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Abstract

We prove the validity of a technical assumption necessary in a proof of

the validity of the nonlinear Schrödinger equation as envelope equation in

quadratic spatially periodic media.

The dynamics of the envelopes of spatially and temporarily oscillating wave
packets advancing in dispersive spatially periodic media can be approximated by
solutions of a Nonlinear Schrödinger equation. In [1] the semilinear wave equation

∂2
t u(x, t) = χ1(x)∂2

xu(x, t) − χ2(x)u(x, t) − χ3(x)uϑ(x, t) (1)

has been considered as a model problem for this, where x ∈ R, t ∈ R, u(x, t) ∈
R, ϑ = 2 or ϑ = 3, and χj(x) = χj(x + 2π) for j = 1, 2, 3.

Under a number of technical assumptions in [1] a proof for the validity of the
Nonlinear Schrödinger equation as an amplitude equation has been given. In the
present paper we explain that the technical assumption (7) in [1] for the much more
advanced quadratic case ϑ = 2 is always satisfied if χ1 ∈ C2

per.
The linearized problem

∂2
t u(x, t) = χ1(x)∂2

xu(x, t) − χ2(x)u(x, t) (2)

is solved by the Bloch waves

u(x, t) = fn(ℓ, x)eiℓxe±iωn(ℓ)t

where n ∈ N, ℓ ∈ (−1/2, 1/2], with ωn(ℓ) ∈ R satisfying ωn+1(ℓ) ≥ ωn(ℓ), and
fn(x, ℓ) satisfying fn(ℓ, x) = fn(ℓ, x + 2π) and fn(ℓ, x) = fn(ℓ + 1, x)eix.

Slow modulations in time and space of such a Bloch mode (indexed with n0) are
described by the ansatz

u(x, t) = εA(ε(x + cgt), ε
2t)fn0

(ℓ0, x)eiℓ0xeiωn0
(ℓ0)t + cc + h.o.t., (3)

where cc means complex conjugate, h.o.t. means terms of order ε2 and higher, 0 <
ε ≪ 1 is a small parameter, cg = ∂ℓωn0

(ℓ0) is the negative group velocity, and where
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A is the slowly varying envelope. Plugging the ansatz into (1) one finds that A has
to satisfy a NLS equation

∂T A = iν1∂
2
XA + iν2A|A|2 (4)

with coefficients ν1 ∈ R and ν2 ∈ R. This describes via the complex valued amplitude
A(X, T ) ∈ C slow modulations in time T = ε2t, and space X = ε(x + cgt), of the
underlying wave fn0

(ℓ0, x)eiℓ0xeiωn0
(ℓ0)t.

Validity means that, given a solution A of (4) for T ∈ [0, T0], for all small
ε > 0 the difference between the formal approximation and exact solutions of (1)
stays small for all t in the long time interval [0, T0/ε

2]. In [1], in order to prove
this, besides a number of non-resonance conditions, in case ϑ = 2 we also needed a
technical assumption on the quadratic interaction of the Bloch modes fn(ℓ), namely:
there exists an α > 1/2 and a C > 0 such that for all j, j1, j2 ∈ N and ℓ1, ℓ2, ℓ3 ∈
(−1/2, 1/2] we have

∣

∣

∣

∣

1

2π

∫ 2π

0

fj(ℓ1, x)χ3(x)fj1(ℓ2, x)fj2(ℓ3, x)
1

χ1(x)
dx

∣

∣

∣

∣

≤

(

C

1 + |j − j1 − j2|

)α

, (5)

In [1] assumption (5) has been verified with α = 2 − δ for a δ > 0 arbitrary in
case that χ1 is independent of x. In the present paper we prove (5) in case χ1 ∈ C2

per

not a constant by applying a change of coordinates making χ1 a constant.
The idea is based on [2] where the spectral problem has been discussed. Intro-

ducing

ũ(y, t) = χ
−1/4
1 (x)u(x, t) where y =

∫ x

0

χ
−1/2
1 (ξ)dξ, (6)

equation (1) with ϑ = 2 transforms into

∂2
t ũ(y, t) = ∂2

y ũ(y, t) − χ̃2(y)ũ(y, t) − χ̃3(y)ũ2(y, t), (7)

where
χ̃2(y) = χ2(x) − χ

3/4
1 (x)(χ

1/4
1 (x))′′, χ̃3(y) = χ3(x)χ

1/4
1 (x),

with χ̃j(y) = χ̃j(y+L̃), L̃ =
∫ 2π

0
χ
−1/2
1 (ξ)dξ, and consequently ℓ ∈ (−1/(2L̃), 1/(2L̃))

in the Bloch representation.
Thus (1) can be transformed via (6) into (7) with constant coefficient in front of

the second spatial derivative and (5) is also satisfied in case χ1 not being a constant.
Since χ̃3 ∈ C2

b is needed in [1, Lemma A.1] we require at least χ1 ∈ C2
per. Moreover,

in the variation of constant formula used to obtain local existence and uniqueness
[1, Sections 4.2 and 5.2], given u(·, t) ∈ Hs we need

(

∂2
x + χ2 − χ

3/4
1 (·)(χ

1/4
1 (·))′′

)(

χ3(·)χ
1/4
1 (·)u2(·, t)

)

!
∈ Hs−2.

Here and in the following, we use the abbreviation Hs for Hs(R, R) or Hs(R, C).
Therefore, if we want an approximation result in high order Sobolev spaces, then

we need additional regularity of χ1 and χ3. In detail, for s ∈ R we define ⌈s⌉ as the
smallest integer greater or equal to s. The improved result then is as follows:
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Theorem 1 Let s ∈ (1/2, 5/2), sA ≥ 4, and assume that χ2 ∈ C
max{0,⌈s−2⌉}
per and

χ1,3 ∈ C
max{2,⌈s⌉}
per in (1) are chosen in such a way that the nonresonance conditions

inf
n∈Z\{0},|j|≤4,(n,j)/∈{−(n0,1),(n0,1)}

|ωn(jℓ0) − jωn0
(ℓ0)| > 0,

inf
r,n∈Z\{0},ℓ,m∈(− 1

2π
, 1

2π ],|ℓ−m−ℓ0|<δ
|−ωr(ℓ) − ωn0

(ℓ − m) + ωn(m)| > 0,

hold. Then for all C1 and T0 > 0 there exist ε0 > 0 and C2 > 0 such that for all

solutions A ∈ C([0, T0], H
sA) of (1) with

sup
T∈[0,T0]

‖A(·, T )‖HsA
≤ C1

the following holds. For all ε ∈ (0, ε0) there are solutions u ∈ C([0, T0/ε
2] , Hs) of

(1) with

sup
t∈[0,T0/ε2]

∥

∥u(·, t) −
(

εA
(

ε(· + cgt), ε
2t

)

fn0
(·, ℓ0)e

iℓ0·eiω̃n0
(ℓ0)t + cc

)
∥

∥

Hs
≤ C2ε

3/2.

Proof. Theorem 1 has been established in [1] under the additional condition (5).
Hence, it remains to prove the validity of (5).

Denote the inverse of y =
∫ x

0
χ
−1/2
1 (ξ)dξ by x = h(y). The solutions

u(x, t) = fn(ℓ, x)eiℓxe±iωn(ℓ)t

of (2) transform under (6) into

ũ(y, t) = χ
−1/4
1 (h(y))fn(ℓ, h(y))eiℓh(y)e±iωn(ℓ)t.

Since eiℓh(y) can be split into eiℓ2πy/L̃eiℓ(h(y)−2πy/L̃), where the second factor is L̃-
periodic w.r.t. y due to h(L̃) = 2π this can be written as

ũ(y, t) = f̃n(ℓ̃, y)eiℓ̃ye±iωn(ℓ̃)t

where
f̃n(ℓ̃, y) = χ

−1/4
1 (h(y))fn(ℓ, h(y))eiℓ(h(y)−2πy/L̃)

and ℓ̃ = 2πℓy/L̃.

Since dy = χ
−1/2
1 (x)dx the condition (5) transforms into

∣

∣

∣

∣

∣

∫ L̃

0

f̃j(ℓ1, y)χ̌3(y)f̃j1(ℓ2, y)f̃j2(ℓ3, y)dy

∣

∣

∣

∣

∣

≤ C

(

C

1 + |j − j1 − j2|

)α

(8)

where χ̌3(y) = χ̃3(y)ei(ℓ1−ℓ2−ℓ3)(h(y)+2πy/L̃). Since the f̃j(ℓ̃, y)eiℓ̃y are solutions of

∂2
yu − χ̃2ũ = −ω2ũ,

since ℓ̃ = 2πℓ/L̃ is linearly related with ℓ, and since χ̌3 satisfies the assumptions of
[1, Lemma A.1], the validity of (8) has already been established in [1, Lemma A.1].
Therefore, we are done. �

In most photonic crystals the χj only take two values, i.e., the χj are only in L∞

and the validity of (5) is still an open question.
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