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Abstract

The Nusselt solution for the flow of a viscous incompressible fluid with a free surface down

an inclined plane is at best marginally stable, i.e., the linearization has essential spectrum

at least up to the imaginary axis. Nevertheless, using a renormalization group approach

here we establish the stability of the Nusselt solution in the full nonlinear system in case of

linear stability by proving the self similar decay of spatially localized perturbations. The

asymptotic decay for t → ∞ is similar to the dynamics of localized perturbations of the

trivial solution in the Burgers equation on the real line which is the amplitude equation

of the problem.
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1 Introduction

We consider the flow of a viscous incompressible fluid down an inclined plane, driven

by gravity and governed by the Navier–Stokes equations with a free top surface.

There exists a basic stationary solution with a parabolic flow profile and a flat top

surface, the so called the Nusselt solution. Depending on the parameters of the

system, e.g. the height of the fluid and the inclination angle, this solution is linearly

stable or unstable. There are a number of experimental, numerical and analytic

investigations of the system close to the first instability of the Nusselt solution

[LG94, CD96, CD02, Uec03, PSU04a, PSU04b] leading to interesting dynamics, as

unstable pulse dynamics for surface waves. Here we establish the stability of the

Nusselt solution in the full nonlinear system in case of linear stability. The problem

is non–trivial due to a complicated local existence theory and in particular due to

the fact that even in the stable case the linearization around the Nusselt solution

has essential spectrum up to the imaginary axis. Hence no classical argument for

the nonlinear stability applies.

Although the linearization only gives marginal stability, the associated linear

semigroup shows polynomial decay rates if we restrict to spatially localized pertur-

bations. The asymptotic decay for t → ∞ in the linearized system is similar to

the decay in the 1–dimensional linear diffusion equation. However, in contrast to

exponential decay rates the polynomial rate t−
1

2 is too weak to control all nonlinear

terms. In fact, we show that the asymptotic dynamics is nonlinear: the so called

renormalized solution does not converge towards the Gaussian profile coming from

the linearized system but to a non Gaussian profile related to the Burgers equation,
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which is the amplitude equation of the system in the stable case. In lowest or-

der, small spatially localized perturbations show the same asymptotics as localized

perturbations of the trivial solution in the Burgers equation.

The paper is based on the renormalization group approach for the proof of diffu-

sive behavior in nonlinear diffusion equations [BKL94], which has been transfered to

more complicated systems as the Ginzburg–Landau equation and pattern forming

systems in [BK92, Sch96, Sch98, Uec99, ES00, ES02, SU03, GSU04]. In contrast to

these applications our system is quasilinear and the renormalized solution converges

to a non Gaussian limit.

In the remainder of this introduction we first give the equations governing the

inclined film flow and explain the derivation of the Burgers equation and the asymp-

totic behavior of localized perturbations of the trivial solution in the Burgers equa-

tion. The precise result is then stated in sec.1.4.

1.1 The problem

Figure 1 shows the geometry for a two–dimensional liquid film flowing down an in-

clined rigid plate with inclination angle θ. The flow is driven by gravity, the top

surface is free, at the bottom we assume the no–slip boundary conditions u1=u2=0,

and above the fluid we assume a constant atmospheric pressure pa (w.l.o.g. pa=0).

The motion of the film is thus described by the incompressible Navier–Stokes equa-

tions for (u1, u2) and the kinematic equation for the free surface, together with

boundary condition for the stress at the free surface (including surface tension, see

below). Again we refer to the monograph [CD02] for a comprehensive review of

y, u2 g

h(t, x̃)

θ

x̃, u1

Figure 1: The inclined film problem; a fluid of height y = h(t, x̃) runs down a plate with

inclination angle θ subject to constant gravitational force g.

this so called inclined film problem. For given parameters the problem has a basic

solution, the so called Nusselt solution

(h, u1, u2, p) = (h0, uN , 0, pN), uN(y) =
g sin θ

2ν
(2h0y− y2), pN(y) = ρg cos θ(h0 − y),
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with a flat top surface and a laminar flow in the unbounded x̃–direction. Here ν and

ρ are the kinematic viscosity and the density of the fluid, and g is the gravitational

constant.

We assume that at initial time the free surface is a graph over x̃, and that we

are close to a spectrally stable Nusselt solution, in a sense made precise below. It

turns that the free surface stays a graph over x̃ for all times, and in fact we show

that initial perturbations decay; moreover, they decay in a universal manner.

We use the height h0 of the flat film as the characteristic length, the surface ve-

locity u∗N = uN(h0) = gh2
0 sin θ/2ν of the Nusselt solution as characteristic velocity,

and define the Reynolds number

R = u∗Nh0/ν.

In dimensionless variables the Nusselt solution is

h ≡ 1, uN(y) = 2y − y2, pN(y) =
2 cot θ

R
(1 − y).

From previous work [CD02] we know that on the linear level small amplitude long

surface waves travel with twice the (dimensionless) surface speed uN(1)=1 of uN .

Thus we consider the dimensionless Navier–Stokes equations and boundary condi-

tions for perturbations η, u and p of the Nusselt solution in this comoving frame: we

set x = x̃− 2t and obtain

on Γf : ∂tη = u2 + ∂xη − (∂xη)(u1 − η2), (1.1a)

in Ω : ∂tu1−
1

R
∆u1+∂xp+(uN−2)∂xu1+u

′
Nu2 = −(∂xu1)u1−(∂yu1)u2, (1.1b)

∂tu2−
1

R
∆u2+∂yp+(uN−2)∂xu2 = −(∂xu2)u1−(∂yu2)u2, (1.1c)

div u = 0, (1.1d)

on Γf : 4(∂xη)(∂xu1) + ((∂xη)
2 − 1)(∂yu1 + ∂xu2 − 2η) = 0, (1.1e)

p−g?η− 2

R

(∂xη)
2(∂xu1)−(∂xη)(∂yu1+∂xu2−2η)+∂yu2

1 + (∂xη)2
= −WK(η), (1.1f)

on Γb : u = 0, (1.1g)

where u′N=∂yuN and g? = 2 cot θ/R.

In (1.1), Γf = Γf(t) = {(x, y) : x ∈ R, y = 1 + η(t, x)} is the free surface,

Ω = Ω(t) = {(x, y) : x ∈ R, 0 < y < 1 + η(t, x)} the fluid domain, Γb = {(x, y) :

x ∈ R, y = 0} the bottom, W = σ/(ρu∗N
2h0) is the Weber number with σ > 0 being

the coefficient of surface tension, and K(η) = (∂2
xη)/(1 + (∂xη)

2)3/2 is the interfacial

curvature; (1.1a) is the kinematic condition, (1.1b) and (1.1c) are the momentum

balance, (1.1d) is the continuity equation, (1.1e) and (1.1f) are the continuity of

tangential and normal stresses at the free surface, and (1.1g) is the no-slip condition

at the bottom.
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The evolution for (1.1) is determined by specifying the initial surface and the

initial velocity field, while the pressure p is resolved a posteriori from the incompress-

ibility condition. Using a projection onto solenoidal vector fields, the linearization

of (1.1) can be written in the form

∂tU = AU, U = (η, u), (1.2)

where A is a sectorial operator and etA has certain smoothing properties (see sec.2).

The nonlinear problem can then be written as a quasilinear system

∂tU = AU + F (U,∇p), (1.3)

where F (U,∇p) contains the nonlinear terms and ∇p is obtained from the incom-

pressibility condition. This formulation involves a transformation of the time de-

pendent domain Ω(t) occupied by the fluid to the fixed domain

Ω = {(x, y) : x ∈ R, 0 < y < 1}.

Due to the transformation ∇p occurs nonlinearly in (1.3). Using maximal regularity

methods [LM68] for (1.2) and the contraction mapping theorem for the nonlinear

problem, the local existence in Sobolev spaces for (1.1) has been shown in [Ter92],

following [Bea80, Bea84]. For this one must also impose the compatibility conditions

div u = 0 in 0 < y < 1 + η(x), u = 0 on y = 0,

4(∂xη)(∂xu1) + ((∂xη)
2 − 1)(∂yu1 + ∂xu2 − 2η) = 0 on y = 1 + η,

(1.4)

on the initial data η|t=1 = η0, u|t=1 = u0. The initial time t = 1 will be convenient

in the renormalization process.

1.2 Derivation of the Burgers equation

Due to the unboundedness in x of the domain and the translation invariance in x of

the problem, the linearization (1.2) of (1.1) around 0 has solutions of the form

eλn(k)teikxΦn(k, y),

with k ∈ R, n ∈ N and Φn(k, y) ∈ C3. The Nusselt solution is spectrally stable if

all eigenvalues λn(k) satisfy

Reλn(k) ≤ 0

and if all eigenvalues with real part zero are semi simple. Let the curves of eigen-

values be ordered such that Reλn(k) ≥ Reλn+1(k). Then we always have the simple

eigenvalue λ1(0) = 0 for all values of the parameters, with Φ1(0, y) = (1, 2y, 0).

By a standard perturbation argument we have the smoothness of curves of simple

eigenvalues, i.e. we have essential spectrum at least up to the imaginary axis.
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From previous work [Ben57] it is well known that for Reynolds numbers greater

than the critical Reynolds number, i.e.,

R > Rc =
5

4
cot θ, (1.5)

the Nusselt solution is unstable with respect to long waves. In the spectrally stable

(unstable) case we have a spectrum as sketched in fig. 2(a) (fig. 2(b)).
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Figure 2: The spectrum drawn over the Fourier wave numbers; (a) schematic sketch in

the stable case; (b) Reλ1 in the unstable case, obtained from a numerical solution of the

Orr–Sommerfeld equations, see sec.2.2.

Remark 1.1 Note that the critical Reynolds number Rc in (1.5) is defined in terms

of instability with respect to long waves. For very low inclination angles and high

Reynolds numbers the Nusselt solution can first become unstable due to a short wave

shear mode instability at a wavenumber kc > 0, see [FDK87] and [CD02, sec.2.6].

Here we always exclude the extreme case of this instability. Also note that the

(in)stability in (1.5) only depends on R and θ, while, e.g., the size of the unstable

sideband and the growth rates also depend on the Weber number W [CD02, Uec03].

The inclusion of surface tension is also important for the existence theory of (1.1),

cf. [Puk72, Bea80]. Here we assume throughout that W > 0. c

In the spectrally stable case the Burgers equation may be formally derived as an

amplitude equation for (1.1). For this we substitute the long wave/small amplitude

ansatz



η

u1

u2

p




(t, x, y) = δΨ(T,X, y) =




δη1(T,X)

δu11(T,X, y) + δ2u12(T,X, y)

δ2u22(T,X, y) + δ3u23(T,X, y)

δp1(T,X, y)



, (1.6)

T = δ2t, X = δx, (1.7)
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with 0 < δ � 1 a small perturbation parameter into (1.1). This yields a hierarchy

of equations which can be successively solved. We first obtain

u11 = 2η1y, p1 = g?η1, u22 = −(∂Xη1)y
2,

u12 = R(∂Xη1)

[
1

6
y4−2

3
y3+

1

2
g?y2 + (

4

3
− g?)y

]
,

u23 = R(∂2
Xη1)

[
− 1

30
y5 +

1

6
y4 − 1

6
g?y3 − 1

2
(
4

3
− g?)y2

]
,

(1.8)

and from the kinematic equation (1.1a) at order O(δ3) we find that η1 has to satisfy

the Burgers equation

∂T η1 = α∂2
Xη1 + β∂X(η2

1) (1.9)

with

α =
2

3
cot θ − 8R

15
and β = −2.

Note that α > 0 iff R < Rc, while β is independent of the parameters. A few more

remarks are in order:

Remark 1.2 If, for example, we start with (1.1) in the labaratory frame, then the

ansatz (1.6) with (1.7) replaced by X = δ(x̃− ct) naturally leads to c = 2. c

Remark 1.3 Our expansion (1.6),(1.8) and (1.9) is unbalanced in the sense that

we solve ((1.1b),(1.1c),(1.1e),(1.1f)) to orders (δ2, δ, δ2, δ), respectively, and (1.1a)

to order δ3, while (1.1d) and (1.1g) hold exactly. By adding higher order terms

(0, δ3u13, δ
4u24, δ

2p2+δ
3p3) to the ansatz (1.6) and continuing similar to (1.8) we

could also solve (1.1b),(1.1c),(1.1e) and (1.1f) up to order δ3 (where in fact δ4u24

would only be needed to still satisfy the incompressibility exactly). However, at this

stage we are only interested in the formal derivation of (1.9), which is unchanged

by higher order terms. Essentially, to prove Theorem 1.6 we need to make precise

the sense in which the dynamics of (1.1) are described by the Burgers equation

(1.9). These rigorous estimates require a functional analytic frame and are therefore

postponed to sec.6. See also Remark 1.8. c

Remark 1.4 Above the threshold of instability, and in the limit of large We-

ber number W, the Kuramoto–Sivashinsky equation [Nep74, KT76, Siv77, TK78]

∂T η = −α1∂
2
Xη − α2∂

4
Xη − 2∂X(η2) with α1, α2 > 0 can be derived from (1.1). For

details and for various alternative amplitude equations for (1.1) in different scal-

ing limits see [CD02] and the references therein, and [FI99] for an approach where

no scaling for the parameters is assumed a priori and the perturbation analysis is

based on a “minimal derivability” condition. Here we concentrate on the spectrally

stable case which is the starting point for all rigorous analytic investigations of the

problem. c
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1.3 Asymptotic behavior in the Burgers equation

The Burgers equation (1.9), i.e., ∂tη = α∂2
xη+β∂x(η

2) after renaming T = t, X = x

and η1 = η, is the amplitude equation for (1.1) in the spectrally stable case. In

order to motivate our result for (1.1) we first consider the nonlinear stability of the

trivial solution in (1.9). To keep track of α and β we do not rescale (1.9) to the

more standard form ∂τη = ∂2
ξη + ∂ξ(η

2).

The Burgers equation is transformed to the linear diffusion equation ∂tψ = ∂2
xψ

by the Cole–Hopf transformation

ψ(t, x) = exp

(
β

α

∫ √
αx

−∞
η(t, ξ) dξ

)
, η(t, x) =

√
α

β

ψy(t, y)

ψ(t, y)
, y = x/

√
α.

For limx→−∞ ψ(x) = 1 and setting limx→∞ ψ(x) = z+1, i.e., ln(z+1) = β
α

∫
R
η(t, ξ) dξ,

it is well known that

1 + z erf(x/
√
t) with erf(x) =

1√
4π

∫ x

−∞
e−ξ2/4 dξ

is an exact solution of ∂tψ = ∂2
xψ. It follows that

η(z)(t, x) = t−1/2fz(x/
√
t) with fz(y) =

√
α

β

z erf ′(y/
√
α)

1 + z erf(y/
√
α)

(1.10)

is an exact solution of the Burgers equation. Moreover,

ψ(t, x) =
1√
4πt

∫

R

e−(x−y)2/(4t)ψ0(y) dy → 1 + z erf(x/
√
t) as t→ ∞,

with rate O(t−1), for initial conditions ψ0 ∈ L∞(R) with limξ→−∞ ψ(ξ) = 1 and

limξ→∞ ψ(ξ) = 1 + z. Therefore the so called renormalized solution satisfies

lim
t→∞

t1/2η(t, t1/2x) = fz(x) (1.11)

with rate O(t−1/2), i.e., it converges towards a non-Gaussian limit. This is illustrated

in fig.3, taking into account that β = −2 < 0 and −1 < z < 0 if
∫
η(1, x) dx > 0.

The behaviour (1.11) is not true for spatially non-localized initial conditions since the

Burgers equation has front solutions η(t, x) = h(x−ct) with |h(ξ)| 6→ 0 as |ξ| → ∞.

It has been shown in [BKL94] that the self–similar dynamics (1.11) in the Burgers

equation is stable under perturbation by higher order terms. Since, in a nutshell,

we want to consider (1.1) for R < Rc as a (very complicated) perturbation of the

Burgers equation we note the following Theorem as a prototype of the result we

show for (1.1).

Notation. Throughout this paper we denote many different constants that are in-

dependent of δ and the rescaling parameter L > 0 (see below) by the same symbol C.
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t = 10

Figure 3: Sketch of self–similar decay in the Burgers equation

For m,n ∈ N we define the weighted spaces Hm(n)={u ∈ L2(R) : ‖u‖Hm(n)<∞}
with ‖u‖Hm(n) = ‖uρn‖Hm(R), where ρ(x) = (1 + |x|2)1/2 and Hm(R) is the Sobolev

space of functions with derivatives up to order m in L2(R). By abuse of notation we

sometimes write, e.g., ‖u(t, x)‖Hm(n) for the Hm(n) norm of the function x 7→ u(t, x).

Fourier transform is denoted by F and is always with respect to the unbounded di-

rection x; e.g., if u ∈ L2(R), then û(k) := F(u)(k) = 1√
2π

∫
e−ikxu(x) dx.

From F(∂xu)(k) = ikû(k) and Parseval’s identity we have that F is an isomor-

phism between Hm(n) and Hn(m), i.e., the weight in x–space yields smoothness

in Fourier space and vice versa. This smoothness in k is essential for the proof of

the following theorem, where for convenience we take initial conditions at t = 1.

Moreover, due to the relation with (1.1), here we only consider the quasilinear case

p3 ≤ 1. See sec.3 for the proof and more details.

Theorem 1.5 Let b ∈ (0, 1/2), h(η, ∂xη, ∂
2
xη) = ηp1(∂xη)

p2(∂2
xη)

p3 with dh = 3 −
(p1 + 2p2 + 3p3) ≤ −1 and p3 ≤ 1. There exist C1, C2 > 0 such that the following

holds. If ‖η0‖H2(2) ≤ C1, then the pertubed the Burgers equation

∂tη = α∂2
xη + β∂x(η

2) + h(η, ∂xη, ∂
2
xη) (1.12)

has a unique solution η with η|t=1 = η0, which satisfies, for a z > −1,

‖
√
tη(t,

√
tx) − fz(x)‖H2(2) ≤ C2t

−1/2+b, t ∈ [1,∞). (1.13)

1.4 The result

Motivated by the fact that the Burgers equation is the amplitude equation for (1.1)

in the spectrally stable case and shows self similar decay of small spatially localized

perturbations of the trivial solution we expect a similar result for (1.1). To state this

result we first need fractional Sobolev spaces with weights. In the definition of these

space we in general do not distinguish between vector valued and scalar functions

as this will be clear from the context. For 0 ≤ r ∈ R, H r(R) is the Sobolev

space of functions u ∈ L2(R) finite in the norm ‖u‖Hr(R) = ‖(1+k2)r/2û‖L2(R).

For r ∈ N this definition coincides with the usual one [LM68, chapter 1]. We let
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Hr(n) = {u ∈ L2(R) : ‖u‖Hr(n) < ∞} with ‖u‖Hr(n) = ‖uρn‖Hr(R). It follows from

Parseval’s identity that ‖u‖Ĥr(n) with ‖u‖2
Ĥr(n)

=
∑n

j=0 ‖(1+k2)r/2∂j
kû‖2

L2 defines an

equivalent norm on Hr(n). For Ω = {(x, y) : x ∈ R, 0 < y < h(x)}, real r ≥ 0, and

n ∈ N, we let

Hr(n,Ω) = {u ∈ Hr(Ω) : ‖u‖Hr(n,Ω) <∞}, ‖u‖Hr(n,Ω) = ‖uρn‖Hr(Ω).

Since ‖u‖Ĥr(Ω) with ‖u‖2
Ĥr(Ω)

= ‖û‖2
L2(R,Hr( dy)) + ‖|k|rû‖2

L2(R,L2( dy)) is an equiva-

lent norm on Hr(Ω), where Hr( dy) denotes the Sobolev space with respect to the

bounded cross section [LM68, sec.1.9], it follows that ‖u‖Ĥr(n,Ω) with

‖u‖2
Ĥr(n,Ω)

=

n∑

j=0

(
‖∂j

kû‖2
L2(R,Hr( dy)) + ‖|k|r∂j

kû‖2
L2(R,L2( dy))

)

is an equivalent norm on Hr(n,Ω). Finally let

Hr(Ω) = Hr(R) ×Hr−1/2(Ω) and Hr(n,Ω) = Hr(n) ×Hr−1/2(n,Ω).

Our result now reads as follows, where as in Theorem 1.5 for convenience we take

the initial conditions for (1.1) at t = 1.

Theorem 1.6 Let R < Rc, b ∈ (0, 1
2
), and 3 < r < 7/2. Then there exist C1, C2 > 0

such that the following holds. For (η0, u0) ∈ Hr(2,Ω(1)) satisfying

‖(η0, u0)‖Hr(2,Ω(1)) ≤ C1

and the compatibility conditions (1.4), there exists a unique solution U = (η, u) of

(1.1) with U |t=1 = (η0, u0). This solution satisfies

∥∥(x, y) 7→
[
t1/2U(t, t1/2x, y) − fz(x)Φ1(0, y)

]∥∥
Hr(2,Ω(t))

≤ C2t
b− 1

2 , (1.14)

t ∈ [1,∞), where Φ1(0, y) = (1, 2y, 0) and z > −1 is given by

ln(z + 1) = − 2

α

∫

R

η0(x) dx,

with α from (1.9) and

fz(y) = −
√
α

2

z erf ′(y/
√
α)

1 + z erf(y/
√
α)
.

Remark 1.7 From (1.14) we have

sup
(x,y)∈Ω(t)

∣∣U(t, x, y) − t−1/2fz(t
−1/2x)Φ1(0, y)

∣∣ ≤ C2t
b−1.

The localized perturbations decay in an universal manner determined by the decay

of perturbations of the trivial solution in the Burgers equation. We have the so
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called asymptotic (Hr(2,Ω), C0
b )–stability of (η, u) = 0, i.e., for all ε > 0 there exists

a δ > 0 such that ‖(η0, u0)‖Hr(2,Ω(1)) ≤ δ implies ‖η(t)‖L∞ + ‖u(t)‖L∞ ≤ ε for all

t ≥ 1, and ‖η(t)‖L∞ + ‖u(t)‖L∞ → 0 with rate t−1/2. For the pressure p we obtain

sup
(x,y)∈Ω(t)

∣∣p(t, x, y) − t−1/2g?fz(t
−1/2x)

∣∣ ≤ C2t
b−1, (1.15)

and similar estimates for the derivatives of p.

In (1.14), z can be given explicitly (in contrast to z in Theorem 1.5) due to

∂t

∫

R

η dx =

∫

R

(
u2|Γf

− (∂xη)u1|Γf

)
dx +

∫

R

∂x

(
η +

1

3
η3
)
dx = 0. (1.16)

The second integral obviously vanishes, while the first vanishes since

∫

R

(
u2|Γf

− (∂xη)u1|Γf

)
dx =

∫

R

(∫ η

0

∂yu2 dy − (∂xη)u1|Γf

)
dx

=

∫

R

−∂x

(∫ η

0

u1 dy

)
dx = 0,

where we used u2|Γb
= 0 and ∂yu2 = −∂xu1 in Ω(t). In other words, the right

hand side of (1.1a) is an x–derivative, which simply corresponds to conservation of

(perturbation) mass. c

Remark 1.8 To prove Theorem 1.6 we adapt the techniques used in [BKL94] for

scalar nonlinear diffusion equations (see Theorem 1.5). The key idea in [BKL94] is

that the Burgers equation is invariant under the parabolic rescaling

v(τ, ξ) = Lu(L2τ, Lξ), i.e. u(t, x) = L−1v(L−2t, L−1x), (1.17)

that this rescaling produces prefactors involving L−1 in front of higher order terms

in the equation for v, and that the exact solution ηz (cf. (1.10)) of the Burgers

equation is attractive in suitable (weighted) spaces. The renormalization group

approach to prove Theorem 1.5 proceeds by solving the equation for v for finite

times and iterating the rescaling (1.17). Details and the functional analytic frame

are given in sec.3, while the following remarks give an overview how we adapt these

ideas to (1.1):

In (1.12) we can regard h(η, ∂xη, ∂
2
xη) as a term in the Taylor expansion of a

higher order nonlinearity h̃. Due to Theorem 1.5 such nonlinearities are called

asymptotically irrelevant or simply irrelevant. In scalar nonlinear diffusion problems

such as (1.12) irrelevant nonlinearities can be identified by a simple power counting,

as expressed by the condition dh ≤ −1 in Theorem 1.5.

The ansatz (1.6) is related to the rescaling (1.17) with δ = L−1, and the formal

derivation of (1.9) from (1.1) suggest that the only relevant nonlinearity in (1.1) is

(∂xη)u1 in the kinematic equation (1.1a). However, to prove Theorem 1.6 we first

11



need to transform the problem to the fixed domain Ω = R×(0, 1), and this transfor-

mation removes (∂xη)u1 from the (transformed) kinematic equation and produces

many new nonlinear terms, cf. sec. 4.1. Many of these turn out not to be irrelevant

by a simple power counting argument as in Theorem 1.5. This is related to the fact

that in the formal derivation of (1.9) we do not care for large errors (small order in

δ) in (1.1b),(1.1c), (1.1e) and (1.1f), cf. Remark 1.3. Instead, using so called mode

filters based on the spectral analysis of the linearization of (1.1), see sections 2.2

and 2.3, we shall split U in (1.2) into a critical part Uc belonging to the critical

(diffusive) modes Φ1(k, y) with k close to 0, and a stable (exponentially damped)

part Us = U − Uc. Using these mode–filters we can identify the relevant terms and,

moreover, give rigorous estimates for the remainder.

The key observation is that the projection of the nonlinearity onto the critical

mode Φ1(k, y) vanishes at k=0. This projection is given by a scalar product (see

(2.23)) with the adjoint eigenfunction Ψ1(k, y). Since Ψ1(0, y) = (1, 0, 0) the only

contribution to the projection at k=0 comes from the right hand side of the kinematic

equation (1.1a). This has to vanish at k=0 due to ∂t

∫
R
η(t, x) dx = 0, cf. (1.16). In

summary, near k=0 the critical terms correspond to a total derivative with respect

to x. Heuristically, terms with derivatives with respect to x are “more irrelevant”

than terms without x–derivatives, as can also be seen in the definition of dh =

3 − (p1 + 2p2 + 3p3) in Theorem 1.5, and this is made rigorous in sec.6, see in

particular Lemma 6.5. c

Remark 1.9 The restriction r > 3 is used to control the nonlinearity by Sobolev

embeddings. On the other hand, the restriction r < 7/2 is used to avoid the formu-

lation of higher order compatibility conditions on the initial data, see sec.5. c

Remark 1.10 On a bounded domain, e.g.x ∈ [0, 2π], with periodic boundary con-

ditions, the stability of the Nusselt solution, i.e., the stability of (0, 0) for (1.1), has

been considered in [NTW93, Sun97]. In detail, in [NTW93] the asymptotic stability

of (0, 0) for sufficiently small Reynolds numbers has been shown using energy esti-

mates, while in [Sun97] the principle of linearized stability/instability is established:

for R < Rc (R > Rc), (0, 0) is asymptotically stable (unstable) with exponential rate.

Both, [NTW93] and [Sun97], heavily rely on the bounded domain, and ν, ε → 0 as

the domain becomes large, where the decay is e−νt and where ε is the size of the

allowed initial perturbations. In the physical problem the ratio h/L where h is the

physical film height and L the spatial length scale is typically very small. Therefore

it is more natural to consider (1.1) on an unbounded domain. Then we only have

algebraic decay, but our approach also gives the detailed self similar asymptotics. c

Remark 1.11 The related result of Burgers–like self–similar decay in the so called

Integral Boundary Layer equation (IBLe) has been shown in [Uec04]. The IBLe can
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be formally derived from the Navier–Stokes equations (1.1). It is a two dimensional

parabolic system on the real line which is quasilinear and hence still shows many

of the difficulties of (1.1). However, the analysis for the IBLe is technically simpler.

Thus it may be advantageous to look at [Uec04] for an outline of the arguments

used here. c

The plan of the paper is as follows. In Section 2 we first review the functional

analytic setup and the spectral theory for the linearization ∂tU = AU of (1.1).

Then we introduce the mode filters. Section 3 contains a review of the ideas from

renormalization theory and a proof of Theorem 1.5. This also explains the need for

the weighted spaces Hr(n). In Section 4 we transform the domain Ω(t) occupied

by the fluid to the fixed strip Ω = R×(0, 1), and hence formulate (1.1) in the

form (1.2). This transformation produces a large number of new nonlinear terms.

In combination with the mode–filters, all but one of these can be seen to be irrelevant

in the sense of renormalization. In Section 5 we review the local existence theory for

(1.2), and in Section 6 we set up the renormalization process to prove Theorem 1.6.

In the Appendix we prove some technical results.

Acknowledgments. This work was partially supported by the DFG under grant

Ue 60/1. The author thanks R. L. Pego and G. Schneider for stimulating discussions,

and the anonymous referees for careful and critical reading of the first version of the

manuscript.

2 The linearized equations

With LNu =
(
(2y−y2−2)∂xu1 + (2−2y)u2, (2y−y2−2)∂xu2

)
and g? = (2 cot θ)/R,

the linearization of (1.1) around (η, u) = (0, 0) reads

in Ω : ut + LNu = −∇p +
1

R
∆u, div u = 0, (2.1a)

on Γf : ∂tη = u2+∂xη, ∂yu1+∂xu2−2η = 0, p−g?η− 2

R
∂yu2 = −W∂2

xη, (2.1b)

on Γb : u = 0. (2.1c)

In subsection 2.1 we formulate (2.1) in the form ∂tU = AU , U = (η, u) and, following

[Bea84, Ter92], review resolvent estimates for the linear operator A in unweighted

spaces Hr(Ω), which show that A generates an analytic semigroup with certain

smoothing properties. To prove Theorem 1.6 we need these estimates in the weighted

spaces Hr(2,Ω). They are proved in App.A.2. In subsections 2.2 and 2.3 we recall

the spectral analysis for (2.1) and define mode filters to separate the critical from

the stable modes.
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2.1 The evolutionary system

To write (2.1) as an evolution equation we first need to project onto solenoidal vector

fields. From ∫

Ω

( div u)ϕ dΩ =

∫

∂Ω

(u · n)ϕ dΓ −
∫

Ω

u · ∇ϕ dΩ

we have div u = 0 and u2 = 0 on Γb iff u is L2 orthogonal to ∇ϕ for all ϕ with

ϕ = 0 on Γf. Hence, let

G = {∇ϕ : ϕ ∈ H1(Ω), ϕ = 0 on Γf},

and let P be the orthogonal projection of L2(Ω) onto G⊥, i.e., Pu = u iff div u = 0

and u2|Γb
= 0. We start with the following Lemma, see [Bea80, Lemma 3.1].

Lemma 2.1 For r ≥ 0, P is a bounded linear operator on H r(Ω) and on Hr(2,Ω).

If ϕ ∈ H1(Ω), then P (∇ϕ) = ∇ψ with ∆ψ = 0, ψ = ϕ on Γf, ∂yψ = 0 on Γb.

Applying P to (2.1a) gives

∂tu =
1

R
P∆u− PLNu−∇p1 −∇p2, (2.2)

where ∆pj = 0, ∂ypj = 0 on Γb, and p1 = 2∂yu2/R, p2 = g?η − W∂2
xη on Γf. This

splitting is adapted to the inner product (2.5). Let E : Hr−1/2(Γf) → Hr−1(Ω) be

defined by

Eh = ∇q with ∆q = 0 in Ω, q = h on Γf, ∂yq = 0 on Γb. (2.3)

Moreover, let A,L0 by formally defined by

Au =
1

R
P∆u− 2

R
E∂yu2, L0u = PLNu,

and define A by

A
(
η

u

)
=

(
u2|Γf

+ ∂xη

Au− L0u− E(g?η − W∂2
xη)

)
, (2.4)

with domain

D(A) =
{
(η, u) : η ∈ H5/2(Γf), u ∈ PL2(Ω) ∩H2(Ω),

∂yu1 + ∂xu2 = 2η on Γf, u = 0 on Γb

}
.

Now (2.1) can be written as

∂tU = AU, U =

(
η

u

)
.
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We define the Hilbert space

X = {U = (η, u) : η ∈ H1(Γf), u ∈ PL2(Ω)},

〈U, V 〉X =

〈(
η

u

)
,

(
ξ

v

)〉

X

:=

∫

Γf

g?ηξ + W(∂xη)(∂xξ) dΓ +

∫

Ω

u · v dΩ. (2.5)

and prove the following Lemma in App.A.1.

Lemma 2.2 A : D(A) → X is sectorial, i.e., there exist C, a > 0 and ϕ ∈ (0, π/2)

such that the resolvent set contains the sector Sa,ϕ = {λ : ϕ ≤ |arg(a − λ)| ≤ π},
and for λ ∈ Sa,ϕ and F = (ξ, f) ∈ X the unique solution U = (η, u) of the resolvent

equation (λ−A)U = F satisfies ‖U‖X ≤ C
|a−λ|‖F‖X .

It follows that A generates an analytic semigroup etA. From (A.5) in the proof

we also have ‖u‖H1 + ‖η‖H1 ≤ C‖F‖X . Next, using a smoothing process as in the

analysis of elliptic equations one can show that A has smoothing properties in the

u component:

Theorem 2.3 Let r ≥ 2. There exist C, a > 0 and ϕ ∈ (0, π/2) such that for all

λ ∈ Sa,ϕ = {λ : ϕ ≤ |arg(a − λ)| ≤ π} and all F = (ξ, f) ∈ H r+1/2(R) ×Hr−2(Ω),

the unique solution U = (η, u) of the resolvent equation (λ−A)U = F satisfies

‖u‖Hr(Ω) + |λ|r/2‖u‖L2(Ω) + ‖η‖Hr+1/2(R) + |λ|(r+1/2)/2‖η‖L2(R)

≤ C
(
‖f‖Hr−2(Ω) + |λ|(r−2)/2‖f‖L2(Ω) + ‖ξ‖Hr+1/2(R) + |λ|(r+1/2)/2‖ξ‖L2(R)

)
. (2.6)

Note the lack of smoothing with respect to η. Given Lemma 2.2, the proof of

Theorem 2.3 works as the proof of [Ter92, Prop. 5.1] by testing with approximations

of x–derivatives of the solution u and using that x–derivatives commute with A;

y–derivatives are then recovered from the incompressibility condition.

In order to control the pressure we use the following two standard estimates for

the solution of the Stokes problem [Tem01, Chapter 1].

Lemma 2.4 There exists a C > 0 such that if u, p satisfy

− 1

R
∆u+ ∇p = f, div u = 0, in Ω, (2.7)

u = 0 on Γb, u = ϕ on Γf, (2.8)

then

‖u‖Hr+2 + ‖∇p‖Hr ≤ C(‖f‖Hr + ‖ϕ‖Hr+3/2) for all r ≥ 0. (2.9)

Similarly, if u, p satisfy (2.7) and

u = 0 on Γb, u2 = ϕ1, ∂xu2 + ∂yu1 = ϕ2 on Γf, (2.10)
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then, for all r ≥ 0,

‖u‖Hr+2 + ‖∇p‖Hr ≤ C(‖f‖Hr + ‖ϕ1‖Hr+3/2 + ‖ϕ2‖Hr+1/2). (2.11)

The resolvent estimates (2.6) are used to show the existence of solutions to the

linear inhomogeneous equation ∂tU −AU = F (t, x, y) via Laplace–transform, where

U(t0) = 0 and F has to vanish to sufficient order at t = t0, see sec.5. To prove

Theorem 1.6 we shall also use direct estimates for etA (in weighted spaces). For

(λ−A)U=(0, f) with f ∈ PHα(Ω) it can be shown, using again the same method

as in [Ter92], that

‖u‖H2+α + |λ|‖u‖Hα + ‖η‖H5/2+α + |λ|3/2‖η‖H1/2+α ≤ C‖f‖Hα. (2.12)

To work in the weighted spaces Hr(2) and Hr(2,Ω) we prove the following Lemma

in App.A.2.

Lemma 2.5 Theorem 2.3, Lemma 2.4 and the estimate (2.12) also hold with the

spaces Hr(R) and Hr(Ω) replaced by the weighted spaces H r(2) and Hr(2,Ω), i.e.,

(2.6) becomes

‖u‖Hr(2,Ω) + |λ|r/2‖u‖H0(2,Ω) + ‖η‖Hr+1/2(2) + |λ|(r+1/2)/2‖η‖H0(2)

≤ C
(
‖f‖Hr−2(2,Ω) + |λ|(r−2)/2‖f‖H0(2,Ω) + ‖ξ‖Hr+1/2(2) + |λ|(r+1/2)/2‖ξ‖H0(2)

)
,

(2.13)

and similar for (2.9),(2.11) and (2.12).

Hence let U0=(η0, u0)∈Hr+1/2(2)×PHr−2(2,Ω). By shifting the path of integra-

tion in the representation

(η, u)(t) = etAU0 = lim
τ→∞

1

2πi

∫ a+iτ

a−iτ

eλt(λ−A)−1U0 dλ,

we obtain, for instance,

‖η(t)‖Hr+1/2(2) + ‖u(t)‖Hr(2,Ω) ≤
Ceatt−1

(
‖u0‖Hr−2(2,Ω)+t

−(r−2)/2‖u0‖H0(2,Ω)+‖η0‖Hr+1/2(2)+t
−(r/2+1/4)‖η0‖H0(2)

)
,

(2.14)

and, in case η0 = 0,

‖u(t)‖Hα(2,Ω) ≤ Ceat‖u0‖Hα(2,Ω), ‖u(t)‖H2+α(2,Ω) ≤ Ceatt−1‖u0‖Hα(2,Ω), (2.15)

‖η(t)‖H1/2+α(2) ≤ Ceatt1/2‖u0‖Hα(2,Ω), ‖η(t)‖H5/2+α(2) ≤ Ceatt−1‖u0‖Hα(2,Ω). (2.16)

Due to a>0 from the proof of Lemma 2.2, and since there is no smoothing in η,

these semigroup estimates are bad a priori. However, etA has local in time parabolic

smoothing properties if η0 = 0. To take advantage of this we shall remove the

nonlinear terms from the η component of (1.3). Moreover, we split A = Ac + As

where Ac is one–dimensional in Fourier space, and etAs fulfills (2.14)–(2.16) with

a<0. The part belonging to Ac will be treated explicitly in Fourier space, see sec.6.
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2.2 Spectral analysis

To calculate the eigenvalues and eigenfunctions of A we use the Fourier ansatz


η

u1

u2


 (t, x, y) =




1

ϕ′(k, y)

−ikϕ(k, y)


 eik(x−ωt) = Φ(k, y)eik(x−ωt). (2.17)

By cross–differentiating (2.1a) we obtain

∂t(∂yu1 − ∂xu2) + (uN − 2)∂x(∂yu1 − ∂xu2) − 2u2 =
1

R
(∂y∆u1 − ∂x∆u2),

hence

∂4
yϕ− 2k2ϕ′′ + k4ϕ = ikR

[
(uN − 2 − ω)(ϕ′′ − k2ϕ) + 2ϕ

]
, (2.18a)

where ϕ = ϕ(k, y) and ϕ′ = ∂yϕ. In order to eliminate p from the normal stress in

(2.1b) we use

∂xp|y=1 = (
1

R
∆u1 − ∂tu1 − (un − 2)∂xu1)|y=1.

This yields the boundary conditions (from (2.1b) and (2.1c), in the respective order)

ϕ(1) − ω − 1 = 0, ϕ′′(1) + k2ϕ(1) − 2 = 0, (2.18b)

ϕ′′′(1) − 3k2ϕ′(1) + ikR
[
(ω + 1)ϕ′(1) − g? − Wk2

]
= 0, (2.18c)

ϕ(0) = ϕ′(0) = 0. (2.18d)

This non–constant coefficient eigenvalue problem with the wavenumber k as param-

eter is called Orr–Sommerfeld equation, and λ(k) = −ikω(k) is called the associated

eigenvalue.

At k = 0 there is the critical mode ϕ(0, y) = y2, ω(0) = 0. Moreover, it is well

known (e.g. [BLDB99] and the references therein) that for small to intermediate

Reynolds numbers there exists one isolated curve (−δ, δ) 3 k 7→ λ1(k), 0 < δ small,

of eigenvalues with small and possibly positive real part λ(k). This curve belongs to

the so called surface mode, and gives an instability iff R > Rc. In fig.2(b) on page 6

we show the real part of λ1(k) = −ikω(k) as calculated from a numerical solution of

(2.18) using AUTO97 [DCF+97]. As explained in Remark 1.1, at very low θ and for

high Reynolds numbers, a so called shear mode with wave number k 6= 0 can first

become unstable, but we exclude this exceptional case here. For later reference we

expand ω(k) = ikω1 + O(k2), ϕ(k, y) = ϕ0(y) + ikϕ1(y) + O(k2) to obtain

Φ1(k, y) =




1

2y + ikϕ′
1(y)

−iky2


+ O(k2), (2.19)

ϕ1(y) = R
[ 1

30
y5−1

6
y4+

1

6
g?y3+

1

2
(
4

3
−g?)y2

]
, ω1 = ϕ1(1) = R

[ 8

15
− 1

3
g?
]
.

Note that, e.g., ω1 = 8R
15

− 2
3
cot θ = −α and (∂Xη1)ϕ

′
1 = u12 in accordance with

(1.8) and (1.9).
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2.3 The mode filters

The adjoint of A with respect to the inner product (2.5) is given by

A∗

(
ξ

v

)
=

(
Hv1 − ∂xξ

Av − L∗
0v + E(g?η − W∂2

xη)

)
,

with domain

D(A∗) =
{
(ξ, v) : ξ ∈ H5/2(Γf), v ∈ PL2(Ω) ∩H2(Ω),

∂yv1 + ∂xu2 = 0 on Γf, u = 0 on Γb

}
,

where

L∗
0v = P

(
(uN−2)∂xv1

(uN−2)∂xv2−u′Nv1

)
and Hv1 =

2

R
(g? − W∂2

x)
−1v1.

The ansatz


ξ

v1

v2


 (t, x, y) =




1

ψ′(k, y)

−ikψ(k, y)


 eik(x−ωt) = Ψ(k, y)eik(x−ωt),

yields the adjoint Orr–Sommerfeld equations

∂4
yψ − 2k2ψ′′ + k4ψ = ikR

[
−(uN − 2 + ω)(ψ′′ − k2ψ) − 2u′Nψ

′],

k(ω − 1) =
2i

R
(g? + Wk2)−1ψ′(1), ψ′′(1) + k2ψ(1) = 0,

ψ′′′(1) − 3k2ψ′(1) + ikR
[
g? + Wk2 + (ω − 1)ψ′(1)

]
= 0,

ψ(0) = ψ′(0) = 0.

The critical solution is ω = −ikω1 + O(k2) and ψ(k, y) = ikψ1(y) + O(k2), i.e,

Ψ1(k, y) =




1

ikψ′
1(y)

0


+ O(k2) with ψ1(k) = Rg?(

1

2
y2 − 1

6
y3). (2.21)

Let ρ > 0 be sufficiently small, and let χ be a smooth cutoff function with

χ(k) =





1 |k| ≤ ρ,

∈ (0, 1) ρ < |k| < 2ρ

0 2ρ ≤ |k|,
(2.22)

Corresponding to the inner product (2.5), for Û = (η̂, û), V̂ = (ξ̂, v̂) ∈ C×L2((0, 1))

let

〈Û , V̂ 〉(k) = (g? + Wk2)η̂ξ̂ +

∫ 1

0

û(y) · v̂(y) dy. (2.23)
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Then

Êc(k)Û(k) = c(k)χc(k)〈Û(k),Ψ1(k)〉(k)Φ1(k) (2.24)

with

c(k) = 1/〈Φ1(k),Ψ1(k)〉(k) = 1/g? + O(|k|) (2.25)

defines the so called central modefilter with ‖Êc‖C×Hr((0,1))→C×Hr((0,1)) ≤ C. By

construction

(ÂÊcÛ)(k) = (ÊcÂÛ)(k) = λ1(k)Û(k)

where ÂÛ = F(AU). The corresponding operators in x–space are

EcU = F−1(ÊcÛ) and Es = Id − Ec, (2.26)

and it follows that ‖Ec‖Hr(2,Ω)→H2(2,Ω) ≤ C. Moreover, (ÊcÛ)(k, y) = a(k)Φ1(k, y),

hence by construction

(EcU |y=0)i=F−1(a(k)Φ1i(k, 0))=0, i = 2, 3,

div (EcU) = F−1(a(k)(ikϕ′−ikϕ′))=0,

∂y(EcU)2+∂x(EcU)3−2(EcU)1 = F−1(a(k)(∂2
yϕ(k, 1)+k2ϕ(k, 1)−2)) = 0.

(2.27)

Finally, define the auxiliary modefilters

Êh
c Û(k) = c(k)χc(k/2)〈Û(k),Ψ1(k)〉Φ1(k),

Êh
s Û(k) = Û(k) − c(k)χc(2k)〈Û(k),Ψ1(k)〉Φ1(k).

Then Êh
c Êc = Êc and Êh

s Ês = Ês which will be used to replace the missing projection

properties of Êc, Ês and Ec, Es.

3 Ideas from renormalization theory

Before transforming (1.1) to the form (1.2) we explain the idea of renormalization

[BK92, BKL94] and prove Theorem 1.5. This, together with the mode–filters from

sec. 2.3, will (heuristically) explain which nonlinear terms in (1.2) are irrelevant and

therefore do not need to be written explicitly in the transformations in sec. 4. This

section also explains the need for the weighted spaces Hm(n).

3.1 Basics

Consider

∂tu = ∂2
xu+ f(u, ∂xu, ∂

2
xu), u = u(t, x) ∈ R, u(1, x) = u0(x), (3.1)
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where f(a, b, c) = ad1bd2cd3 is a monomial, and where the initial conditions are given

at t = 1 for convenience. For L > 0 define the rescaling operators

RLu(x) = u(Lx),

and for n ∈ N and L > 1 sufficiently large (see below) let un(τ) = LnRLnu(L2nτ),

i.e., un(τ, ξ) = Lnu(L2nτ, Lnξ). Then

∂τun = ∂2
ξun + fn(un, ∂ξun, ∂

2
ξun), (3.2)

with

fn(a, b, c) = Lndfad1bd2cd3 , df = 3 − d1 − 2d2 − 3d3. (3.3)

Moreover, solving ∂tu = ∂2
xu + f for t ∈ [1,∞) is equivalent to iterating the renor-

malization process

solve (3.2) on τ ∈ [L−2, 1] with initial data un(L−2, ξ) = Lun−1(1, Lξ) ∈ X, (3.4)

where X is a Banach space such that we can solve the in general quasilinear or fully

nonlinear problem (3.2).

First assume df < 0. In this case the factor Lndf in (3.3) goes to 0 as n→ ∞, and

in the limit we obtain ∂τun = ∂2
ξun with un(L−2, ξ) = Lun−1(1, Lξ). This problem

has the line of (Gaussian) fixed points ze−ξ2/4, z ∈ R, which is attractive in suitable

spaces. To see this, let u(ξ) = ze−ξ2/4 + g(ξ) with ĝ(0) = 0 by choice of z. Due to

F(LRLu) = R1/Lû, (3.5)

we have e(1−L−2)∂2
ξLRL(e−ξ2/4) = F−1

(
1√
4π

e−(1−L−2)k2

e−k2/L2
)

= e−ξ2/4 and

‖e(1−L−2)∂2
ξLRLg‖Hm(2) ≤ C‖e−(1−L−2)k2

ĝ(k/L)‖H2(m)

≤ C

(∫
(1 + k2)m

2∑

j=0

(
∂j

k

(
e−(1−L−2)k2

ĝ(k/L)
))2

dk

)1/2

≤ CL−1(‖ĝ‖C1(R) + ‖ĝ‖H2(m)).

This is obtained from writing ĝ(k/L) = ĝ(0) + ĝ(k̃) k
L

and using ĝ(0) = 0 and

‖(1+k2)m/2∂j
k(e

−(1−L−2)k2

)‖L2≤C. Hence we obtain

‖e(1−L−2)∂2
ξLRLg‖Hm(2) ≤ CL−1‖g‖Hm(2) (3.6)

from Sobolev embedding since ‖ĝ‖C1(R) ≤ C‖ĝ‖Hn for n − 1 > 1/2, i.e.n > 3/2.

This is where we need the weight in x; see also [BKL94, Uec04] and Remark 3.1 for

alternative Banach spaces that directly assume smoothness in Fourier space.
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By (3.3) we may assign each derivative ∂x the order L−n. Equivalently, due to

(3.5) we may assign each factor k in the Fourier transform of (3.1) the order L−n.

Hence the basic idea is that by a power–counting argument one can easily identify

nonlinearities f that are “asymptotically irrelevant” (df < 0), while a nonlinearity

with df > 0 would be called “relevant”. Indeed, relevant nonlinearities, and also the

“marginal” case f = u3 (with df = 0) may lead to finite–time blow up of the solution,

see, e.g., [Wei81]. The advantage of the discrete renormalization approach is that the

large time behavior of (3.1) is split into the sequence (3.4) of finite time problems and

that it uses only few special features of the equation. Therefore it can be applied to a

variety of problems; see the references in the Introduction. A related approach is the

continuous rescaling of time and space used in [CEE92, Way97, EWW97, GM98].

3.2 Proof of Theorem 1.5

Now let

f(u, ∂xu, ∂
2
xu) = ∂x(u

2) + h(u, ∂xu, ∂
2
xu)

with h(a, b, c) = ad1bd2cd3 and dh = 3− d1 − 2d2 − 3d3 < 0. Then (3.1) is a rescaling

of the perturbed Burgers equation (1.12), and (3.4) becomes

∂τun = ∂2
ξun + ∂ξ(u

2
n) + Lndhh(un, ∂ξun, ∂

2
ξun), un(1/L

2) = LRLun−1(1). (3.7)

Remark 3.1 In [BKL94], (3.7) is treated for un ∈ C([1/L2, 1], X) where

X = {f : f̂ ∈ C1 and ‖f‖X = sup
k∈R

(1 + k4)(|f̂(k)| + |f̂ ′(k)|) <∞},

This space allows the solution of the quasilinear or fully nonlinear parabolic problems

(3.7) directly by the variation of constant formula using the explicit formula for eτ∂2
xu.

This yields the analog of Theorem 1.5 based in the space X [BKL94, Theorem 4].

Here, for suitable r we want to use the spaces X = H r(2). These are more natural for

the Navier–Stokes problem (1.1) where we want to use resolvent estimates instead

of explicit formulas for the linear semigroup. As a consequence, we first have to use

maximal regularity methods to obtain existence of solutions to (3.7). A posteriori

we can then use the variation of constant formula to obtain improved estimates.

The following proof of Theorem 1.5, which merely adapts [BKL94] to the different

spaces, explains this idea and gives a guideline for the proof of Theorem 1.6. c

For τ0 < τ1, n ∈ N and r ≥ 0 we define

Hr,s((τ0, τ1), n) = L2((τ0, τ1), H
r(2)) ∩Hs((τ0, τ1), H

0(n)). (3.8)

Since (3.7) is parabolic these spaces will only occur with s = r/2. Hence we set

Kr((τ0, τ1), n) = Hr,r/2((τ0, τ1), n),
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For u ∈ Kr((τ0, τ1), n), r not a half integer, which we will always assume in the fol-

lowing, there exists traces ∂α
xu ∈ Kr−α−1/2((τ0, τ1), n) for α < r−1/2 and ∂j

t u(τ0, ·) ∈
Hr−2k−1(2), for 2j < r−1. Conversely, for u ∈ Hr(2) there exist extensions

u ∈ Kr+1(R, 2); see [LM68, Thm. 4.2.1 and 4.2.3] for the unweighted case. We define

the subspaces Kr
0((τ0, τ1), n) of functions u ∈ Kr((τ0, τ1), n) with ∂j

t u(τ0, ·) = 0 for

2j < s− 1.

For u ∈ Kr(R, 2), let ũ(λ) =
∫

eλτu(τ) dτ be its Laplace transform. For u ∈
Kr

0((τ0,∞), 2) we have (via extension of u by 0 for τ < τ0) the equivalence

‖u‖2
Kr((τ0 ,∞),2) ∼

∫

µ∈R

‖ũ(iµ)‖2
Hr(2) + |µ|r‖ũ(iµ)‖2

H0(2) dµ. (3.9)

Finally, note that

‖LRLu‖Hr(2) ≤ CLr+1/2‖u‖Hr(2), (3.10)

due to the scaling properties of Sobolev spaces, and let

ρn = ‖un(1)‖H2(2). (3.11)

Then we have the following essentially classical [LM68] existence result for (3.7); for

convenience we review the main steps of the proof in App.A.3.

Lemma 3.2 There exist L0 > 1, C1, C2 > 0 such that for all L > L0 the following

holds. If ρn−1 ≤ C1L
−5/2, then there exists a unique solution un ∈ K3([1/L2, 1], 2) of

(3.7), and ‖un‖K3([1/L2,1],2) ≤ C2ρn−1. Moreover, for anym ∈ N, un ∈ K3+m([1
2
, 1], 2),

and there exists a C3 = C3(m) such that ‖un‖K3+m([1/2,1],2) ≤ C3ρn−1.

To iterate Lemma 3.2 we shall use the integral equation satisfied by un to obtain

improved estimates. Therefore let

un(τ, ξ) = wzn(τ, ξ) + vn(τ, ξ), (3.12)

where wz(τ, ξ) = τ−1/2fz(ξ/
√
τ), fz(x) = z erf ′(x)/(1 + z erf(x)) and where zn > −1

is defined by

ln(1 + zn) =

∫
un−1(1, ξ) dξ =

∫
un(1/L

2, ξ) dξ. (3.13)

Consequently

v̂n(1/L2, 0) =

∫
vn(1/L2, ξ) dξ = 0. (3.14)

Since wz is an exact solution of the Burgers equation (cf. sec. 1.3) we obtain

vn(1) =e(1−L−2)∂2
ξLRLvn−1(1)

+

∫ 1

1/L2

e(1−τ)∂2
ξ
[
B(vn(τ)) +Qzn(vn(τ)) + Lndhh(un(τ))

]
dτ

(3.15)
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where B(v) = ∂ξ(v
2), Qzn(v) = ∂ξ(wzv).

Finally, let ρ̃n = ‖vn(1)‖H2(2) and assume that ρn−1 ≤ C|zn| + ρ̃n ≤ L−m0 with

m0 > 0 chosen below. By Lemma 3.2 there exists a unique solution un of (3.7) with

‖un‖K3([1/L2,1],2) + ‖un‖K4([1/2,1],2) ≤ CL5/2−m0 ≤ 1 (3.16)

and clearly we may assume the same estimate for vn. By (3.14), the first term on

the right hand side in (3.15) yields
∥∥∥e(1−L−2)∂2

ξLRLvn−1(1)
∥∥∥

H2(2)
≤ CL−1‖vn−1(1)‖H2(2), (3.17)

cf. (3.6). The linear semigroup eτ∂2
ξ fulfills

‖eτ∂2
ξu‖Hr+j(2) ≤ max{1, τ−j/2}‖u‖Hr(2). (3.18)

Therefore, using supτ∈[1/L2,1] ‖vn(τ)‖H2(2) ≤ CL5/2−m0 , the first two terms in the

integral in (3.15) can be directly estimated as
∥∥∥∥
∫ 1

1/L2

e(1−τ)∂2
ξ
[
B(vn(τ))+Qzn(vn(τ))

]
dτ

∥∥∥∥
H2(2))

≤ CL5/2−m0(|zn|+L5/2−m0). (3.19)

For terms in h(un(τ)) which contain ∂2
ξvn we split the integral as

∫ 1

1/L2

. . . dτ =

∫ 1/2

1/L2

. . . dτ +

∫ 1

1/2

. . . dτ (3.20)

and use the higher regularity of un on [1/2, 1] in (3.16) to obtain
∥∥∥∥
∫ 1

1/L2

e(1−τ)∂2
ξLndhf(un(τ)) dτ

∥∥∥∥
H2(2)

≤ CLndhL5/2−m0(|zn| + L5/2−m0). (3.21)

Hence, for m0 > 7/2, small b > 0, and L > L0 sufficiently large we obtain, since

dh < 0,

ρ̃n = ‖vn(1)‖H2(2) ≤ L−(1−b)(ρ̃n−1 + |zn|). (3.22)

By definition of zn we also have

| ln(1 + zn+1) − ln(1 + zn)| =

∣∣∣∣
∫ ∫ 1

1/L2

e(1−τ)∂ξ2

Lndhfn(un(τ)) dτ dξ

∣∣∣∣

≤ CLndh(L(5/2−m0))2 ≤ L−n

(3.23)

where the term involving B(vn) +Qzn(vn) drops out of the integral in ξ since it is a

total derivative, and where again we used the splitting (3.20) and ‖u‖∞ ≤ C‖u‖Hr

for r > 1/2. By (3.23) there exists a z∗ with |z∗ − zn| ≤ CL−n. Thus, for t = L2n

we have

‖t1/2u(t, t1/2x) − fz∗(x)‖H2(2) = ‖un(1) − fzn + fzn − fz∗‖H2(2)

≤ ‖vn(1)‖H2(2) + ‖fzn − fz∗‖H2(2) ≤ CL−(1−b)n,

and for t ∈ (L2n−1, L2n) the estimate (1.13) in Theorem 1.5 follows from Lemma 3.2.

The proof of Theorem 1.5 is complete. 2
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4 Transformations

4.1 Transformation to fixed domain

Following [Bea80, Bea84] we first transform (1.1) to a new problem over the fixed

domain Ω = R × (0, 1). Here we use the sum convention and write x̃ = (x̃1, x̃2) and

x = (x1, x2) for the independent variables in Ω and Ω(t), respectively. We start with

an extension of η(t, ·), defined on R, to η̃(t, ·) = Sη(t, ·) defined on Ω. Therefore, let

η̃(t, x̃1, x̃2) = (Sη(t, ·))(x̃1, x̃2) = F−1

(
1

1 + k2(x̃2 − 1)2
η̂(t, k)

)
(x̃1). (4.1)

Then S : Hr(R) → H (r+1/2)(Ω) is a bounded linear operator, and

‖∇η̃‖L2(Ω) ≤ C‖∂xη‖L2(R) (4.2)

since

∂x̃2
η̃=F−1

( −2k2(x̃2−1)

(1 + k2(x̃2−1))2
η̂(t, k)

)
=F−1

(
i2k(x̃2 − 1)

(1 + k2(x̃2−1))2
(F∂xη)(t, k)

)
.

For each t > 0 as long as η(t, ·) exists and is sufficiently smooth (this will be justified

a posteriori), the fluid domain Ω(t) is given by a diffeomorphism

ϑ : Ω → Ω(t), ϑ(x̃) =

(
x1

x2

)
=

(
x̃1

x̃2(1 + η̃(t, x̃1, x̃2))

)
. (4.3)

To conserve the incompressibility condition we transform u, p as follows. Let (ϑij) =

(∂x̃j
ϑi) be the Jacobian of ϑ, d = det(ϑij), (αij) = 1

d
(ϑij) and (ζij) = (ϑij)

−1, i.e.,

d = 1 + ∂x̃2
(x̃2η̃), (αij) =

(
1/d 0

x̃2η̃x̃1
/d 1

)
, (ζij) =

(
1 0

−x̃2η̃x̃1
/d 1/d

)
, (4.4)

and define v and p̃ by

ui(t, ϑ(t, x̃)) = αij(t, x̃)vj(t, x̃), p(t, ϑ(t, x̃)) = p̃(t, x̃). (4.5)

Then v is divergence–free iff u is, [Boc77]. With ∂j = ∂xj
and ∂̃k = ∂x̃k

the spatial

derivatives transform as

∂j = ζkj∂̃k,

and since ϑ depends on time we obtain

∂tui = αij∂tvj +

(
d

dt
ϑ−1

)

l

(
(∂̃lαij)vj + αij ∂̃lvj

)
,
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with (
d

dt
ϑ−1

)

1

= 0,

(
d

dt
ϑ−1

)

2

=
1

d
x̃2(1 + ∂tη̃) =

1

d
x̃2(1 + S(Rv2 + η2∂xη)).

Here we used that the kinematic equation simplifies to

∂tη̃ = v2|x̃2=1 + ∂̃1η̃ + η̃2∂̃1η̃.

Plugging (4.5) into (1.1) and renaming ∂̃i = ∂i, (x̃1, x̃2) = (x, y), v = u and p̃ = p

yields

at y = 1 : ∂tη − ∂xη − u2 = η2∂xη, (4.6a)

in Ω : ∂tui − Liui + ∂ip = fi(η, u,∇p) i = 1, 2, (4.6b)

at y = 1 : ∂yu1 + ∂xu2 − 2η = f3(η, u), (4.6c)

p− 2

R
∂yu2−g?η + W∂2

xη = f4(η, u), (4.6d)

and div u = 0 in Ω, u = 0 on Γb. Here Liu = 1
R
∆ui − (uN−2)∂xui − δ1iu

′
Nu2,

i = 1, 2, and, for instance

fi(η, u,∇p) = − dζij(∂tαik)uk + yS(Ru2∂xη + η2∂1η)ζij∂y(αjkuk)

+
1

R
(ζalζbl−δalδbl)∂a∂bui +

d

R
ζijζal

(
(∂buk)∂a(ζblαjk)+∂a(ζbl(∂bαjk)uk)

)

− (uN−2)(δa1 − ζa1)∂aui + (2(y − 1)ySη + y2(Sη)2)ζa1∂aui

+ (y − 1 + ySη)2dζijζa1(∂aαjk)uk + 2(y − 1)(dζi1α2k − δi1δ2k)uk

+ 2ySηdζi1α2kuk + (δia − dζijζaj)∂ap+ ζijul∂l(αjkuk),

i = 1, 2, where ∂1 = ∂x and ∂2 = ∂y. The compatibility conditions for (η, u)|t=1 =

(η0, u0) are div u = 0 in Ω, u = 0 on y = 0 and ∂yu1 +∂xu2−2η = f3(η, u) on y = 1.

Due to the lack of smoothing in η in (2.14) it is useful to remove the nonlinear

terms from (4.6a). To do so we set u = ũ+ v with

ũ(t, x, y) =

(
yη̃3(t, x, y) + y2

2
∂y(η̃

3(t, x, y))

−y2

2
∂x(η̃

3(t, x, y))

)
. (4.7)

After renaming v=u this yields a system like (4.6) with (4.6a) replaced by

∂tη − ∂xη − u2|Γf
=0

and fi, i = 1, . . . , 4 changed by at least cubic terms, including terms coming from

∂tη̃ in (4.6b). In order not to proliferate symbols we denote these new nonlinear

terms again by fi. Then

at y = 1 : ∂tη − ∂xη − u2 = 0, (4.8a)

in Ω : ∂tui − Liui + ∂ip = fi(η, u,∇p) i = 1, 2, (4.8b)

at y = 1 : ∂yu1 + ∂xu2 − 2η = f3(η, u), (4.8c)

p− 2

R
∂yu2−g?η + W∂2

xη = f4(η, u), (4.8d)
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and div v = 0 in Ω, v = 0 on Γb. Moreover we write

f3(η, u) = 2η∂yu1 + f̃3(η, u). (4.9)

The following remark explains the structure of the nonlinear terms in (4.8), and the

reason for displaying 2η∂yu1 explicitly in (4.9).

Remark 4.1 The functions fi, i = 1, . . . , 4 in (4.8) contain quadratic and higher

order terms. In order to write (4.8) in the form (1.2) and hence treat (4.8) in

fixed function spaces we still need to remove the nonlinear terms from the tangen-

tial stress (4.8c). Direct calculation shows that the nonlinear term 2η∂yu1 writ-

ten explicitly in (4.9) is the only nonlinear term that is relevant in the derivation

of the Burgers equation from (4.8), see also Remark 4.2. It follows that 2η∂yu1

is also the only relevant (marginal) nonlinear term in the proof of Theorem 1.6.

Here the heuristic argument is as follows. In the proof of Theorem 1.6 we ap-

ply a renormalization argument similar to (3.4) to a system of the form (1.2), i.e.,

formally ∂tU = AU + F (U,∇p) with U = (η, u). Due to the rescaling we may

assign orders ∂x = O(δ), δ = L−n, and similarly k = O(δ) where again k is the

dual variable to x under Fourier transform, cf. sec.3, while ∂y = O(1). Moreover,

roughly speaking, due to the splitting of U = Uc + Us the main problem is in equa-

tion (6.1a) for ∂tUc below. Due to k = O(δ) and Ûc(t, k, y) = a(t, k)Φ1(k, y) =

a(t, k)(1, 2y+O(|k|),O(|k|) we may assign orders (δ, δ, δ2, δ) to (η, u1, u2, p). Simi-

larly, due to Ψ1(k, y) = (1,O(|k|),O(k2)) we only need to keep track of terms of

order (δ3, δ2, δ, δ2) in the equations ((4.15a),(4.15b),(4.15c), (4.15e)) obtained below

from (4.8) by removing the nonlinear terms from (4.8c). This will be explained in

more detail and be made rigorous in sec.6. c

4.2 Linearization of the tangential stress

From Remark 4.1 it follows that in removing the nonlinear terms from (4.8c) we need

to take special care of the term 2η∂yu1 in f3. From (1.8) we know that in lowest

order in δ we have u1(T,X, y) = 2yη(T,X). Hence, in lowest order, ∂yu1 = 2η.

Therefore we split

u = u(1) + ũ (4.10)

and choose ũ such that

div ũ = 0 in Ω, ũ = 0 on y = 0,

ũ2 = 0 and ∂yũ1 + ∂xũ2 = 4η2 on y = 1.
(4.11)

A solution ũ, with moreover ∂yũ2|y=1 = 0, is given by ũ = (∂yw,−∂xw) with

w(t, x, y) = h(y)η̃2(t, x, y), where h(y) = 2y4 − 4y3 + 2y2. (4.12)
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For η(t, ·) ∈ Hr+1/2(2,Γf) this yields ũ(t, ·, ·) ∈ Hr(2,Ω). This regularity is not

optimal but sufficient in the following, and for explicit calculations it is useful to

know ũ explicitly, see Remark 4.2 below. We obtain

at y = 1 : ∂tη − ∂xη − u2 = 0, (4.13a)

in Ω : ∂tu
(1)
i − Liu

(1) + ∂ip = fi(η, u
(1) + ũ, p) − ∂tũi + Liũ i = 1, 2, (4.13b)

at y = 1 : ∂yu
(1)
1 + ∂xu

(1)
2 − 2η = f̃3(η, u

(1)+ũ) + 2η∂yu
(1)
1 − 4η2, (4.13c)

p− 2

R
∂yu

(1)
2 −g?η + W∂2

xη = f4(η, u
(1) + ũ), (4.13d)

and div u = 0 in Ω, u = 0 on Γb. Since ∂yũ2|y=1 = 0, this term drops out of (4.13d).

Finally we remove the nonlinear terms from (4.13c). Therefore we split u(1) =

u(2) + u(3) and choose u(3) such that

div u(3) = 0 in Ω, u(3) = 0 on y = 0, and

u
(3)
2 = 0,

∂yu
(3)
1 +∂xu

(3)
2 = g3(η, u

(1)) := f̃3(η, ũ+ u(1))+2η∂yu
(1)
2 −4η2

}
on y = 1.

(4.14)

For η ∈ Hr+1/2(Γf) and u(1) ∈ Hr(Ω) we have g3(η, u
(1)) ∈ Hr−3/2(Γf). If g3 =

g3(x) ∈ Hr−3/2(Γf) is a given function, then a solution u(3)∈Hr+1(Ω) of (4.14) can

be obtained from the ansatz ũ = (∂yw,−∂xw) with w|y=1 = ∂yw|y=1 = 0, ∂2
yw|y=1 =

g(x) [LM68, Theorem 1.4.2]. The existence of a solution u(3)∈Hr+1(Ω) of (4.14)

then follows for ũ, u(1) and η sufficiently small by the contraction mapping theorem

since g3(η, u) is quadratic and higher order. It is clear that all this also holds in the

weighted spaces.

After renaming u(2) = u we obtain

at y = 1 : ∂tη − ∂xη − u2 = 0, (4.15a)

in Ω : ∂tu1 − L1u+ ∂xp = b̃(η) + g1(η, u,∇p), (4.15b)

∂tu2 − L2u+ ∂yp = g2(η, u,∇p), (4.15c)

at y = 1 : ∂yu1 + ∂xu2 − 2η = 0, (4.15d)

p− 2

R
∂yu2−g?η + W∂2

xη = g4(η, u), (4.15e)

together with div u = 0 and u = 0 on Γb, and where

b̃(η) =
1

R
(∂3

yh(y))η̃
2, g4(η, u) = f4(η, u+ u(3) + ũ), and

gi(η, u,∇p) = fi(η, u+u
(3)+ũ, p) − ∂t(ũi+u

(3)
i ) + Li(ũi+u

(3)
i ) − δi1b̃(η), i = 1, 2.

The splitting of the right hand side of (4.15b) is explained in Remark 4.2. The

compatibility conditions for (4.15) at t = 1 are

div u = 0 in Ω, u = 0 on y = 0, ∂yu1 + ∂xu2 − 2η = 0 on y = 1. (4.16)
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Remark 4.2 It is instructive and a good check of the above calculations to re-

derive the Burgers equation (1.9) from (4.15). This also explains the splitting of the

right hand side of (4.15b) into the term 1
R
(∂3

yh)η̃
2 which is relevant in the sense of

renormalization and the remainder g1 which contains only higher order terms. As

in the formal derivation of (1.9) from (1.1) in sec. 1.2, here again we only consider

the lowest order terms needed to derive the Burgers equation. Rigorous estimates

for the remaining terms are given in Lemma 6.5. We substitute (1.6), i.e.,




η

u1

u2

p




(t, x, y) = δΨ(T,X, y) =




δη1(T,X)

δu11(T,X, y) + δ2u12(T,X, y)

δ2u22(T,X, y) + δ3u23(T,X, y)

δp1(T,X, y)



,

with T = δ2t, X = δx into (4.15). At O(δ) this yields u1 = 2η1y, p1 = g?η1 and

u22 = −y2∂Xη1 as in (1.8). Then (4.15b) at O(δ2) yields

− 1

R
∂2

yu12 + ∂Xp1 + (uN−2)∂Xu11 + u′Nu22
!
=

1

R
∂3

yh(y)η
2
1 =

24

R
(2y−1)η2

1

which together with u = 0 on Γb and (4.15d) gives

u12 = R(∂Xη1)

[
1

6
y4−2

3
y3+

1

2
g?y2 + (

4

3
−g?)y

]
− 24

(
1

3
y3−1

2
y2

)
η2

1. (4.17)

From div u = 0 we obtain

u23 = R(∂2
Xη1)

[
− 1

30
y5 +

1

6
y4 − 1

6
g?y3 − 1

2
(
4

3
−g?)y2

]
+ 4(y4−2y3)η1∂Xη1. (4.18)

Then (4.15a) at O(δ3), i.e. ∂T η1−u23|y=1 = 0, yields the Burgers equation (1.9). Note

how by the transformations (4.5) and (4.10) the relevant nonlinear term (∂xη)u1 from

the original kinematic condition (1.1a) is first moved into the tangential stress in

(4.8c) and then into the first component (4.15b) of the momentum balance. Conse-

quently, in the new coordinates we have the quadratic dependence of first u12 and

then u23 on η1 in (4.17) and (4.18). c

5 Local existence

We review the main steps for proving local existence for (4.15), which also explains

how to obtain local existence for the rescaled system (6.13a),(6.13b) below. The

local existence for the 3–dimensional version of (1.1) has been shown in [Ter92].

There, following [Bea84], the problem is solved for small initial data (η, u) in Sobolev

spaces Hr(Γf) ×Hr−1/2(Ω) with 3 < r < 7/2. Here, in order to prove Theorem 1.6

we need contraction properties of the operator U 7→ e(1−L−2)ALRLEcU when acting
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on functions U with Û |k=0 = 0, as in (3.6). This is why we search for solutions

U = (η, u) of (4.15) in the weighted space Hr(2,Ω).

Applying P to (4.15b),(4.15c) we can rewrite (4.15) as

∂tU −AU = F (U,∇p), F (U,∇p) = B(U) +H(U,∇p), (5.1)

together with the compatibility conditions (4.16) on U |t=1 = U0, with A from (2.4),

B(U) =

(
0

b(η)

)
, b(η) =

(
b̃(η)

0

)
, and H(U,∇p) =

(
0

h(η, u,∇p)

)
, (5.2)

where

h(η, u,∇p) = (P−Id)b(η) + P

(
g1(η, u,∇p)
g2(η, u,∇p)

)
+ Eg4(η, u). (5.3)

The splitting of Pb(η) = b(η)+(P−Id)b(η) has no importance for the local existence;

however, it will be useful in the proof of Theorem 1.6, and is therefore introduced

here for later convenience, see Remark 6.1.

Formally (5.1) is solved by the variation of constant formula

U(t) = etAU0 +

∫ t

0

e(t−s)AF (U(s),∇p(s)) ds. (5.4)

However, since we have a quasilinear problem and since ∇p appears on the right

hand side, (5.4) cannot be used to construct a solution. Therefore we proceed as in

sec.3.2. To obtain existence for (5.1) in the weighted space Hr(2,Ω) we again use

maximal regularity methods from [LM68] as in [Ter92], based on Lemma 2.3. Then

(5.4) can be used to estimate the solution a posteriori, which we shall do for the

rescaled systems (6.13) below. See also [BN85] for a similar approach.

Therefore, to show local existence we first consider the linear inhomogeneous

problem

in Ω : ∂tu− Lu+ ∇p = g(t, x, y), (5.5a)

on Γf : ∂tη−∂xη−u2 = 0, p− 2

R
∂yu2−g?η+W∂2

xη= g4(t, x), (5.5b)

together with div u = 0, ∂yu1+∂xu2−2η = 0 on Γf, and u = 0 on Γb, where we shall

assume that η, u and p vanish sufficiently fast at initial time t = t0. For t0 < t1 we

define (cf. (3.8))

Hr,s((t0, t1), n,Ω) = L2((t0, t1), H
r(n,Ω)) ∩Hs((t0, t1), H

0(n,Ω)). (5.6)

We set Kr((t0, t1), n,Ω) = Hr,r/2((t0, t1), n,Ω), define the subspaces Kr
0((t0, t1), n,Ω)

of functions u ∈ Kr((t0, t1), n,Ω) with ∂j
t u(t0, ·, ·) = 0 for 2j < s− 1, and introduce

the abbreviation

Kr((t0, t1), 2,Ω) = Kr((t0, t1), 2,R) ×Kr−1/2((t0, t1), 2,Ω).

29



Let r ≥ 2 and as usual not a half integer, t1 > t0, n ∈ N and g ∈ Kr−2
0 ((t0, t1), n,Ω)

and g4 ∈ K
r−3/2
0 ((t0, t1), n,R). Applying P to (5.5) yields

∂tU −AU =

(
0

g0

)
, g0 = Pg − Eg4. (5.7)

Since g0 ∈ Kr−2
0 ((t0, t1), n,Ω) there exists a continuation gc ∈ Kr−2

0 (R, n,Ω) with

gc(t)=0 for t ≤ t0. Therefore e−σ(t−t0)gc ∈ L1(R, n,Hr−2(Ω)) ∩ L2(R, n,Hr−2(Ω))

and we can solve (5.7) by Laplace transform. For λ = σ + iτ this yields

(λ−A)Ũ =

(
0

g̃c

)
, (5.8)

where Ũ , g̃c denote the Laplace transformed functions. Due to Lemma 2.5 we can

solve (5.8) for σ > a; the resolvent estimates (2.13), together with the Paley–Wiener

Theorem and the fact that t1−t0 is finite, yield the following Lemma, where p is

obtained a posteriori from the weighted version Lemma 2.5 of Lemma 2.4.

Lemma 5.1 Let r ≥ 2 and not a half integer, and fix some t1 > t0. Then there

exists a C = C(t1) > 0 such that the following holds. If g ∈ Kr−2
0 ((t0, t1), 2,Ω) and

g4 ∈ K
r−3/2
0 ((t0, t1), 2,R) then there exists a unique solution (η, u) ∈ Kr

0((t0, t1), 2,Ω)

and p ∈ Kr−1
0 ((t0, t1), 2,Ω) of (5.7), with

‖(η, u)‖Kr((t0 ,t1),2,Ω) + ‖p‖Kr−1((t0 ,t1),2,Ω) ≤ Cρ, (5.9)

where ρ = ‖(g, g4)‖Kr−2((t0,t1),2,Ω)×Kr−3/2((t0 ,t1),2,R).

To solve the nonlinear problem (1.3), let 3 < r < 7/2 and

X =

{
(η, u, p) : (η, u, p) ∈ Kr+1/2((t0, t1), 2,R) ×Kr−1((t0, t1), 2,R),

div u = 0, ∂yu1+∂xu2−2η = 0 on Γf, u = 0 on Γb

}
,

Y = {(g, g4) : g ∈ Kr−2((t0, t1), 2,Ω), g4 ∈ Kr−3/2((t0, t1), 2,R)}.

Let X0 and Y0 be the subspaces with Kr replaced by Kr
0 , let M : X → Y be the

linear operator defined by the left hand side of (5.5), and let M0 be its restriction

to X0. Then M−1
0 : Y0 → X0 exists due to Lemma 5.1, and the idea to solve (4.15)

is as follows. First let

(η, u, p) = (η(1), u(1), p(1)) + (η(2), u(2), p(2)) = Z(1) + Z(2) ∈ X

where Z(1) depends on (η0, u0) in such a way that Z(2) ∈ X0. Then solve (4.15) in

the form

M0Z
(2) = F (Z(1) + Z(2)) −MZ(1). (5.10)

30



For (η0, u0) ∈ Hr(Ω) sufficiently small and satisfying the compatibility conditions

(4.16) the right hand side will be a contraction in X0. First we need the following

standard Sobolev lemma, cf., e.g., [Bea84, Lemma 5.1].

Lemma 5.2 (a) If f ∈ Hr(Ω) with r > 1 then f is continuous on Ω. If also

g ∈ Hs(Ω), r ≥ s ≥ 0 then fg ∈ Hs(Ω) and ‖fg‖Hs ≤ C‖f‖Kr‖g‖Ks. The

analogous result holds for η ∈ H r(R) and ξ ∈ Hs(R) for r > 1/2.

(b) If f ∈ Kr((t0, t1),Ω) with r > 2 then f is continuous on [t0, t1] × Ω. If also g ∈
Ks((t0, t1),Ω), r ≥ s ≥ 0, then fg ∈ Ks((t0, t1),Ω), and ‖fg‖Ks ≤ C‖f‖Kr‖g‖Ks.

The analogous result holds for η ∈ Kr((t0, t1),R), r > 3/2, ξ ∈ Ks((t0, t1),Ω),

r ≥ s ≥ 0.

(c) The same holds for Hr(Ω) and Hr(Γf) replaced with the respective weighted

spaces.

To construct Z(1) set ρ = ‖η0‖Hr(2,R) + ‖u0‖Hr−1/2(2,Ω). Choose a continuation

η(1) ∈ Kr+1/2((t0, t1), 2,R) with η(1)(t0) = η0, ∂tη
(1)(t0)(0) = ∂xη0 + (u0)2|Γf

, and

‖η(1)‖Kr+1/2((t0 ,t1),2,R) ≤ Cρ. Next, P (∇p(1)(t0)) ∈ Hr−3/2(2,Ω) is determined from

p(1)(t0, 1) = g4(η0, u0) +
2

R
∂y(u0)2|Γf

+ (g? − W∂2
x)η0 ∈ Hr−2(2,Γf) (5.11)

using Lemma 2.1. Moreover, (Id − P )(∇p(1)(t0)) ∈ Hr−5/2(Ω) fulfills

(Id−P )(∇p(1)(t0)) = (Id−P )

[
Lu0 +

(
b̃(η0) + g1(η

(1)(t0), u0,∇p(1)(t0))

g2(η
(1)(t0), u0,∇p(1)(t0))

)]
, (5.12)

assuming (Id − P )∂tu = 0. For p(1)(t0) ∈ Hr−3/2(2,Ω) the right hand side of

(5.12) is in Hr−5/2(2,Ω) by Lemma 5.2, and b̃, g1, g2 are nonlinear. Hence, for

η0, u0 sufficiently small the system (5.11),(5.12) can be solved for p(1)(t0) as a func-

tion of η0, u0 by the implicit function theorem. Hence there exists a p(1) with

‖p(1)‖Kr−1((t0 ,t1),2,Ω) ≤ Cρ fulfilling (5.11) and (5.12). Finally, we may choose u(1)

with u(1)(t0) = u0, div u(1) = 0, ∂yu
(1)
1 + ∂xu

(1)
2 − 2η(1) = 0 on Γf, u

(1) = 0 on Γb,

‖u(1)‖Kr(0,t0),2,Ω) ≤ Cρ, and

∂tu
(1)(t0) = Lu0 −∇p(1)(t0) +

(
b̃(η0) + g1(η

(1)(t0), u0,∇p(1)(t0))

g2(η
(1)(t0), u0,∇p(1)(t0))

)
.

Here the restriction r < 7/2 arises since we do not want to impose compatibility

conditions on, e.g., ∂tu
(1)(t0) on Γb.

Using Lemma 5.2 and going through (4.7), (4.11) and (4.14) it is a straight-

forward though lengthy task to check that if r > 3, and η ∈ Kr+1/2((t0, t1), 2,R),

u ∈ Kr((t0, t1), 2,Ω) and p ∈ Kr−1((t0, t1), 2,Ω), then the right hand side in (5.1)
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fulfills F (U,∇p) ∈ {0} × Kr−2((t0, t1), 2,Ω). The condition r > 3 is forced by, for

instance, the term

h =
1

R
(∂yu1)

(
y∂2

xη̃

d
+

2y(∂xη̃)∂y(y∂xη̃)

d2

)
, d = 1 + ∂y(yη̃),

obtained from setting i = j = l = a = 1 and b = 2 in (4.6b). For r > 3 this can be

bounded by

‖h‖Kr−2((t0 ,t1),2,Ω) ≤ C‖∇u‖Kr−1((t0 ,t1),2,Ω)‖η̃‖C2((t0 ,t1)×Ω)

≤ C‖u‖Kr((t0 ,t1),2,Ω)‖η‖Kr+1/2((t0 ,t1),2,Ω)

with, for |α| = 2, ∂α
(x,y)η̃ ∈ Kr−1((t0, t1), 2,Ω) ⊂ C([t0, t1] × Ω) if r > 3.

Hence, for Z(2) ∈ X0 the right hand side F (Z(1)+Z(2)) − MZ(1) of (5.10) as

a function of Z(2) maps X0 into Y0 by construction of Z(1). Combining this with

Lemma 5.1 and the fact that the right hand side is at least quadratic, an application

of the contraction mapping theorem together with a bootstrapping argument to

obtain higher regularity yields the following result.

Theorem 5.3 Let 3<r<7/2 and fix some t1 > t0. Then there exist C1, C2 > 0 such

that the following holds. If (η0, u0) ∈ Hr(2,Ω) = Hr(2,R) × Hr−1/2(2,Ω) satisfy

(4.16) and ρ=‖(η0, u0)‖Hr(2,Ω) ≤ C1, then there exists a unique solution (η, u, p) of

(5.7), (η, u) ∈ Kr+1/2((t0, t1), 2,Ω), (η, u)|t=t0 = (η0, u0), p ∈ Kr−1((t0, t1), 2,Ω),

and

‖(η, u)‖Kr+1/2((t0 ,t1),2,Ω) + ‖p‖Kr−1((t0 ,t1),2,Ω) ≤ C2ρ. (5.13)

Moreover, for t0 < t̃0 < t1 and any m ∈ N we have

(η, u) ∈ Kr+1/2+m((t̃0, t1), 2,Ω), p ∈ Kr+m−1((t̃0, t1), 2,Ω),

i.e., the solution becomes smooth for t > t0, and there exists a C3 = C3(m, t̃0) such

that

‖(η, u)‖Kr+1/2+m((t̃0 ,t1),2,Ω) + ‖p‖Kr+m−1((t̃0 ,t1),2,Ω) ≤ C3ρ. (5.14)

6 Renormalization

Let U = Uc + Us where Uc, Us solve

∂tUc = AUc +Bc(U) + H̃c(U,∇p), (6.1a)

∂tUs = AUs +Bs(U) + H̃s(U,∇p), (6.1b)

where B? = E?B and H̃? = E?H, ? = c, s, with Ec, Es from sec.2.3 and B, H from

(5.1), and where (Uc, Us)|t=1 = (EcU,EsU)|t=1. Then, by definition (2.26) of Ec, Es,
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U = Uc +Us solves (5.1). The idea of this splitting into central modes Uc and stable

(exponentially damped) modes Us is as follows. By construction, the function

Ŵz(t, k, y) = f̂z(t
1/2k)χ(k)Φ1(k, y)

with f̂z from (1.10) fulfills

∂tŴz = ÂŴz + ÊcB̂(Ŵz) + O(|k|2).

This holds since ûz(t, k) = f̂z(t
1/2k) fulfills ∂tû = −αk2û + βik(u∗2z ), β = −2, since

ÂŴz = λ1(k)Ŵz = (−αk2 + O(k3))Ŵz, and since

ÊcB̂(Ŵz)(k) = c(k)χ(k)
〈
B̂(Ŵ ),Ψ1(k, y)

〉
(k)

Φ1(k, y)

= (4/g?)(f̂z ∗ f̂z)(1 + O(|k|))
∫ 1

0

(
1

R
∂3

yh(y)

)
(−ik∂yψ

′
1) dy χ(k)Φ1(k, y)

= 4ik(f̂z ∗ f̂z)(1 + O(|k|))
∫ 1

0

6(2y − 1)(y2/2 − y) dy χ(k)Φ1(k, y)

= −2ik(f̂z ∗ f̂z)(1 + O(|k|))χ(k)Φ1(k, y), (6.2)

where we used (2.19),(2.21) and (2.24). This also shows the ”derivative like” struc-

ture of Bc. Then splitting Ûc(t, k, y) = Ŵz(t, k, y) + V̂ (t, k, y) with V̂ |(t,k)=(1,0) = 0

we will obtain V̂ (t) → 0. On the other hand, there exists a γ0 > 0 such that

Reλs
j(k) < −γ0 (6.3)

for all k ∈ R for the eigenvalues of λs
j of AEs, such that Us is linearly exponentially

damped. Also note that reasoning as in (6.2) we have

(Bc + H̃c)|k=0 = 0. (6.4)

Thus the whole nonlinearity Bc+H̃c locally at k = 0 corresponds to an x–derivative.

Remark 6.1 Formula (6.2) shows the reason for splitting Pb(η)=b(η)+(P−Id)b(η)

in (5.1). The idea is that div b(η)=∂xb̃(η)=2∂3
yh(y)η∂xη=O(δ3) if as in Remark 4.2

we assume η = O(δ) and ∂x = O(δ). Then we also have (P − Id)b(η) = O(δ3),

hence Pb(η) splits into the relevant term b(η) in B(U) and the remainder contained

in H(U,∇p). c

Before making these arguments rigorous we apply one more transformation. In

the equation (6.1b) for Us we remove the quadratic terms in Uc by setting

Us = Vs −
1

2
A−1Es

(
D2

UBs(0)[Uc, Uc] +D2
UH̃s(0,∇p)[Uc, Uc]

)
. (6.5)
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Here A−1 exists on Eh
sHr−2(2,Ω) due to (6.3). Moreover,
∥∥∥∥∥A

−1Eh
s

(
0

u

)∥∥∥∥∥
Hr(2,Ω)

≤ C‖u‖Hr−5/2(2,Ω) (6.6)

due to (2.13) and since the η component of Eh
s (0, u) has finite support in Fourier

space and hence can be estimated in Hr(2) by ‖u‖H0(2,Ω). Therefore,

‖Vs‖Hr(2,Ω) ≤ C(‖Us‖Hr(2,Ω) + ‖Uc‖Hr(2,Ω) + ‖∇p‖Hr−1(2,Ω)) (6.7)

in (6.5) since there are no nonlinear terms in the η component. We obtain

∂tUc = AUc +Bc(Uc + Vs) +Hc(Uc, Vs,∇p), (6.8)

∂tVs = AVs +Hs(Uc, Vs,∇p), (6.9)

with

Hc(Uc, Vs,∇p) = H̃c(Uc+Us,∇p) + (Bc(Uc+Us) −Bc(Uc+Vs)),

Hs(Uc, Vs,∇p) = Bs(Uc+Us) + H̃s(Uc+Us,∇p)
−1

2
Es

(
D2

UBs(0)[Uc, Uc] +D2
UH̃s(0,∇p)[Uc, Uc]

)

+1
2

d
dt
Es

(
D2

UBs(0)[Uc, Uc] +D2
UH̃s(0,∇p)[Uc, Uc]

)
.

(6.10)

In (6.10) Us has to be replaced everywhere by the right hand side of (6.5).

Remark 6.2 The idea for (6.5) is as follows. We expect that Uc → 0 with rate

t−1/2, hence Us → 0 with rate t−1 due to the terms in ∂tUs which are quadratic in

Uc. By eliminating these terms we may expect Vs → 0 with rate t−3/2, which we

take into account in the scaling (6.12) below to simplify the analysis. c

6.1 The rescaled systems

Following the ideas outlined in sec.3 and Remark 6.2, for some L > 1 chosen below

we set

Un,c(τ, ξ, y) = LnUc(L
2nτ, Lnξ, y) = LnRLNUc(L

2nτ, ξ, y), (6.11)

Un,s(τ, ξ, y) = L2nVs(L
2nτ, Lnξ, y) = L2nRLNUc(L

2nτ, ξ, y), (6.12)

and pn(τ, ξ, y) = Lnp(L2nτ, Lnξ, y). Then

∂τUn,c = AnUn,c + L3nBn,c(Un) + L3nHc,n(Un,∇npn), (6.13a)

∂τUn,s = AnUn,s + L4nHn,s(Un,∇npn), (6.13b)

where Un = Un,c + L−nUn,s, An = L2nRLnARL−n, and

Bn,c(Un) = RLnBc(L
−nUn), ∇npn = (L−n∂ξpn, ∂yp),

Hc,n(Un,∇npn) = RLnHc(L
−nRL−nUn, L

−nRL−n∇npn),

Hs,n(Un,∇npn) = RLnHs(L
−nRL−nUn, L

−nRL−n∇npn).
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As in sec. 3 the idea is that solving (6.8),(6.9) on t ∈ (1,∞) is equivalent to iterating

solve (6.13) on τ∈[L−2, 1] with initial data

(
Un,c(L

−2)=LRLUn−1,c(1)

Un,s(L
−2)=L2RLUn−1,s(1)

)
. (6.14)

A local solution to (6.13) can be obtained as in sec.5 by first solving the linear

inhomogeneous problems

∂τUn,c −AnUn,c = Ec,n

(
0

g(τ)

)
, ∂τUn,s −AnUn,s = Es,n

(
0

g(τ)

)
,

with g ∈ Kr−2
0 ([1/L2, 1], 2,Ω) and (Un,c, Un,s)(1/L

2) = 0 for (Un,c, Un,s) ∈ Kr+1/2
0 ,

recovering pn as in Lemma 2.4, and then applying a fixed point argument and the

contraction mapping theorem as in (5.10). Note that, due to (2.27), Uc|t=1 and

Us|t=1 both satisfy the same compatibilty conditions as U |t=1 = (Uc + Us)|t=1. The

crucial step is to obtain estimates independent of n. Since we are going to refine

these estimates in sec.6.3 (see Lemma 6.4, Lemma 6.5) here we only state the result.

Let

ρn,c = ‖Un,c(1)‖Hr(2,Ω), ρn,s = ‖Un,s(1)‖Hr(2,Ω), ρn = ρn,c + ρn,s. (6.15)

and note that

‖LRLU‖Hr(2,Ω) ≤ CLr+1/2‖U‖Hr(2,Ω)

due to the rescaling properties of Sobolev spaces.

Theorem 6.3 Let 3 < r < 7/2. There exist L0 > 1, C1, C2 > 0 such that for

all L>L0 the following holds. If ρn−1 ≤ C1L
−5 then there exists a unique solution

(Un,c, Un,s) ∈ [Kr+1/2((L−2, 1), 2,Ω)]2 and pn ∈ Kr−1([L−2, 1], 2,Ω) of (6.13) with

(Un,c, Un,s)|τ=L−2 =
(
LRLUn−1,c, L

2RLUn−1,s

)
|τ=1, and

‖Un,c‖Kr+1/2((L−2,1),2,Ω) + ‖Un,s‖Kr+1/2((L−2 ,1),2,Ω) + ‖pn‖Kr−1((L−2,1),2,Ω)

≤ C2L
5ρn−1. (6.16)

For any m > 0, (Un,c, Un,s) ∈ [Kr+1/2+m((1/2, 1), 2,Ω)]2, pn ∈ Kr+m−1((1/2, 1), 2,Ω)

and there exists a C3(m), independent of L, n, such that

‖Un,c‖Kr+1/2+m((1/2,1),2,Ω) + ‖Un,s‖Kr+1/2+m((1/2,1),2,Ω) + ‖pn‖Kr+m−1((1/2,1),2,Ω)

≤ C3L
5ρn−1. (6.17)
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6.2 Estimates for the linear semigroup and the nonlinear terms

Due to the loss of L5 in (6.16) we need better control of ρn from (6.15) to iterate

(6.14). Given a local solution from Theorem 6.3 we use the variation of constant

formula to obtain improved estimates. We have to take care of the different roles of

x (rescaled) and y (not rescaled). Therefore we introduce the notation

‖u‖Hr1,r2 (Ω) := ‖û‖L2(R,Hr2 ( dy)) + ‖|k|r1û‖L2(R,L2( dy)). (6.18)

We also let

Eh
c,n = RLnEh

c RL−n , Eh
s,n = RLnEh

s RL−n .

Lemma 6.4 There exists a C > 0 such that for all L > 1 we have

‖eτAnEh
c,nU0‖Hr(2,Ω) ≤ Cmax{1, τ−j/2}‖U0‖Hr−j(2,Ω), j = 0, 1, 2. (6.19)

For U0 = (η0, u0) ∈ Hr+1/2(2) ×Hr−i,r−j(2,Ω) we have

‖eτAnEh
s,nU0‖Hr(Ω)

≤ Ce−L2nγ0τ

(
max{1, τ−i/2(L2nτ)−j/2}‖u0‖Hr−i,r−j(2,Ω) + ‖η0‖Hr+1/2(2)

)
. (6.20)

Proof. To prove (6.19) we write

Eh
c,nU0(ξ, y) = F−1

(
a(`)Φ1(`/L

n, y)
)

with supp(a) ⊂ {|`| ≤ 4ρ} with ρ = O(1) from (2.22). Then

eτAnEh
c,nU0 = F−1

(
eL2nλ1(`/Ln)τa(`)Φ1(`/L

n, y)
)

and the estimate follows from Re(L2nλ1(`/L
n))=−α`2+O(`4/L2n)≤ −α̃`2 for |`|≤4ρ.

The estimate (6.20) follows from (2.14) and the fact that (λ−A)Eh
s is invertible

for Reλ > −γ0. Since

Eh
s,n

(
η0

u0

)
(ξ, y) =

(
η0

u0

)
−F−1

(
c(`)χ(2`)

〈(
η̂0(`, ·)
û0(`, ·)

)
,Ψ1(`/L

n, ·)
〉

Φ1(`/L
n, y)

)
,

and since Ψ1 and Φ1 are smooth functions, the term involving u0 in the η component

of Eh
s,nU0 is controlled by the L2 norm of u0. 2.

Lemma 6.5 Let 3 < r < 7/2 and ‖Un,?‖Hr(2,Ω) ≤ Rn ≤ 1. There exists a C > 0

such that

L3n‖Bc,n(Un,c + L−nUn,s)‖Hr−1(2,Ω) ≤ CR2
n. (6.21)
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Moreover, let ‖pn‖Hr−3/2(2,Ω) ≤ Rn. Then

L3n‖Hc,n(Un,c + L−nUn,s,∇npn)‖Hr−2(2,Ω) ≤ CL−nR2
n. (6.22)

Finally, Hs,n(Un,∇npn) can be split according to the order of ξ–derivatives and y–

derivatives in the form

L4nHs,n(Un,∇npn) =
∑

i+j≤2

(
gi,j

n

hi,j
s,n

)
(Un,∇npn)

with

‖gi,j
n ‖Hr+1/2(2) ≤ CLn(1−i)R2

n, (6.23)

‖hi,j
s,n‖Hr−i,r−j(2,Ω) ≤ CLn(1−i)R2

n. (6.24)

Proof. The argument for (6.21) has essentially been given in (6.2). Naively we have

Bc,n(Un,c) = O(LnR2
n). But using

F(RLn((RL−nηn)2)) = LnRL−n(Rn
Lη̂n)∗2 = η̂∗2n (6.25)

and the fact that F : Hr(n,R) → Hn(r,R) is an isomorphism we obtain

L3n‖Bc,n(Un)‖Hr−1(2,Ω)

=Ln

∥∥∥∥F−1

[
4

R
c

(
`

Ln

)
χ

(
`

Ln

)∫ 1

0

Ŝηn

∗2
h′′′(y)ψ′

(
`

Ln
, y

)
dy Φ1

(
`

Ln
, y

)]∥∥∥∥
Hr−1(2,Ω)

≤C‖i`(η̂∗2n )‖H2(r−1,R) ≤ C‖η̂∗2n ‖H2(r,R) ≤ C‖η2
n‖Hr(2,R)

≤CR2
n. (6.26)

We used that ψ(k) = ikψ1(y) + O(k2), and that c(k) and ‖Φ1(k, ·)‖Hr((0,1)) are

uniformly bounded on |k| ≤ ρ. This means that here we obtain the needed additional

factor L−n from the mode filter Ec. Due to the finite support of χ(k), EcU is actually

a smooth function for U ∈ H0(m,Ω). However, we do not use this smoothing since

we explicitly need the O(k) terms to obtain the factor L−n via rescaling.

To obtain (6.22) first consider a term in, e.g., (4.6b) with i = 1. For instance

consider b1(η, u) = − 4
R
η∂2

yu1, obtained from setting c = d = 2 in

1
R
(ζclζdl−δclδdl)∂c∂dui = 1

R
(1/d2 − 1)∂2

yu1 (for d = c = 2)

= b1(η, u) + h.o.t,

where h.o.t denotes higher order terms (either cubic or, via (4.2), containing ∂x),

and where other combination of c, d also yield higher order terms. By omitting P

with ‖P‖Hr(2,Ω)→Hr(2,Ω) ≤ C in H(U) in (5.1) and rescaling, b1 yields the term

RLnEc




0

− 4
R
(Lnh1 + h2 + L−nh3)

0


 (6.27)

37



in L3nHc,n with

h1 = (RL−nηn,c)(RL−n∂2
y(Un,c)2),

h2 = (RL−nηn,s)(RL−n∂2
y(Un,c)2) + (RL−nηn,c)(RL−n∂2

y(Un,s)2),

h3 = (RL−nηn,s)(RL−n∂2
y(Un,s)2).

Similar to (6.26), in estimating (6.27) we obtain an additional L−n from RLnEc,

but for h1 this is not yet enough to obtain (6.22). However, writing Ûn,c(`, y) =

a(`)Φ1(`/L
n, y) and noting that

∂2
yΦ12(k, y) = ∂2

y(2y + O(|k|)) = O(|k|) (6.28)

we obtain

Ln‖RLnEch1‖Hr−2(2,Ω)

= Ln

∥∥∥∥F−1

(
(η̂c,n ∗ ∂2

y(Ûn,c)2)c(
k

Ln
)χ(

k

Ln
)Φ1(

k

Ln
, y)

∫ 1

0

h′′′(y)ψ′(
k

Ln
, y) dy

)∥∥∥∥
Hr−2(2,Ω)

≤ CL−n‖a(k)(1 + O(k)) ∗ (ka(k))‖H2(r−2,R) ≤ CL−n‖a(k)‖2
H2(r,R)

≤ CL−nR2
n. (6.29)

Note that the additional L−n due to (6.28) is absent in (RL−nηn,c)(RL−n∂2
y(Un,s)2)

which is why we used the scaling (6.12).

Estimates similar to (6.26),(6.29) can be used for all ”a priori low order terms”

in Hc,n. For instance, in estimating the ”dangerous” terms coming from (∂yu1)u2 in

(4.6b) with i = 1 we obtain an additional L−n in ∂y(Un,c)2(Un,c)3 from Φ13 = O(|k|).
All terms containing ∂x in g0, g1, g2, g4 in (4.15) a forteriori yield sufficient powers of

L−n in Hc,n, while the terms in Hc,n generated by replacing Us in (6.10) by the right

hand side of (6.5) are either cubic in Uc or contain a factor Vs which yields L−n via

(6.12).

The proof of (6.23) and (6.24) follows similar lines. Here we cannot gain an

additional factor L−n via Ec, but there are no quadratic terms in Un,c due to the

transformation (6.5). Thus we directly have

‖h0,0
s,n‖Hr(2,Ω) = O(LnR2

n).

The same estimate holds for y derivatives (in Hr,r−j(2,Ω)), while ξ derivatives yield

a factor L−n. The terms coming from

1

2

d

dt

[
Es(
(
D2

UBs(0)[Uc, Uc] +D2
UHs(0)[Uc, Uc]

)
)
]

(6.30)

in (6.10) can be controlled by replacing ∂τUn,c by the right hand side of (6.13a) and

using (6.21),(6.22). Finally, the η component of Hs,n is only generated by projection.

Therefore it has finite support in Fourier space and can be controlled by R2
n. 2
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6.3 Splitting, iteration and conclusion

We split

Un,c(τ, ξ, y) = W (z)
n (τ, ξ, y) + Vn(τ, ξ, y),

where

W (z)
n = F−1

(
âz(τ, `)χ(`/Ln)Φ1(`/L

n)
)
, âz(τ, `) = f̂z(τ

1/2`),

with fz from (1.10) and z defined by

ln(z + 1) =
β

α

∫
η(1, x) dx =

β

α
η̂(1, 0).

Then

∂τVn = AnVn + L3n(Bc,n(Un) − Bc,n(W
(z)
n )) + L3nHn

c (Un) + Resn (6.31)

where

Resn = −∂τW
(z)
n + AnW

(z)
n + L3nBc,n(W (z)

n ).

Lemma 6.6 Let |z| < 1. There exists a C > 0 such that

sup
τ∈[L−2,1]

‖Resn‖Hr(2,Ω) ≤ CL−n|z|.

Proof. We have AnW
(z)
n = (−α`2 +O(l3/Ln))W

(z)
n as |`| → 0, and, as in (6.2) and

similar to (6.26),

L3nB̂c,n(W
(z)
n ) = −2i`(âz ∗ âz)(1 + O(|l|/Ln))Φ1(`/L

n).

Combining this with

∂τW
(z)
n = F−1(∂τ âz(τ, `)χ(`/Ln)Φ1(`/L

n))

= F−1((−α`2âz + iβ`(âz ∗ âz))χ(`/Ln)Φ1(`/L
n))

yields

Resn(`) = CL−n(O(`3)W (z)
n + O(`2)(âz ∗ âz)ϕ

1(`/Ln)).

This can be estimated in Hr(2,Ω) by CL−n|z| since az is an analytic and exponen-

tially decaying function. 2

To proceed we write

Un,c(1, ξ, y) = W (z)
n (1, ξ, y) +Gn,c(ξ, y), Un,s(1, ξ, y) = Gn,s(ξ, y).

By the choice of z we have ĝ0,c(0, ·) = 0. Moreover, as already explained in (6.4),

B̃c,n(Un), Hc,n(un) and Resn locally at `=0 have the form of a total derivative,

therefore ∂τ V̂n(τ, 0, y) = 0. This gives

V̂n(τ, 0, ·) = 0 ∀τ ∈ [L−2, 1], hence Ĝn,c(0, ·) = 0 ∀n ∈ N. (6.32)
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To control (Gn,c, Gn,s) we now use the integral equation satisfied by Vn and Un,s,

Gn,c = e(1−L−2)AnEh
c,nLRLGn−1,c

+L3n

∫ 1

L−2

e(1−s)An
[
Bc,n(Un)−Bc,n(W (z)

n )+Hc,n(Un)+Resn

]
(s) ds, (6.33)

Gn,s = e(1−L−2)AnEh
s,nL

2RLGn−1,s +

∫ 1

L−2

e(1−s)AnL4nHs,n(Un(s)) ds, (6.34)

where, as before, Un = W
(z)
n + Vn + L−nUn,s.

The first term on the right hand side of (6.33) is estimated using
∥∥∥e(1−L−2)AnEh

c,nLRLG
∥∥∥
Hr(2,Ω)

≤ CL−1‖G‖Hr(2,Ω) (6.35)

for G ∈ Hr(2,Ω) with Ĝ(0) = 0, similar to (3.6). Again the idea is to write

Ĝ(`/L) = Ĝ(0) + ∂`Ĝ(0)L−1 ˜̀= ∂`Ĝ(0)L−1 ˜̀ with ˜̀∈ (0, `).

In the stable part we have, due to (6.20) and for L sufficiently large,
∥∥∥e(1−L−2)AnEh

s,nL
2RLG

∥∥∥
Hr(2,Ω)

≤ CL5e−γ0L2n(1−L−2)‖G‖Hr(2,Ω)

≤ L−1‖G‖Hr(2,Ω). (6.36)

The integral in (6.34) is of the form

∑

i+j≤2

I i,j where I i,j =

∫ 1

L−2

e(1−s)An

(
gi,j

n

hi,j
n,s

)
(s) ds,

with, due to Theorem 6.3 and Lemma 6.5,

‖gi,j
n (s)‖Hr+1/2(2) ≤ CLn(1−i)‖Un‖2

Hr(2,Ω) ≤ CLn(1−i)(L5ρn−1)
2,

‖hi,j
n,s(s)‖Hr−i,r−j(2,Ω) ≤ CLn(1−i)‖Un(s)‖2

Hr ≤ CLn(1−i)(L5ρn−1)
2,

for s ∈ [L−2, 1], and we want to estimate in Hr(2,Ω). Using Lemma 6.4 we see that

I2,0, I1,1 and I0,2 diverge at s = 1 due to the u component. However, due to the

higher regularity in Theorem 6.3 we additionally have

‖hi,j
n,s(s)‖Hr(2,Ω) ≤ C(C3L

5ρn−1)
2 for s ∈ [1/2, 1],

with C3 from (6.17). Therefore, as in (3.20) we split the integrals I2,0, I1,1 and I0,2

as
∫ 1

L−2 · · · ds =
∫ 1/2

L−2 · · · ds+
∫ 1

1/2
· · · ds.

The integrals in (6.34) can then be estimated as

‖I0,j‖Hr(2,Ω) ≤ CLn(L5ρn−1)
2

∫ 1

L−2

e−γ0L2n(1−s) max{1, (L2n(1 − s))−j/2} ds

≤ CL−n(L5ρn−1)
2, j = 0, 1, (6.37)

‖I1,0‖Hr(2,Ω) ≤ C(L5ρn−1)
2

∫ 1

L−2

e−γ0L2n(1−s) max{1, (1 − s)−1/2} ds

≤ CL−n(L5ρn−1)
2, (6.38)
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‖I0,2‖Hr(2,Ω) ≤ CLn(L5ρn−1)
2

[∫ 1/2

L−2

e−γ0L2n(1−s) max{1, (L2n(1 − s))−1} ds

+ C2
3

∫ 1

1/2

e−γ0L2n(1−s) ds

]

≤ C(1 + C2
3 )L−n(L5ρn−1)

2, (6.39)

and similarly

‖I1,1‖Hr(2,Ω) + ‖I2,0‖Hr(2,Ω) ≤ C(1 + C2
3 )L−n(L5ρn−1)

2. (6.40)

To estimate the integrals in (6.33) we write

Bc,n(Un)−Bc,n(W
(z)
n ) = Qn(W (z)

n , Vn + L−nUn,s) +Bc,n(Vn + L−nUn,s)

where Qc,n(W
(z)
n , Vn) is bilinear. Then, similar to (6.21) in Lemma 6.5, we obtain

L3n‖Qc,n(W (z)
n , Vn + L−nUn,s)‖Hr−1(2,Ω) ≤ CL5|z|ρn−1,

L3n‖Bc,n(Vn + L−nUn,s)‖Hr−1(2,Ω) ≤ C(L5ρn−1)
2.

Therefore, using Lemma 6.4,

∥∥∥∥L3n

∫ 1

L−2

e(1−s)An
[
Bc,n(Un(s))−Bc,n(W

(z)
n (s)) + Resn(s)

]
ds

∥∥∥∥
Hr(2,Ω)

≤ C(L5|z|ρn−1 + (L5ρn−1)
2 + L−n|z|). (6.41)

Finally we have

L3n

∥∥∥∥
∫ 1

L−2

e(1−s)AHc,n(Un(s)) ds

∥∥∥∥
Hr(2,Ω)

≤ CL−n(1 + C2
3)(L

5ρn−1)
2

by splitting
∫ 1

L−2 · · · ds =
∫ 1/2

L−2 · · · ds+
∫ 1

1/2
· · · ds. Combining this with (6.35)–(6.40)

and setting

ρ̃n,c = ‖Gn,c‖Hr(2,Ω)

we obtain

ρn,s ≤ L−1ρn−1,s + CL−n(L5ρn−1)
2,

ρ̃n,c ≤ CL−1ρ̃n−1,c + C
(
|z|L5ρn−1 + (L5ρn−1)

2 + L−n(L5ρn−1)
2 + |z|L−n

)
.

(6.42)

Thus we can complete the proof of Theorem 1.6: Let L ≥ L0 with L0 sufficiently

large such that CL−1 ≤ L−(1−δ) for some small δ > 0. Let ‖(η0, u0)‖Hr(2,Ω) be so

small that |z|+ρ̃0,c+ρ0,s ≤ L−m0 withm0 to be chosen below, hence also ρ0 ≤ CL−m0 .

Then (6.42) implies ρ̃n,c + ρn,s ≤ L−(mn−nδ) with

mn = min{mn−1 + 1, m0 +mn−1 − 5, 2mn−1 − 10, m0 + n}.
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Choosing, for instance, m0 = 11 yields m1 = 12, m2 = 13, . . ., hence ρn ≤ CL−n(1−δ).

Therefore,

‖LnRLnU(L2n) −W (z)
n (1)‖Hr(2,Ω) = ‖Gn,c + L−nGn,s‖Hr(2,Ω) ≤ CL−n(1−δ). (6.43)

Using

∥∥F−1
(
âz(L

2n, `)(Φ1(0, ·) − χ(`/Ln)Φ1(`/Ln, ·)
)∥∥

Hr(2,Ω)
≤ CL−n,

setting t = L2nτ , using Theorem 6.3 for τ ∈ (1/L2, 1), and doing back the transfor-

mations in sec.4 the proof of Theorem 1.6 is complete. 2

A Appendix

A.1 Proof of Lemma 2.2

The proof that the operator A in the linearization ∂tU = AU of (1.1) is sectorial in

X = {U = (η, u) : η ∈ H1(Γf), u ∈ PL2(Ω)} (see (2.5)) is based on Korn’s inequality.

It works as in, e.g., [Sun97, section 3] and is sketched here for convenience. For

u, v ∈ H2(Ω), and p ∈ H1(Ω) we have

∫

Ω

(
1

R
∆u−∇p

)
v dΩ = − 1

2R
〈u, v〉 −

∫

∂Ω

S(u, p)v dΓ +

∫

Ω

p div v dΩ, (A.1)

〈u, v〉 =

∫

Ω

∑

i,j=1,2

(∂xj
ui + ∂xi

uj)(∂xj
vi + ∂xi

vj) dΩ,

S(u, p)i = pni −
1

R

∑

j=1,2

(∂xj
ui + ∂xi

uj)nj,

where n is the unit outer normal on ∂Ω. Moreover, for u ∈ H1(Ω) with div u = 0

and u = 0 on Γb we have Korn’s inequality in the form [Ito93]

4

3
‖∇u‖2

0 ≤ 〈u, u〉 ≤ 4‖∇u‖2
0,

〈u, u〉 ≥ π2

2
‖u‖2

0 and 〈u, u〉 ≥ 2

∫

Γ

u2
1|Γf

+ u2
2|Γf

dΓ,
(A.2)

where ‖u‖m = ‖u‖Hm(Ω) and in the following (u, v)m = (u, v)Hm.

Let F = (ξ, f) ∈ X . First we show that for Reλ > a with a sufficiently large

there exists a (weak) solution U = (η, u) ∈ H1(Γf) ×H1(Ω) of (λ−A)U = F . For

v ∈ PH1(Ω) with v|Γb
= 0 we have, using (A.1),

(f, v)0 = ((λ−A+L0)u− E(g?η−W∂2
xη), v)0

= λ(u, v)0+(L0u, v)0 +
1

2R
〈u, v〉+

∫

Γf

− 2

R
ηv1 + g?ηv2+W∂xη∂xv2 dΓ (A.3)
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From (λ+ ∂x)η = u2 + ξ we obtain

λ(u, v)+(L0u, v)0+
1

2R
〈u, v〉

∫

Γf

(
− 2

R
v1+g

?v2

)
(λ−∂x)

−1u2+W∂xv2∂x(λ−∂x)
−1u2 dΓ

= (f, v)0 +

∫

Γf

( 2

R
v1 − g?v2

)
(λ− ∂x)

−1ξ−W∂xv2∂x(λ− ∂x)
−1ξ dΓ. (A.4)

Let Bλ(u, v) be the left hand side of (A.4) and H(F, v) be the right hand side, and

define the Hilbert space H ⊂ H1(Ω) via the inner product

(u, v)H = (u, v)1 +

∫

Γf

u2v2 + ∂xu2∂xv2 dΓ.

Then Bλ(·, ·) is a bounded bilinear form in H and H(F, ·) a bounded linear func-

tional. Moreover, from Korn’s inequality (A.2) it follows that there exist an a > 0

such that for Reλ > a we have Re(Bλ(u, u)) ≥ C‖u‖2
H, i.e., B is coercive. By the

Lax–Milgram Theorem we have a unique solution u with ‖u‖1 + ‖u|Γf
‖1 ≤ ‖F‖X .

From η = (λ+∂x)
−1(u2 +ξ) we obtain ‖η‖1 ≤ C‖F‖X , and hence λ−A is invertible

in X .

Thus, let U = (λ−A)−1F . Choosing v = u in (A.3) we obtain

λ‖u‖2
0 + (L0u, u)0 +

1

2R
〈u, u〉 +

∫

Γf

− 2

R
ηu1 + λ(g?η2+W(∂xη)

2) dΓ

= (f, u)0 +

∫

Γf

g?ηξ + W∂xη∂xξ dΓ. (A.5)

Then, using again (A.2) and |bc| ≤ δb2 + 1
4δ
c2, δ > 0, and choosing a sufficiently

large we obtain from the real part of (A.5)

‖U‖X ≤ 1

Re(λ− a)
‖F‖X

for Re(λ) > a. Since A is closed and densely defined in L2(Γf) × L2(Ω), the Hille–

Yosida Theorem yields that A generates a C0 semigroup etA : X → X . Similarly,

the imaginary part of (A.5) gives

‖U‖X ≤ C

|Imλ|‖F‖X ,

which implies that A is sectorial [Paz83, Theorem 2.5.2]. 2

A.2 Resolvent estimates in the weighted spaces

To prove Lemma 2.5 we first transfer the resolvent estimates from Lemma 2.3 into

the weighted spaces Hr(2) and Hr(2,Ω). Therefore, let

ρb(x) = (1 + (bx)2)
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where b > 0 will conveniently be chosen sufficiently small below. Clearly, for all

b > 0 there exist C1, C2 > 0 such that C1‖ρbu‖Hr(Ω) ≤ ‖u‖Hr(2,Ω) ≤ C2‖ρbu‖Hr(Ω)

for all u ∈ Hr(2,Ω), and similar for Hr(2), i.e., the norms are equivalent.

Substituting (η, u, p, ξ, f)=ρb(α, ũ, q, β, g) into (2.1), the resolvent equation

(λ−A)

(
η

u

)
=

(
ξ

f

)

is equivalent to

(λ− Ã)



α

ũ

q


 = G+B1



α

ũ

q


 , (A.6a)

∂yũ1 + ∂xũ2 − 2α = ϕ1(ũ), q − g?α− 2

R
∂yũ2 + W∂2

xα = ϕ2(α) on Γf, (A.6b)

div ũ = −ρ
′
b

ρb
ũ1 in Ω, ũ = 0 on Γb, (A.6c)

where ρ′b = ∂xρb = 2bx, ϕ1(ũ) = −ρ′b
ρb
ũ2, ϕ2(α) = − 1

ρb
W(ρ′′bα + ρ′b∂xα) and

(λ− Ã)



α

ũ

q


 =

(
λα− ∂xα− ũ2

λũ− 1
R
∆ũ+ LN ũ+ ∇q

)
,

G =



β

g1

g2


 , B1



α

ũ

q


 =




1
ρb
ρ′bα

1
ρb

(
1
R
(2ρ′b∂xũ1+ρ

′′
b ũ1) − ρ′buN ũ1−ρ′bq

)
1
ρb

(
1
R
(2ρ′b∂xũ2+ρ

′′
b ũ2) − ρ′buN ũ2

)


 .

For λ ∈ Sa,ϕ = {λ : ϕ ≤ |arg(a − λ)| ≤ π} and (β, g) ∈ Hr+1/2(R) × Hr−2(Ω)

we prove the resolvent estimate (2.6) for the solution (α, ũ) of (A.6) which implies

(2.13), i.e.,

‖u‖Hr(2,Ω) + |λ|r/2‖u‖L2(2,Ω) + ‖η‖Hr+1/2(2) + |λ|(r+1/2)/2‖η‖H0(2)

≤ C
(
‖f‖Hr−2(2,Ω)+|λ|(r−2)/2‖f‖H0(2,Ω)+‖ξ‖Hr+1/2(2)+|λ|(r+1/2)/2‖ξ‖H0(2)

)
. (A.7)

Let u = Kh be the solution of div u = h, u|Γb
= 0. Due to, e.g., [Tem01,

Prop.1.2.3] this satisfies ‖Kh‖Hr+1(Ω) ≤ C‖h‖Hr(Ω). Set ũ = v + u(1) with

u(1) = K∗v := K
(
−ρ

′
b

ρb
(u

(1)
1 + v1)

)
,

where the operator K∗ with ‖K∗v‖Hr+1(Ω) ≤ Cb‖v‖Hr(Ω) exists for b sufficiently small
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due to the contraction mapping theorem. This yields

(λ− Ã)



α

v

q


 = G+B2



α

v

q


 , (A.8a)

∂yv1 + ∂xv2 − 2α = ϕ3(v) := ϕ1(v + K∗v) on Γf, (A.8b)

q − g?α− 2

R
∂yv2 + W∂2

xα = ϕ4(α, v) := ϕ2(α) +
2

R
∂y(K∗v)2 on Γf, (A.8c)

div v = 0 in Ω, v = 0 on Γb, (A.8d)

where

B2



α

v

q


 = B1




α

v + K∗v

q


−

(
(K∗v)2

(λ− 1
R
∆ + Ln)K∗v

)
.

Next we remove ϕ3 from (A.8b), similar to (4.14). Therefore, let v = w+u(2) where

u(2) = M∗w solves

div u(2) = 0 in Ω, u(2) = 0 on y = 0,

u
(2)
2 = 0, ∂yu

(2)
1 + ∂xu

(2)
2 = ϕ3(w + u(2)) on y = 1.

(A.9)

Again, for b sufficiently small M∗w exists by the contraction mapping theorem and

fulfills ‖M∗w‖Hr+1(Ω) ≤ Cb‖w‖Hr(Ω) due to ‖ϕ3(v)‖Hr−1/2(Γf)
≤ Cb‖v‖Hr(Ω). This

yields

(λ− Ã)



α

w

q


 = G+B3



α

w

q


 (A.10a)

∂yw1 + ∂xw2 − 2α = 0, q − g?α− 2

R
∂yw2 + W∂2

xα = ϕ5(α,w) on Γf, (A.10b)

divw = 0 in Ω, w = 0 on Γb, (A.10c)

where ϕ5(α,w) = ϕ4(α,w + M∗w) + 2
R
∂y(M∗v)2 and

B3



α

w

q


 = B2




α

w + K∗w

q


−

(
(M∗w)2

(λ− 1
R
∆ + LN )M∗w

)
.

For b = 0 we have B3 = 0, and ϕ5 = 0 and (A.10) is equivalent to (λ−A) ( α
w ) = G.

Thus, for λ ∈ Sa,ϕ = {λ : ϕ ≤ |arg(a−λ)| ≤ π} there exists a unique solution (α,w)

which fulfills (2.6). From Lemma 2.4 we obtain q = q(α,w) with

‖w‖Hr(Ω) + |λ|r/2‖w‖L2(Ω) + ‖α‖Hr+1/2(2) + |λ|(r+1/2)/2‖α‖H0(2)

+ ‖∇q‖Hr−2(Ω) + ‖q‖Hr−3/2(Γf)

≤ C
(
‖g‖Hr−2(Ω) + |λ|(r−2)/2‖g‖H0(Ω) + ‖β‖Hr+1/2(R) + |λ|(r+1/2)/2‖β‖H0(R)

)
(A.11)
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For b > 0 we may then write (A.10) as

((λ−A) −B4)

(
α

w

)
= G, B4

(
α

w

)
= B3




α

w

q(α,w)


 +

(
0

Eϕ5(α,w)

)
. (A.12)

Collecting the above estimates for K∗, M∗ and (A.11) we see that Id− (λ−A)−1B4

is invertible for b sufficiently small due to Neumann’s series. Hence we obtain a

solution

(α,w) = (Id − (λ−A)−1B4)
−1(λ−A)−1G

of (A.10) which again fulfills (2.6). This shows (A.7).

The remaining statements from Lemma 2.5 are proved the same way. 2

A.3 Proof of Lemma 3.2

For simplicity, throughout the proof we omit the index n for u. For r ≥ 2, we first

consider the linear inhomogenous equation

Mu := (∂τ − ∂2
ξ )u = f(τ), f ∈ Kr−2

0 ([1/L2, 1], 2), u(1/L2) = 0. (A.13)

For a σ0 > 0 we let v(τ) = u(τ − L−2)e−σ0τ . We identify f with its continuation

for τ > 1 and let g(τ) = f(τ − L−2)e−σ0τ . Then (∂τ + σ0 − ∂2
ξ )v = g which under

Laplace transform becomes (λ + σ0 − ∂2
ξ )ṽ(λ) = g̃(λ). For Reλ ≥ 0 we have the

resolvent estimate

‖ṽ‖Hr(2) + |λ|r‖ṽ‖H0(2) ≤ C(‖g̃‖Hr−2(2) + |λ|(r−2)/2‖g̃‖H0(2)). (A.14)

Moreover, ṽ is analytic in Reλ ≥ 0 because so is ṽ. Thus, due to the Paley–Wiener

Theorem v(τ) = 1
2π

∫
eiµτ ṽ(iµ) dµ = 0 for τ < 0, and by (3.9) and (A.14) we have

‖v‖Kr([0,∞],2) ≤ C‖g‖Kr−2([0,∞],2). This immediately yields u ∈ Kr
0([1/L

2, 1], 2) with

‖u‖Kr([1/L2,1],2) ≤ C‖f‖Kr−2([1/L2,1],2).

We write u = M−1
0 f for the solution operator of (A.13). To solve the non-

linear problem (3.7) we set u = v + w where v ∈ Kr([1/L2, 1], 2) is a continua-

tion of u(1/L2) ∈ Hr−1(2). Then Mw = f(w + v) − Mv where f(u) = u∂ξu +

Lndhh(u, ∂ξu, ∂
2
ξu). By standard Sobolev embeddings (cf. Lemma 5.2) the nonlin-

earity maps Kr
0([1/L

2, 1], 2) into Kr−2
0 ([1/L2, 1], 2) for r > 5/2. Here we use that

(3.2) is quasilinear, while the fully nonlinear case would require r > 7/2. This is not

important for the present problem, but in more complicated problems larger r may

require more compatibility conditions.

Here, choosing r = 3, additional to v(1/L2) = u(1/L2) we need to choose v in

such a way that for w ∈ Kr
0([0, 1/L

2], 2) we have f(w+v)−Mv ∈ Kr−2
0 ([1/L2, 1], 2).
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Hence we also require ∂τv = f(v)− ∂2
ξv at τ = 1/L2. In summary, we consider (3.7)

in the form

w = M−1
0 (f(v + w) −Mw), (A.15)

and the above estimates and the fact that f is at least quadractic imply that

the right hand side of (A.15) defines a contraction in a sufficiently small ball in

Kr+1
0 ([1/L2, 1], 2). This shows the existence of u = v + w ∈ K3([1/L2, 1], 2) with

‖u‖K3 ≤ C‖u(1/L2)‖H2 ≤ CL5/2ρn−1 ≤ C2ρn.

The higher regularity follows from a standard bootstrapping argument: for u ∈
K3([1/L2, 1], 2) we have u(τ1) ∈ H3(2) for almost all τ1 ∈ [1/L2, 1]. Starting again

at such τ1 we obtain u ∈ K4([τ1, 1], 2), and iteratively u ∈ K3+m([τm, 1], 2) with the

given estimates. 2
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