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Abstract

The Nusselt solution for the flow of a viscous incompressible fluid with a free surface down
an inclined plane is at best marginally stable, i.e., the linearization has essential spectrum
at least up to the imaginary axis. Nevertheless, using a renormalization group approach
here we establish the stability of the Nusselt solution in the full nonlinear system in case of
linear stability by proving the self similar decay of spatially localized perturbations. The
asymptotic decay for t — oo is similar to the dynamics of localized perturbations of the
trivial solution in the Burgers equation on the real line which is the amplitude equation
of the problem.
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1 Introduction

We consider the flow of a viscous incompressible fluid down an inclined plane, driven
by gravity and governed by the Navier—Stokes equations with a free top surface.
There exists a basic stationary solution with a parabolic flow profile and a flat top
surface, the so called the Nusselt solution. Depending on the parameters of the
system, e.g.the height of the fluid and the inclination angle, this solution is linearly
stable or unstable. There are a number of experimental, numerical and analytic
investigations of the system close to the first instability of the Nusselt solution
[LG94, CD96, CD02, Uec03, PSUO4a, PSUO04b| leading to interesting dynamics, as
unstable pulse dynamics for surface waves. Here we establish the stability of the
Nusselt solution in the full nonlinear system in case of linear stability. The problem
is non—trivial due to a complicated local existence theory and in particular due to
the fact that even in the stable case the linearization around the Nusselt solution
has essential spectrum up to the imaginary axis. Hence no classical argument for
the nonlinear stability applies.

Although the linearization only gives marginal stability, the associated linear
semigroup shows polynomial decay rates if we restrict to spatially localized pertur-
bations. The asymptotic decay for t — oo in the linearized system is similar to
the decay in the 1-dimensional linear diffusion equation. However, in contrast to
exponential decay rates the polynomial rate ¢~2 is too weak to control all nonlinear
terms. In fact, we show that the asymptotic dynamics is nonlinear: the so called
renormalized solution does not converge towards the Gaussian profile coming from
the linearized system but to a non Gaussian profile related to the Burgers equation,



which is the amplitude equation of the system in the stable case. In lowest or-
der, small spatially localized perturbations show the same asymptotics as localized
perturbations of the trivial solution in the Burgers equation.

The paper is based on the renormalization group approach for the proof of diffu-
sive behavior in nonlinear diffusion equations [BKL94|, which has been transfered to
more complicated systems as the Ginzburg-Landau equation and pattern forming
systems in [BK92, Sch96, Sch98, Uec99, ES00, ES02, SU03, GSU04]. In contrast to
these applications our system is quasilinear and the renormalized solution converges
to a non Gaussian limit.

In the remainder of this introduction we first give the equations governing the
inclined film flow and explain the derivation of the Burgers equation and the asymp-
totic behavior of localized perturbations of the trivial solution in the Burgers equa-
tion. The precise result is then stated in sec.1.4.

1.1 The problem

Figure 1 shows the geometry for a two—dimensional liquid film flowing down an in-
clined rigid plate with inclination angle 6. The flow is driven by gravity, the top
surface is free, at the bottom we assume the no—slip boundary conditions u;=u,=0,
and above the fluid we assume a constant atmospheric pressure p, (w.l.o.g. p,=0).
The motion of the film is thus described by the incompressible Navier—Stokes equa-
tions for (u;,us) and the kinematic equation for the free surface, together with
boundary condition for the stress at the free surface (including surface tension, see
below). Again we refer to the monograph [CD02] for a comprehensive review of
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Figure 1: The inclined film problem; a fluid of height y = h(t, %) runs down a plate with
inclination angle # subject to constant gravitational force g.

this so called inclined film problem. For given parameters the problem has a basic
solution, the so called Nusselt solution
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with a flat top surface and a laminar flow in the unbounded Z—direction. Here v and
p are the kinematic viscosity and the density of the fluid, and ¢ is the gravitational
constant.

We assume that at initial time the free surface is a graph over z, and that we
are close to a spectrally stable Nusselt solution, in a sense made precise below. It
turns that the free surface stays a graph over z for all times, and in fact we show
that initial perturbations decay; moreover, they decay in a universal manner.

We use the height hq of the flat film as the characteristic length, the surface ve-
locity uy = un(ho) = gh?sinf/2v of the Nusselt solution as characteristic velocity,
and define the Reynolds number

R = uyho/v.

In dimensionless variables the Nusselt solution is

2 cot 0
R

From previous work [CD02] we know that on the linear level small amplitude long

h=1, un(y)=2y—y° »pny) = (1—y).

surface waves travel with twice the (dimensionless) surface speed uy(1)=1 of uy.
Thus we consider the dimensionless Navier—Stokes equations and boundary condi-
tions for perturbations 7, u and p of the Nusselt solution in this comoving frame: we
set x = T — 2t and obtain

on Tt O = uy + 9o — (0.m)(uy — 0?), (1.1a)
1

in Q: ﬁtul—}—{Au1+3zp+(uN—2)8ru1+u§Vu2 = —(Opuy)us—(Oyuq Jus, (1.1b)
1

atuz—}—{AU2+3yp+(uN—2)8xuz = —(0pug)us—(Oyus)us, (1.1c)

divu =0, (1.1d)

on Tg: 4(0,n)(0pur) + ((0um)* — 1)(Oyuy + Oyus — 21m) =0, (1.1e)

o2 (0 (@tr)— (Bn) Byur+ Do)+
P95 By — _WK(n), (1.1f)
onl'y: u=0, (1.1g)

where uy=0,uy and g* = 2cotf/R.

In (1.1), Ty = T¢(t) = {(z,y) : € R, y = 1+ n(t,z)} is the free surface,
Q=) ={(z,y) :z €R, 0 <y < 1+n(t,x)} the fluid domain, I'y = {(z,y) :
r € R, y =0} the bottom, W = o/(pu’?ho) is the Weber number with ¢ > 0 being
the coefficient of surface tension, and K (n) = (0?n)/(1 + (9,1)?)%? is the interfacial
curvature; (1.1a) is the kinematic condition, (1.1b) and (1.1c) are the momentum
balance, (1.1d) is the continuity equation, (1.1e) and (1.1f) are the continuity of
tangential and normal stresses at the free surface, and (1.1g) is the no-slip condition
at the bottom.



The evolution for (1.1) is determined by specifying the initial surface and the
initial velocity field, while the pressure p is resolved a posteriori from the incompress-
ibility condition. Using a projection onto solenoidal vector fields, the linearization
of (1.1) can be written in the form

U =AU, U = (n,u), (1.2)

where A is a sectorial operator and e has certain smoothing properties (see sec.2).
The nonlinear problem can then be written as a quasilinear system

O,U = AU + F(U, Vp), (1.3)

where F'(U, Vp) contains the nonlinear terms and Vp is obtained from the incom-
pressibility condition. This formulation involves a transformation of the time de-
pendent domain €(t) occupied by the fluid to the fixed domain

Q={(z,y):zeR,0<y <1}

Due to the transformation Vp occurs nonlinearly in (1.3). Using maximal regularity
methods [LM68] for (1.2) and the contraction mapping theorem for the nonlinear
problem, the local existence in Sobolev spaces for (1.1) has been shown in [Ter92],
following [Bea80, Bea84]. For this one must also impose the compatibility conditions

divu=0 im0<y<l+4+n(z), u=0 on y=0,

(1.4)
4(9:m)(Opur) + ((9m)? = 1)(Qyur + Opuz —27) =0 on y=1+n,

on the initial data 7|1 = 1y, ult=1 = uo. The initial time ¢ = 1 will be convenient

in the renormalization process.

1.2 Derivation of the Burgers equation

Due to the unboundedness in = of the domain and the translation invariance in z of
the problem, the linearization (1.2) of (1.1) around 0 has solutions of the form

e)\”(k)teikm@n(k}, y) :

with k € R, n € N and @, (k,y) € C3. The Nusselt solution is spectrally stable if
all eigenvalues A, (k) satisfy
ReA, (k) <0

and if all eigenvalues with real part zero are semi simple. Let the curves of eigen-
values be ordered such that Re), (k) > Re),11(k). Then we always have the simple
eigenvalue A\(0) = 0 for all values of the parameters, with ®,(0,y) = (1,2y,0).
By a standard perturbation argument we have the smoothness of curves of simple
eigenvalues, i.e. we have essential spectrum at least up to the imaginary axis.
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From previous work [Ben57] it is well known that for Reynolds numbers greater
than the critical Reynolds number, i.e.,

R>R.= Zcot 9, (1.5)

the Nusselt solution is unstable with respect to long waves. In the spectrally stable
(unstable) case we have a spectrum as sketched in fig. 2(a) (fig. 2(b)).

(a) R < R. ReA (b) R > R,

0.0f
k i
-0

e

Figure 2: The spectrum drawn over the Fourier wave numbers; (a) schematic sketch in

the stable case; (b) Re\; in the unstable case, obtained from a numerical solution of the
Orr—Sommerfeld equations, see sec.2.2.

Remark 1.1 Note that the critical Reynolds number R, in (1.5) is defined in terms
of instability with respect to long waves. For very low inclination angles and high
Reynolds numbers the Nusselt solution can first become unstable due to a short wave
shear mode instability at a wavenumber k. > 0, see [FDK87] and [CD02, sec.2.6].
Here we always exclude the extreme case of this instability. Also note that the
(in)stability in (1.5) only depends on R and 6, while, e.g., the size of the unstable
sideband and the growth rates also depend on the Weber number W [CD02, Uec03].
The inclusion of surface tension is also important for the existence theory of (1.1),
cf. [Puk72, Bea80]. Here we assume throughout that W > 0. |

In the spectrally stable case the Burgers equation may be formally derived as an
amplitude equation for (1.1). For this we substitute the long wave/small amplitude

ansatz
n 6771(T7X)
) T X 5 T X
U (1) = su(r, X = | ST Ol A0 ) )
Us uge (T, X, y) + 6% uas(T, X, y)
P 5p1(T7 X7 y)
T =06 X =iz, (1.7)



with 0 < § < 1 a small perturbation parameter into (1.1). This yields a hierarchy
of equations which can be successively solved. We first obtain

un =2my, pr=g'm, ux = —(0xm)y’,

L, 24 1, 4
uiz = R(Oxm) {694_5?43“‘59 yz + (§ -9 )y]’ (1.8)

1, 1,4, 14

1 . \
U3 = R(8%m1) {—%yf’ + éy‘* g9V 3539 )yﬂ,

and from the kinematic equation (1.1a) at order O(63) we find that 7; has to satisfy
the Burgers equation

Orm = adim + Box (n) (1.9)
with 5 SR
a=-cot) —— and [=-2.
3 15

Note that @ > 0 iff R < R,, while 3 is independent of the parameters. A few more

remarks are in order:

Remark 1.2 If, for example, we start with (1.1) in the labaratory frame, then the
ansatz (1.6) with (1.7) replaced by X = 6(Z — ct) naturally leads to ¢ = 2. ]

Remark 1.3 Our expansion (1.6),(1.8) and (1.9) is unbalanced in the sense that
we solve ((1.1b),(1.1¢),(1.1e),(1.1f)) to orders (62,4, 6%, 4), respectively, and (1.1a)
to order 63, while (1.1d) and (1.1g) hold exactly. By adding higher order terms
(0, 83u13, 0ugg, 0%pa+063ps) to the ansatz (1.6) and continuing similar to (1.8) we
could also solve (1.1b),(1.1c),(1.1e) and (1.1f) up to order §* (where in fact 0*ugy
would only be needed to still satisfy the incompressibility exactly). However, at this
stage we are only interested in the formal derivation of (1.9), which is unchanged
by higher order terms. Essentially, to prove Theorem 1.6 we need to make precise
the sense in which the dynamics of (1.1) are described by the Burgers equation
(1.9). These rigorous estimates require a functional analytic frame and are therefore
postponed to sec.6. See also Remark 1.8. |

Remark 1.4 Above the threshold of instability, and in the limit of large We-
ber number W, the Kuramoto—Sivashinsky equation [Nep74, KT76, Siv77, TK78|
Orn = —a10%n — ax0%n — 20x (n?) with a1, s > 0 can be derived from (1.1). For
details and for various alternative amplitude equations for (1.1) in different scal-
ing limits see [CD02] and the references therein, and [FI99] for an approach where
no scaling for the parameters is assumed a priori and the perturbation analysis is
based on a “minimal derivability” condition. Here we concentrate on the spectrally
stable case which is the starting point for all rigorous analytic investigations of the
problem. |



1.3 Asymptotic behavior in the Burgers equation

The Burgers equation (1.9), i.e., 8y = ad?n+ 30,(n?) after renaming T =t, X =z
and 7, = 7, is the amplitude equation for (1.1) in the spectrally stable case. In
order to motivate our result for (1.1) we first consider the nonlinear stability of the
trivial solution in (1.9). To keep track of o and 5 we do not rescale (1.9) to the
more standard form 0,1 = 9Zn + Je(n?).

The Burgers equation is transformed to the linear diffusion equation ;1) = 9%¢
by the Cole-Hopf transformation

_ g var o \/a@/}y(tay) o
Y(t,z) = exp (5 /_OO n(t,é)d€>, n(t,z) = 5 uty) y =/

it is well known that
1 r 2
1+ zerf(x/Vt) with erf(z :—/ e ¢/
(/v @) == [ e

is an exact solution of dyp = §21). It follows that

@ () =+ V2 (o Wi :@ zerf'(y/v/a)
W) = LV with L) = SF s (10)

is an exact solution of the Burgers equation. Moreover,

1
At

with rate O(t™1), for initial conditions vy € L*®(R) with limg . () = 1 and
lime o ¢(§) =1 + 2. Therefore the so called renormalized solution satisfies

W(t,x) = / e =0/ Wy () dy — 1+ zerf(z/V1) as t — oo,
R

tlggo tY2n(t, t%2) = f.(2) (1.11)

with rate O(t~1/2), i.e., it converges towards a non-Gaussian limit. This is illustrated
in fig.3, taking into account that § = =2 < 0 and —1 < z < 0 if [n(1,z)dz > 0.
The behaviour (1.11) is not true for spatially non-localized initial conditions since the
Burgers equation has front solutions 7(t,z) = h(x—ct) with |h(£)| /4 0 as |[£| — oc.
It has been shown in [BKL94] that the self-similar dynamics (1.11) in the Burgers
equation is stable under perturbation by higher order terms. Since, in a nutshell,
we want to consider (1.1) for R < R, as a (very complicated) perturbation of the
Burgers equation we note the following Theorem as a prototype of the result we
show for (1.1).

Notation. Throughout this paper we denote many different constants that are in-
dependent of ¢ and the rescaling parameter L > 0 (see below) by the same symbol C'.
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Figure 3: Sketch of self-similar decay in the Burgers equation

For m,n € N we define the weighted spaces H™(n)={u € L*(R) : ||u||gm(n)<oo}
with ||ul|gmmy = ||[up™|| mmwy, where p(z) = (14 |z|?)/? and H™(R) is the Sobolev
space of functions with derivatives up to order m in L*(R). By abuse of notation we
sometimes write, e.g., ||u(t, z)|| gm(n) for the H™(n) norm of the function z — wu(t, z).
Fourier transform is denoted by F and is always with respect to the unbounded di-
rection z; e.g., if u € L*(R), then a(k) := F(u)(k) = \/% [ e *ry(x) da.

From F(0,u)(k) = iku(k) and Parseval’s identity we have that F is an isomor-
phism between H™(n) and H™(m), i.e., the weight in x—space yields smoothness
in Fourier space and vice versa. This smoothness in £ is essential for the proof of
the following theorem, where for convenience we take initial conditions at ¢t = 1.
Moreover, due to the relation with (1.1), here we only consider the quasilinear case
p3 < 1. See sec.3 for the proof and more details.

Theorem 1.5 Let b € (0,1/2), h(n, d.n, 02n) = nP1(0,n)P2(9%n)P* with dj, = 3 —
(p1 + 2p2 + 3ps3) < —1 and p3 < 1. There exist Cy,Cy > 0 such that the following
holds. If ||no|| 22y < Ci, then the pertubed the Burgers equation

O = adin + B0, (11°) + h(n, d.n, 92n) (1.12)
has a unique solution n with 1|1 = no, which satisfies, for a z > —1,

IVin(t, Vi) — f.(2)] g2 < Cat ™, ¢ € [1,00). (1.13)

1.4 The result

Motivated by the fact that the Burgers equation is the amplitude equation for (1.1)
in the spectrally stable case and shows self similar decay of small spatially localized
perturbations of the trivial solution we expect a similar result for (1.1). To state this
result we first need fractional Sobolev spaces with weights. In the definition of these
space we in general do not distinguish between vector valued and scalar functions
as this will be clear from the context. For 0 < r € R, H"(R) is the Sobolev
space of functions u € L?(R) finite in the norm |jullgr® = [[(1+k2)"20||r2(w)-
For r € N this definition coincides with the usual one [LM68, chapter 1]. We let



H"(n) = {u € L*(R) : |Jul|grm) < oo} with ||ullgr@m) = [[up”||ar®). It follows from
Parseval’s identity that [lul| 4., with ”U“%r(n) = > o I(A+k%)28] 0|3, defines an
equivalent norm on H"(n). For Q = {(z,y) : x € R,0 <y < h(x)}, real r > 0, and
n € N, we let

H"(n, Q) ={u e H(Q) : [Jullgrmao) < oo}, |ullarme) = [up" |«

Since ||u||HT(Q) with HUH%T(Q) = ”a”%Q(R,HT(dy)) + [I[k["a HL2 R [2(dy)) 1S an equiva-
lent norm on H"(2), where H"(dy) denotes the Sobolev space with respect to the
bounded cross section [LM68, sec.1.9], it follows that [|ul[ 7, o) With

Il = D (100002 g1y + WY Bl sy )
7=0
is an equivalent norm on H"(n,(2). Finally let

H'(Q) = H'(R) x HY2(Q) and H"(n,Q) = H"(n) x H?(n, Q).

Our result now reads as follows, where as in Theorem 1.5 for convenience we take
the initial conditions for (1.1) at t = 1.

Theorem 1.6 LetR <R, b€ (0,3), and3 < r < 7/2. Then there exist Cy,Cs > 0
such that the following holds. For (no,up) € H"(2,(1)) satisfying

| (M0, wo) |2 2,001)) < Ch

and the compatibility conditions (1.4), there exists a unique solution U = (n,u) of
(1.1) with Ul=1 = (no, uwo). This solution satisfies

(2, y) = [tPU P2, y) = f.(2)@1(0,y)]]

t € [1,00), where ®1(0,y) = (1,2y,0) and z > —1 is given by

In(z+1) = —% /Rno(m) dz,

) < COyth—2 (1.14)

Hr (2,0t

with o from (1.9) and

_ Va zef'(y/a)
f(y) = 2 1+ zerf(y/\/a)

Remark 1.7 From (1.14) we have

sup  |U(t,z,y) — L0671 22)®1(0,y)] < Cat®
(2.)€0(0)

The localized perturbations decay in an universal manner determined by the decay
of perturbations of the trivial solution in the Burgers equation. We have the so
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called asymptotic (H"(2,Q), CP)-stability of (n,u) = 0, i.e., for all £ > 0 there exists
a 0 > 0 such that ||(no, uo)||lrr2,00) < 0 implies ||[9(t)]|ze + ||u(t)||re < € for all
t > 1, and ||n(t)||z + ||u(t)||z~ — O with rate ¢t~'/2. For the pressure p we obtain

sup |p(t,z,y) — 7 Pgrf.(t7Pa)| < Cot™ (1.15)
(z,y)€Q(t)
and similar estimates for the derivatives of p.
In (1.14), z can be given explicitly (in contrast to z in Theorem 1.5) due to

1
8t/ndx - /(u2|rf— (Oum)ualr,) dx—l—/@m(n—i— L) de =0, (1.16)
R R R 3

The second integral obviously vanishes, while the first vanishes since

n
[ (sl = @yl o = [ ([ opusty =~ @unpal, ) a
R R 0
n
:/_ax (/ uldy> dz =0,
R 0

where we used us|r, = 0 and Jyus = —0,u; in Q(t). In other words, the right
hand side of (1.1a) is an xz—derivative, which simply corresponds to conservation of
(perturbation) mass. ]

Remark 1.8 To prove Theorem 1.6 we adapt the techniques used in [BKL94] for
scalar nonlinear diffusion equations (see Theorem 1.5). The key idea in [BKL94] is
that the Burgers equation is invariant under the parabolic rescaling

v(1,€) = Lu(L?1, LE), ie. wu(t,r) =L 'o(L™%,L "), (1.17)

that this rescaling produces prefactors involving L~! in front of higher order terms
in the equation for v, and that the exact solution n* (cf.(1.10)) of the Burgers
equation is attractive in suitable (weighted) spaces. The renormalization group
approach to prove Theorem 1.5 proceeds by solving the equation for v for finite
times and iterating the rescaling (1.17). Details and the functional analytic frame
are given in sec.3, while the following remarks give an overview how we adapt these
ideas to (1.1):

In (1.12) we can regard h(n,d,n,0?n) as a term in the Taylor expansion of a
higher order nonlinearity h. Due to Theorem 1.5 such nonlinearities are called
asymptotically irrelevant or simply irrelevant. In scalar nonlinear diffusion problems
such as (1.12) irrelevant nonlinearities can be identified by a simple power counting,
as expressed by the condition dj, < —1 in Theorem 1.5.

The ansatz (1.6) is related to the rescaling (1.17) with § = L', and the formal
derivation of (1.9) from (1.1) suggest that the only relevant nonlinearity in (1.1) is
(0;m)uy in the kinematic equation (1.1a). However, to prove Theorem 1.6 we first
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need to transform the problem to the fixed domain 2 = R x (0, 1), and this transfor-
mation removes (0,n)u; from the (transformed) kinematic equation and produces
many new nonlinear terms, cf.sec.4.1. Many of these turn out not to be irrelevant
by a simple power counting argument as in Theorem 1.5. This is related to the fact
that in the formal derivation of (1.9) we do not care for large errors (small order in
) in (1.1b),(1.1c), (1.1e) and (1.1f), cf. Remark 1.3. Instead, using so called mode
filters based on the spectral analysis of the linearization of (1.1), see sections 2.2
and 2.3, we shall split U in (1.2) into a critical part U, belonging to the critical
(diffusive) modes ®4(k,y) with k close to 0, and a stable (exponentially damped)
part U; = U — U,.. Using these mode—filters we can identify the relevant terms and,
moreover, give rigorous estimates for the remainder.

The key observation is that the projection of the nonlinearity onto the critical
mode ®;(k,y) vanishes at k=0. This projection is given by a scalar product (see
(2.23)) with the adjoint eigenfunction W, (k,y). Since ¥;(0,y) = (1,0,0) the only
contribution to the projection at k=0 comes from the right hand side of the kinematic
equation (1.1a). This has to vanish at k=0 due to 0; [ n(t,z)dz =0, cf. (1.16). In
summary, near k=0 the critical terms correspond to a total derivative with respect
to x. Heuristically, terms with derivatives with respect to x are “more irrelevant”
than terms without x—derivatives, as can also be seen in the definition of d;, =
3 — (p1 + 2p2 + 3ps) in Theorem 1.5, and this is made rigorous in sec.6, see in
particular Lemma 6.5. ]

Remark 1.9 The restriction » > 3 is used to control the nonlinearity by Sobolev
embeddings. On the other hand, the restriction r < 7/2 is used to avoid the formu-
lation of higher order compatibility conditions on the initial data, see sec.5. ]

Remark 1.10 On a bounded domain, e.g. z € [0, 27, with periodic boundary con-
ditions, the stability of the Nusselt solution, i.e., the stability of (0,0) for (1.1), has
been considered in [NTW93, Sun97]. In detail, in [NTW93] the asymptotic stability
of (0,0) for sufficiently small Reynolds numbers has been shown using energy esti-
mates, while in [Sun97| the principle of linearized stability/instability is established:
for R < R. (R > R,), (0,0) is asymptotically stable (unstable) with exponential rate.
Both, [NTW93] and [Sun97], heavily rely on the bounded domain, and v,e — 0 as

vt and where ¢ is the size of the

the domain becomes large, where the decay is e~
allowed initial perturbations. In the physical problem the ratio h/L where h is the
physical film height and L the spatial length scale is typically very small. Therefore
it is more natural to consider (1.1) on an unbounded domain. Then we only have

algebraic decay, but our approach also gives the detailed self similar asymptotics. |

Remark 1.11 The related result of Burgers—like self-similar decay in the so called
Integral Boundary Layer equation (IBLe) has been shown in [Uec04]. The IBLe can
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be formally derived from the Navier—Stokes equations (1.1). It is a two dimensional
parabolic system on the real line which is quasilinear and hence still shows many
of the difficulties of (1.1). However, the analysis for the IBLe is technically simpler.
Thus it may be advantageous to look at [Uec04] for an outline of the arguments
used here. |

The plan of the paper is as follows. In Section 2 we first review the functional
analytic setup and the spectral theory for the linearization 0,U = AU of (1.1).
Then we introduce the mode filters. Section 3 contains a review of the ideas from
renormalization theory and a proof of Theorem 1.5. This also explains the need for
the weighted spaces H"(n). In Section 4 we transform the domain §2(¢) occupied
by the fluid to the fixed strip @ = Rx(0,1), and hence formulate (1.1) in the
form (1.2). This transformation produces a large number of new nonlinear terms.
In combination with the mode-filters, all but one of these can be seen to be irrelevant
in the sense of renormalization. In Section 5 we review the local existence theory for
(1.2), and in Section 6 we set up the renormalization process to prove Theorem 1.6.
In the Appendix we prove some technical results.

Acknowledgments. This work was partially supported by the DFG under grant
Ue 60/1. The author thanks R. L. Pego and G. Schneider for stimulating discussions,
and the anonymous referees for careful and critical reading of the first version of the

manuscript.

2 The linearized equations

With Lyu = ((2y—y*—2)0,u1 + (2—2y)us, (2y—y*—2)d,us) and g* = (2cot§)/R,
the linearization of (1.1) around (n,u) = (0,0) reads

1
inQ: w+ Lyu=—-Vp+ }—{Au, divu =0, (2.1a)

2
onl'¢: Om=us+0,m, 0Oyu1+0,us—2n =0, p—g*n—f—{ayuQ = —-Wa?p, (2.1b)
only: u=0. (2.1c)

In subsection 2.1 we formulate (2.1) in the form 0,U = AU, U = (n, u) and, following
[Bea84, Ter92|, review resolvent estimates for the linear operator A in unweighted
spaces ‘H"(£2), which show that A generates an analytic semigroup with certain
smoothing properties. To prove Theorem 1.6 we need these estimates in the weighted
spaces H"(2,€2). They are proved in App.A.2. In subsections 2.2 and 2.3 we recall
the spectral analysis for (2.1) and define mode filters to separate the critical from
the stable modes.
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2.1 The evolutionary system

To write (2.1) as an evolution equation we first need to project onto solenoidal vector
fields. From

/Q(divu)gon:/aQ(u-n)gde—/u-Vgon

Q
we have dive = 0 and u; = 0 on I', iff u is L? orthogonal to Vo for all ¢ with
@ =0 on I't. Hence, let

G={Ve:pe H(Q), p=0on Iy},

and let P be the orthogonal projection of L?(2) onto G+, i.e., Pu = u iff divu =0
and ug|r, = 0. We start with the following Lemma, see [Bea80, Lemma 3.1].

Lemma 2.1 Forr >0, P is a bounded linear operator on H" () and on H"(2,2).
If p € H'(Q), then P(Vy) = Vi with A =0, ¢ = ¢ on Ty, 9,00 =0 on Ty,

Applying P to (2.1a) gives
1
ou = ];—{PAU — PLyu—Vp; — Vps, (2.2)

where Ap; = 0, d,p; = 0 on 'y, and p; = 20,us/R, p2 = g*n — W?n on TI'y. This
splitting is adapted to the inner product (2.5). Let E : H™"Y2(Ty) — H™1(Q) be
defined by

Eh=Vq with A¢g=0inQ, ¢g=honly Jyq=0onT}. (2.3)

Moreover, let A, Ly by formally defined by

1 2
Au = }—{PAU — }—{Eﬁyu% Lou = PLyu,
and define A by
Oy
A(M) = tafr; + Ok NP (2.4)
u Au — Lou — E(g*n — W)

with domain

D(A) = {(n,u): ne H*(Iy), we PL*Q)NH*(Q),
Oyur + Opus =2non Ty, uw=0on I‘b}.

Now (2.1) can be written as

U = AU, U= (”) .
u

14



We define the Hilbert space

X ={U = (nu):ne€ H'(Ty),ue PL*(Q)},

(U, V)x = <(Z> , (i>> ::/F g nE + W(0,n)(0,€) dl" + /Qu ~vdQ. (2.5)

and prove the following Lemma in App. A.1.

Lemma 2.2 A: D(A) — X is sectorial, i.e., there exist C,a > 0 and ¢ € (0,7/2)
such that the resolvent set contains the sector S, , = {\ : ¢ < |arg(a — \)| < 7},
and for A € S, and F' = (§, f) € X the unique solution U = (n,u) of the resolvent
equation (A — A)U = F satisfies |U||x < ﬁ”FHX

It follows that A generates an analytic semigroup e**. From (A.5) in the proof
we also have ||u|l g1 + ||n||zr < C||F||x. Next, using a smoothing process as in the
analysis of elliptic equations one can show that 4 has smoothing properties in the
u component:

Theorem 2.3 Let r > 2. There exist Cya > 0 and ¢ € (0,7/2) such that for all
ANESu,={A:1p<|argla— )| <7} and all F = (¢, f) € HTY/2(R) x H2(Q),
the unique solution U = (n,u) of the resolvent equation (A — A)U = F' satisfies

ull @) + M2l 220y + [0l gz + A2 0] o)
< C (Iflla—2) + N2 Fll2@) + 1€l mre2@ + N2 € 2w) - (2:6)

Note the lack of smoothing with respect to 7. Given Lemma 2.2, the proof of
Theorem 2.3 works as the proof of [Ter92, Prop. 5.1] by testing with approximations
of x—derivatives of the solution u and using that z—derivatives commute with A;
y—derivatives are then recovered from the incompressibility condition.

In order to control the pressure we use the following two standard estimates for
the solution of the Stokes problem [Tem01, Chapter 1].

Lemma 2.4 There exists a C > 0 such that if u,p satisfy

—%Au +Vp=f divu=0, in ), (2.7)
u=0onTy, wu=¢ponly (2.8)

then
[ullzrrs2 + [IVpll < C[f i + N1l gresrz) — for allr = 0. (2.9)

Similarly, if u,p satisfy (2.7) and

u=0onTy, wu =1, Oyus+dyus = e only, (2.10)
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then, for all r >0,

[ell ez + VDl < CUfllar + l@allzrrare + 02l rreare). (2.11)

The resolvent estimates (2.6) are used to show the existence of solutions to the
linear inhomogeneous equation 0,U — AU = F(t, z,y) via Laplace—transform, where
U(ty) = 0 and F has to vanish to sufficient order at t = t,, see sec.5. To prove
Theorem 1.6 we shall also use direct estimates for e (in weighted spaces). For
(A=A)U=(0, f) with f € PH*(Q) it can be shown, using again the same method

as in [Ter92], that
all e+ [Nl l[ullzre + 11l zr57250 + NP2 0l 1200 < CLf e (2.12)

To work in the weighted spaces H"(2) and H"(2,(2) we prove the following Lemma
in App.A.2.

Lemma 2.5 Theorem 2.3, Lemma 2.4 and the estimate (2.12) also hold with the
spaces H"(R) and H"(QQ) replaced by the weighted spaces H"(2) and H"(2,12), i.e.,
(2.6) becomes

ull @) + A2 ullmo@0) + 10l ez + IATT272 0] o)

< C (If 220 + N2 fllmoee) + 1€1a+1/2@) + A2 o) |
(2.13)

and similar for (2.9),(2.11) and (2.12).
Hence let Uy=(no, ug)€H"Y/2(2)x PH™"2(2,€). By shifting the path of integra-

tion in the representation
1 a-+iT
(n,u)(t) = ATy = Tim — / (O — A) Ty dA,

T—00 471 —ir

we obtain, for instance,

) || grr+1/2(2) + [[w(t) | 5r2,0) <
Ce™t " (Jluoll r—22.0)+t "2 luoll mo@.)+ 1m0l grrs12 2y =V Inoll rocz) )
(2.14)

and, in case 1y = 0,

|u(®) || geeo) < Ce®lluollmaca), Jult)|mzre@a) < Ce®t uol moea), (2.15)
()| 172402y < Ce™ 2ol ey, Nl as/2tagy < Ce™t|uol| fae,)- (2.16)

Due to a>0 from the proof of Lemma 2.2, and since there is no smoothing in 7,
these semigroup estimates are bad a priori. However, e has local in time parabolic
smoothing properties if ny = 0. To take advantage of this we shall remove the
nonlinear terms from the n component of (1.3). Moreover, we split A = A, + A,
where A, is one-dimensional in Fourier space, and e fulfills (2.14)—(2.16) with
a<0. The part belonging to A, will be treated explicitly in Fourier space, see sec.6.
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2.2 Spectral analysis

To calculate the eigenvalues and eigenfunctions of A we use the Fourier ansatz

i 1
u | try)=| ky) |0 = Ok, y)et . (2.17)
Us —iko(k,y)

By cross—differentiating (2.1a) we obtain
1
at(ayul — axUQ) + (UN — 2)5’1(3yu1 — arUQ) — 2U2 = ];—{(ayAul — axAUQ),
hence
B0 — 2k%¢" + ko = kR [(uy — 2 — w)(¢" — k*p) + 2¢], (2.18a)

where ¢ = p(k,y) and ¢’ = J,¢. In order to eliminate p from the normal stress in
(2.1b) we use

1
Ouply=1 = (5 Auy — Gpuy — (un — 2)0xuy)|y=1.

This yields the boundary condift{ions (from (2.1b) and (2.1c¢), in the respective order)
p(l) —w—1=0, ¢"(1)+k*p(1)—-2=0, (2.18Db)
¢" (1) = 3k*¢' (1) + ikR[(w + 1)¢'(1) — g* — WEK*] =0, (2.18c¢)
©(0) = ¢'(0) = 0. (2.18d)

This non—constant coefficient eigenvalue problem with the wavenumber k as param-

eter is called Orr-Sommerfeld equation, and A(k) = —ikw(k) is called the associated

eigenvalue.

At k = 0 there is the critical mode ¢(0,y) = 3%, w(0) = 0. Moreover, it is well
known (e.g. [BLDB99] and the references therein) that for small to intermediate
Reynolds numbers there exists one isolated curve (—9,d) 3 k +— A;(k), 0 < ¢ small,
of eigenvalues with small and possibly positive real part A(k). This curve belongs to
the so called surface mode, and gives an instability iff R > R.. In fig.2(b) on page 6
we show the real part of A\;(k) = —ikw(k) as calculated from a numerical solution of
(2.18) using AUT097 [DCF*97]. As explained in Remark 1.1, at very low 6 and for
high Reynolds numbers, a so called shear mode with wave number k£ # 0 can first
become unstable, but we exclude this exceptional case here. For later reference we
expand w(k) = ikw; + O(k?), o(k,y) = @o(y) + ikp1(y) + O(k?) to obtain

1
®y(k,y) = | 2y + ik, (y) | + O(K?), (2.19)
—iky?
1 1 1 14 8 1
:R_5__4_*3___*2 — 1:R———*.
P1(y) = Rlgy "=y’ +50y"+5(3-9y" ], wi=w(l) =R[;z - 397]
Note that, e.g., w; = % — %cot@ = —a and (Oxm)¢] = ui2 in accordance with

(1.8) and (1.9).
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2.3 The mode filters

The adjoint of A with respect to the inner product (2.5) is given by
.A* 5 o HUI - azg
v Av — Liv + E(g*n — Won) |’

D(A") = {(&v): €€ H*(Ty), wve PL*Q)NHQ),
Oyv1 +0yug =0on Iy, uw=0on Fb},

with domain

where
—2)0, 9
LSU =P (UN ) (%1 and HUl _ _(g* _ W8§>_1U1.
(uny—2)0,v9—u\y vy R
The ansatz
§ 1
U1 (t7 x, y) = l/)/(k, y) pik(z—wt) _ \I’(/{:, y)eik(x—wt)7
U2 _1k¢<k7 y)

yields the adjoint Orr—Sommerfeld equations
Opp — 2k%" + k'p = ikR [~ (uy — 2+ w) (" — k*p) — 2uyy)’],
Ko —1)= (" + WR) (1), 01+ K(1) =0,
P"(1) = 3K*'(1) + kR [g" + WE? + (w — 1)¢'(1)] = 0,
¥(0) = ¢'(0) = 0.
The critical solution is w = —ikw; + O(k?) and ¥ (k,y) = ki (y) + O(K?), i.e,

1
Wilhy) = | ikvi(w) | +O0) with k) =R’ — o)) (22)
0

Let p > 0 be sufficiently small, and let x be a smooth cutoff function with

1 k| < p,
x(k) =4 €(0,1) p<|kl<2p (2.22)
0 2p < |kl

Corresponding to the inner product (2.5), for U = (7,4),V = (£,9) € C x L2((0,1))
let

(O, V)0 = (g" + WKE + / a(y) - B(y) dy. (2.23)
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Then
E.(k)U (k) = c(k)xc(k)(U(k), ©1(k)) 5@ (k) (2.24)
with

c(k) = 1/(@1(k), U1(k)) ) = 1/g* + O(|k]) (2.25)

defines the so called central modefilter with ||Ec‘|CXHT((0’1))—>(C><HT((()71)) < C. By
construction

(AEU)(k) = (ELAU)(k) = M (k)U (k)
where AU = F (AU). The corresponding operators in x—space are
EU=FYE/U) and E,=1d-E,, (2.26)

and it follows that || E.|[3r@,0)—#2@20) < C. Moreover, (ECU)(k,y) = a(k)P,(k,y),
hence by construction

(BUly=0)i=F *a(k)®;(k,0))=0, i=2,3,
div (E.U) = F Y (a(k)(ike'—ike'))=0, (2.27)
ay(ECU)2+85E(ECU)3_2<E0U)1 = f_l(a(k)(a§¢(ka 1)+k290(k7 1)_2)) =0.

Finally, define the auxiliary modefilters

(k) = ()X (s/2) (0 ), W3 (1)) 1 (k),
k) = D(k) = c(k)Xe(26) (0 (), 3 () By (k).

Then EM"E, = E, and E'E, = E, which will be used to replace the missing projection
properties of Ec, ES and E., E,.
3 Ideas from renormalization theory

Before transforming (1.1) to the form (1.2) we explain the idea of renormalization
[BK92, BKL94] and prove Theorem 1.5. This, together with the modefilters from
sec. 2.3, will (heuristically) explain which nonlinear terms in (1.2) are irrelevant and
therefore do not need to be written explicitly in the transformations in sec.4. This
section also explains the need for the weighted spaces H™(n).

3.1 Basics

Consider

ou = 02u + f(u,0pu,02u), u=u(t,z) €R, u(l,r) = ug(z), (3.1)
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where f(a,b, c) = a®b®c® is a monomial, and where the initial conditions are given
at t = 1 for convenience. For L > 0 define the rescaling operators

Rru(z) = u(Lx),

and for n € N and L > 1 sufficiently large (see below) let w,(7) = L"Rnu(L*"T),
ie., u,(7,€) = L™u(L*"1,L"¢). Then

O, = Oftn, + fn(Un, Otn, Oy, (3.2)
with
fala,bc) = L amb®c® dy =3 — dy — 2dy — 3ds3. (3.3)

Moreover, solving dyu = d2u + f for t € [1,00) is equivalent to iterating the renor-

malization process
solve (3.2) on 7 € [L™%,1] with initial data wu, (L2, &) = Lu,_1(1, LE) € X, (3.4)

where X is a Banach space such that we can solve the in general quasilinear or fully
nonlinear problem (3.2).

First assume d; < 0. In this case the factor L™ in (3.3) goes to 0 as n — oo, and
in the limit we obtain dru, = dFu, with u,(L™2,&) = Lun_1(1, LE). This problem
has the line of (Gaussian) fixed points ze ¢*/4, 2z € R, which is attractive in suitable
spaces. To see this, let u(€) = ze ¢/4 + g(&) with g(0) = 0 by choice of z. Due to

F(LRpu) = Ry, (3.5)

we have e(l_L_2)652LRL(e_52/4) = F! (\/%e_(l_r%k?e_’ﬁ/y) = e "/ and

e %R LR gl 1mie) < Clle™ 4/ L) | 12my

2

1/2
<C ( / (L+k)mY (ag (e-<1-L‘2>k2g<k/L)))2 dk:)

=0
< CL ' (9l crwy + 1311 mr2my)-

This is obtained from writing g(k/L) = ¢(0) + g(l;:)% and using ¢(0) = 0 and
|(14+k2)™/20 (e~ (1=L7)F)|| .<C. Hence we obtain

2% LR gll sy < CL gl sngsy 36)

from Sobolev embedding since ||g||c1r) < Cl|g||gn for n —1 > 1/2, ie.n > 3/2.
This is where we need the weight in z; see also [BKL94, Uec04] and Remark 3.1 for
alternative Banach spaces that directly assume smoothness in Fourier space.
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By (3.3) we may assign each derivative 0, the order L™". Equivalently, due to
(3.5) we may assign each factor k in the Fourier transform of (3.1) the order L.
Hence the basic idea is that by a power—counting argument one can easily identify
nonlinearities f that are “asymptotically irrelevant” (dy < 0), while a nonlinearity
with dy > 0 would be called “relevant”. Indeed, relevant nonlinearities, and also the
“marginal” case f = u® (with d; = 0) may lead to finite-time blow up of the solution,
see, e.g., [Wei81]. The advantage of the discrete renormalization approach is that the
large time behavior of (3.1) is split into the sequence (3.4) of finite time problems and
that it uses only few special features of the equation. Therefore it can be applied to a
variety of problems; see the references in the Introduction. A related approach is the
continuous rescaling of time and space used in [CEE92, Way97, EWWO97, GM9S].

3.2 Proof of Theorem 1.5
Now let
f(u, Opu, 02u) = 0, (u?) + h(u, Opu, O2u)

with h(a, b, c) = a™b®2c¢® and dj, = 3 — dy — 2dy — 3d3 < 0. Then (3.1) is a rescaling
of the perturbed Burgers equation (1.12), and (3.4) becomes

O, U, = 8£2un + 85(11%) + L”dhh(un, Og Uy, agun), u,(1/L*) = LRpu,1(1). (3.7)
Remark 3.1 In [BKL94], (3.7) is treated for u,, € C([1/L? 1], X) where

X={f:feCand||fllx=sup(l+k)(If (k)] + F(k)]) < o0},
S

This space allows the solution of the quasilinear or fully nonlinear parabolic problems
(3.7) directly by the variation of constant formula using the explicit formula for e™%
This yields the analog of Theorem 1.5 based in the space X [BKL94, Theorem 4].
Here, for suitable r we want to use the spaces X = H"(2). These are more natural for
the Navier—Stokes problem (1.1) where we want to use resolvent estimates instead
of explicit formulas for the linear semigroup. As a consequence, we first have to use
maximal regularity methods to obtain existence of solutions to (3.7). A posteriori
we can then use the variation of constant formula to obtain improved estimates.
The following proof of Theorem 1.5, which merely adapts [BKL94] to the different
spaces, explains this idea and gives a guideline for the proof of Theorem 1.6. ]

For 1o < 11, n € N and r > 0 we define
H™((19,71),n) = L*((10,71), H"(2)) N H*((10,71), H°(n)). (3.8)
Since (3.7) is parabolic these spaces will only occur with s = /2. Hence we set

KT((T()a Tl)? n) = HT’T/Q((Tm 7_1)7 n)?
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For u € K"((79,m1),n), r not a half integer, which we will always assume in the fol-
lowing, there exists traces 0%u € K™~*12((ry,7),n) for a < r—1/2 and & u(ry, -) €
H™2=1(2), for 2j < r—1. Conversely, for u € H"(2) there exist extensions
u € K™(R,2); see [LM68, Thm. 4.2.1 and 4.2.3] for the unweighted case. We define
the subspaces K} ((7,71),n) of functions u € K" ((7,71),n) with &u(r,-) = 0 for
2] <s—1.

For u € K"(R,2), let a(\) = [e*u(r)dr be its Laplace transform. For u €
K ((10,00),2) we have (via extension of u by 0 for 7 < 79) the equivalence

][ Fer((r 00).2) ~ / . a(ip) | Fr ) + el a1 3o ) dps- (3.9)
e
Finally, note that
ILR ull 2y < OL™ 2 fu]| o), (3.10)

due to the scaling properties of Sobolev spaces, and let

oo = llua(1) 20 (3.11)

Then we have the following essentially classical [LM68] existence result for (3.7); for
convenience we review the main steps of the proof in App.A.3.

Lemma 3.2 There exist Ly > 1,Cy,Cy > 0 such that for all L > Lq the following
holds. If p,_1 < C1L™%2, then there exists a unique solution u,, € K3([1/L?1],2) of
(3.7), and ||un || k3 r2,1),2) £ Copnr. Moreover, for anym € N, u,, € K3+m([%, 1],2),
and there exists a Cy = C3(m) such that ||uy || gs+m((1/2,1,2) < C3pn_i.

To iterate Lemma 3.2 we shall use the integral equation satisfied by u,, to obtain
improved estimates. Therefore let

un(7,8) = w,, (1,€) + vu(1, ), (3.12)

where w,(7,&) = 772 £.(6/\/T), f.(x) = zerf'(z)/(1 + zerf(x)) and where 2z, > —1
is defined by

In(1+ 2,) = /un_lu,g) de = /un(l/LQ,g) de. (3.13)
Consequently
On(1/L2,0) = /vn(1/L2,g) d¢ = 0. (3.14)

Since w, is an exact solution of the Burgers equation (cf.sec. 1.3) we obtain

(1) =% LR 0, 1 (1)

1 2 3.15
+ /1/1:2 e(1-7)0% [B(Un(T)) +Q., (v, (7)) + L”dhh(un(T))} dr ( )
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where B(v) = 9¢(v?), Q,, (v) = de(w,v).
Finally, let p,, = [[v,(1)| #2(2) and assume that p,—1 < C|2,| + p, < L7 with
mg > 0 chosen below. By Lemma 3.2 there exists a unique solution u,, of (3.7) with

| reauyez,,2) + Nl goquz, < CLY?7m <1 (3.16)

and clearly we may assume the same estimate for v,. By (3.14), the first term on

the right hand side in (3.15) yields
[ % LR ), < OL o (Do, (3.17)

cf. (3.6). The linear semigroup e” ¢ fulfills

T2 —7
He aEUHHT-&-j(Q) < max{l,T 7/2}Hu||Hr(2). (318)

Therefore, using sup,.cp 2 |vn(7) |22y < CLY*7™ the first two terms in the
integral in (3.15) can be directly estimated as

/1 (1-7)02 [B(vn(T))—i—an (%(T))] dr

/L2

< CLY27m0 (|2, |[4-LP27™). (3.19)
H2(2))

For terms in h(u, (7)) which contain dfv, we split the integral as

1 1/2 1
/ ...dT:/ ...dT—I—/ coodr (3.20)
1/L2 1/L2 1/2

and use the higher regularity of u,, on [1/2,1] in (3.16) to obtain

1
/ Q1= [1dh (1, (7)) dr
1

/L?

< CLMn [527m0 (|, | 4 LY27™0). (3.21)
H2(2)

Hence, for mg > 7/2, small b > 0, and L > L, sufficiently large we obtain, since
dp < 0,

= loa(Wllea) < L0 (s + 2. (3.22)
By definition of z, we also have
1
(14 2pe0) =) = | [ [ 070 10 (1)
1/L2

< CLndh(L(5/2—mo))2 < L

(3.23)

where the term involving B(v,) 4+ @., (v,) drops out of the integral in £ since it is a
total derivative, and where again we used the splitting (3.20) and ||ul|e < C||u|| g
for r > 1/2. By (3.23) there exists a 2z, with |z, — 2,| < CL™. Thus, for t = L*"

we have
[£2u(t, t'%2) — fo (@) |l m2@) = lun(1) = for + fon — fo
< oWl z2@) + | fz = [

and for ¢ € (L*"~!, L?") the estimate (1.13) in Theorem 1.5 follows from Lemma 3.2.
The proof of Theorem 1.5 is complete. O

H2(2)
2 < CL™70m,
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4 Transformations

4.1 Transformation to fixed domain

Following [Bea80, Bea84] we first transform (1.1) to a new problem over the fixed
domain 2 = R x (0,1). Here we use the sum convention and write & = (%1, Z2) and
x = (1, x2) for the independent variables in © and Q(t), respectively. We start with
an extension of 7(t, -), defined on R, to 7(t, ) = Sn(t,-) defined on Q. Therefore, let

1
1+ k2(Z, — 1)?

(b, ) = (S(t, ) (i ) = F ( A, k)) ). (@)

Then S : H(R) — H*/2(Q) is a bounded linear operator, and

IVl < Cllnlizg (42)
since
o —2k(Fe-1) [ i2k(@—1)
=5 (a0 =5 (P )

For each t > 0 as long as n(t, -) exists and is sufficiently smooth (this will be justified
a posteriori), the fluid domain €(t) is given by a diffeomorphism

90O, ) = (2) _ (@(Hﬁi 5 5:2))) | (4.3)

To conserve the incompressibility condition we transform u, p as follows. Let (¢;;) =

(853]191> be the Jacobian of 79, d= det(ﬁij), (Oéij) = é(lgw) and (CZJ> = (19Z»j)_17 i.e.,

B (i ) — 1/d 0 N 1 0
d—1+ar2< 277)a ( 2])_ (562775:1/61 1)7 (CU)_ (—iéﬁf:l/d 1/d>7 (4-4)

and define v and p by
wilt, 9(6,3)) = aiy(t, D) (L3),  p(t, V(L 7)) = Blt, D) (45)

Then v is divergencefree iff u is, [Boc77]. With 9; = 0,, and o), = 0z, the spatial

derivatives transform as
aj = Ck]aka

and since 1 depends on time we obtain

d . -
Ou; = a0, + (aﬁ_l) ((81041']‘)"0]' + aijalvj)?
l
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with
d d 1 1
—97t) =0 —97H ) = =3y(1+0,7) = =32 (1 + S(R 20,1)).
(F7) =0 (), = gm0+ 00 = Goat1+ St +0.0)
Here we used that the kinematic equation simplifies to
O} = Va|zp1 + 1} + 7207,
Plugging (4.5) into (1.1) and renaming 9 = 0, (T1,22) = (z,y),v=wand p=p

yields
aty=1: 0m— 0,0 —us = 1>y, (4.6a)
at y =1: Oyuy + dyus — 2n = f3(n,u), (4.6¢)
2
p=gOuta=g"n +Wn = fa(n, w), (4.6d)

and divu = 0in ©, v = 0 on I',. Here Lyu = %Aui — (un—2)0u; — S\ us,
¢ = 1,2, and, for instance

fi(n,u, Vp) = — d¢;(Orvir )ur, + yS(Rue0,n + nzaln)Cij8y<ajkuk)
1 d

+ P—{(Cangl—5al5bz)aaabui + P—{Cijgaz((abuk)aa(Cszéjk)-i-aa(Cbl(aboéjk)uk))

- (uN_Q)(5a1 - Cal)aaui + (2(y - 1)y577 + y2(577>2)Ca18aui

+ (y — 1+ yS0)?dCi;Car (Dacj)ur + 2(y — 1) (dCaar — 65102y,

+ 2y Snd(iyaoptr 4 (6ia — dCijCaj)O0ap + CijwiOs(ajruy),
i = 1,2, where 0, = 0, and 0, = 0,. The compatibility conditions for (1, u)[;=1 =
(10, up) are dive =01in Q, v = 0 on y = 0 and dyuy + dyus —2n = f3(n,u) ony = 1.

Due to the lack of smoothing in 7 in (2.14) it is useful to remove the nonlinear
terms from (4.6a). To do so we set u = 4 + v with

~3 v2 9 (=3
~ yn t,ﬂf,y +_8 n taxvy
i(t.r,y) = (VT OB S AT (4.7)
After renaming v=u this yields a system like (4.6) with (4.6a) replaced by
O — Ox1 — uz|r,=0
and f;, 2 = 1,...,4 changed by at least cubic terms, including terms coming from

0,7 in (4.6b). In order not to proliferate symbols we denote these new nonlinear
terms again by f;. Then

at y=1: 0Om— 0wm —us =0, (4.8a)

aty=1: 0Oyus + Oyus — 2n = f3(n,u), (4.8¢)
2

p=gOuta=g"n +Wn = fa(n, w), (4.84)
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and dive =01in €, v =0 on I'y,. Moreover we write

f3(n, u) = 200,u1 + f3(n, u). (4.9)

The following remark explains the structure of the nonlinear terms in (4.8), and the
reason for displaying 2nd,u; explicitly in (4.9).

Remark 4.1 The functions f;, i = 1,...,4 in (4.8) contain quadratic and higher
order terms. In order to write (4.8) in the form (1.2) and hence treat (4.8) in
fixed function spaces we still need to remove the nonlinear terms from the tangen-
tial stress (4.8c). Direct calculation shows that the nonlinear term 2nd,u; writ-
ten explicitly in (4.9) is the only nonlinear term that is relevant in the derivation
of the Burgers equation from (4.8), see also Remark 4.2. It follows that 21n0,u,
is also the only relevant (marginal) nonlinear term in the proof of Theorem 1.6.
Here the heuristic argument is as follows. In the proof of Theorem 1.6 we ap-
ply a renormalization argument similar to (3.4) to a system of the form (1.2), i.e.,
formally O,U = AU + F(U,Vp) with U = (n,u). Due to the rescaling we may
assign orders 9, = O(J), 0 = L™, and similarly k& = O(d) where again k is the
dual variable to x under Fourier transform, cf.sec.3, while 0, = O(1). Moreover,
roughly speaking, due to the splitting of U = U, + U, the main problem is in equa-
tion (6.1a) for ,U, below. Due to k = O(8) and U,(t,k,y) = a(t, k)P (k,y) =
a(t, k)(1,2y+O(|k|), O(|k|) we may assign orders (d,d,6%,6) to (n,uy, us,p). Simi-
larly, due to Wy (k,y) = (1,O(|k|), O(k*)) we only need to keep track of terms of
order (63,42, 4,6%) in the equations ((4.15a),(4.15b),(4.15¢), (4.15¢)) obtained below
from (4.8) by removing the nonlinear terms from (4.8c). This will be explained in
more detail and be made rigorous in sec.6. |

4.2 Linearization of the tangential stress

From Remark 4.1 it follows that in removing the nonlinear terms from (4.8c) we need
to take special care of the term 2nd,u; in f;. From (1.8) we know that in lowest
order in 6 we have u (T, X,y) = 2yn(7T, X). Hence, in lowest order, d,u; = 2.
Therefore we split

u=uY 4 q (4.10)

and choose @ such that

diva = 0 in €, u=0ony=0,

(4.11)
iy =0 and Oyt + Optig = 4n* on y = 1.
A solution @, with moreover 0,ts|,~1 = 0, is given by 4 = (J,w, —0,w) with
w(t,z,y) = h(y)i*(t,z,y), where h(y) =2y —4y° + 2y>. (4.12)
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For n(t,-) € H™Y2(2,Ty) this yields a(t,-,-) € H"(2,Q). This regularity is not
optimal but sufficient in the following, and for explicit calculations it is useful to
know @ explicitly, see Remark 4.2 below. We obtain

aty=1: 8,577—85077—1@:0 (4.13a)
inQ: oulY — LW+ 8p = fi(n, 1>+up) atamuﬁia i=1,2, (4.13b)
aty=1: 0 ul '+ o) — 20 = fi(n, uD+a) + 2m0,ul) — 42, (4.13¢)
p—P—{GyUQ —g*'n + Wdn = fo(n,uY + ), (4.13d)

and divu =0in Q, w =0 on I'y. Since 0,ts|,=1 = 0, this term drops out of (4.13d).
Finally we remove the nonlinear terms from (4.13c). Therefore we split u) =

u® + 4B and choose u® such that

divu® =0 in Q, u® =0 ony=0, and

=0, X (4.14)
on = 1.
0,ul? +0,u8” = gs(n, u®) := fi(n, @+ u®)+2n9,us’ —4n? Y

For n € H™Y2(Ty) and vV € H"(Q) we have gs(n,uV)) € H'32(Ty). If g5 =
g3(z) € H™=3/2(Ty) is a given function, then a solution u®€H™1(Q) of (4.14) can
be obtained from the ansatz @ = (9w, —d,w) with w|,—y = dyw|,—1 = 0, Pow|,—1 =
g(x) [LM68, Theorem 1.4.2]. The existence of a solution u®ecH™(Q) of (4.14)
then follows for @, u™™ and n sufficiently small by the contraction mapping theorem
since g3(n, u) is quadratic and higher order. It is clear that all this also holds in the
weighted spaces.
After renaming u® = u we obtain

aty=1: On— 0,m—uy =0, (4.15a)

inQ: Ju — Liu+0p= B(n) + g1(n, u, Vp), (4.15b)

Orug — Lou + Oyp = g2(n, u, Vp), (4.15¢)

aty=1: 0Oyus + Oyus —2n =0, (4.15d)
2

p=g Oyta=9"n + W0 = 9a(, ), (4.15e)

together with divu =0 and uw = 0 on I'y,, and where

bn) = = @R, gs(n ) = falu+u® +@), and

gi(n,u, Vp) = fi(mu—l—u(g)—i-ﬁ,p) 8t(ul+u ) + L; (uz—i-u( )) dib(n), i=1,2.

The splitting of the right hand side of (4.15b) is explained in Remark 4.2. The
compatibility conditions for (4.15) at t = 1 are

divu=0 inQ, wu=0 on y=0, Jdyus+0dus—2n=0 on y=1. (4.16)
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Remark 4.2 It is instructive and a good check of the above calculations to re-
derive the Burgers equation (1.9) from (4.15). This also explains the splitting of the
right hand side of (4.15b) into the term (93h)7? which is relevant in the sense of
renormalization and the remainder g; which contains only higher order terms. As
in the formal derivation of (1.9) from (1.1) in sec. 1.2, here again we only consider
the lowest order terms needed to derive the Burgers equation. Rigorous estimates
for the remaining terms are given in Lemma 6.5. We substitute (1.6), i.e.,

K om (T, X)
ou (T, X 2u(T. X

U1 (t’ x, y) = 5\IJ(T’ X’ y) _ 2u11( ) 7?/) + 3u12( , 7y) ,

U 8ug (T, X,y) + 8uxs(T, X, y)

P 5p1 <T7 X7 ?J)

with 7' = §%t, X = dx into (4.15). At O(6) this yields u; = 2my, p1 = ¢g*n and
Uge = —y?Oxm as in (1.8). Then (4.15b) at O(5?) yields

—%{851/42 + Oxp1 + (un—2)0xu1 + uyuos = %%’M?J)U% = Q—P?(Q?J—l)?ﬁ
which together with u = 0 on I'}, and (4.15d) gives
uts = R(Oxm) Ey4—§y3+%g*y2 + (%—g*)y} —24 (éy?’—%y?) neo (417)
From divu = 0 we obtain
uzs = R(O%m) [—iy"’ iyt = gy - 1(ﬁ—g*)yz} +A(y' =2y )mOxm.  (4.18)
30 6 6 2°3

Then (4.15a) at O(63), i.e. dpm —uas|,=1 = 0, yields the Burgers equation (1.9). Note
how by the transformations (4.5) and (4.10) the relevant nonlinear term (9,1)u; from
the original kinematic condition (1.1a) is first moved into the tangential stress in
(4.8¢) and then into the first component (4.15b) of the momentum balance. Conse-
quently, in the new coordinates we have the quadratic dependence of first u;5 and

then wugg on 7 in (4.17) and (4.18). |

5 Local existence

We review the main steps for proving local existence for (4.15), which also explains
how to obtain local existence for the rescaled system (6.13a),(6.13b) below. The
local existence for the 3-dimensional version of (1.1) has been shown in [Ter92].
There, following [Bea84], the problem is solved for small initial data (1, «) in Sobolev
spaces H™(T) x H™~Y/2(Q) with 3 < r < 7/2. Here, in order to prove Theorem 1.6
we need contraction properties of the operator U — "L )ALR, E.U when acting
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on functions U with Ul,—g = 0, as in (3.6). This is why we search for solutions
U = (n,u) of (4.15) in the weighted space H"(2,€2).
Applying P to (4.15b),(4.15¢) we can rewrite (4.15) as

o,U — AU = F(U,Vp), F(U,Vp) = B(U)+ H(U,Vp), (5.1)

together with the compatibility conditions (4.16) on U= = Uy, with A from (2.4),

B(U) = (b(on)) , b(n) = <b((;7)> , and H(U,Vp) = <h(77 3 Vp)) , (5.2)

where

h(n,u, Vp) = (P—Id)b(n) + P (91(77’ o Vp)) + Ega(n, u). (5.3)
92(777 u, Vp)
The splitting of Pb(n) = b(n)+(P—1d)b(n) has no importance for the local existence;
however, it will be useful in the proof of Theorem 1.6, and is therefore introduced
here for later convenience, see Remark 6.1.
Formally (5.1) is solved by the variation of constant formula

U(t) = AU, + /t eU=DAR(U(s), Vp(s)) ds. (5.4)

However, since we have a quasilinear problem and since Vp appears on the right
hand side, (5.4) cannot be used to construct a solution. Therefore we proceed as in
sec.3.2. To obtain existence for (5.1) in the weighted space H"(2,€2) we again use
maximal regularity methods from [LM68] as in [Ter92], based on Lemma 2.3. Then
(5.4) can be used to estimate the solution a posteriori, which we shall do for the
rescaled systems (6.13) below. See also [BN85] for a similar approach.

Therefore, to show local existence we first consider the linear inhomogeneous
problem

inQ: Owu—Lu+Vp=g(t zvy), (5.5a)
2
onIy: On—0,m—us =0, p—f—{ayuQ—g*n—i-W@in: g4(t, ), (5.5b)

together with divu = 0, dyu1+0,us—2n = 0 on I'y, and v = 0 on I'y,, where we shall
assume that 7, u and p vanish sufficiently fast at initial time ¢t = ¢y. For t, < t; we
define (cf. (3.8))

H™((to, t1),n, Q) = L*((to, t1), H"(n,Q)) N H*((to, t1), H(n, ). (5.6)

We set K" ((to,t1),n, ) = H™"/2((ty,t1),n, ), define the subspaces K§((to,t1),n, )
of functions u € K" ((to,t1),n, Q) with &u(ty, -,-) = 0 for 2j < s — 1, and introduce
the abbreviation

Kr((to,t1),2,9Q) = K"((to, t1), 2, R) x K" 12((to,t1),2,9Q).
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Let 7 > 2 and as usual not a half integer, t; > ty, n € N and g € K§ ?((to,t1),n, Q)
and g4 € Kg_3/2((t0,t1),n,R). Applying P to (5.5) yields

0

Jo

) , Go=Pg—Eg,. (5.7)

Since go € K§ *((to,t1),n,Q) there exists a continuation g. € Kj *(R,n, ) with
g.(t)=0 for t < to. Therefore e ?"0)g, € LYR,n, H"~2(Q)) N L*(R,n, H"%(Q))
and we can solve (5.7) by Laplace transform. For A = ¢ 4 ir this yields

(A — AT = (;) , (5.8)

where U, §. denote the Laplace transformed functions. Due to Lemma 2.5 we can
solve (5.8) for o > a; the resolvent estimates (2.13), together with the Paley—Wiener
Theorem and the fact that t;—t, is finite, yield the following Lemma, where p is
obtained a posteriori from the weighted version Lemma 2.5 of Lemma 2.4.

Lemma 5.1 Let r > 2 and not a half integer, and fix some t; > tq. Then there
exists a C' = C(t1) > 0 such that the following holds. If g € K} %((to,t1),2,Q) and
g1 € K73 ((to, 1), 2, R) then there exists a unique solution (n,u) € K5((to, t1), 2, Q)
and p € Kj ' ((to, t1),2,9Q) of (5.7), with

H(na u)”/CT((to,tl),?,Q) + HpHKT_l((to,h),?,Q) < Cp7 (59)
where p = ||(g, g4>HKT*Z((tO,tl)Q,Q)><ICT—3/2((t0,t1),2,R)‘
To solve the nonlinear problem (1.3), let 3 < r < 7/2 and

X = {(mu?p) L (n,u,p) € KTHY2((to, 1), 2,R) x K™Y ((to, t1),2, R),

divu =0, Oyu;+0,us—2n=0only u=0on Fb},
Y = {(gag4) g € KT_Q((tmtl)?Qa Q)7 g4 € KT_3/2(<t07t1>727R)}-

Let X, and Yj be the subspaces with K" replaced by K, let M : X — Y be the
linear operator defined by the left hand side of (5.5), and let Mj be its restriction
to Xo. Then M, ' : Yy — Xj exists due to Lemma 5.1, and the idea to solve (4.15)
is as follows. First let

(U,U,p) = (n(l)7u(1)7p(1)) + (77(2)7 u(Z),p(Q)) = Z(l) + Z(Q) e X

where Z() depends on (1, uo) in such a way that Z®? € X;. Then solve (4.15) in
the form

M,Z® — F(Z(l) + Z(2)) — Mz (5.10)
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For (no,ug) € H"(2) sufficiently small and satisfying the compatibility conditions
(4.16) the right hand side will be a contraction in Xy. First we need the following
standard Sobolev lemma, cf., e.g., [Bea84, Lemma 5.1].

Lemma 5.2 (a) If f € H"(Q) with r > 1 then f is continuous on 0. If also
g€ H'Q), r > 5> 0 then fg € H(Q) and ||fgllu- < Cllfllrllgllxe. The
analogous result holds for n € H"(R) and £ € H*(R) for r > 1/2.

(b) If f € K"((to,t1),Q) with r > 2 then f is continuous on [tg,t1] x Q. If also g €
K*((to,11), ), r = s 2 0, then fg € K*((to, 11),8), and || fgllxs < C[|fllxrllgllx--
The analogous result holds for n € K"((to,t1),R), r > 3/2, £ € K*((ty,t1),),
r>s>0.

(¢c) The same holds for H"(Y) and H"(I'y) replaced with the respective weighted

Spaces.

To construct ZW set p = ||nolarar) + |10l zrr—1/2(2,0)- Choose a continuation
77(1) S KT—H/Z((to,tl),Q,R) with U(l)(to) = MNo, 8t77(1)(t0)(0) = OzTo + (U,o)Q‘Ff, and
10| ger12((10.0)28) < Cp- Next, P(VpW(tg)) € H™3/2(2,9Q) is determined from

2
PV (to, 1) = ga(no, uo) + f{@y(uo)ﬂn + (¢" = W&2)no € H*(2,T) (5.11)

using Lemma 2.1. Moreover, (Id — P)(VpW(ty)) € H™=5/2(Q) fulfills
b(no) + g1 (0™ (to), uo, Vo (o))

Id—P)(VpM(ty)) = (Id—P [cu + . (5.12

( )( ( 0)) ( ) 0 92<77(1)<t0),U,o,vp(l)(to)) ( )

assuming (Id — P)0,u = 0. For pM(ty) € H"32(2,Q) the right hand side of
(5.12) is in H"~%/2(2,Q) by Lemma 5.2, and b, g1, g» are nonlinear. Hence, for
1o, tp sufficiently small the system (5.11),(5.12) can be solved for p()(¢,) as a func-
tion of mg,ug by the implicit function theorem. Hence there exists a p™) with
1P ker=1((t0.1).2.0) < Cp fulfilling (5.11) and (5.12). Finally, we may choose u("
with uM(to) = ug, divu® =0, 8yu§1) +o,ulY —2n® =0 on Iy, u® = 0 on Ty,
|u®D]| g (0.10).2.0) < Cp, and

b 1) 1)
BV (to) = Lug — VpM (ty) + <b(770) + g1(n'V(to), uo, Vp (%))) '

92(n W (t0), ug, VpW (ty))

Here the restriction r < 7/2 arises since we do not want to impose compatibility
conditions on, e.g., yuM(ty) on T,

Using Lemma 5.2 and going through (4.7), (4.11) and (4.14) it is a straight-
forward though lengthy task to check that if » > 3, and n € K""2((to,t,),2,R),
u € K"((to,t1),2,Q) and p € K" ((to,t1),2,Q), then the right hand side in (5.1)
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fulfills F'(U,Vp) € {0} x K™2((to,t1),2,9). The condition r > 3 is forced by, for

instance, the term

1 Yo% 2y(0,1)0, (y0.M)
h = 1:—{(83/71,1) ( d + de

), d= 1+ 9, (i),

obtained from setting i = j =1 =a =1 and b = 2 in (4.6b). For r > 3 this can be
bounded by

12l kr=2((t0,01).2.00) < ClIVullkr=1((t0,00).2.0 171l c2((t0,01)x )

< C||U||KT((to7t1)72,ﬂ) \|77\|Kr+1/2((t0,t1),2,9)
with, for |af =2, 92, i € K" '((to,t1),2,9Q) C C([to, ta] x x Q) 1f r > 3
Hence, for Z?) € X, the right hand side F(ZW+2®) — ) of (5.10) as
a function of Z® maps X, into Y, by construction of Z(, Combming this with
Lemma 5.1 and the fact that the right hand side is at least quadratic, an application

of the contraction mapping theorem together with a bootstrapping argument to
obtain higher regularity yields the following result.

Theorem 5.3 Let 3<r<7/2 and fiz some ty > ty. Then there exist Cy,Cy > 0 such
that the following holds. If (no,uo) € H™(2,Q) = H"(2,R) x H™"2(2,Q) satisfy
(4.16) and p=||(n0, uo)||1r2,0) < C1, then there exists a unique solution (n,u,p) of
(5'7)7 (U»U) € ICH_I/Q((tO?tl)?QvQ)? (U»U)|t=to = (7707u0>7 JURS Kr_l«tO?tl)?QvQ);

and

[ (n, U)HICT+1/2((t0,t1),2,Q) + HPHKT—l((to,tl),z,Q) < Cyp. (5.13)
Moreover, for ty < ty < t; and any m € N we have
(n,u) € KTH24 (10, 41),2,Q), pe K™ ((f,11),2,9),

, the solution becomes smooth for t > to, and there ezists a C5 = C3(m, to) such
that

(7, w)[[icr+1/24m (G 41),2,0) T 1Pl rsm=1(@0 40 .2.0) < Cap- (5.14)

6 Renormalization
Let U = U. + U, where U,., U, solve

o,U. = AU, + B.(U) + H,(U, Vp), (6.1a)
o,U, = AU, + B,(U) + H,(U, Vp), (6.1b)

where B, = E, B and ﬁ* = FE.H, x=c,s, with E,., F, from sec.2.3 and B, H from
(5.1), and where (U., Uy)|4=1 = (E.U, EsU)|4=1. Then, by definition (2.26) of E,, Ej,
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U = U.+ Us solves (5.1). The idea of this splitting into central modes U, and stable
(exponentially damped) modes Uy is as follows. By construction, the function

Wz(t7 khy) = fz(tl/Qk)X(/{:)(I)l(/{;7y)
with f, from (1.10) fulfills
OW. = AW, + E.B(W.) + O(|k[?).

This holds since @, (¢, k) = f.(tV2k) fulfills 8,0 = —ak?d + Bik(u2), f = —2, since
AW, = /\l(k)Wz = (—ak® + (’)(k‘3))Wz, and since

A

ECB(WZ)(k) - C(l{)X(k)<B<W)7\IJ_1(k7 y)>(k)q)1(k’ y)

= /) Fx )0+ OURD) [ (o3 ) (-ik0,6) ay (k) k)

— 4ik(f. * £)(1 + O(K])) / 6(2y — 1)(s/2 — ) dy x (K) 1 (k. y)
= ik (f. % £2)(1+ ORI (R)B1 (k. ). (6.2)

where we used (2.19),(2.21) and (2.24). This also shows the ”derivative like” struc-
ture of B.. Then splitting U.(t, k,y) = W.(t, k,y) + V(t, k,y) with V|i=w0 = 0
we will obtain V(¢) — 0. On the other hand, there exists a v > 0 such that

ReAi (k) < —o (6.3)

for all £ € R for the eigenvalues of A7 of AL, such that Uj is linearly exponentially
damped. Also note that reasoning as in (6.2) we have

(B. + H.)|4—0 = 0. (6.4)
Thus the whole nonlinearity B.+H, locally at k = 0 corresponds to an z—derivative.

Remark 6.1 Formula (6.2) shows the reason for splitting Pb(n)=b(n)+(P—1d)b(n)
in (5.1). The idea is that div b(n)=0,b(n)=203h(y)nd;n=0(%) if as in Remark 4.2
we assume 1 = O(0) and 9, = O(4). Then we also have (P — Id)b(n) = O(6?),
hence Pb(n) splits into the relevant term b(n) in B(U) and the remainder contained
in H(U,Vp). |

Before making these arguments rigorous we apply one more transformation. In

the equation (6.1b) for Uy we remove the quadratic terms in U, by setting

Uy = Ve = A B (DEB.O)[U Ul + DELO, VU U)). (65)
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Here A™! exists on E"H"%(2,Q) due to (6.3). Moreover,

u

due to (2.13) and since the n component of E*(0,u) has finite support in Fourier

< Ollulyr-sr20) (6.6)
HT(2,0)

space and hence can be estimated in H"(2) by ||u||go(2,q). Therefore,

Vil @) < CUIUsnr @) + |Uellire0) + VP ar-12.0)) (6.7)
in (6.5) since there are no nonlinear terms in the 7 component. We obtain

atUc == AUC +BC(UC+VS) +Hc<UC7V:97vp)a (68)
at‘/s :A‘/S—FHS(UC)‘/&VP)? (69)

with
He(Ue, Vi, Vp) = Ho(UeUs, Vp) + (Be(UetUs) — Be(UetV2)),
Hy(U., Vs, Vp) = Bs(U~+Us) + Hy(U.+Us, Vp)
—1E,(D{B,(0)[Ue, Us + DEH,(0, Vp)[Ue, Ue))

+14 B (D} B,(0)[U., U] + D} H,(0,Vp)[U., U.)).

(6.10)

In (6.10) U has to be replaced everywhere by the right hand side of (6.5).

Remark 6.2 The idea for (6.5) is as follows. We expect that U, — 0 with rate

t~Y2 hence U, — 0 with rate t~! due to the terms in 0,U, which are quadratic in

3/2

U.. By eliminating these terms we may expect V; — 0 with rate t7%/¢, which we

take into account in the scaling (6.12) below to simplify the analysis. |
6.1 The rescaled systems

Following the ideas outlined in sec.3 and Remark 6.2, for some L > 1 chosen below

we set

Une(,&,y) = L"U(L*"7, L"E,y) = L"RynUe(L* 7, €, y), (6.11)
Un,s<7_a 57 y) = LG‘/s<L2n7_a Lngv y) = LZnRLN UC(L2n7—7 57 y)a (612)

and p,(7,€&,y) = L"p(L*"7, L"E, y). Then

8TUn,c - AnUn,c + Lgan,c(Un) + LgnHC,n(Unv vnpn)a (6133)
87'Un,8 = AnUn,S + L4an,s<Un7 Vnpn)7 (613b)

where U,, = Uy, .+ L™"Uy.5, A, = L**Rpn AR -n, and

Bn,c<Un) - RL”BC<L_nUn)7 vnpn = (L_nafpna 8yp)a
Hc,n(Un7 vnPn) - 7?/L"]——,C(L_n7?fL*" Un7 L_nRL*" vnpn)a
Hs,n<Una vnpn) = 7zL”]{s(L_WR'L—“ Un7 L_n,R'L—”vnpn)-

34



As in sec. 3 the idea is that solving (6.8),(6.9) on t € (1, 00) is equivalent to iterating

UTLC L_2 :LR UTL— c ].
solve (6.13) on 7€[L ™2, 1] with initial data < L) LUn-.ef )> . (6.14)

Upo(L™2)=L*R U, 1.4(1)

A local solution to (6.13) can be obtained as in sec.5 by first solving the linear
inhomogeneous problems

aTUn,c - AnUn,c - Ec,n 0 ) aTUn,s - AnUn,s - Es,n 0 )
g(7) 9(7)

with g € K3 2([1/L2,1],2,9) and (Up e, Uns)(1/L?) = 0 for (Uy., Un,) € Ko7'2,
recovering p, as in Lemma 2.4, and then applying a fixed point argument and the
contraction mapping theorem as in (5.10). Note that, due to (2.27), U.|;=; and
Uslt=1 both satisfy the same compatibilty conditions as Ul=1 = (U. + Us)|;=1. The
crucial step is to obtain estimates independent of n. Since we are going to refine

these estimates in sec.6.3 (see Lemma 6.4, Lemma 6.5) here we only state the result.
Let

Pre = 1Unc)lrr@e),  pns = 1Uns(Wlber@e),  pn=rprctpns (6.15)
and note that
ILRLUr 2,00 < CL™ 2| U 2,0
due to the rescaling properties of Sobolev spaces.

Theorem 6.3 Let 3 < r < 7/2. There exist Ly > 1, C1,Cy > 0 such that for
all L>Lyg the following holds. If p,_y < C1L™° then there exists a unique solution
(Uney Uns) € [KTHY2((L72,1),2,Q)]% and p, € K" Y([L72,1],2,Q) of (6.13) with
(Un,m Un,s)|T=L_2 = (LRLUH—LC;L2RLUn—1,s)|T:17 and

HUn,c|’KT+1/2((L*2,1),2,Q) + HUn,s”ICTH/Z((L*Z,I),Q,Q) + HanK“l((L*Z,l),ZQ)
< C2L5pn—1- (616)

For anym > 0, (U, Uns) € [KKTFV2™((1/2,1),2,9)), p, € K™m71((1/2,1),2,9)
and there ezists a C3(m), independent of L,n, such that

|Un.cllicrt1r2emajony,2.0) + 1Unsllicrtir2em o ,2.0) + |Pall grem=-11/2,1),2,0)
< CO3L°p,_1. (6.17)
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6.2 Estimates for the linear semigroup and the nonlinear terms

Due to the loss of L° in (6.16) we need better control of p, from (6.15) to iterate
(6.14). Given a local solution from Theorem 6.3 we use the variation of constant
formula to obtain improved estimates. We have to take care of the different roles of
x (rescaled) and y (not rescaled). Therefore we introduce the notation

Hu”HTl’TZ(Q) = Ha“LZ(R,HW(dy)) + H|/{:]”ﬂ|],—42(R7Lz(dy)). (618)

We also let
E! =RpE!Rp—, E!, =RpE!Rpn.

Lemma 6.4 There exists a C > 0 such that for all L > 1 we have
HeTAnEZnUOHHT(zvg) S CmaX{l, T_j/2}‘|UO‘|HT—j(2,Q)7 ] = 07 ]-7 2. (619>
For Uy = (o, up) € H™1/2(2) x H™™%"=9(2,Q) we have

le™ B¢, Uollrer )

< C«e—L2n'yo‘r (max{l, T_i/z(L2n7‘>_j/2}HU0”Hr—i,r—j(27Q) + HUOHHTH/Z@)) . (620)

Proof. To prove (6.19) we write
Eg,Uo(&y) = F~(a(O)@1(£/L", y))
with supp(a) C {|¢] < 4p} with p = O(1) from (2.22). Then
AL Uy = F (F M0, 0/, y) )

and the estimate follows from Re(L?"\;(¢/L"))=—al*+O(£* | L*")< —al? for [£|<4p.
The estimate (6.20) follows from (2.14) and the fact that (A —.A) E” is invertible
for ReA > —~p. Since

B, (Z‘;) (€)= (ZZ) —F! <c<e>x<2e> <<ZE§ i) A ->> cblw/m,y)) ,

and since ¥y and ®; are smooth functions, the term involving wu in the n component
of E!',Uy is controlled by the L* norm of uy. O.

Lemma 6.5 Let 3 < r < 7/2 and |Uy |3 20 < Rn < 1. There exists a C > 0
such that

L*|Ben(Une + L7"Ups)|l3r-102.0) < CR2. (6.21)
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Moreover, let ||pn|| gr—s/2(2,0) < Rn. Then
L Hen(Une + L™ "Un.s, Vi)l 1r-2(2.0) < CL"R2. (6.22)

Finally, H (U, Vup,) can be split according to the order of £ -derivatives and y—
derivatives in the form

i
L*"Hon(Un, Vipn) = > (g” ) (Un, Vupn)

i.j
i+j<2 \''s;n
with
1937\l 41720y < CLM I R2, (6.23)
1R | prr—ir—s(o,0) < CL" IR, (6.24)

Proof. The argument for (6.21) has essentially been given in (6.2). Naively we have
Ben(Uy,.) = O(L"R?). But using

F(Rpr((Rp-nma)?)) = L"Re-n(REia)™ = 1y (6.25)
and the fact that F : H"(n,R) — H"(r,R) is an isomorphism we obtain
LgnHBC,n<Un>HHT—1(2,Q)

4 (7 14 b —s 14 1
-1 | = - - N h/// rl du ® v
o re( 5 ) (5) [ 5 wwe (fen) e ()]

<CilA*) w211 < Cll 2w < Clnillarer)
<CR?. (6.26)

—L"

Hr=1(2,Q)

We used that (k) = ik (y) + O(k?), and that c(k) and || ®1(k,-)||mr(0,1)) are
uniformly bounded on |k| < p. This means that here we obtain the needed additional
factor L=" from the mode filter E.. Due to the finite support of x(k), E.U is actually
a smooth function for U € H%(m, ). However, we do not use this smoothing since
we explicitly need the O(k) terms to obtain the factor L~" via rescaling.

To obtain (6.22) first consider a term in, e.g., (4.6b) with ¢ = 1. For instance
consider by (n,u) = —%n@iul, obtained from setting ¢ =d = 2 in

%((d(dl—édédl)acadui = %(1/d2 — 1)8Zu1 (fOI‘ d = C= 2)
1(777 U’) + h'O'ta

where h.o.t denotes higher order terms (either cubic or, via (4.2), containing 0,),
and where other combination of ¢, d also yield higher order terms. By omitting P
with || P||gr@.0)—nr@2,0 < Cin H(U) in (5.1) and rescaling, by yields the term

0
RinEe | —4(L"hy + hy + L™"hy) (6.27)
0
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in L3”Hc,n with

hl = (,R'L*"nn,c) (RL*Tba;(Un,c)ZL
hy = (RL*"nn,s)(RL*"GS(Un,cb) + (RL*"nn,c) (RL*"aZ(Un,sh)a
h3 - (RL‘”nn,s)(RL_”GS(Un,sb)'

Similar to (6.26), in estimating (6.27) we obtain an additional L= from Ry E,,
but for hy this is not yet enough to obtain (6.22). However, writing (A]M(K,y) =
a(0)®,(¢/L™,y) and noting that

0201 (k,y) = 02(2y + O(K])) = O(Jk]) (6.28)
we obtain

L™|Rin Echi ||l —2(2,0)

0 -1 N 2(7] ﬁ ﬁ ﬁ /1 " /ﬁ

= 12| (G + OG0 ) [0 )|
< OL ™ a(k)(1+ O(R) * (ha(k)1-25) < CL k) oz

<COL"R2. (6.29)

Note that the additional L=" due to (6.28) is absent in (RL—n?’]n7C)(RL—n@S(Un,S)Q)
which is why we used the scaling (6.12).

Estimates similar to (6.26),(6.29) can be used for all ”a priori low order terms”
in H.,. For instance, in estimating the ”dangerous” terms coming from (9,u;)us in
(4.6b) with ¢ = 1 we obtain an additional L™" in 0,(U,,.)2(Up.c)s from @13 = O(|k|).
All terms containing 0, in gg, g1, g2, g4 in (4.15) a forteriori yield sufficient powers of
L~ in H.,, while the terms in H,, generated by replacing Uy in (6.10) by the right
hand side of (6.5) are either cubic in U, or contain a factor V which yields L™" via
(6.12).

The proof of (6.23) and (6.24) follows similar lines. Here we cannot gain an
additional factor L™ via E., but there are no quadratic terms in U, . due to the
transformation (6.5). Thus we directly have

1R e (2,0) = O(L"R2).

The same estimate holds for y derivatives (in H™"7(2,2)), while ¢ derivatives yield
a factor L™". The terms coming from

1d
2dt
in (6.10) can be controlled by replacing 0. U, . by the right hand side of (6.13a) and
using (6.21),(6.22). Finally, the n component of Hj , is only generated by projection.

[Es((DBs(0)[Ue, U] + D H,(0)[Ue, Ue))] (6.30)

Therefore it has finite support in Fourier space and can be controlled by R2. |
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6.3 Splitting, iteration and conclusion

We split
Une(T, & y) = W1, £, y) + Va(7, &, ),

where

W = F a7, Ox(¢/L)®1(¢/LM)), (7, 0) = f(71/70),
with f, from (1.10) and z defined by

n(z+1) ﬁ/ (1,2)d

0.V = AV + L (Bey(Uy) — Ben (W) + L H"(U,) + Res, (6.31)

QIQ

7(1,0).

Then

where
Res, = —0, W@ + A, W* + L*"B,,,(W).
Lemma 6.6 Let |z| < 1. There exists a C > 0 such that

sup  ||Resp|lnre0) < CL7" 2|
Te[L—21]

Proof. We have A, W\ = (—af®+ O(3/L") )W, as |¢] — 0, and, as in (6.2) and
similar to (6.26),

LB (W) = =2il(a, * a,)(1 4+ O(|I| /L")y (¢/L").
Combining this with

0, W) Y(0ra. (1, 0)x(¢/L™) @y (¢/L™))

f
FH (—alPa, +iBl(a, * a.))x(£/ L") @1 (¢/L7))

yields
Res,(¢) = CL(OPYW + O?)(a, * a.) (¢/L™)).

This can be estimated in H"(2,2) by C'L~"|z| since a, is an analytic and exponen-
tially decaying function. O
To proceed we write

Une(1,6,5) = W1, €,9) + Gnel€,y),  Uns(1,6,9) = Gns(€, ).

By the choice of z we have §o.(0,-) = 0. Moreover, as already explained in (6.4),
Bcﬁn(Un), H.,(u,) and Res, locally at ¢=0 have the form of a total derivative,
therefore &Vn(ﬂ 0,y) = 0. This gives

Vo (7,0,)=0 VYre[L%1], hence G,.0,-)=0 VYneN. (6.32)
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To control (G, ., Gy.s) we now use the integral equation satisfied by V,, and U, s,

Gpe= el LMEN TRLG, 1,

1
+L" / B, (Un) = Ben (W) +He(Uy)+Res, | (s)ds,  (6.33)
L

—2
1
Gy = LB TPRIG + / el LI H L (Un(s)) ds, (6.34)
L2
where, as before, U, = W\ + V,, + LU, .
The first term on the right hand side of (6.33) is estimated using

[t 2Bl LRG| < CL Gl (6.35)
’ H" (2,9)

for G € H'(2,9Q) with G(0) = 0, similar to (3.6). Again the idea is to write
G(t/L) = G(0) + 9,G(0) L~ = §,G(0)L¢ with ¢ € (0, 0).
In the stable part we have, due to (6.20) and for L sufficiently large,

He(l—L”)An EZanRLG‘ < CLPe P L) Gy 0.0

H"(2,0)
< LGl . (6.36)

The integral in (6.34) is of the form

E IV where ]W:/ =M (90 | (§) ds,
L-2 h;’,]s

145 <2
with, due to Theorem 6.3 and Lemma 6.5,

1952 ()| 1202y < CLM U3 .0y < CLM I (L2pn1)?,
13 () [ a2,y < CLMI|[Un(8) |3 < CLMD(LOpa)?,

for s € [L72,1], and we want to estimate in H"(2,). Using Lemma 6.4 we see that
120 1YY and 192 diverge at s = 1 due to the u component. However, due to the
higher regularity in Theorem 6.3 we additionally have

|’h27js<5)||Hr(27Q) < C’(CgL5pn_1)2 for se1/2,1],

with C3 from (6.17). Therefore, as in (3.20) we split the integrals %% 1! and %2
as le—2"' ds = ng ds—l—fll/z--- ds.
The integrals in (6.34) can then be estimated as

1
HIOJHHT(Z,Q) S C«Ln(LBPn_l)Z/ e—'yoLZH(l—s) max{l, (LG(l _ 8))_j/2} ds
L2
< CL™(L°pu_1)? j=0,1, (6.37)
1

17 < CP ) [ e 0 max1, (1= 5) 2 as

< COL™(L°pp_1)?, (6.38)
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1/2
10 a0) < CLM(Lpocs ) [ e a1, (1271 = 9) s

-2

1
+ 2 / e 0 (1) ds]
1/2

<Ol +CHL™(LPpp_1)?, (6.39)
and similarly
e + 17 e o) < CA+ C) LT (L pur)™. (6.40)
To estimate the integrals in (6.33) we write
Ben(Un)=Ben(Wi) = Qu(WiP Vi L7"Uns) + Bea (Vo + L7"Un,s)

where Qcyn(quz), V) is bilinear. Then, similar to (6.21) in Lemma 6.5, we obtain

Lgn”Qc,n(Wr(LZ)7 Vn + L_nUn,s) ”HT—l(Z,Q) S CLS‘Z’pn—la
Lgn”Bc,n(Vn + L_nUn,s) ”HT—l(Z,Q) < C<L5pn—1)2~

Therefore, using Lemma 6.4,

Finally we have

L / 1 A B, (Un(8)) = Ben(W ) (5)) + Res,(s)] ds

-2

Hr(2,Q)
< O(L7)2]pus + (Lpacs)? + L7[2)). (6.41)

L < CL™(1+ C5)(L7pns)’

1
/ e(l_s)AHcm(Un(s)) ds
L HT(2,0)

—2

1/2

by splitting f;,z ceds= [0 -

ds+ [}, -+ ds. Combining this with (6.35)—(6.40)
and setting
ﬁn,c = ”Gn,c”'HT(Q,Q)

we obtain
pn,s S L_lpn—l,s + CL—”(LSPn—1)27 (6 42)
e < OL b1+ C(|2]L2pp1 + (LPppa)® + L (LPpua)® + 2| L77).

Thus we can complete the proof of Theorem 1.6: Let L > Ly with L sufficiently
large such that CL~' < L=(79 for some small § > 0. Let ||(ng, uo)||sr2,0) be so
small that |z|+pg c+pos < L~™° with mg to be chosen below, hence also pg < CL™"°.
Then (6.42) implies py, o + pns < L™ =) with

my, = min{mn_l + 1, mo + Mp_1 — 5, 2mn_1 — 10, mo + TL}

41



Choosing, for instance, mg = 11 yields m; = 12, ms = 13, .. ., hence p,, < CL~ 179
Therefore,

|L" R U(L*) — W (V)| 2.0) = Gne + L"Grsllrr@0y < CLT"70 (6.43)
Using

[ F 7 (a=(L*, 6)(@1(0,-) — x(¢/ L)@ (¢/L", )]

2.0 S cL,

setting ¢t = L*"7, using Theorem 6.3 for 7 € (1/L? 1), and doing back the transfor-
mations in sec.4 the proof of Theorem 1.6 is complete. O

A Appendix

A.1 Proof of Lemma 2.2

The proof that the operator A in the linearization 0;U = AU of (1.1) is sectorial in
X ={U=(n,u):ne H (Ty),u € PL*(Q)} (see (2.5)) is based on Korn’s inequality.
It works as in, e.g., [Sun97, section 3] and is sketched here for convenience. For
u,v € H*(Q), and p € H'(Q) we have

/ (lAu — Vp)de = —i<u,v> — [ S(u,p)odl’ + / pdived,  (A.l)
o\R 2R 20 Q

(u, U> = / Z (azjuz + ainaniji + 8xivj) dQ7
Q .

4,j=1,2

1
S(va)i =pn; — P_{ Z (accjui + am“j)”jv

7j=1,2

where n is the unit outer normal on 9. Moreover, for v € H*(Q2) with divu = 0
and u = 0 on I't, we have Korn’s inequality in the form [It093]

4
3IVulls < (u,u) < 4] Vuls,

2
() = Tl and () > 2 [ ol + T

where |||, = [Ju| gm@) and in the following (u,v)m, = (4, v)gm.

Let FF = (&, f) € X. First we show that for ReA > a with a sufficiently large
there exists a (weak) solution U = (n,u) € H'(T¢) x H(Q) of (A— A)U = F. For
v € PHY(Q) with v|p, = 0 we have, using (A.1),

(f,v)o = (A=A+Lo)u — E(g"n—Wa2n), v)o

1 2
= AMu, v)o+(Lou, v)o + == (u, v) + / ——nvy + g*Nue+W0o,nd, v dl' (A.3)
2R r, R
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From (A + 0,)n = ug + £ we obtain

/\(u,v)%—(Lou,v)o%—%{(u,v)/ (—%vﬁ—g*vg)(/\—ax)_luQ+W8x028x(x\—@x)_luQdF
Iy

= (f,v)o+ /1“ (%vl — g*vg) (A= 0,) = WD,020,(\ — 0,)1¢dl. (A.4)

Let By(u,v) be the left hand side of (A.4) and H(F,v) be the right hand side, and
define the Hilbert space H C H'(Q2) via the inner product

(u,v)y = (u,v); + / UgUy + OptnDyvo dT.

¢

Then B, (+,-) is a bounded bilinear form in H and H(F,-) a bounded linear func-
tional. Moreover, from Korn’s inequality (A.2) it follows that there exist an a > 0
such that for ReX > a we have Re(By(u,u)) > Cllull3,, i.e., B is coercive. By the
Lax—Milgram Theorem we have a unique solution u with ||u||x + ||u|r]r < [|F||x-
From n = (A+0,) }(ug+&) we obtain ||n||; < C||F||x, and hence A — A is invertible
in X.

Thus, let U = (A — A)~'F. Choosing v = u in (A.3) we obtain

1 2
/\Hqu—l—(Lou,u)0+—<u,u>+/ =2 s+ Mg AW (9,m)?) dT
2R L R
= (/f, U)o+/ gnE+Wond £dl. (A.5)
I

Then, using again (A.2) and |be| < 6b% + -=¢*,6 > 0, and choosing a sufficiently
large we obtain from the real part of (A.5)

1

< —||F
e < o=y 1

for Re(\) > a. Since A is closed and densely defined in L?(T'y) x L*(f2), the Hille-
Yosida Theorem yields that A generates a Cy semigroup e : X — X. Similarly,
the imaginary part of (A.5) gives

C
1U]|x < WHFH%

which implies that A is sectorial [Paz83, Theorem 2.5.2]. O

A.2 Resolvent estimates in the weighted spaces

To prove Lemma 2.5 we first transfer the resolvent estimates from Lemma 2.3 into
the weighted spaces H"(2) and H"(2,(2). Therefore, let

pol) = (L + (b2)?)
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where b > 0 will conveniently be chosen sufficiently small below. Clearly, for all

b > 0 there exist C1,Cy > 0 such that Ci||ppullar) < ||ullareo) < Collppullar @)

for all w € H"(2,12), and similar for H"(2), i.e., the norms are equivalent.
Substituting (n,u,p,&, f)=ps(e, @, q, 3, g) into (2.1), the resolvent equation

)G

is equivalent to

a «
A-Ala|l=G+B|a], (A.6a)
q q
2
Oyl + Oyls — 2a = p1(0), ¢—g'a— anag + W&2a = py(a) onTy (A.6b)
/
divi= -4, inQ,  a=0 only, (A.6c)
Pb
where p) = 0,pp = 2bx, p1(0) = _%'ZLQ, pa(a) = —p—leV(pZoz + pp0- ) and
Oj Ao — Oy — Uy
| = ,
M — At + Lyt + Vg
q
B o épba
G=|lal|, Bilu]|= p—lb (;-1{(2,02@@14‘%?2/@1) — PZUNTM—PZQ)
92 q (7 (2040000 +pf ) — plunis)

For A € Sup = {4+ ¢ < Jarg(a — M| < 7} and (8,9) € HPV2(R) x H™2(0)
we prove the resolvent estimate (2.6) for the solution («, ) of (A.6) which implies
(2.13), i.e

ull @) + A2 [ull 2@y + 10l 17202y + N2 ] o
< C (If -2+ 2)/2HfHH0(2,Q)+Hf||Hr+1/2(2)+!/\| 1) /2H5HH0(2)) - (A7)

Let w = Kh be the solution of divu = h, ulr, = 0. Due to e.g., [Tem01,
Prop.1.2.3] this satisfies ||Kh| gr+1q) < Cl|h||ar). Set @ = v+ u®) with

where the operator K* with ||[KC*v|| 1) < Cb||v|| gr o) exists for b sufficiently small
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due to the contraction mapping theorem. This yields

o a

A=A |v|=G+B|v], (A.8a)
q q

Dyv1 + Opv2 — 2a = 3(v) := p1(v + K*v) on I, (A.8Dh)

2 2
q— g a— P—{ﬁyw + W2a = p4(a,v) == pa(a) + P—{Oy(lC*v)g on Iy, (A.8c)
dive =0 in €, v=0 on [}, (A.8d)

where

(6% o
(IC*U)Q
B =B Kc* — )
2170 1| v+ (% (( —%A—I—Ln)K*U
q q

Next we remove @3 from (A.8b), similar to (4.14). Therefore, let v = w +u® where
u® = M*w solves

divu® =01in Q, u® =0ony=0,

ugz) =0, 8yu§2) + 8xu52) = p3(w+u?)ony=1. (4-9)
Again, for b sufficiently small M*w exists by the contraction mapping theorem and
fulfills || M*w||gr+1) < Cbl|w|ar@) due to [[@s(v)||gr-1/2ryy < CblJv|[r ). This
yields

(0] (6%
A=A |w|=G+Bs|w (A.10a)
q q

2
Oywy + Opwy —2a =0, q—g a— P—{Gwa + Wd2a = ps(a,w) on Ty, (A.10b)
divw =0 1in €, w=0 onlY, (A.10c)
where ¢5(a, w) = 4(a, w + M*w) + 20,(M*v), and

« «
(M*M)Q
B =B K* — .
4q 4q

For b = 0 we have B3 = 0, and ¢5 = 0 and (A.10) is equivalent to (A —.A) () = G.
Thus, for A € S, , = {A: ¢ < |arg(a— )| < 7} there exists a unique solution (o, w)
which fulfills (2.6). From Lemma 2.4 we obtain ¢ = ¢(«, w) with
[wll @) + A2 lwll 2y + llll gz + A2l o,
+IVallar—@) + llall sz
< C (g0 + T2 gl oy + DBlrsagey + N2 Bllmoy) - (A1)
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For b > 0 we may then write (A.10) as

o o “ 0
(A—=A) - By) <w) =G, By (w) = B3 ww) + (Eg%(oc,w)) . (A12)

q(a,

Collecting the above estimates for *, M* and (A.11) we see that Id — (A —.A) "' By
is invertible for b sufficiently small due to Neumann’s series. Hence we obtain a
solution

(,w)=(Id—(N—A)'B) '\ - A)'C@

of (A.10) which again fulfills (2.6). This shows (A.7).
The remaining statements from Lemma 2.5 are proved the same way. O

A.3 Proof of Lemma 3.2

For simplicity, throughout the proof we omit the index n for u. For r > 2, we first

consider the linear inhomogenous equation
Mu = (0. — %)u= f(r), feK;*([1/L*1],2), u(l/L*) =0. (A.13)

For a g9 > 0 we let v(7) = u(r — L™%)e 7. We identify f with its continuation
for 7 > 1 and let g(7) = f(7 — L=*)e”"°". Then (0, + 0o — 07 )v = g which under
Laplace transform becomes (A 4 oo — 9Z)0(A) = g(A). For ReA > 0 we have the
resolvent estimate

10| 2y + A" | 8]l o2y < CUNGN 202y + IMT7272]1G]| r02))- (A.14)

Moreover, v is analytic in ReA > 0 because so is ©. Thus, due to the Paley-Wiener
Theorem v(7) = o= [#75(ip) dp = 0 for 7 < 0, and by (3.9) and (A.14) we have
vl kro,000,2) < Cllgll xr—2(j0,00),2)- This immediately yields v € K{([1/L?1],2) with
lull&rquyz,2) < CNfllar—21y22,0,2)-

We write u = M, ' f for the solution operator of (A.13). To solve the non-
linear problem (3.7) we set u = v + w where v € K"([1/L*1],2) is a continua-
tion of w(1/L*) € H™'(2). Then Mw = f(w + v) — Mv where f(u) = udeu +
L""h(u, d¢u, fu). By standard Sobolev embeddings (cf. Lemma 5.2) the nonlin-
earity maps K§([1/L?,1],2) into K %([1/L?1],2) for r > 5/2. Here we use that
(3.2) is quasilinear, while the fully nonlinear case would require r > 7/2. This is not
important for the present problem, but in more complicated problems larger r may
require more compatibility conditions.

Here, choosing r = 3, additional to v(1/L?) = u(1/L*) we need to choose v in
such a way that for w € Kj([0,1/L?],2) we have f(w+v)—Mv € K, *([1/L?,1],2).
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Hence we also require d-v = f(v) — dv at 7 = 1/L?. In summary, we consider (3.7)
in the form

w= My (f(v+w)— Muw), (A.15)

and the above estimates and the fact that f is at least quadractic imply that
the right hand side of (A.15) defines a contraction in a sufficiently small ball in
Ky ([1/L2,1],2). This shows the existence of u = v +w € K3([1/L?1],2) with
lull s < Cllu(1/L) ||z < CLYpyy < Capn.

The higher regularity follows from a standard bootstrapping argument: for u €
K3([1/L?,1],2) we have u(r;) € H?(2) for almost all 7, € [1/L?, 1]. Starting again
at such 7, we obtain u € K*([r, 1], 2), and iteratively u € K3 ([r,,,1],2) with the
given estimates. u
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