + c3∂

2
XA4 + c4∂X∂YA4 + c5∂

2
YA4

+ A4(c6|A4|
2 + c7|A1|

2 + c8|A3|
2 + c9|A2|

2) + c10A1A2A3, (18)

with Aj = Aj(X, Y, T ) ∈ C, j = 1, . . . , 4, depending onX, Y ∈ R andT ≥ 0 and
with coefficientsc1, c2 ∈ R and c0, c3, . . . , c10 ∈ C. The form of the nonlinearity again
follows from equivariance under the two symmetriesk 7→ −k andl 7→ −l, see [DW99]. The
appearance of, e.g.,c10A2A3A4 as the only purely mixed term in (15) follows from the fact
that this is the only combination which yieldseikcx+ilcy+iωH t, and similar in (16)–(18). These
combinations can be read off from fig.6.

The amplitude equations (15)–(18) still depend in a singular way on the small perturbation
parameter0 < ε ≪ 1. Moreover, we have the four complex conjugate equations forthe
modes concentrated at(−kc,−lc) and(−kc, lc).

2.2 Case II

In Case II there are two surfacesλ1 andλ2 in a neighborhood of the critical wave numbers
with

Reλ1(k, l) = Reλ2(k, l) and Imλ1(k, l) = − Imλ2(k, l).
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Thus, generically we have∇λ1(kc, 0) 6= 0 and∇λ1(kc, lc) 6= 0. At the bifurcation point we
have in (NR)

Reλ1(kc, 0) = 0 and Imλ1(kc, 0) 6= 0,

see Fig. 7, while in (OR) we have the same situation as in Case I.

k=kc

1λIm
1λIm

Reλ1,2

2λIm

2λIm

k l

l=0

Reλ 1,2

S1

k=kc

S2

Figure 7:Case II (NR): The pictures show two cross sections through the surfacesλ1 andλ2, namely

at l = 0 andk = kc. The Floquet exponentsλ1 andλ2 are simple and touch the axisReλ = 0 in

(±kc, 0). The imaginary parts ofλ1 andλ2 are non zero in neighborhoods of these wave vectors.

(NR): Due toλ1(k, l) = λ1(k,−l) we again have∂lλ1(kc, 0) = 0 and∂k∂lλ1(kc, 0) = 0.
Therefore,

λ1(kc+εK) = iωH+iεc1K1+ε
2c0 − ε2(c3K

2
1+c5K

2
2) + O(ε3),

λ2(kc+εK) = −iωH − iεc1K1+ε
2c0 − ε2(c3K

2
1+c5K

2
2) + O(ε3),

(19)

with c1 ∈ R andc0, c3, c5,∈ C. The ansatz

εψA(x, y, z, t, ε) = εA1(X, Y, T )eikcx+iωHtϕ̂1(kc, 0, z, t) (20)

+εA2(X, Y, T )eikcx−iωHtϕ̂2(kc, 0, z, t) + c.c. + O(ε2)

with X = εx, Y = εy andT = ε2t yields

∂TA1 =
c1
ε
∂XA1 + c0A1 + c3∂

2
XA1 + c5∂

2
YA1 + c6A1|A1|

2 + c7A1|A2|
2, (21)

∂TA2 = −
c1
ε
∂XA2 + c0A2 + c3∂

2
XA2 + c5∂

2
YA2 + c6A2|A2|

2 + c7A2|A1|
2 , (22)

with c0, c1, c3, c5 from (19) andc6, c7 ∈ C,

(OR): In (OR) with the ansatz (14) we again obtain the system (15)-(18).

2.3 The transition points

In this subsection letµ1, respectivelyµ1,2, denote the critical surface(s) in (NR), and let again
λ1,2 denote those in (OR). Also, let(k̃c, 0) denote the critical wave vector in (NR).

In Case I,µ1 is not related to the surfacesλ1 andλ2 in (OR). Hence there is no transition
between (NR) and (OR) on the linear level, see fig. 8a) for illustration. Thus, a weakly
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nonlinear analysis near the transition points yields a system of 5 coupled amplitude equations,
namely (9) forA from (NR) and (15)–(18) forA1, . . . , A4 from (OR), with coupling between,
e.g.A andA1, of the formc11|A1|A in (9) andc12|A|2A1 in (15). Near the treshhold of first
instability the transition from (NR) to (OR) then essentially proceeds by changes of sign of
the coefficients̃c0 (from (9) (NR)) andc0 (from (15)–(18), (OR)): on the (NR) side ofωL we
havec̃0 > 0 andRec0 < 0, while on the (OR) side ofωL it is vice versa.

In Case II there are 2 subcases, IIa and IIb. Ifµ1,2 are not related toλ1,2, Case IIa, see
again fig. 8a), then we have a similar situation as in Case I. Onthe weakly nonlinear level
we now obtain a system of six coupled amplitude equations, 2 from (NR) and 4 from (OR).
Again on the (NR) side ofωL we haveRec̃0 > 0 andRec0 < 0, and vice versa on the (OR)
side ofωL.

The other subcase is Case IIb withλj(k, l) = µj(k, l) nearωL and for(k, l) near(k̃c, 0),
see fig. 8b). It follows that(kc, lc) → (k̃c, 0) as we approachωL, and atω = ωL we have
Re∂2

l λ1(kc, 0) = 0. Due toλ1(k,−l) = λ1(k, l) we thus altogether have

∂lλ1(kc, 0) = Re∂2
l λ1(kc, 0) = ∂3

l λ1(kc, 0) = 0

atω = ωL. If we also hadIm∂2
l λ1(kc, 0) = 0 then we could scaleY = ε1/2y in order to obtain

two amplitude equations containing fourth orderY -derivatives. See [RD98] for an example
where conditions equivalent toImλ(kc, 0) = Im∂2

l λ(kc, 0) = 0 hold due to reversibility.
However, genericallyIm∂2

l λ1(kc, 0) 6= 0, fig. 8c), and therefore at the transition point with
the same ansatz as in (NR) we again obtain (21)-(22) (withRec5 = 0). A consistent expansion
with Y = ε1/2y in order to obtain fourth order derivative terms is therefore not possible,
and we again have to use the system of 6 coupled Ginzburg–Landau equations for a weakly
nonlinear analysis.

a) Cases I and IIa b) Case IIb c) Case IIb,k = kc fixed.

2λIm

l

µIm 2

Reµ 1,2

µIm 11λIm

=

=

Reλ =1,2

Figure 8:Sketches ofReµ1,2 (from (NR)) andReλ1,2 (from (OR)) for two possible scenarios at the

transition between (NR) and (OR). In a) (Cases I and IIa) the surfacesµ1 andλ1,2, respectivelyµ1,2

andλ1,2, are not related to each other. In b) we haveµj = λj near(k̃c, 0) and (kc, lc) → (k̃c, 0)

asω → ωL (Case IIb). Consequently,∂2
l Reλ1(kc, 0) = 0 at ω = ωL. However, in general still

∂2
l Imλ1(kc, 0) 6= 0, as illustrated in thel 7→ µj(kc, l) section c).
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3 Formal derivation of the amplitude equations

In order to keep the notational complexity on a reasonable level we concentrate on the Case
II (NR). The Case I (NR) already has been handled in [BSU06]. Cases I-II (OR) are very
similar to the subsequent lines.

3.1 Formal expansion in eigenfunctions

In Fourier space (1) yields

∂tV̂ (k, t) = M̂(k, t)V̂ (k, t) + N̂(V̂ )(k, t), (23)

with k ∈ R2 andV̂ (k, t) a vector-valued function ofz. We derive the GLe from (23) under the
assumptions from Case II (NR). For the subsequent analysis it is sufficient that the critical
Floquet exponentsλ1 of M̂(t) are simple nearkc, see Remark 4.1. However, in order to
make things less abstract, i.e., to illustrate an algorithmic approach to the calculation of the
coefficients of the nonlinearity here we assume the following: the linear operator̂M(k, t)

with M̂(k, t) = M̂(k, t + 2π/ω0) has for everyk ∈ R2 and t ∈ [0, 2π/ω0) a Floquet
Schauder basis(ϕ̂j(k, t))j∈N of L2((−π/2, π/2),C7) of 2π/ω0-periodic functionŝϕj(k, t) =

ϕ̂j(k, t+ 2π/ω0) solving

∂tϕ̂j(k, t) = M̂(k, t)ϕ̂j(k, t) − λj(k)ϕ̂j(k, t),

i.e. the Floquet functionseλ̂j(k)tϕ̂j(k, t) are solution of∂tV̂ (k, t) = M̂(k, t)V̂ (k, t) andλj(k)

are the associated Floquet exponents. In other words, we assume for simplicity that there are
no Jordan blocks in the monodromy operator forM̂(t). The functionsϕ̂j are normalized
by setting‖ϕ̂j(k, 0)‖L2=1. For defining projections on thêϕj(k, t) we consider the adjoint
problem−∂tV̂ (k, t) = M̂∗(k, t)V̂ (k, t). Consequently also this problem has for everyk ∈

R
2 and t ∈ [0, 2π/ω0) a Floquet Schauder basis(ϕ̂∗

j (k, t))j∈N of L2((−π/2, π/2),C7) of
2π/ω0-periodic functionŝϕ∗

j(k, t) = ϕ̂∗
j (k, t+ 2π/ω0) solving

−∂tϕ̂
∗
j(k, t) = M̂∗(k, t)ϕ̂∗

j (k, t) − λj(k)ϕ̂∗
j(k, t),

and satisfying the orthogonality
〈ϕ̂∗

i , ϕ̂j〉 = δij , (24)

where〈û, v̂〉 =
∫ π

0
û(z)v̂(z) dz. A solution V̂ (k, t) of (23) is expanded in terms of the

Floquet functionŝϕj(k, t), i.e.

V̂ (k, t) =
∑

j∈N

âj(k, t)ϕ̂j(k, t) with âj(k, t) ∈ C, (25)

such that

∂t

(

∑

j∈N

âj(k, t)ϕ̂j(k, t)

)

=
∑

j∈N

((∂tâj(k, t))ϕ̂j(k, t) + âj(k, t)∂tϕ̂j(k, t))

=
∑

j∈N

âj(k, t)M̂(k, t)ϕ̂j(k, t) + N̂(V̂ )(k, t).

12



In order to find the equations for the coefficient functionsâj(k, t) we apply the adjoint eigen-
functionϕ̂∗

j(k, t) and find

∂tâj(k, t) = λ̂j(k)âj(k, t) + 〈ϕ̂∗
j(k, t), N̂(k, t)〉. (26)

We used (24) and

−〈ϕ̂∗
j(k, t), ∂tϕ̂i(k, t)〉+〈ϕ̂∗

j(k, t), M̂(k, t)ϕ̂i(k, t)〉

= 〈ϕ̂∗
j(k, t), λ̂j(k)ϕ̂i(k, t)〉 = λ̂j(k)δij .

Our derivation of the GLe is now based on (26). For notationalsimplicity we avoid the
explicit notation of the small parameterε in the following. We make the ansatz

a1(x, t) = εA1,1(X, T )eikcx+iωHt + ε2A2,2,1(X, T )e2(ikcx+iωH t) + ε2A2,0,1(X, T )e2ikcx

+ε2A2,−2,1(X, T )e2(ikcx−iωHt) +
ε2

2
A0,0,1(X, T ) + ε2A0,2,1(X, T )e2iωHt + c.c.,

a2(x, t) = εA1,−1(X, T )eikcx−iωHt + ε2A2,2,2(X, T )e2(ikcx+iωH t) + ε2A2,0,2(X, T )e2ikcx

+ε2A2,−2,2(X, T )e2(ikcx−iωHt) +
ε2

2
A0,0,2(X, T ) + ε2A0,2,2(X, T )e2iωHt + c.c.,

aj(x, t) = ε2A2,2,j(X, T )e2(ikcx+iωHt) + ε2A2,0,j(X, T )e2ikcx

+ε2A2,−2,j(X, T )e2(ikcx−iωHt) +
ε2

2
A0,0,j(X, T ) + ε2A0,2,j(X, T )e2iωHt + c.c.,

whereωH = λ1(kc), j ∈ N \ {1, 2}, X = (X, Y ) = εx = ε(x, y) ∈ R
2, kc = (kc, 0), and

T = ε2t. The idea of the notation is as follows:A1,1 (A1,−1) takes care of the critical modes

A

A

A

A −2,2,*

A A

A

A
−1,−1

A

A
−1,1 1,1

1,−1

A

A

A

2,2,*0,2,*

0,0,*−2,0,*

−2,−2,* 0,−2,* 2,−2,*

2,0,*

ω

k

Figure 9:Mode distribution and notation in the extended ansatz.

concentrated atkc in the first (second) equation;Aj1,j2,j with j1, j2 ∈ {0,±1,±2} andj ∈ N

takes care of the noncritical modes in thej-th equation obtained by an interaction ofAj3,j4 and
Aj5,j6 with j1 = j3 + j5 andj2 = j4 + j6, i.e., of the noncritical modes multiplyingeij1kc+ij2ωt
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in the j-th equation. See fig. 9. Since theaj are real valued we have, e.g.,A1,1(X, T ) =

A−1,−1(X, T ).
With this ansatz we derive formally a GLe with time periodic coefficients. We write the

nonlinearity of (1) in the form

N(V ) = B(t, V, V ) + C(t, V, V, V ) + O(V 4), (27)

with bilinear and trilinear symmetric termsB andC, i.e., as inf(u) = u2 = b(u, u) and
g(u) = u3 = c(u, u, u) with

b(u, v) =
1

2
(uv + vu) and c(u, v, w) =

1

6
(uvw + uwv + vuw + vwu+ wuv + wvu).

Moreover, we introduce the abbreviations

B̂j1,j2(t,k,k − m,m) =
1

2
e−ikx

[

B(t, ϕ̂j1(k − m, t)ei(k−m)x, ϕ̂j2(m, t)eimx),

+B(t, ϕ̂j2(k −m, t)ei(k−m)x, ϕ̂j1(m, t)eimx)

]

,

Ĉj1,j2,j3(t,k,k − l1, l1 − l2, l2)

=
1

6
e−ikx

[

C(t, ϕ̂j1(k − l1, t)e
i(k−l1)x, ϕ̂j2(l1 − l2, t)e

i(l1−l2)x, ϕ̂j3(l2, t)e
il2x)

+ C(t, ϕ̂j1(k − l1, t)e
i(k−l1)x, ϕ̂j3(l1 − l2, t)e

i(l1−l2)x, ϕ̂j2(l2, t)e
il2x)

+ . . .

+ C(t, ϕ̂j3(k − l1, t)e
i(k−l1)x, ϕ̂j2(l1 − l2, t)e

i(l1−l2)x, ϕ̂j1(l2, t)e
il2x)

]

.

For ε2e0ix in thej-the equation we obtain

(λj(0, 0) + 2wH)A0,2,j = −2〈ϕ̂∗
j , B̂1,2(t, 0,kc,−kc)〉A1,1A−1,1,

λj(0, 0)A0,0,j = −2〈ϕ̂∗
j , B̂1,1(t, 0,kc,−kc)〉|A1,1|

2,

(λj(0, 0) − 2wH)A0,−2,j = −2〈ϕ̂∗
j , B̂1,2(t, 0,kc,−kc)〉A1,1A−1,−1,

(28)

where we omit the argument(t, 0) of ϕ̂∗
j , and similar in the following. Forε2e2ikcx in thej-th

equation we obtain

(λj(2kc, 0) + 2wH)A2,2,j = −2〈ϕ̂∗
j , B̂1,1(t, 2kc,kc,kc)〉A

2
1,1,

λj(2kc, 0)A2,0,j = −2〈ϕ̂∗
j , B̂1,2(t, 2kc,kc,kc)〉A1,1A1,−1,

(λj(2kc, 0) − 2wH)A2,−2,j = −2〈ϕ̂∗
j , B̂2,2(t, 2kc,kc,kc)〉A

2
1,−1.

(29)
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For ε3eikcx in the equation forj = 1 we obtain

∂TA1,1 = λ1A1,1 + 2
∑

j∈N

〈

ϕ̂∗
1, B̂1,j(t,kc,kc, 0)A1,1A0,0,j + B̂2,j(t,kc,kc, 0)A1,−1A0,2,j

〉

+2
∑

j∈N

〈

ϕ̂∗
1, B̂1,j(t,kc,−kc, 2kc)A−1,−1A2,2,j + B̂2,j(t,kc,−kc, 2kc)A−1,1A2,0,j

〉

+2e2iωH t
∑

j∈N

〈

ϕ̂∗
1, B̂1,j(t,kc,kc, 0)A1,1A0,2,j + B̂2,j(t,kc,−kc, 2kc)A−1,1A2,2,j

〉

+2e−2iωH t
∑

j∈N

〈

ϕ̂∗
1, B̂1,j(t,kc,kc, 0)A1,1A0,−2,j + B̂2,j(t,kc,kc, 0)A1,−1A0,0,j

〉

+2e−2iωH t
∑

j∈N

〈

ϕ̂∗
1, B̂1,j(t,kc,−kc, 2kc)A−1,−1A2,0,j + B̂2,j(t,kc,−kc, 2kc)A−1,1A2,−2,j

〉

+2e−4iωH t
∑

j∈N

〈

ϕ̂∗
1, B̂2,j(t,kc,kc, 0)A−1,−1A0,−2,j + B̂1,j(t,kc,−kc, 2kc)A−1,1A2,−2,j

〉

+3
〈

ϕ̂∗
1, C1,1,1(kc,kc,kc,−kc)|A1,1|

2A1,1 + 2C1,2,2(kc,kc,kc,−kc)A1,1|A1,−1|
2
〉

+3e2iωt
〈

ϕ̂∗
1, C1,1,2(kc,kc,kc,−kc)A

2
1,1A−1,1

〉

+3e−2iωt
〈

ϕ̂∗
1, C2,2,2(kc,kc,kc,−kc)A

2
1,−1A−1,−1 + 2C1,1,2(kc,kc,kc,−kc)|A1,1|

2A2
1,−1

〉

+3e−4iωt
〈

ϕ̂∗
1, C2,2,1(kc,kc,kc,−kc)A

2
1,−1A−1,−1

〉

,

and a similar equation for∂TA1,−1, taking into account the symmetries of the problem. If we
eliminate theAj1,j2,j2 by the time dependent algebraic equations (28) and (29) we obtain a
system of Ginzburg-Landau equations forB1 := A1,1 andB2 := A1,−1 alone, namely

∂TB1 =c0B1 + c1ε
−1∂XB1 + c3∂

2
XB1 + c5∂

2
YB1

+ d6(t)B1|B1|
2 + d7(t)B1|B2|

2 + d8(t)B2|B2|
2e−2iωH t

+ d9(t)B2|B1|e
−2iωHt + d10(t)B

2
2B1e

−4iωH t + d11(t)B
2
1B2e

2iωH t,

(30)

∂TB2 =c0B2 − c1ε
−1∂XB2 + c3∂

2
XB2 + c5∂

2
YB2

+ d6(t)B2|B2|
2 + d7(t)B2|B1|

2 + d8(t)B1|B1|
2e2iωH t

+ d9(t)B1|B2|e
2iωHt + d10(t)B

2
1B2e

4iωH t + d11(t)B
2
2B1e

−2iωH t

(31)

with c0, c1, c3, c5 from (19), and with time-periodic coefficientsdj(t), j = 6, . . . , 11. In the
next step by some averaging argument we will eliminate the terms with thee2imωH t factors
and prove that only the mean values

cj =

∫ ω0

0

dj(t) dt, j = 6, 7,

of the highly oscillating termsdj(t) = dj(T/ε
2) play a role, while forj = 8, . . . , 11 we

always have
∫ ω0

0
dj(t)e

imjωt dt = O(ε2).
Thus, finally we consider (21),(22), which we repeat for convenience,

∂TA1 =c0A1 + c1ε
−1∂XA1 + c3∂

2
XA1 + c5∂

2
YA1 + c6A1|A1|

2 + c7A1|A2|
2, (32)

∂TA2 =c0A2 − c1ε
−1∂XA2 + c3∂

2
XA2 + c5∂

2
YA2 + c6A2|A2|

2 + c7A2|A1|
2. (33)
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These equations still depend on the small bifurcation parameter ε in a singular way. By
going into a moving frame these terms can be eliminated. HoweverA1 andA2 then depend
on different variables, namely(X + ε−1c1T, Y ) respectively(X − ε−1c1T, Y ). Thus it can
be expected that only the mean values ofA1 andA2 over large intervals play a role and so
(32),(33) can be transfered into so called mean field coupledGinzburg-Landau equations, see
[PW96]. In case thatA1 andA2 are spatially localized they simplify further and decouple
completely, cf. Remark 4.7 and [Sch97].

3.2 Comparison of the Ginzburg-Landau equations

The system (32),(33) of averaged Ginzburg-Landau equations approximates the nonaveraged
system (30),(31) of Ginzburg-Landau equations in the following sense.

Theorem 3.1 Letm ≥ 2. Then for allC1 > 0 andT0 > 0 there existC2 > 0, ε0 > 0 such
that the following holds. For allε ∈ (0, 1) let (A1, A2) ∈ C([0, T0], H

m ×Hm) be a solution
of the averaged system (32),(33) satisfying

sup
T∈[0,T0]

‖Aj(·, T )‖Hm ≤ C1.

Then for allε ∈ (0, ε0) the nonaveraged system (30),(31) has a solution(B1, B2) satisfying

sup
T∈[0,T0]

‖Aj(·, T ) −Bj(·, T )‖Hm ≤ C2ε
2 .

Proof. We write (30),(31) and (32),(33) as

∂T

(

B1

B2

)

=

(

Λ1B1

Λ2B2

)

+

(

C̃1(t, B,B,B)

C̃2(t, B,B,B)

)

,

∂T

(

A1

A2

)

=

(

Λ1A1

Λ2A2

)

+

(

C1(A,A,A)

C2(A,A,A)

)

,

respectively, with linear partsΛj, symmetric autonomous cubic partsCj, and symmetric
nonautonomous cubic parts̃Cj, j = 1, 2, wheret = T/ε2.

LetB(T ) = A(T ) + ε2R(T ). ThenR(T ) = ε−2(B(T ) −A(T )) fulfills

∂TR = ΛR+ 3C̃(t, A,A,R) + 3ε2C̃(t, A,R,R) + ε4C̃(t, R,R,R) + ε−2I(A), (34)

where
I(A) = C̃(t, A,A,A) − C(A,A,A)

is an inhomogeneity. ForR(0) = 0 the variation of constant formula yields

R(T ) =

∫ T

0

e(T−τ)Λ

[

3C̃(t, A,A,R) + 3ε2C̃(t, A,R,R)

+ ε4C̃(t, R,R,R) + ε−2I(A)

]

(τ) dτ.
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The crucial estimate is
∥

∥

∥

∥

∫ T

0

e(T−τ)Λε−2I(A(τ)) dτ

∥

∥

∥

∥

Hm

≤ CA. (35)

For instance, the termε−2I11 := ε−2(d6(τ/ε
2) − c6)|A1|

2A1 in the first componentI1(A)

yields

ε−2I11 :=

∥

∥

∥

∥

∫ T

0

e(T−τ)Λ1 |A1|
2A1∂τg6(τ) dτ

∥

∥

∥

∥

Hm

≤
∥

∥

∥

[

e(T−τ)Λ1 |A1|
2A1g6(τ)

]T

0

∥

∥

∥

Hm

+

∥

∥

∥

∥

∫ T

0

e(T−τ)Λ1
(

Λ1|A1|
2A1 − 2∂TA1|A1|

2 −A2
1∂TA1

)

g6(τ) dτ

∥

∥

∥

∥

Hm

, (36)

where we set∂τg6 = ε−2(d6(τ/ε
2) − c6), hence

g6(τ) =

∫ τ/ε2

0

d6(s) − c6 ds,

which isO(1) bounded by definition ofc6 =
∫ 1/ω0

0
d6(s) ds sinced6 is 2π/ω0 periodic. Next,

replacing∂TA1 and∂TA1 in (36) by the right hand side of (32) we find thatε−2I11 ≤ C.
Similar estimates for the remaining terms yield (35), and the theorem now follows by a simple
application of Gronwall’s lemma.

Remark 3.2 It is easy to see that for everym ≥ 4 we have‖∂TBj‖Hm−2 = O(1), j = 1, 2

by expressing for instance∂TB1 by the right hand side of (30), but∂2
TBj = O(ε−2). ⌋

3.3 Estimates for the residual

For the proof of the approximation result we need estimates for the residual, defined by

Res(V ) = −∂tV +M(t)V + Ñ(t, V ),

i.e. for those terms which do not cancel after inserting the approximation in (1). Since we
looseε−1 due to the scaling properties of theL2-norm inR2, we extend the above approxi-
mation as in the autonomous case [Sch99a] by higher order terms. We refrain from writing
down these terms and the lengthy calculation of the equations for the functions appearing
in this extended ansatz. We only remark that the new amplitude functions in the ansatz sat-
isfy linearized inhomogeneous Ginzburg-Landau equationsand some inhomogeneous linear
algebraic equations.

Next we split the critical modes from the noncritical modes,i.e. the modes with positive
or slightly negative growth rates from the ones with strictly negative growth rates. In order to
do so we define

Ec = χ|k−kc|<δ + χ|k+kc|<δ,

andEs = 1 − Ec for a small fixedδ > 0 independent ofε.
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Remark 3.3 Due to the disjoint supports ofEc andB(EcV1, EcV2) in Fourier space we have
EcB(EcV1, EcV2) = 0. ⌋

Let ψ̃A(·, t) be the approximation defined through the extended ansatz and

εψ̃A = εψc + ε2ψs, (37)

with Esψc = 0, Ecψs = 0. Like in the autonomous case we have the following lemma.

Lemma 3.4 Fix C1 > 0. For all ε ∈ (0, 1) let (A1, A2) ∈ C([0, T0], H
8(R2,C)) be a family

of solutions of (32,33) withsup
ε∈[0,1]

sup
T∈[0,T0]

‖Aj(·, T )‖H8 ≤ C1. Then there exists aC2 > 0 such

that,∀ε ∈ [0, 1],

sup
t∈[0,T0/ε2]

‖ψA(·, t)−ψ̃A(·, t)‖H4 ≤ C2ε
2, sup

t∈[0,T0/ε2]

(‖ψs(·, t)‖H4 + ‖ψc(·, t)‖H4) ≤ C2,

sup
t∈[0,T0/ε2]

‖Es(Res(εψ̃A(·, t)))‖H4 ≤ C2ε
3, sup

t∈[0,T0/ε2]

‖Ec(Res(εψ̃A1
(·, t)))‖H4 ≤ C2ε

4.

4 The approximation results

System (1) for(n2, n3, v, ρ, σ) is fully nonlinear and a mixture of different types of PDEs,
like quasilinear parabolic equations and balance laws. Thus, a local existence and uniqueness
result for (1), which is fundamental for any approximation result, is highly non-trivial, and
we are not aware of one in the literature. Therefore we consider a regularized version of the
WEM. In order to obtain a semilinear system, i.e., for purelymathematical reasons, we add
artificially a regularizing differential operator

ΛV = (−β∆2n2,−β∆2n3,−βQ∆2v,−β∆2ρ,−β∆2σ)

with smallβ > 0 to the right hand side of (1). Thus we consider

∂tV = ΛV +M(t)V + Ñ(t, V ) (38)

equipped with the boundary conditions from the non-regularized system (2), and additional
artificial boundary conditions due to the regularization, namely

∂2
zn2 = ∂2

zn3 = ∂2
zv1 = ∂2

zv2 = ∂2
zv2 = ∂zσ = ∂3

zσ = ρ = ∂2
zρ = 0. (39)

For smallβ > 0 the regularized system and the original system show qualitatively the same
bifurcation behavior. In particular, all calculations from Sections 2 and 3 also apply to (38).

Remark 4.1 Setting

V (x, z, t) =εA1(X, T )eikcxϕ̂1(kc, 0, z, t) + εA2(X, T )eikcxϕ̂2(kc, 0, z, t)

+ c.c. + ε2Ws(x, z, t),

18



there exists a2π/ω0 periodic bounded invertible transformQ(t) : L2(R2 × (−π/2, π/2)) →

L2(R2 × (−π/2, π/2)) such thatWs(t) = Q(t)Z(t) andZ(t) fulfills

∂tZ(t) = ΛsZ(t) + ε−2Ñ(V, t)

with Λ−1
s : L2(R2 × (−π/2, π/2)) → H4(R2 × (−π/2, π/2)) bounded, see, e.g. [Hen81,

Theorem 7.2.3], which can be applied to our regularized system. Thus, the contribution of
the quadratic terms to the cubic coefficientsd6(t), . . . , d11(t) via coupling with stable modes
is obtained viaΛ−1

s instead of (28) and (29). On the other hand, in practical calculations only
a finite number of stable Floquet solutionsϕ̂j(k, t) at (k, l) = (0, 0) and(k, l) = (2kc, 0) are
calculated and the inversion is done via (28) and (29). This is why in sec.3 w.l.o.g. we also
used this algorithmic approach. ⌋

We have two kinds of approximation results. In Case I (NR), where the amplitude equations
are independent of the small parameterε, the result is as follows, see [BSU06].

Theorem 4.2 Letm ≥ 8 andA = A(X, Y, T ) be a solution of the GLe (9) forT ∈ [0, T0],
satisfying

sup
T∈[0,T0]

‖A(T )‖Hm <∞.

Then there areε0 > 0 andC > 0, such that for allε ∈ (0, ε0) we have solutionsV of (38)
satisfying

sup
t∈[0,T0/ε2]

sup
(x,y,z)∈R2×(−π/2,π/2)

|V (x, y, z, t) − εψA(x, y, z, t)| ≤ Cε2.

In case that the amplitude equations still depend on the small bifurcation parameter, i.e. in
the Cases I (OR) and II, the result is as follows, here formulated for the amplitude equations
(32), (33), i.e., Case II (NR).

Theorem 4.3 Letm ≥ 8 and(A1, A2) = (A1, A2)(X, Y, T, ε) be a family of solutions of the
coupled Ginzburg-Landau equations (32),(33), satisfying

sup
ε∈(0,1)

sup
T∈[0,T0]

(‖A1(T )‖Hm + ‖A2(T )‖Hm) <∞.

Then there areε0 > 0 andC > 0, such that for allε ∈ (0, ε0) we have solutionsV of (38)
satisfying

sup
t∈[0,T0/ε2]

sup
(x,y,z)∈R2×(−π/2,π/2)

|V (x, y, z, t) − εψA(x, y, z, t, ε)| ≤ Cε2.

Remark 4.4 As a consequence of Theorems 4.2 and 4.3 the dynamics known for (9) and
(15)-(18) can be found approximately in system (38), too. The error of orderO(ε2) is much
smaller than the approximationεψA and the solutionV which are both of orderO(ε) for all
T ∈ [0, T0] or t ∈ [0, T0/ε

2], respectively. This fact should not be taken for granted: there are
modulation equations [Sch95b] which, although derived by aformal perturbation analysis, do
not reflect the true dynamics of the original system. The proof of Theorem 4.2 is not trivial
since solutions of orderO(ε) have to be bounded on a time interval of lengthO(1/ε2). ⌋
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Remark 4.5 Ginzburg–Landau equations have been derived for example for reaction-diffus-
ion systems and hydrodynamical stability problems, as the Bénard and the Taylor-Couette
problem. For these examples these GLe have been justified as amplitude equation by a num-
ber of mathematical results: so called approximation and attractivity theorems have been
established by a several authors for model problems, but also for general systems including
the Navier-Stokes equation, cf. [CE90, vH91, Eck93, Sch94c, Sch94a, Sch95a, TBD+96].
Nowadays the theory is a well established mathematical toolwhich can be used to prove sta-
bility results [Uec01, SU03], upper semi-continuity of attractors [MS95, Sch99b] and global
existence results [Sch94b, Sch99a]. As a consequence of ourapproximation results, this
mathematical theory can be transfered almost one to one in case of systems with external
time periodic forcing described by semilinear parabolic equations, see [BSU06] for discus-
sion. Hence, the Ginzburg-Landau equation really gives a proper description of autonomous
and time-periodic systems near the bifurcation point. ⌋

Remark 4.6 Theorem 4.2 can be improved in a number of directions. The error can be
made smaller by adding higher order terms to the approximation. However the time scale
cannot be extended [vH91]. By a more involved analysis [Sch94b] less regularity for the
solutions of the Ginzburg-Landau equation is needed. In they-independent case the space
Hm(R × (0, π)) can be replaced by the larger spaceHm

l,u(R × (0, π)) equipped with the
norm‖u‖Hm

l,u
= supx∈R

‖u‖Hm((x,x+1)×(0,π) which contains constants, periodic functions, or
fronts in contrast toHm. The difficulties inR2 × (0, π) are due to the non smoothness of the
symbol of the inverse Stokes operator or of the projectionQ in case of two unbounded space
directions. See, e.g., the proof of Lemma A.4 and Remark A.5. ⌋

Remark 4.7 For spatially localized solutions all amplitude equationsdecouple. For instance,
assume thatA1, A2 ∈ Hm(2) whereHm(n) = {u ∈ Hm : ‖uρn‖Hm < ∞}, ρ(X) =

(1 + X2)1/2. Then introducingX1 = X + c1
ε
T andX2 = X − c1

ε
T the system (21),(22)

reduces to

∂TA1 = c0A1 + c3∂
2
X1
A1 + c5∂

2
YA1 + c6A1|A1|

2 (40)

∂TA2 = c0A2 + c3∂
2
X2
A2 + c5∂

2
YA2 + c6A2|A2|

2 . (41)

The termsc7A1|A2|
2 andc7A2|A1|

2 from (21),(22) no longer occur since their influence on
the dynamics can be estimated to be of orderO(ε). If A1 andA2 are spatially localized the
interaction time of these terms isO(ε) due to the fact that they move with a relative velocity
of orderO(1/ε) through each other, cf. [Sch97].

Also note that the singular terms in the amplitude equations, e.g., c1ε−1∂XA1 and
−c1ε

−1∂XA2 in (32) and (33) are no problem for the validity result, whichstarts with a given
family of solutions of (32) and (33). The singular terms do not occur in the error equations,
e.g., (44) below. ⌋

Remark 4.8 For non small values ofε, i.e. away from the bifurcation point other amplitude
equations take the role of the Ginzburg-Landau equation. Ingeneral the locally preferred
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patterns do not fit together globally, and so there will be some phase shifts in the pattern
which will be transported or transformed by dispersion and diffusion. For the description of
the evolution of the local wavenumberq of these pattern amplitude equations can be derived,
such as phase diffusion equations, conservation laws, and the Burgers equation. Recently,
approximation results in the above sense have been proved for this reduction, see [MS04b,
MS04a, DSSS05]. For the modulation of the associated solutions in the two-dimensional real
Ginzburg-Landau equation (9) the results from [MS04b] transfer almost line for line. The
rescaled phase diffusion system for the evolution of the local wave numbersq = (qx, qy) is
given by

∂τq = ∆q + ∇(∇ · f(q)) (42)

with coefficientsc1, c2 ∈ R andf : R2 → R2 a smooth mapping. Combining the trans-
fered approximation result from [MS04b] for this equation with Theorem 4.2 shows that the
dynamics of (42) can be found approximately in the regularized WEM, too. ⌋

Finally, we state the approximation result in case (OR).

Theorem 4.9 Letm ≥ 8, and let(A1, A2, A3, A4) be a family of solutions of the set coupled
Ginzburg-Landau equations (15)–(18), satisfying

sup
ε∈(0,1)

sup
T∈[0,T0]

(‖A1(T )‖Hm + ‖A2(T )‖Hm + ‖A3(T )‖Hm + ‖A4(T )‖Hm) <∞.

Then there areε0 > 0 andC > 0, such that for allε ∈ (0, ε0) we have solutionsV of (38)
satisfying

sup
t∈[0,T0/ε2]

sup
(x,y,z)∈R2×(−π/2,π/2)

|V (x, y, z, t) − εψA(x, y, z, t, ε)| ≤ Cε2.

5 Local existence and uniqueness

For the local existence and uniqueness of the solutions of the semilinear parabolic system
(38) we follow [Hen81]. The regularizing termΛ is a sectorial operator in the space

X = L2(R2 × [−π/2, π/2],R7) ∩ {Qu = u}

with domain of definition

X 1 = {U ∈ H4 | U satisfies the boundary conditions(2) and(39)} ∩ {Qu = u}.

ThereforeΛ generates an analytic semigroup in the spaceX . It is a lengthy but straightfor-
ward calculation (see Remark A.1) to prove that the remaining termsM(t)V + Ñ(t, V ) on
the right hand side of (38) are smooth mappings fromH3 intoX ⊂ L2.

The interpolation spaceX α can be embedded intoH3 for α > 3/4. Hence the term
Nrem is a locally Lipschitz-continuous mapping fromX α intoX for α > 3/4. Therefore, all
assumptions of [Hen81, Theorem 3.3.3] are satisfied, which yields the following result.
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Theorem 5.1 Fix α ∈ (3/4, 1) and letV0 ∈ X α. Then there exists at0 > 0 and a unique
solutionV ∈ C([0, t0],X

α) of (38) withV (0) = V0.

Remark 5.2 The existence of solutions to (38) and hence also to the errorequations (44)
below is guaranteed as long as the solutions inX α are bounded. Thus it is sufficient to bound
theX α-norm of the error in the following. SinceX α can be embedded intoH3 for α > 3/4

andH3 into C0
b in three space dimensions, the estimate in Theorem 4.2 follows from the

associated estimate for theX α-norm. ⌋

6 The proof of the error estimates

As a major step of the proof of Theorem 4.3 we show that the solutions of (38) can be
approximated via the solutions of the non averaged Ginzburg-Landau equations.

Theorem 6.1 Let C1 > 0. Let (B1, B2) = (B1, B2)(X, T ; ε) ∈ C([0, T0], H
8 × H8), be

a family of solutions of the non averaged GLe (30),(31) withsup
ε∈[0,1]

sup
T∈[0,T0]

(‖B1(·, T )‖H8 +

‖B1(·, T )‖H8) ≤ C1. Then there areε0 > 0 andC2 > 0 such that for allε ∈ (0, ε0) we have
solutionsV of (1) with

sup
t∈[0,T0/ε2]

‖V (t) − εψB(t)‖Xα ≤ C2ε
2.

Proof. We write (38) as

∂tV = M̃(t)V +B(t, V, V ) + C(t, V, V, V ) + O(‖V ‖4
Xα), (43)

whereM̃(t) = Λ +M(t), and whereB andC contain the quadratic and cubic terms, respec-
tively, cf. (27). Inserting

V = εψc + ε2ψs + ε2Rc + ε3Rs ,

with Rc = EcRc, Rs = EsRs, ψc = Ecψc, andψs = Esψs gives

∂tRc = M̃(t)Rc + ε2Lc(R) + ε3Nc(R) + ε2Resc ,

∂tRs = M̃(t)Rs + Ls(Rc) + εNs(R) + Ress ,
(44)

where

Resc = ε−4Ec(Res(εψB)) , Ress = ε−3Es(Res(εψB)) ,

Lc(R) = 2Ec(B(Rs, ψc) +B(Rc, ψs)) , Ls(Rc) = 2EsB(Rc, ψc) ,

and whereNc(R) andNs(R) satisfy

‖Nc(R)‖X ≤ C(Dc, Ds)(‖Rc‖Xα + ‖Rs‖Xα)2, (45)

‖Ns(R)‖X ≤ C‖Rs‖Xα + C(Dc, Ds)(‖Rc‖Xα + ‖Rs‖Xα)2, (46)
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as long as
‖Rc‖Xα ≤ Dc and ‖Rs‖Xα ≤ Ds . (47)

HereC(Dc, Ds) is a constant depending onDc andDs independent of0 ≤ ε ≪ 1. The
constantsDc andDs will be chosen later on independent ofε. System (44) is solved with
initial datum(Rc(0), Rs(0)) = (0, 0). The solutions of

∂tR = M̃(t)R, R|t=τ = R0

define viaR(t) = K(t, τ)R0 a linear evolution operatorK(t, τ) which satisfiesK(t, τ) =

K(t+ 2π/ω, τ + 2π/ω) and whose properties are summarized in the following lemma.

Lemma 6.2 There existC, σ > 0 independent of0 < ε≪ 1 such that for the stable part we
have

‖K(t, τ)Es‖X→Xα ≤ C max(1, (t− τ)−α)e−σ(t−τ),

and for the critical part we have

‖K(t, τ)Ec‖X→Xα ≤ Cmax(1, (t− τ)−α)eCε2(t−τ).

Proof. The operatorM(t) is a relatively bounded perturbation of the sectorial operator Λ.
ThusM(t) generates an evolution operator whose growth properties are fixed by the location
of the Floquet spectrum, see [Hen81, Theorem 7.1.3 and Exercise 1 on p.197]. This spectrum
already has been discussed in Section 2 and yields the above growth rates. The constantC
can be chosen independent ofε due to the fact that the critical eigenvalues for fixedk nearkc

are semisimple.

To conclude the proof of Theorem 6.1 we apply the variation ofconstant formula to (44)
and obtain

Rc(t) =

∫ t

0

K(t, τ)Eh
c (ε2Lc(R) + ε3Nc(R) + ε2Resc)(τ)dτ ,

Rs(t) =

∫ t

0

K(t, τ)Eh
s (Ls(Rc) + εNs(R) + Ress)(τ)dτ .

Let Si(s) := sup0≤t≤s ‖Ri(t)‖Xα, (i = s, c). Using Lemma 3.4, (45) and

(

∫ t

0

C max(1, τ−α)e−στdτ
)

= O(1)

for all t > 0, we obtain that

Ss(t) ≤ CSc(t) + ε(CSs(t) + Cs(Dc, Ds)(Sc(t) + Ss(t))
2) + CRes,

≤ CSc(t) + 1 + CRes, (48)

provided that
ε(CDs + Cs(Dc, Ds)(Dc +Ds)

2) ≤ 1. (49)
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Similarly, we find

Sc(t) ≤ε
2

∫ t

0

Cmax(1, (t− τ)−α)(Sc(τ) + Ss(τ))

+ εCs(Dc, Ds)(Sc(τ) + Ss(τ))
2 + CResdτ,

≤ε2

∫ t

0

Cmax(1, (t− τ)−α)(Sc(τ) + Ss(τ)) + 1 + CResdτ,

provided that
εCs(Dc, Ds)(Dc +Ds)

2 ≤ 1. (50)

Thus, (48) yieldsSc(t) ≤ ε2
∫ t

0
C max(1, (t − τ)−α)(Sc(τ) + 1 + CRes)dτ. Rescaling time,

i.e.T = ε2t and applying Gronwall’s inequality [Hen81, Lemma 7.1.1] yields

Sc(t) ≤ C(1 + CRes)T0e
CT0 =: Dc

for all t ∈ [0, T0/ε
2]. ThenSs(t) ≤ CDc + 1 + CRes =: Ds by (48). Thus, Theorem 6.1

follows by choosingε0 > 0 so small that for allε ∈ (0, ε0) the conditions (49) and (50) are
satisfied.

It remains to conclude Theorem 4.3 from Theorem 6.1 and Theorem 3.1. LetψA be the
approximation constructed via the solutionA = (A1, A2) of the averaged GLe (32),(33), and
let ψB be the approximation constructed via the solutionB = (B1, B2) of the non-averaged
GLe (30),(31). Moreover, letV be a solution from Theorem 6.1. Due to the embedding
X α ⊂ C0

b we have
sup

t∈[0,T0/ε2]

‖εψB(·, t, ε) − V (·, t)‖C0
b

= O(ε2).

From Theorem 3.1 andH2 ⊂ C0
b we havesupT∈[0,T0] ‖A(·, T ) − B(·, T )‖C0

b
= O(ε2) which

impliessupt∈[0,T0/ε2] ‖εψB(·, t, ε)−εψA(·, t, ε)‖C0
b

= O(ε2). Hence, by the triangle inequality
we have

sup
t∈[0,T0/ε2]

‖εψA(·, t, ε) − V (·, t)‖C0
b
≤ C sup

t∈[0,T0/ε2]

‖εψA(·, t, ε) − V (·, t)‖C0
b

≤ C( sup
t∈[0,T0/ε2]

‖εψA(·, t, ε)−εψB(·, t, ε)‖C0
b
+ sup

t∈[0,T0/ε2]

‖εψB(·, t, ε)−V (·, t)‖C0
b
)

= O(ε2).

The proof of Theorem 4.3 is complete.

7 Discussion

The electro-hydrodynamic instabilities of nematic liquidcrystals may lead to complicated
patterns. Here we analyzed three generic cases, namely CaseI normal rolls (NR) (single real
Ginzburg–Landau equation (9)) and Case II NR (2 coupled complex GL equations (21),(22))
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and Case II OR (oblique rolls) (4 coupled complex GL equations (15)–(18)). In the latter two
cases the amplitude equations still depend in a singular wayon the small bifurcation param-
eterε, which however can be removed by going into (separately) comoving frames, yielding
nonlocal amplitude equations. For spatially localized solutions these decouple completely.

Moreover, for a regularized model we showed the validity of these amplitude equations.
This puts studying the dynamics of the WEM using the respective amplitude equations on
firm mathematical grounds. Thus, as a next step one may study in detail the dynamics of
(21),(22) resp. (15)–(18). See [DO04] and the references therein for some first results, which
show that these dynamics are very rich. A further open problem is to remove the artificial
reguarization of the WEM. This will be subject of further research.

A Appendix

A.1 Description of the WEM

The following presentation and non-dimensionalization ofthe WEM follows [Tre96] and
[DO04]. The director fieldn of unit vectors, the fluid velocityv and the pressurep in the
presence of an electric fieldE satisfy

(∂t + v · ∇)n = ω × n+ δ⊥(λAn− h) , (51)

P2(∂t + v · ∇)v = −∇p−∇ · (T visc + Π) + π2ρE , (52)

∇ · v = 0 , (53)

for (x, y, z) ∈ Ω = R2 × (0, π). Herein,

ω = (∇× v)/2 (54)

is the vorticity. The molecular fieldh is given by

h = 2

(

∂f

∂n
−∇ ·

∂f

∂∇n

)

− εaπ
2(n · E)E (55)

where
2f = (∇ · n)2 +K2[n× (∇× n)]2 +K3[n · (∇× n)]2 , (56)

is the elastic energy density describing splay, twist (K2), and bend (K3) deformations. We
refer to [DO04] for a physical interpretation of the constants P2, λ, K2, K3, andεa. The
electric fieldE = E(x, y, z, t) ∈ R3 is considered to be quasistationary, i.e. rotE = 0. It is
split into an external forcing and some potential part, i.e.

E = Ep(t)(0, 0, 1)T −∇φ , where Ep(t) = E0 cosω0t. (57)

The tensorsA, andT visc are, respectively, the shear flow tensor

Aij = (∂ivj + ∂jvi)/2 (58)
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and the viscous stress tensor

−T visc
ij =

3
∑

k=1

(α1ninjnk

3
∑

l=1

(nlAkl) + α2njmi + α3nimj (59)

+α4Aij + α5njnkAki + α6ninkAkj)

with coefficientsα1, . . . , α6, and where

m = δ⊥(λAn− h) . (60)

The tensorΠ is the nonlinear Ericksen stress tensor

Πij =
3
∑

k=1

∂f

∂nk,j

nk,i. (61)

The projection tensor
δ⊥ij = δij − ninj (62)

in (51) guarantees that|n| = 1 as long as the solution exists. The charge densityρ and the
deviation of the local conductivityσ from 1 satisfy

P1(∂t + v · ∇)ρ = −∇ · (µEσ) , (63)

(∂t + v · ∇)σ = −α2π2∇ · (µEρ) −
r

2
(σ2 − 1 − P1π

2αρ2) . (64)

Finally the system is closed by Poisson’s law

ρ = ∇ · (εE) . (65)

The dielectric tensorε and conductivity tensorµ are given byεij = δij + εaninj andµij =

δij+σaninj , respectively. The parametersP1 andP2 are Prandtl–type time scale ratios. Again
we refer [DO04] for a physical interpretation of the constantsP1, σa, α, andr.

Using Poisson’s lawE, respectivelyφ can be expressed in terms ofρ and so (51)-(53)
and (63)-(64) can be rewritten as a system of dynamical equations forn, v, ρ, σ.

Summary: Sincen2
1 + n2

2 + n2
3 = 1 for our purposes it is sufficient to considern2 andn3.

Hence we finally consider

∂tn2 = 〈e2,−(v · ∇)n + ω × n+ δ⊥(λAn− h)〉 , (66)

∂tn3 = 〈e3,−(v · ∇)n + ω × n+ δ⊥(λAn− h)〉 , (67)

∂tv = P−1
2 Q(−(v · ∇)v −∇ · (T visc + Π) + π2ρE) , (68)

∂tρ = −v · ∇ρ− P−1
1 ∇ · (µEσ), (69)

∂tσ = −v · ∇σ − α2π2∇ · (µEρ) −
r

2
(2σ + σ2 − P1π

2αρ2), (70)

under the boundary conditions

n2 = n3 = v1 = v2 = v3 = φ = 0,
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whereQ is the projection on the divergence-free vector fields{v | ∇ · v = 0}, see Sec. A.3,
and whereE = E(n, ρ, Ep) is defined through (57) and (65) under the boundary conditions
φ|z=0,π = 0, see Sec. A.2. As already said the WEM equations are invariant under arbitrary
translations inx andy and under the reflectionsS1, S2, andS3 defined in (3), (4), and (5).

Remark A.1 The right hand side of the non regularized WEM is a smooth mapping from
H3 into L2. In order to see this letφ, n, v, σ ∈ H3. Then we haveω ∈ H2 by (54),f ∈ H2

by (56),E ∈ H2 by (57),h ∈ H1 by (55),δ⊥ ∈ H3 by (62),A ∈ H2 by (58),m ∈ H1 by
(60),T visc ∈ H1 by (59), andΠ ∈ H2 by (61). Hence the right hand side of (51) is inH1

and the right hand side of (52) is inH0. We haveε ∈ H3 andµ ∈ H3. Thenρ ∈ H1 and so
the right hand side of (64) is inH0. ⌋

A.2 The definition ofE = E(n, ρ, Ep)

To expressE, respectivelyφ, in terms ofρ we have to solve

ρ =
3
∑

k=1

∂k(εkmEm) =
3
∑

k=1

3
∑

m=1

∂k((ε⊥δkm + εanknm)(Epδm3 − ∂mφ))

with respect toφ under the boundary conditionsφ|z=0,π = 0. We find

(M +G)φ = F (n, ρ, Ep)

where

F (n, ρ, Ep) = ρ−

3
∑

k=1

3
∑

m=1

∂k((ε⊥δkm + εanknm)Epδm3) ,

Mφ = ε⊥∆φ+ εa∂1∂1φ, Gφ = εa

3
∑

k=1

3
∑

m=1

∂k(nknm∂mφ) − εa∂1∂1φ.

Lemma A.2 The linear operatorM−1 is bounded fromHs intoHs+2.

Proof. We have to prove the invertibility of the operatorM with the boundary conditions
φ
∣

∣

z=± d
2

= 0. Thus, to solveMφ(x, y, z) = f(x, y, z) we use Fourier series

φ(x, y, z) =

∫ ∫

(
∑

m∈N

φ̂(k, l,m)eikx+ily sin(mz)) dkdl,

f(x, y, z) =

∫ ∫

(
∑

m∈N

f̂(k, l,m)eikx+ily sin(mz)) dkdl.

This yields(−εak
2 − ε⊥(k2 + l2 +m2))φ̂(k, l,m) = f̂(k, l,m), or equivalently

φ̂(k, l,m) = −
f̂(k, l,m)

(εak2 + ε⊥(k2 + l2 +m2))
.
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We use that theHs-norm of a functionv(x) =
∑∞

m=0 vm(x)eimx is equivalent to theℓ2(s)-
norm of the Fourier coefficients, i.e.‖(vm)m∈N0

‖2
ℓ2(s) =

∑∞
m=0 |vm|

2(1 +m2)s, such that

‖φ‖2
Hs+2 =

∫ ∫

∑

m∈N

|φ̂|2ε⊥(1 + k2 + l2 +m2)s+2 dkdl

=

∫ ∫

∑

m∈N

|f̂ |2
(1 + k2 + l2 +m2)s+2

(εak2 + ε⊥(k2 + l2 +m2))s
dkdl

≤ sup
k,l,m

∣

∣

∣

1 + k2 + l2 +m2

εak2 + ε⊥(k2 + l2 +m2)

∣

∣

∣

2
∫ ∫

∑

m∈N

|f̂ |2(1 + k2 + l2 +m2)s dkdl

≤ C

∫ ∫

∑

m∈N

|f̂ |2(1 + k2 + l2 +m2)s dkdl = C‖f‖2
Hs.

Hence the electric potentialφ satisfies

(1 +GM−1)Mφ = F (n, φ, ρ, Ep) ,

whereGM−1 is small forñ = n − (1, 0, 0)T small. By using Neumann’s series we finally
obtain

φ = M−1(1 +GM−1)−1F (v, ρ, Ep). (71)

Lemma A.3 Let‖V ‖H2 > 0 be sufficiently small. Then the operatorM−1(1 +GM−1)−1 is
bounded fromL2 intoL2.

Proof. The operatorsM−1:L2 → H2 andG:H2 → L2 are bounded. Moreover,‖GM−1‖L2→L2

is small if ‖V ‖H2 > 0 is small. Neumann’s series gives the boundedness of(1+GM−1)−1 :

L2 → L2, but then alsoM−1(1+GM−1)−1 : L2 → L2 is bounded.

A.3 The projection onto divergence free vector fields

In the following we restrict ourselves to the hydrodynamic part of (1). We define the projec-
tionQ onto divergence free vector fields byv = Qf , wherev solves

v −∇p = f, ∇ · v = 0, v3|z=0,π = 0. (72)

Lemma A.4 The projectionQ is continuous fromHm onto{v ∈ Hm : ∇·v=0, v3|z=±π/2=0}.

Proof. In order to solve (72) we consider the Fourier transformed system

v1 − ikp = f1, v2 − ilp = f2, v3 − ∂zp = f3, ikv1 + ilv2 + ∂zv3 = 0,

together with the boundary conditions. This can be solved bythe ansatz

v1 =
∞
∑

m=0

v1,m cos(mz), v2 =
∞
∑

m=0

v2,m cos(mz), v3 =
∞
∑

m=0

v3,m sin(mz),

f1 =
∞
∑

m=0

f1,m cos(mz), f2 =
∞
∑

m=0

f2,m cos(mz), f3 =
∞
∑

m=0

f3,m sin(mz),

p =

∞
∑

m=0

pm cos(mz).
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We obtain

v1,m − ikpm = f1,m, v2,m − ilpm = f2,m, v3,m −mpm = f3,m,

ikv1,m + ilv2,m −mv3,m = 0,

which is solved form 6= 0 by








v1,m

v2,m

v3,m









= Am(k, l)









f1,m

f2,m

f3,m









=
1

m2 + k2 + l2









m2 + l2 −lk −ikm

−lk m2 + k2 −ilm

ikm ilm k2 + l2

















f1,m

f2,m

f3,m









.

The entries of the matricesAm(k, l) are bounded uniformly with respect tom, k and l,

i.e. there exists aC such that for allm, k, andl |vj,m(k, l)| ≤ C
3
∑

j=1

|fj,m(k, l)|. Form = 0

we obtain








v1,0

v2,0

v3,0









=
1

k2 + l2









l2 −lk 0

−lk k2 0

0 0 k2 + l2

















f1,0

f2,0

f3,0









.

Again the entries of the matricesA0(k, l) are bounded uniformly with respect tok andl, i.e.
there exists aC such that for allk, andl

|vj,0(k, l)| ≤ C

3
∑

j=1

|fj,0(k, l)|.

The solution is extended tok=l=0 by v1,m = f1,m, v2,m = f2,m andv3,m = f3,m. The asser-
tion follows by using that theHs-norm of a functionv(x) =

∑∞
m=0 vm(x)eimx is equivalent

to theℓ2(s)-norm‖(vm)m∈N0
‖2

ℓ2(s) =
∑∞

m=0 |vm|
2(1 +m2)s of the Fourier coefficients.

Remark A.5 The extension tok=0 can be made smoothly inR × (0, π) such that multi-
plier theory inHm

l,u spaces can be applied in order to extend these results from the smaller
Hm spaces to the largerHm

l,u spaces. However, the extension is not smooth in case of two
unbounded directions. Nevertheless, in this caseQ∇ : Hm+1

l,u → Hm
l,u is still a smooth op-

eration, cf. [SS01], such that the Navier-Stokes equationsitself in R2 can be solved inHm
l,u

spaces, cf. [GMS01] for a result inC0
b -spaces. However, the termρE in (68) cannot be ex-

pressed as a derivative, i.e., with the∇-operator in front. Thus, this idea does not apply to
the equations of the weak electrolyte model (66)-(70). ⌋
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