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Abstract

Reaction diffusion systems on cylindrical domains with terms that vary rapidly

and periodically in the unbounded direction can be analyzed by averaging techniques.

Here, using iterated normal form transformations and Gevrey regularity of bounded

solutions, we prove a result on exponential averaging for such systems, i.e., we show

that traveling wave solutions can be described by a spatially homogenous equation and

exponentially small remainders.

1 Introduction

We consider semilinear reaction diffusion systems on cylindrical domains,

∂tu = ∂2
xu + D∆yu + f(u, ∂xu,∇yu, y, x/ε), (1.1)

where u = u(x, y, t) ∈ Rp, (x, y) ∈ R × Ω, Ω = [0, L]d with periodic boundary conditions on

∂Ω, and where D ∈ Rp×p is a diagonal diffusion matrix with positive entries. The nonlinearity

is an entire function, periodic in its last argument, i.e.,

f(·, ·, ·, ·, z) = f(·, ·, ·, ·, z + 2π),

and 0<ε�1 is a small parameter. Thus f is rapidly varying in the unbounded direction x.

Systems of the form (1.1) arise for instance in light sensitive chemical reactions with an

external space periodic forcing [RGMM+03], in models from physiology [KS98, Kee00], and

in a variety of further applications, see [Xin00] and the references therein. These systems
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are often analyzed by homogenization techniques. Using averaging procedures, the rapid

oscillations in x are moved to (formally) higher order terms.

An important question is the existence of traveling or standing waves for (1.1). Here we prove

rigorously that traveling wave solutions of (1.1) can be described by an averaged equation

with x independent coefficients and an exponentially small remainder. Therefore we consider

the spatial dynamics formulation for the traveling wave equation for (1.1) and use iterated

normal form transforms on suitable finite dimensional approximations together with Gevrey–

type regularity estimates for the remainder. The idea is due to [Nei84] for ODEs and has

been transferred to parabolic PDEs with a rapid time periodic forcing in [Mat01]. Elliptic

systems in infinite cylinders are considered in [Mat00], while [MW04] treats standing waves

for equations of the form (1.1). In these papers the ansatz for the solutions is simpler than

in the present paper. From a dynamical systems point of view, the periodic heterogeneity in

[Mat00, MW04] can be understood as an interaction of the homogeneous equation with an

external one-dimensional oscillator. The homogenization or averaging provides a separation

of the traveling wave equation from this fast phase. When considering traveling waves

in heterogeneous media, we have to introduce an additional independent variable. From

the dynamical systems point of view this introduces a coupling of the main traveling wave

equation with an infinite number of rapidly changing phases (m = 0 versus m 6= 0 in (1.6)

below). In the present paper we hence give the first example of the exponential averaging of

an infinite dimensional forcing.

We now state our precise result, further remarks and consequences are given below. For

notational simplicity henceforth we focus on scalar equations p = 1 and let D = 1, but see

Remark 1.1(i). We are looking for traveling waves, which are periodically modulated with

x/ε, i.e.,

u(x, y, t) = v(x − ct, y, x/ε), (1.2)

with v(·, ·, z) = v(·, ·, z + 2π) for z ∈ R. Then v(ξ, y, z) fulfills the traveling wave equation

in a periodically varying medium

−c∂ξv = (∂ξ + ε−1∂z)
2v + ∆yv + f(v, (∂ξ + ε−1∂z)v, ∂yv, y, z). (1.3)

As a first order system for

V (ξ, y, z) =

(

v1

v2

)

:=

(

v

∂ξv

)

,

this yields

∂ξV (ξ) = AV (ξ) + F (V (ξ)), (1.4)
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where

A =

(

0 1

−ε−2∂2
z − ∆y −2ε−1∂z − c

)

,

F (V )(y, z) =

(

0

−f(v1, ε
−1∂zv1 + v2,∇yv1, y, z)

)

.

For the spatial dynamics formulation (1.4) we choose the phase space

X = Hs(Ωe) × Hs−1(Ωe),

d/2 + 1 < s ∈ N, on the extended cross–section Ωe = Ω × S1, with the weighted norm

‖V ‖2
X :=

∑

α+|β|≤s

∫

|(ε−1∂z)
α∇β

yv1|2 dz dy +
∑

α+|β|≤s−1

∫

|(ε−1∂z)
α∇β

yv2|2 dz dy, (1.5)

where β ∈ Nd is a multi index. To separate the rapid changes in the periodic variable z we

use the Fourier expansion

V (ξ, y, z) = V0(ξ, y) +
∑

m∈Z\{0}

Vm(ξ, y)eimz.

Denoting by Πm the projection to the Fourier coefficient of eimz, we have equations for the

Fourier coefficients Vm

∂ξVm(ξ) = AmVm(ξ) + ΠmF (V (ξ)), m ∈ Z, (1.6)

with

Am =

(

0 1

ε−2m2 − ∆y −2ε−1im − c

)

,

ΠmF (V )(y) =

(

0

− 1
2π

∫ 2π

0
f(v1, ε

−1∂zv1 + v2,∇yv1, y, z)e−imz dz

)

.

The aim of our analysis is the decoupling of the slow V0 component from the rapidly changing

Vmeimz, m ∈ Z \ {0}. In other words, we want to find a description of V only depending on

V0, up to an exponentially small remainder.

Notation: Hs(Ω) is the standard Sobolev space of functions with derivatives up to order s

in L2(Ω). For V ∈ BC(R,X ), the space of bounded continuous functions with values in X ,

we write ‖V ‖BC(R,X ) = supξ∈R ‖V (ξ)‖X . We set

Z
? := Z\{0} and X = Hs(Ω) × Hs−1(Ω).

Numerical constants that may vary from place to place are denoted by C if they are inde-

pendent of ε and m ∈ Z.
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Theorem A Let f : R × R × Rd × Ω × R → R be an entire function, periodic with period

2π in the last argument. For all R > 0 there exist ε0 > 0 and C > 0, and smooth functions

Tm : X × (0, ε0) → X, m ∈ Z?, F : X × (0, ε0) → X,

RT : X × S1 × (0, ε0) → X , RE : X × (0, ε0) → X,

such that the following holds. For all bounded solutions u(x, y, t) of equation (1.1) of the

form u = v(x − ct, y, x/ε) with v(·, ·, z) = v(·, ·, z + 2π) and ‖V ‖BC(R,X ) ≤ R we have

V (ξ, y, z) = V0(ξ, y) + ε
∑

m∈Z?

Tm(V0(ξ), ε)(y)eimz + RT (V (ξ), ε)(y, z), (1.7)

where the transformation is bounded, i.e.

sup
ξ∈R

∥

∥

∑

m∈Z?

Tm(V0(ξ), ε)(·)eim·
∥

∥

X
≤ C(‖V0‖BC(R,X))

and the remainder term RT is exponentially small

sup
ξ∈R

‖RT (V (ξ), ε)(·, ·)‖X ≤ C(‖V ‖BC(R,X )) exp(−c1ε
−1/2).

Moreover, V0 is separated from Vm, m ∈ Z?, up to exponentially small terms, i.e. it fulfills

∂ξV0(ξ, y) = A0V0(ξ, y) + F (V0(ξ), ε)(y) + RE(V (ξ), ε)(y), (1.8)

where

‖Π0F (V (ξ)) − F (V0(ξ), ε)‖X ≤ C(‖V ‖BC(R,X ))

and where the remainder depending on Vm, m ∈ Z? is exponentially small

‖RE(V (ξ), ε)‖X ≤ C(‖V ‖BC(R,X )) exp(−c2ε
−1/2).

Remark 1.1 (i) Theorem A also holds for systems of reaction diffusion equations. The

main difference to the analysis presented here is that the eigenfunction expansions for

the Am and subsequent definitions (see sec.2) become notationally more elaborate.

(ii) The transformed nonlinearity F as well as the functions Tm and the remainder terms

RT and RE are nonlocal in y, z but local in ξ.

(iii) The smoothness assumptions on f can be relaxed. It is enough that the nonlinearity

F (V, ·) in (1.4) is analytic in V as map from X to X and as map from Y to Y, where

the function space Y consists of functions analytic in y, see (2.7).

(iv) A first approximation of F is given in Remark 3.1.
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Remark 1.2 In summary, the result of Theorem A is that up to an exponentially small

remainder the fast dynamics for m 6= 0 in (1.4) are slaved to the slow dynamics of V0

described by the truncated averaged equation

∂ξV0(ξ, y) = A0V0(ξ, y) + F (V0(ξ))(y). (1.9)

Some consequences and applications of Theorem A are as follows. Assume that, for ε = 0 and

some c = c0, (1.9) has a heteroclinic orbit V ∗
0 to hyperbolic equilibria V −

0 ∈ X and V +
0 ∈ X

of (1.9), i.e., V ∗
0 (ξ) → V ±

0 for ξ → ±∞ (if V −
0 = V +

0 then V ∗
0 is homoclinic). Moreover,

assume that the orbit is transverse in the extended phase space (c, V0) ∈ (R, X). For ε > 0

sufficiently small and some cε with |cε − c0| ≤ Cε, this orbit persists as a heteroclinic orbit

V ∗
0 (ε) with V ∗

0 (ξ, ε) → V ±
0 (ε) as ξ → ±∞, where ‖V ±

0 (ε) − V ±
0 ‖X ≤ Cε. Then, for some c̃ε

with |c̃ε − cε| ≤ C exp(−ε−1/2), (1.4) has a heteroclinic orbit Ṽ ∗(ε) to equilibria Ṽ ±(ε), and

sup
ξ∈R

∥

∥

∥

∥

∥

Ṽ ∗(ξ, ε)(., .) −
(

V ∗
0 (ξ, ε)(.) + ε

∑

m∈Z?

Tm(V ∗
0 (ξ), ε)(·)eim·

)

∥

∥

∥

∥

∥

X

≤ C exp(−ε−1/2).

See also [HMS88, FS96, Gel99, Mat03] for further discussion of related results and associated

phenomena like exponentially small splitting of invariant manifolds and Melnikov analysis.

Remark 1.3 The idea of using spatial dynamics to construct special solutions to PDE on

unbounded domains has a long history. In [Kir82] and further work (see, e.g.[IM91, AM95,

SU03, FS03] and the references therein), small solutions are constructed by some center

manifold reduction, while here we analyze general bounded solutions. Again we also refer

to [Xin00, MW04] for further approaches to wave propagation (and propagation failure) in

periodic media.

To prove Theorem A we use iterated normal form transforms to obtain the exponentially

small remainders RT and RE. The basic idea is to use Gevrey regularity in y of bounded solu-

tions (1.4), to perform the iterated normal form transforms for each m on finite dimensional

subspaces P NX, and to balance the number of normal form transforms with an exponential

estimate for the remainders in the part (Id − P N)X obtained from the high regularity in y.

In section 2 we introduce the functional analytic setup. The proof of Theorem A is given in

section 3.

2 Function spaces and approximation

Here we introduce the functional analytic set-up and collect several estimates. For (1.4) we

use the Hilbert space X as a phase space. For notational convenience henceforth we assume
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L = 2π and periodic boundary conditions in y. Thus, the eigenvalues of the operators

Am : D(Am) ⊂ X → X in (1.6) with D(Am) = Hs+1(Ω)×Hs(Ω) can be calculated from the

ansatz

Vm(ξ, y) = eik·y+λm,kξφm,k.

Then

(λm,k − Am,k)φm,k = 0 with Am,k =

(

0 1

ε−2m2 + |k|2 −2ε−1im − c

)

,

hence

λ±
m,k = −

(

im

ε
+

c

2

)

±
√

icm

ε
+

c2

4
+ |k|2, (2.1)

see fig.1 for a sketch. Since c 6= 0 we find that
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Figure 1: Sketches of the spectrum of A, c = 1, ε = 0.05 (left) and ε = 0.01 (right); λ±
m,k for

m = −10, . . . , 10, |k| = 0, . . . , 10 (left), |k| = 0, . . . , 20 (right). In particular, the right picture

illustrates the increasing spectral gap |Reλ±
m,k| ≥ C|m/ε|1/2, m 6= 0, for ε → 0, used in Lemma 2.5

below.

Re λ±
m,k ∼ r±m,k with r±m,k = ±

(

|cm/ε|1/2 + |k|
)

cos

(

1

2
arctan

cm

ε|k|2
)

. (2.2)

Here ∼ denotes the asymptotics for |m|, |k| → ∞ with ε and c fixed, i.e., Reλ±
m,k/r

±
m,k → 1

as |m|+ |k| → ∞. Note that 1/
√

2 ≤ cos(1
2
arctan cm

ε|k|2
) ≤ 1 in (2.2). More generally we also

write fm,k ∼ gm,k if there exist C, c1, c2 > 0 such that

c1gm,k ≤ fm,k ≤ c2gm,k if |m| + |k| > C.

For complex functions we use the notation ∼ in modulus, and similar for the components of

vector valued functions. With this notation

φ±
m,k =

(

1

λ±
m,k

)

∼
(

1

|m/ε| + |k|

)

, (2.3)
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hence, for

Vm(ξ, y) =
∑

k∈Zd

a±
m,k(ξ)φ

±
m,ke

ik·z =
∑

k∈Zd

Vm,ke
ik·z

we have

Vm,k = Bm,k

(

a+
m,k

a−
m,k

)

, Bm,k =

(

1 1

λ+
m,k λ−

m,k

)

, B−1
m,k ∼

(

1 (|m/ε| + |k|
)−1

1 (|m/ε| + |k|
)−1

)

. (2.4)

Therefore

‖V ‖2
X =

∑

m∈Z,k∈Zd

(1 + |m/ε| + |k|)2s(|a+
m,k|2 + |a−

m,k|2)

defines an equivalent norm on X .

For m ∈ Z let Π+
m be the X–orthogonal projection onto span{φ+

m,k : k ∈ Zd}, Π−
m = Id−Π+

m,

Π+V =
∑

m∈Z

(Π+
mVm)eimz, and Π− = Id − Π+.

Let V m ∈ X. Then

eξAmVm =
∑

k∈Zd

Bm,k diag(eλ+

m,kξ, eλ−

m,kξ) B−1
m,kVm.

Hence, for ξ < 0 and V ∈ P +X ,

‖eξAV ‖2
X ≤ C

∑

m∈Z, k∈Zd

exp
(

2(|cm/ε|1/2 + |k|)ξ
)

×

∣

∣

∣

∣

∣

(

(

|V 1
m,k| + 1

|m/ε|+|k||V 2
m,k|
)

(1+|m/ε|+|k|)s

(

|V 2
m,k|+(|m/ε|+|k|)|V 1

m,k|
)

(1+|m/ε|+|k|)s−1

)
∣

∣

∣

∣

∣

C2

≤ C
∑

m∈Z, k∈Zd

exp
(

−2(|cm/ε|1/2 + |k|)|ξ|
)

×

(

|V 1
m,k|2(1+|m/ε|+|k|)2s + |V 2

m,k|2(1+|m/ε|+|k|)2(s−1)
)

, (2.5)

and similar for V ∈ P−X and ξ > 0. This formula shows that: (i) ‖ · ‖X is the natural norm

for the solutions of (1.4); (ii) we have exponential dichotomies in the sense of a forward

smoothing in y on Π−X by eξA−, ξ > 0, and a backward smoothing in y on Π+X by eξA+,

ξ < 0, together with an exponential decay of Vm for m 6= 0 with rate exp(−|cm/ε|1/2|ξ|).
Motivated by the smoothing in y we define Gevrey spaces, similar to those used in the
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regularity analysis of parabolic equations, see e.g. [FT89, Pro91, TBD+96, FT98]. We let

Gs
m,σ = {V =:

∑

k∈Zd

a±
m,kφ

±
m,ke

ik·y : ‖V ‖Gs
m,σ

< ∞},

‖V ‖2
Gs

m,σ
=
∑

k∈Zd

(1 + |k|)2seσ|k|(|a+
k,m|2 + |a−

k,m|2),
(2.6)

Gs
σ = {V =

∑

m∈Z, k∈Zd

a±
m,kφ

±
m,ke

imz+ik·y : ‖V ‖Gs
σ

< ∞},

‖V ‖2
Gs

σ
=

∑

m∈Z, k∈Zd

(1 + |m/ε| + |k|)2seσ|k|(|a+
k,m|2 + |a−

k,m|2).
(2.7)

For fixed σ > 0 we also use the abbreviation

Y = Gs
σ.

Lemma 2.1 Let f fulfill the assumptions of Theorem A. Then

F (V )(y, z) =

(

0

f(v1, ε
−1∂zv1 + v2,∇yv1, y, z)

)

is analytic as a mapping X → X and as a mapping Y → Y.

Proof. The first statement follows from standard Sobolev embeddings, noting that F lives

in the second component. The second statement follows as, e.g., [Mat00, Lemma 4.2]. The

key observation is that the Gevrey classes form an algebra under point–wise multiplication

as in [FT98].

The iterated normal form transforms will be done on Galerkin type subspaces P NX : for

N ∈ N let

HN = {V N =
∑

m∈Z, |k|≤N

a±
m,kφ

±
m,ke

imz+ik·y} ⊂ X , (2.8)

and let P N be the A invariant projection of X onto HN . To estimate the error in the

complement of P NX we shall use exponential decay of the Fourier coefficients in |k|.

Lemma 2.2 (i) ‖P NA0V ‖Z ≤ CN‖V ‖Z for all V ∈ Z with Z = X and Z = Y .

(ii) ‖A−1
m Vm‖Z ≤ CA|ε/m| ‖V ‖Z for all m ∈ Z? and all V ∈ Z with Z = X and Z = Y .

(iii) ‖P NV − V ‖X ≤ ‖V ‖Ye−σN for all V ∈ Y.
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Proof. (i) follows directly from (2.2). (ii) follows from the explicit representation
∣

∣

∣

∣

∣

A−1
m,k

(

v1

v2

)
∣

∣

∣

∣

∣

C2

=

∣

∣

∣

∣

∣

B−1
m,k diag(1/λ+

m,k, 1/λ
+
m,k) Bm,k

(

v1

v2

)
∣

∣

∣

∣

∣

C2

≤ C

∣

∣

∣

∣

∣

(

1 1
|m/ε|+|k|)

1 1
|m/ε|+|k|

)(

|λ+
m,k|−1(|v1| + |v2|)|

|λ−
m,k|−1(|m/ε| + |k|)(|v1| + |v2|)

)
∣

∣

∣

∣

∣

C2

≤ C(|1/λ+
m,k|−1 + |1/λ+

m,k|−1)(|v1| + |v2|)

using |1/λ±
m,k|−1 ≤ C|ε/m|. (iii) follows from definitions (2.7) and (2.8).

Lemma 2.3 Let f fulfill the assumptions of Theorem A. Then all bounded solutions of (1.4)

are highly regular. In detail, for all R > 0 there exist σ0, C > 0 such that for all 0 < σ ≤ σ0

and all solutions V (ξ) of (1.4) with supξ∈R ‖V (ξ)‖X ≤ R we have

sup
ξ∈R

‖V (ξ)‖Y ≤ C sup
ξ∈R

‖V (ξ)‖X . (2.9)

Proof. A detailed proof of a similar result is given in [Mat00, Proposition 4.1], so here we

only sketch the main steps. Consider (1.6), i.e., ∂ξVm(ξ) = AmVm(ξ) + Fm(ξ), m ∈ Z, with

Fm(ξ, y) = ΠmF (V (ξ, y)) =

(

0
1
2π

∫ 2π

0
f(v1, ε

−1∂zv1 + v2,∇yv1, y, z)e−imz dz

)

.

Let V ±
N,m = P NΠ±

mV . Then V ±
N,m fulfill

∂ξV
+
N,m = AmU+

N,m + P NΠ+
mFm(V ), (2.10)

∂ξV
−
N,m = AmU−

N,m + P NΠ−
mFm(V ). (2.11)

For given ξ0 ∈ R we want to estimate ‖V ±
N,m(ξ0)‖Gs

σ
. Without loss of generality let ξ0 = 0.

Using (2.2) we can use backward “smoothing” by e−ξAmΠ+
m (start at ξ > 0 in (2.10)) and

forward “smoothing” by eξAmΠ−
m (start at −ξ < 0 in (2.11)) and continuous dependence on

initial data in the finite dimensional system (2.10,2.11) to obtain

‖V N
m (0)‖Gs

ξ
≤ C(‖Vm‖BC(R,X) + ‖Fm‖BC(R,X)),

where C, ξ depend on R but not on N, m. Letting N → ∞ and summing over m yields the

result.

We denote complex extensions of the Hilbert spaces X, Y by XC and YC. For a general

Hilbert space Z the complexification is

ZC = Z × Z

9



with norm ‖(U1, U2)‖ZC
=
√

‖U1‖2
Z + ‖U2‖2

Z . Linear operations are extended to ZC as

(U1, U2) = (U1,−U2), (a + bi)(U1, U2) = (aU1 − bU2, bU1 + aU2),

L(U1, U2) = (LU1, LU2) for L ∈ L(Z, Z), L(U1, U2) = LU1 + iLU2 for L ∈ L(Z, R).

As complex extensions we define for some open set D contained in Z = X respectively

Z = Y ,

Nδ,Z(D) = {U ∈ ZC : infV ∈D‖U − V ‖ZC
< δ},

see fig.2 for a sketch. For such extensions we have a Cauchy estimate for X -norms and

D

Nδ,Z(D)

iZ

Z

δ

Nδ/2,Z(D)

Figure 2: Sketch of the complex extensions Nδ/2,Z(D) and Nδ,Z(D).

Y-norms.

Lemma 2.4 Let F : Nδ,Z(D) → Z be analytic, Z = X or Z = Y, then

sup
V ∈Nδ−η,Z(D)

‖DF (V )‖L(ZC,ZC) ≤
1

η
sup

V ∈Nδ,Z(D)

‖F (V )‖ZC
.

Proof. The lemma follows directly from the usual one-dimensional Cauchy formula. For

V ∈ Nδ−η,Z(D) we take a circle in the complex plane defined by W = V + ζU, ζ ∈ C, |ζ| = η,

letting without restriction ‖U‖Z = 1. Then we have with the one-dimensional Cauchy

formula

F (V ) =
1

2πi

∮

W=V +ζU,ζ∈C,|ζ|=η

F (V + ζU)

ζ
dζ,

F (V + hU) =
1

2πi

∮

W=V +ζU,ζ∈C,|ζ|=η

F (V + ζU)

ζ − h
dζ.

Therefore
1

h
(F (V + hU) − F (V )) =

1

2πi

∮

W=V +ζU,ζ∈C,|ζ|=η

F (V + ζU)

ζ(ζ − h)
dζ.
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For h → 0 and V ∈ Nδ−η,Z(D) this yields the Gateaux derivative

‖DUF (V )‖L(ZC,ZC) ≤
1

2π
2πη

supW∈Nδ,Z(D) ‖F (W )‖
η2

=
supW∈Nδ,Z(D) ‖F (W )‖

η

and the lemma is proved.

Using the variation of constants formula and the spectral gap |Reλm,0| ≥ C|m/ε|1/2 we

obtain for solutions of systems like (1.6) an additional factor |ε/m|1/2.

Lemma 2.5 There exists a C > 0 such that for all m ∈ Z
? the following holds. If

‖Gm‖BC(R,X) ≤ R and Vm(ξ) is a bounded solution of

∂ξVm(ξ) = AmVm(ξ) + Gm(ξ) (2.12)

then

‖Vm(ξ)‖BC(R,X) ≤ C|ε/m|1/2‖Gm‖BC(R,X).

The corresponding estimates hold for solutions of the Galerkin approximated equations.

Proof. Let ξ ∈ R. Using the projections Π+
m and Π−

m write the solution of (2.12) as

Vm(ξ) = V +
m (ξ) + V −

m (ξ)

= e(ξ−ξ+)AmΠ+
mV (ξ+) + e(ξ−ξ−)AmΠ−

mV (ξ−)

+

∫ ξ

ξ+

e(ξ−τ)AmΠ+
mGm(τ) dτ +

∫ ξ

ξ−

e(ξ−τ)AmΠ−
mGm(τ) dτ. (2.13)

Letting ξ+ → ∞ and ξ− → −∞ the first two terms vanish, cf.(2.5), while the first integral

can be estimated as
∥

∥

∥

∥

∫ ξ

ξ+

e(ξ−τ)AmΠ+
mGm(τ) dτ

∥

∥

∥

∥

X

≤ C

∫ ξ

−∞

exp(−|m/ε|1/2(ξ − τ)) dτ sup
τ∈R

‖Π+
mGm(τ)‖

≤ C|ε/m|1/2 sup
τ∈R

‖Gm(τ)‖,

and similar for
∫ ξ

ξ−
e(ξ−τ)AmΠ−

mGm(τ) dτ .

3 Iterated normal forms

The proof of Theorem A consists of three steps. In Step 1 we describe a number of iterated

normal form transformations on the Galerkin approximation of (1.4). To make this rigorous,

we need careful estimates coupling ε, N and the number of normal form transformations in

Step 2. Finally in Step 3 we will estimate the remainder term using the high regularity in y

of solutions of (1.4) obtained in Lemma 2.3.
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Step 1: Normal form transformations in Galerkin space

With V N = P NV we write the Galerkin approximation of the infinite system of equations

(1.6) as

∂ξV
N
m (ξ, y) = AmV N

m (ξ) + P NΠmF (V N(ξ))(y)

:= AmV N
m (ξ) + Fm(V N

0 (ξ))(y) + Gm(V N
0 (ξ), (V N

` (ξ))`∈Z?)(y) (3.1)

with Gm(V N
0 (ξ), 0) = 0. For notational convenience we suppress the dependence of the

nonlinearities on N . We will iteratively transform the oscillatory modes V N
m for m 6= 0. The

transformations will have the form

V N
m = Ψm(V N

0 , W N
m ) for m ∈ Z

?.

In the first transformation we let V N
m = Ψm,1(V

N
0 , W N

m ), m ∈ Z?, which defines the new

variables (W N
m )m∈Z? . After renaming W N

m again as V N
m , we let V N

m = Ψm,2(V
N
0 , W N

m ), m ∈ Z
?,

or both transformations together V N
m = Ψm,1(V

N
0 , Ψm,2(V

N
0 , W N

m )), m ∈ Z?. Iteratively this

gives

V N
m = Ψm(V N

0 , W N
m ) = Ψm,1(V

N
0 , Ψm,2(V

N
0 , Ψm,3(V

N
0 , . . . , Ψm,j(V

N
0 , W N

m ) . . .)))

after j transformations. Finally we want to achieve, that Ψm(V N
0 , W N

m )−Ψm(V N
0 , 0) is small

to show (1.7). In the first transformation we let

V N
m = Ψm,1(V

N
0 , W N

m ) = −(P NAm)−1Fm(V N
0 ) +

1

K
W N

m , m ∈ Z
?,

where K ≥ 2 is a fixed constant. The transformed equations are

∂ξV
N
0 (ξ) = A0V

N
0 (ξ) + F0,1(V

N
0 (ξ)) + G0,1(V

N
0 (ξ), (W N

` )`∈Z?),

∂ξW
N
m (ξ) = AmW N

m (ξ) + Fm,1(V
N
0 (ξ)) + Gm,1(V

N
0 (ξ), (W N

` )`∈Z?), m ∈ Z
?,

with G`,1(V
N
0 , 0) = 0 for all ` ∈ Z. We rename W N

m as V N
m and repeat for m ∈ Z?, i.e.,

V N
m = Ψm,j(V

N
0 , W N

m ) = −(P NAm)−1Fm,j−1(V
N
0 ) +

1

K
W N

m . (3.2)

For m ∈ Z
? this yields

∂ξV
N
0 (ξ) = A0V

N
0 (ξ) + F0,j(V

N
0 (ξ)) + G0,j(V

N
0 (ξ), (W N

` )`∈Z?(ξ)),

∂ξW
N
m (ξ) = AmW N

m (ξ) + Fm,j(V
N
0 (ξ)) + Gm,j(V

N
0 (ξ), (W N

` )`∈Z?(ξ)), (3.3)

with G`,j(V
N
0 , 0) = 0 for all ` ∈ Z and all j. Here the nonlinearities are given explicitly for

m = 0 by

F0,j(V
N
0 ) = F0,j−1(V

N
0 ) + G0,j−1(V

N
0 (ξ), (Ψ`,j(V

N
0 , 0))`∈Z?),

G0,j(V
N
0 (ξ), (W N

` )`∈Z?) = G0,j−1(V
N
0 (ξ), (Ψ`,j(V

N
0 , W N

` ))`∈Z?)

−G0,j−1(V
N
0 (ξ), (Ψ`,j(V

N
0 , 0))`∈Z?).

12



Our aim is to make G0,j small to achieve the form (1.8). Using G0,j and F0,j the terms for

m 6= 0 can be given explicitly as

Fm,j(V
N
0 ) = KGm,j−1(V

N
0 , (Ψ`,j(V

N
0 , 0))`∈Z?)

+K(Am)−1DF0,j−1(V
N
0 )
[

P NA0V
N
0 + F0,j(V

N
0 )
]

,

Gm,j(V
N
0 , (W N

` )`∈Z?) = KGm,j−1(V
N
0 , (Ψ`,j(V

N
0 , W N

` ))`∈Z?)

−KGm,j−1(V
N
0 , (Ψ`,j(V

N
0 , 0))`∈Z?)

+K(P NAm)−1DF0,j−1(V
N
0 )
[

G0,j(V
N
0 , (W N

` )`∈Z?)
]

.

Step 2: Iterative estimates

To show (1.7,1.8) in the Galerkin approximation we now prove estimates for the smallness

of Ψm(V N
0 , W N

m ) − Ψm(V N
0 , 0) and of G0,j . The main part are inductive estimates of Fm,j

and Gm,j for increasing j simultaneously for all m ∈ Z.

For a given Z and D ⊂ ZC we use the notation

‖F‖D := sup
V ∈D

‖F (V )‖Z , ‖DF‖D := sup
V ∈D

‖DF (V )‖L(Z,Z).

We also write

‖(Fm)m∈Z‖D := ‖F‖D with F =
∑

m∈Z

eimzFm,

and similar for m ∈ Z
?. We show estimates on the transformed nonlinearities as long

as normal form transformations are defined on a domain Dj ⊂ ZC which is the complex

extension of a large ball in Z = HN , i.e.,

Dj = Nδ−jη,Z(BZ(R)).

Under the assumptions of estimates on Dj−1:

‖V N
m ‖Dj−1

< CW , ‖(G`,j−1)`∈Z‖Dj−1
< CG,

‖(F`,j−1)`∈Z‖Dj−1
< CF = C̄F (1+ε1/2)j,

(3.4)

we show on Dj ⊂ Dj−1:

‖W N
m ‖Dj

< CW , ‖(G`,j)`∈Z?‖Dj
< CG,

‖(F`,j)`∈Z‖Dj
< CF (1 + ε1/2), ‖G0,j‖Dj

≤ 1

2
‖G0,j−1‖Dj−1

.
(3.5)

Then (W N
m )m∈Z, F`,j for ` ∈ Z and G`,j for ` ∈ Z? stay bounded under j∗ = O(ε−1/2) many

transformations (see (3.6) below), while G0,j will go to zero exponentially in j.
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Using the Cauchy estimate in Lemma 2.4 and Lemma 2.2(ii) we first obtain

‖F0,j‖Dj
≤ ‖F0,j−1‖Dj

+ ‖D2G0,j−1‖Dj
‖(P NAm)−1‖L(Z,Z)CF

≤ CF +
CG

η
CAεCF = CF (1 + ε

CG

η
CA),

and, for m 6= 0,

‖(Fm,j)m∈Z?‖Dj
≤ K‖

(

(D2Gm,j−1)(P
NAm)−1Fm,j−1

)

m∈Z?‖Dj

+K
∥

∥

∥

(

|(P NAm)−1(DFm,j−1)(N |V0| + F0,j)
)

m∈Z?‖Dj

≤ K
CG

η
CAεCF + KCAε

CF

η
(NCW + ‖F0,j‖Dj

).

The terms depending on W N
` , ` ∈ Z?, are estimated as

‖G0,j‖Dj
≤ ‖D2G0,j−1‖Dj

‖ 1

K
W N

m ‖Dj
≤ CG

η

1

K
‖W N

m ‖Dj
,

and, for m 6= 0,

‖(Gm,j)m∈Z?‖Dj
≤ K‖D2(Gm,j−1)m∈Z?‖Dj

‖ 1

K
(W N

m )m∈Z?‖Dj

+K‖((P NAm)−1DFm,j−1)m∈Z?‖Dj
‖G0,j‖Dj

≤ CG

η
‖(W N

m )m∈Z?‖Dj
+ KCAε

CF

η
‖G0,j‖Dj

.

To bound Gm,j, we first estimate W N
m applying Lemma 2.5, i.e.,

‖(W N
m )m∈Z?‖Dj

≤ CAε1/2(‖(Fm,j)m∈Z‖Dj
+ ‖(Gm,j)m∈Z‖Dj

)

≤ CAε1/2
(

‖(Fm,j)m∈Z‖Dj
+

CG

η
‖(W N

m )m∈Z?‖Dj
+ CAε

CFCG

η2
‖(W N

m )m∈Z?‖Dj

)

.

Therefore, if

CAε1/2
(CG

η
+ CAε

CFCG

η2

)

≤ 1

2
,

then

‖(W N
m )m∈Z?‖Dj

≤ 2CAε1/2‖(Fm,j)m∈Z‖Dj
.

Thus we altogether need the following relations to ensure (3.5)

CG

η
CAεCF ≤ CFε1/2,

εK
CA

η
(CG + NCW + CF (1 + ε1/2)) < 1,

CAε1/2
(CG

η
+ CAε

CFCG

η2

)

≤ 1

2
,

2CAε1/2CF (1 + ε1/2) < CW .
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These inequalities are fulfilled for 0 < ε < ε0 if

η(ε) = Mε1/2, N(ε) = ε−1/2 with

CF = C̄F eδ/(2M),

M ≥ max
(

CGCA, KCA(CW + ε
1/2
0 (CG + CF (1 + ε

1/2
0 ))), 2CA(CG + ε

1/2
0 CGCACF )

)

,

ε0 ≤
(

CW

2CAC̄F

)2

.

Thus we can perform

j∗ =
[ δ

2Mε1/2

]

(3.6)

normal form transformations with Nδ/2,Z(BZ(R)) ⊂ Dj∗ and all resulting nonlinearities are

uniformly bounded on bounded sets in X respectively Y, i.e.,

‖G0,j∗‖Dj∗
≤ 2−j∗CG = Ce−c2ε−1/2

,

‖(Gm,j)m∈Z?‖Dj∗
≤ CG,

‖(W N
m )m∈Z?‖Dj∗

≤ CW ,

‖(Fm,j)m∈Z‖Dj∗
≤ C̄F (1 + ε1/2)δ/(2Mε1/2) ≤ CF .

Furthermore all transformations are well-defined in BX (R) and BY(R). Indeed, we have for

the first and second transformation

V N
m = Ψm,1(V

N
0 , Ψm,2(V

N
0 , W N

m ))

= Ψm,1(V
N
0 , Ψm,2(V

N
0 , 0)) +

(

Ψm,1(V
N
0 , Ψm,2(V

N
0 , W N

m )) − Ψm,1(V
N
0 , Ψm,2(V

N
0 , 0)

)

= Ψm,1(V
N
0 , Ψm,2(V

N
0 , 0)) +

1

K

[

Ψm,2(V
N
0 , W N

m ) − Ψm,2(V
N
0 , 0)

]

= Ψm,1(V
N
0 , Ψm,2(V

N
0 , 0)) +

1

K2
W N

m .

After j transformations we then have

V N
m = Ψm,1(V

N
0 , Ψm,2(V

N
0 , Ψm,3(V

N
0 , . . . , Ψm,j(V

N
0 , 0) . . .))) +

1

Kj
W N

m .

For all iterations we have, due to(3.2), (3.4), and Lemma 2.2, for K ≥ 2 and uniformly in

m ∈ Z?,

‖Ψm,j(V
N
0 , 0)‖Dj

≤ CAεCF ,

‖Ψm,j−1(V
N
0 , Ψm,j(V

N
0 , 0))‖Dj

≤ CAεCF +
1

2
CAεCF .

Iteratively we obtain

‖Ψm,1(V
N
0 , Ψm,2(V

N
0 , Ψm,3(V

N
0 , . . . , Ψm,j(V

N
0 , 0) . . .)))‖Dj

< 2CAεCF .
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Then we define the transformations Tm as

εTm(V0, ε) := Ψm,1(V
N(ε)
0 , Ψm,2(V

N(ε)
0 , Ψm,3(V

N(ε)
0 , . . . , Ψm,j∗(ε)(V

N(ε)
0 , 0) . . .))).

For each Tm the norm is bounded by 2CACF on the extended domain, hence it is analytic

in V0. For the remainder

RN
T ((V N

m )m∈Z) =
∑

m∈Z?

1

Kj∗
W N

m eimz

we obtain, by (3.5),

‖RN
T ‖Dj∗

≤ CWK−Mε−1/2

= C1e
−c1ε−1/2

, (3.7)

which defines C1, c1 > 0.

Step 3: Regularity estimates

So far all estimates have been on the Galerkin approximation V N . In the final step we

estimate the error of this approximation using the high regularity in y of bounded solutions

from Lemma 2.3. First we consider the additional error term in (1.7), when setting

V (ξ, y, z) = V0(ξ, y) + ε
∑

m∈Z?

Tm(P N(ε)V0, ε)(y)eimz + RT (V (ξ), ε)(y, z).

The remainder term is bounded by

‖RT (V (ξ), ε)‖X ≤ ‖(I−P N)V (ξ)‖X +
∥

∥

∥
P NV (ξ)−

(

V0(ξ)+ε
∑

m∈Z?

Tm(P N(ε)V0, ε)(·)eim·
)
∥

∥

∥

X

≤ ‖V ‖Ye−σN + ‖RN
T ‖Dj∗

≤ ‖V ‖Ye−σN + C1e
−c1ε−1/2

,

using (3.7) and Lemma 2.2(iii). Our choice N(ε) = [ε−1/2] gives the desired exponential

estimate in (1.7). This choice is the optimal coupling of N and ε for our estimates as both

exponential estimates balance.

To derive (1.7), we extend the equation (3.3) for the Galerkin approximation V N
0 after j∗

normal form transformations to the full space X respectively Gs
σ. As V N

0 remains unchanged

under the transformations we have with N = N(ε)

∂ξV0(ξ) = A0V0(ξ) + Π0F (P NV (ξ)) + Π0

[

F (V (ξ))−F (P NV (ξ))

= A0V0(ξ) + F0,j∗(P
NV0(ξ)) + G0,j∗(V

N
0 , (W N

m )m∈Z?) + Π0

[

F (V (ξ))−F (P NV (ξ))
]

.

Then with

F (V0(ξ), ε) := F0,j∗(P
N(ε)V0(ξ))
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we obtain

RE(V (ξ), ε) = G0,j∗(V
N
0 , (W N

m )m∈Z?) + Π0

[

F (V (ξ)) − F (P NV (ξ))
]

with the estimate

‖RE(V (ξ), ε)‖X ≤ ‖G0,j∗‖Dj∗
+ ‖Π0DF‖BX(R)‖V − P NV ‖X

≤ Ce−c2ε−1/2

+ C‖V ‖Ye−σN .

This is the final required exponential estimate in (1.8).

Remark 3.1 In lowest order, F in (1.8) is given by the first transformation

F (V0, ε) =
1

2π

∫ 2π

0

P NF
(

P NV0 −
∑

m∈Z?

(P NAm)−1Fm(P NV0)e
imz
)

dz + h.o.t.

where N = N(ε) = [ε−1/2] was chosen in the proof. Due to the structure of Am and Fm, we

have for ε → 0

F (V0, 0) =
1

2π

∫ 2π

0

P NF (P NV0)dz.
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