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Abstract

We prove a Hopf-bifurcation theorem for the vorticity fortation of the Navier-Stokes equationsid in case

of spatially localized external forcing. The difficultieeeadue to essential spectrum up to the imaginary axis
for all values of the bifurcation parameter which a prioriloager allows to reduce the problem to a finite
dimensional one.

1 Introduction

The flow around some obstacle is the paradigm for the susesssturrence of bifurcations leading to
more and more complicated dynamics. For increasing Regmualdhber the laminar flow undergoes
a number of bifurcations and finally becomes turbulent. @dih a number of results are known
for the steady flow, very little is rigorously known about thiéurcations cf. [Fin65, Fin73, Gal94].
One reason for this is essential spectrum up to the imagaesyfor all Reynolds numbers. Hence,
classical methods like the center manifold theorem or tregpuyov-Schmidt method a priori fail to
reduce the bifurcation problem to a finite dimensional one.

Based on the invertibility of the Oseen operator froffto L4, with p < ¢ suitably chosen, in [Saz94]
a Hopf-bifurcation result has been established. In thigpag prove a similar result for the vorticity
formulation of the Navier-Stokes equationsi subject to some localized external forcing. Our
work is motivated by [BKSS04] where the spatial structurdifdircating time-periodic solutions in
reaction-diffusion convection problems with similar peofies has been analyzed. There, it turned
out that the nontrivial time-periodic part decays with soex@onential rate in space. Decayain
corresponds to smoothness in the Fourier wave nuimbEowever, the Fourier space symbol of the
projection operator onto the divergence-free vector fid®t smooth. Therefore, exponential decay
cannot be expected for the velocity field. Here, we obfimecay for the vorticity field. This yields
an L4 decay for the velocity which complements the result in [3&dz%ee [vB07] for a different
approach.

1.1 Thevorticity formulation
We consider the Navier-Stokes equations
U+ (U -V)U =AU — Vp+ fa, V.U =0, 1)

with spatial variabler € R3, time variablet € R, velocity field U(z,t) € R3, pressure field
p(z,t) € R, and external time-independent forcifig(z) € R3. We assume that the external forcing



fa depends smoothly on some parameteand that it is chosen in such a way that there exists a
stationary solutionUy,, po) = (Ua,pa)(x). Furthermore, we assume thag(z) = U, + uq(x)

with U, = (c,0,0)7, limz| o0 Ua(®) = 0, andu,(-) has certain decay and smoothness properties
specified below.

The deviation(u, ¢) from the stationary solutiof,,, p,,) satisfies

ou = Au—Vq—cOpu—V - (ugu’) = V- (uul) =V - (uu®), V-u=0, 2
where we used’ - U = 0 to rewrite the nonlinear terms, and where

02,911 + 02,912 + 023913
V-G = 10,921 + 0ry922 + Ousgo3 for general matrices G' = (gi;)i,j=1,2,3- 3
021931 + Oz, 932 + 023933

Notation. From now on we denote with the velocity field of the fluid and withy the associated
vorticity defined byw = V xu. Similarly, we denote withv; the vorticity associated with the velocity
uj, and vice versa.

In order to derive the vorticity formulation for the NaviStokes equations we use

VxV-(uu')=V-(wu! —uw?)

which impliesV x V - (uqu” +uul) = V - (wou? + wul — usw’ —uwl). Therefore, we find

0w = Bw+ 2V - Q(wa,w) + V- Q(w,w), 4

where
Bw = Aw — 0y, w, 2Q(w1,ws) = woul +wiud — usw? —ugwd.

The space of divergence-free vector fields is invariant utigeevolution of (4), i.e., additionally we
assume thal’ - w = 0. Note that (4) still contains the velocitywhich can be reconstructed from the
vorticity w by solving the equation¥ - v = 0 andV x u = w.

Since we work in the whole spa it turns out to be advantageous to work in Fourier space.

Notation. The Fourier transfortf and the inverse Fourier transforfii ! are given by

FDN©) = FO = o [ ) esp(ia- s,

~

FUDE@) = @)= [ F©exis-de
R3

Fors > 0 andgq > 1 let W*4 be the standard Sobolev space equipped with the farfjys.. =

1

(Z\a|§s HD%Hqu) ‘. In general, we do not distinguish between scalar and veetaed functions

or real- and complex-valued functions. We introduc&R?), p > 1, as the spatially weighted
Lebesgue spaces equipped with the ndtfij,» = || fp°||», Wherep(z) = /1 + |z|?. Forp €
[1,2], the Fourier transform is a continuous mapping frbfrinto W*4if 1/p+1/q = 1. Forp = 2,
the Fourier transform is an isomorphism between these spstany different constants are denoted
with the same symbal'.



Applying the Fourier transform to (4) yields
% = Bo + 2i¢ - Q(@a, @) + i€ - Q(&,) (5)
where
(BD)(€) = (—|P —ict)D(),  2Q@1,82) =B W] + D1 #3 — Up# D] — 1 %33,

wherex denotes the convolution, i.€z + ) (&) = [zs U(€ — n)0(n)dn, and where, like in (3),

§1911 + L2912 + &3913
i€ G =1i|&gn + &g + &g | forgeneral matrices G = (gij)i,j=1,2,3- (6)

§1931 + &2932 + £3933

1.2 Assumptionson thelinearized problem

Due to Lemma 2.3 below, fab,, € L with p > 3/2 ands > 3(p — 1)/p the operator
L- = B-+2i¢- Q@a. ) W

is well defined in the spacg, with domain of definition given by.?  ,. Moreover, by Lemma 2.8,
forp € (3,4), s > 3(p — 1)/p, the operatoRi - Q(&,, ) is a relatively compact perturbation &,
and hence the essential spectrunLafquals the essential spectrum

essspec(B) = {A € C: A = —|¢]? —ic&y, € € R}

of B, i.e., the spectra at and 5 only differ by isolated eigenvalues of finite multiplicityf. [Hen81,
p.136].

Thus, for the familyU, (z) = U. + uq(z), o € [ae — o, e + 0], Of stationary solutions we we
assume thab,, € LY, p € (3,4), s > 3(p — 1)/p, and that:

(A1) A =0is not an eigenvalue af for any value ofx € [a. — dg, ¢ + do].

(A2) Fora = a. the operatot. has two eigenvalues; (a) which satisfy

d
AF(ae) = +iQ #£0, Q. >0, and o Re(\F () > 0.

a=ac

(A3) All other eigenvalues ol are strictly bounded away from the imaginary axis in the Hhefif
plane for all € [ — dg, e + o).

1.3 TheHopf-bifurcation theorem

Even thoughf has essential spectrum up to the imaginary axis, a Lyap@abwaidt reduction to a
finite-dimensional bifurcation problem is possible duehte following reasons. First, the invertibility
of the Oseen operatc@ in R from L into someL”-space, cf. Lemma 2.7. Second, the assumption
(A1) which allows to transfer this invertibility té, cf. Lemma 2.9, and, third, the fact that for suitable



p ands the nonlinearity@ is a bilinear mapping fronit x L% into L>°, cf. Corollary 2.3. To state
our Hopf-bifurcation theorem for the vorticity formulatiq5) we introduce the space

X2 = {0 = @a)nez : [0llgr < o0}, [@lgr = 3 I@nllpe-
nez

Under the generic assumption that the cubic coefficiantthe reduced system defined subsequently
in (10) does not vanish, we have:

Theorem 1.1 Assume (A1)—(A3) with € (3,4) ands > 3(p — 1)/p. Then there exists a1y > 0
such that for alle = .. + 2 with e € (0, &9) there exists a time-periodic solution

WP (&) prer &) exp (inQt)
nez

to (5), with (D5 ) ez € X2, [[Bper(- t)l| 2 = O(e), and — Q. = O(e?).

Remark 1.2 For the velocity field we obtain, using the Biot-Savart law, lemma 2.2 below,
(@) € AP with p € [1,12/7). Sinceg € L with p € [1,2] impliesg € W4 wherel/p+1/q = 1
it follows thatu € X%49,1/p + 1/§ = 1, where

X5 = {w = (wn)nez : W] 37 < o0}, wllasa =Y llwnllws.a.
nez

In particular, by standard results on Fourier series, for

uP (z, 1) Zuper x) exp (inft)
nez

we haveuP® € C([0,2x), W*4(R?)). Fromp € [1,12/7) we haveg € (12/5,00]. In this sense,
our result complements the result of [Saz94]. Finally, bp@ev embeddings in space we also have
uPr € C([0,27), Gy (R, R)).

2 Préiminary estimates

2.1 Sobolev's embedding theorem in L% spaces
Sobolev’'s embedding ih% spaces is as follows.

Lemma2.1 Forp > r ands > d2= we have the continuous embeddibyR?) c L™ (RY).
i - 3 . s . 1 1
Proof. With p(¢) = /1 + [¢[? and Holder’s inequality fof = 5+ we have

Iz = Wfep e <1 fp°llzellp™ e = 1 f 2 llo™ ]l za-

We estimate

Cegg _de & e
bl = o T BE ™ e T kBE o T T2

Obviously, the first integral is bounded. For the secondyiratiewe find

d 0o d—ld 0o d
/ 7€q < C/ LT < C'/ _77;“
el>1 (14 [€2) > 1 (14727 T

which is bounded fosg —d +1 > 1, i.e., if sq¢ > d. [ |
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2.2 Reconstruction of the velocity from the vorticity

In the following lemma we estimaté in terms of the vorticityw in Fourier space, see also, e.g.,
[GWO02] for estimates irx-space using the Biot-Savart law

1 (z —y) x w(y)
i N

Y.
Lemma22 For@ € LI(R3)3, ¢ € [1,00], andj = 1,2, 3, we have
i€l < Cl@]|za- @

Moreover, for every € [1,3) andp,q € [1,00] with1/q = 1/p+ 1/r there exists & > 0 such that
the following holds. 15 € L?(R3)? N L4(R3)3 thenu € L4(R?)3, and

[ullze < C([@]lzs + @] za)-
Proof. The velocityu is defined in terms of the vorticity by solving the equations
VXu=w and V-u=0

for w satisfyingV - w = 0. This leads in Fourier space to

0 —ig3 i R w1
. UI o~
i&3 0  —i& Wo
. U/2 = o~ )
—i&y & 0 N w3
. u3
€1 & 183 0

0 ifg —ZfQ ifl
M(§) = IR —i&s 0 & i
i —i& 0 i3
With Holder’s inequality we obtain

|i]|ze < C (HX{|g|g1}MHUH@HLP + ||X{\5\>1}M||L°°||@||Lq>

with 1/¢ = 1/p + 1/r. Hence it remains to estimate terms of the form
K70 = xqebnpge and K = xqe<n gz

in the spaced > (R?) and L"(R?), respectively. The estimate féf>° is obvious. ForK; we have

T 1 r 1
P 2 dp
K~§TT:/ deC’/—pdp:/—,
H ]( )HL €<1 0 pQT 0 pT—Q

which is bounded for < 3. Estimate (1) follows fronfli¢ | e < [|i&; M (€)| po< @] e < C||@]|za-
[

€

€17




2.3 Estimatesfor thebilinear term Q(&y, &)

Lemma2.3 Forp € (3/2,00] ands > 3(p— 1)/p there exists & > 0 such that for alks,, &, € LY
we have
@1 * gz < Cllor e[| @2l 2

Proof. Using Young's inequality, Lemma 2.2 with= 1/p + 1/r, wherer € [1,3) which yields
P € (3/2, 0], we have

|61 * uzl|p < C (|01 e U2l L1 + €701 || e [[U2]l 1 + (|01 21 (€72 r)

< C(I1B1llzr (@2l 1 + @2l 2s) + 1€ D1l e (1B2ll 21 + @2l £6) + @1l £ €72 v ).

Now using||&5ta|L» < C||€5~ 15| » as in the proof of (1), and Sobolev’s embeddifyc L' N L?
for s > 3(p — 1)/p andp > p, yields the result. [ |

Lemma2.4 Forp € (3,4) ands > 1 there exists & > 0 such that for allo,, &, € L% we have
[©1 * Uzl Lo < Cllwn | el e

Proof. By Young's inequality withl = 1/p + 1/q and Lemma 2.2 withl /¢ = 1/G + 1/r*,
r* € [1,3), we have

|1 * Uzl poe < |@n|Lr [uzllLe < [|@1]lze ([©D2]lLe + [|©2]|La)-

Then
|&1 * Uzl Loe < |&n || Lr[|©2]] p

by Sobolev’s embedding 2 ¢ L?andL: c L4. This holds forp > § ands > 3%‘3, respectively
p > qgands > 3%. With 0 < 6 < 1, § > 0 sufficiently small ands > 1, these conditions are

fulfilled by choosingp =3+ 6,¢ = (3+9)/(2+ ), 7* =3 — O(d) and hencg = 3(3+6)/(3 +

25) + O(9). |

Remark 2.5 Lemma 2.3 will be used for the noncritical modes associatéuw:~ 0 in the Liapunov-
Schmidt reduction, while Lemma 2.4 will be used for= 0. The upper boung < 4 in Lemma 2.4
is not optimal but it is also obtained from Lemma 2.7 below,ahdrefore, we omit a more detailed
discussion.

Corollary 2.6 Forp € (3/2,00] ands > 3(p — 1)/p there exists &' > 0 such that for allo,, & €
L? we have

1Q @1, @2)l[rz < Cll@n ]z [ @2l 2z

Moreover, forp € (3,4) ands > 0 there exists &' > 0 such that for allb;, &> € L we have
|Q(@1,@2)|Lee < Cll@r ]|z [|@2] -

Proof. This is a direct consequence of Lemmas 2.3 and 2.4. |



2.4 Estimatesfor the Oseen operator B

The linear operatoﬁ which has essential spectrum up to the imaginary axis canveeted in the
following sense.

Lemma2.7 Lets > 0. Forp > 1 we haveE‘lifl € L(LE,LE). For1 < p <4andj = 2,3 we
haveB~1i¢; € (LE N L™, LY).

Proof. We have

5(6) = BlO)i6sF0) = ~ st 1O

The result forj = 1 follows from the uniform boundedness j_ﬁlicfl. Forj = 2,3, we find
Bl < Clfl [
1€1<1

. i€, .
Obviously, HMMHEHL«» is bounded for alp € [1, c0). Next we have

i&;

p
m d§+C|\f|lLe

LI
|f\2+iC§1 1£1> oo

i&; g ifj p
[€]2 + ic&y < dé déd
/|£|§1 €] + ick §1dEadEs
= ¢ / / / e dedeady
€20 + |c&y [P
< C ' (911 1 bt gedend
< o leP 1, el §1d82dEs
€ [P=E3+¢3 G
IS1 /°° 1
< c 4 p
~~ // |£*‘2p2€2 $ 0 1+y1’y
yzlcfl\
L
1§17
< C/ VAP
x| <va [§7[7P2 ¢
2m p+l
< C’/ / 2p2d¢dr<0/ _dr
which is bounded fop < 4. The estimates fas > 0 are exactly the same. u

2.5 Compactness properties

Lemma2.8 Forp € (3,4) ands > 3(p — 1)/p the operatorsL and B differ by a relatively compact
perturbation inL%.

Proof. By Corollary 2.6, the difference magsg into LY_, N L°°. By the theorem of Riesz [Alt99,
Theorem 2.15], this space is compactly embeddefin, the domain of definition of the sectorial
operatorB . [ |

2.6 Estimatesfor the operator L

Combining the estimates for the operaﬁn‘rom Lemma 2.7 with the assumptions (A1)—(A3) allows
us to prove a similar result for the operafar



Lemma29 Lets > 0 and assume (A1)—(A3). For > 1 we haveL'i¢&, € L(LE, L?). For
1 <p<4andj=2,3wehaveL li¢; € L(LE N L*>, LE).

Proof. We havel, = B + G with G- = 2i¢ - Q(@a, -). Then(B + G)w = i€, f is equivalent to
B(I+ B 'Gyw=1i¢;f resp. w=(I+B'G)"'B7lig;f.

The existence of/ + B~'G) ! is established as follows. By Lemma 2.8, the operatotG : Lf —
L? is compact. Hencd, + B'G is Fredholm with index. If (I + B~'G)w = 0 had a nontrivial
solution, thenLw = B(I + B~'G)w = 0 would also have a nontrivial solution, which would
contradict (Al). Therefore, the Fredholm property imptiesexistence o¢I+§—1@)—1 LB — LE.
The estimates fof. now follow from

lwll e < (I +B7'G) e o B~1ig; |l e
and Lemma 2.7. [ ]

Remark 2.10 The nonlinearity:¢ - @(a,a) contains all combinations of all componentséoénd
. Therefore, below we shall nedd< p < 4 when estimatingf*lif . @(&,&) and the estimate
for E—lifl is only for the sake of completeness. Similarly, it is easgde that in facﬁ—lig €
L(LE N L§°,L§+1). However, the gain in weight is not helpful since the difficulties arise near
¢=0.

3 Proof of the Hopf-Bifurcation theorem

For small|aw — a.| and |2 — 2| we look for 27 /Q-time periodic solutions of (5), i.e., we look for
solutions of

O = Lo+ it - Q(&,) (1)
which satisfyo(§,t) = ©(&,t 4+ 27/Q). This system has the trivial solutiah = 0. By assumption
(A2), the linear operato@ + 1Q1 )¢z is not invertible fora = «.. Therefore, the implicit function
theorem no longer applies and the necessary condition éobiflircation of time-periodic solutions
is satisfied. In order to establish a Hopf-bifurcation, we ad.yapunov-Schmidt reduction to reduce
the bifurcation problem to a finite-dimensional one. Thus,make the ansatz

D& ) =Y Bn(€) exp(inQ),
nez
with

(@n) € X2 = {@n)nez : 1Bl 5p < oo}, [1Bllr = D I@nllze-
nez

We introduce projectiong,, onto then-th Fourier mode, i.e.,

27

9 Q
xp(1nQt)o
/0 exp(inQ)B(E, t)d,

T o

(Pa@)(§)
and split (1) into the infinitely many equations for the Feurnodeso,,, namely

inQB, = L, + i€ - Ny(@), n€Z, 2)



with
Na@) = > Q@ Om)-
meZ
To reduce (2) to a finite dimensional bifurcation problem meert the linear operatofia Q2] — Lin
the biggest possible subspaces. kot £1, let P, . be the L—invariant orthogonal projection onto
the subspace spanned by the eigenvector associated welytmwaluens?, let P, ; = 1—- F, ., and
consider

inQD, = Lo, +if-No(@), (n=%2,+3..), ?3)
inQBns = LOps+ Pogi€- No(@),  (n==1), (4)
0 = L+ i€ - No(), 5)
inQBne = Lne+ Podé-N,@),  (n==%£1). (6)

Due to the spectral assumptionsf)rwe have inL% the invertibility ofinQI —Lforn = +2,43,...,
the invertibility of (inQ2I — E)Pn,S for n = £1, and, moreover, the existencefof%& as a bounded
operator fromZLE N L to LY if p € (1,4), cf. Lemma 2.9. By Corollary 2.6, the nonlinear teriis
mapLt into LL if p > 3/2 ands > 3(p—1)/p, and intoL>° if p € (3,4) ands > 1. Thus we rewrite
(3)—(5) as

Gn = (nQ — L) NE-No(@),  (n=42,+3..), 7)
Gns = (i —L)"'P, i€ - iN, (@),  (n==£1), (8)
Do = LNE-No(@), Q)

and expect that (7)—(9) can be solved fgr € LY, n # £1, w, s € L%, n = +1, andwy € Lf in
terms ofwy . = Py cwy € LY andw_1 . = Py w1 € LE, if p € (3,4) ands > 3(p — 1)/p. In
detail, we use the following lemmas.

Lemma3.l Let M = (J\/iz)lez with M, : L? — L2. Defining the action ofif on& = (0)1ez by
(M@)l = Ml@l we find
MO g < Sup Ml oz W] 5o
€

Proof. [[M&l|gr = > ez 1Ml e < supieg | Mill o rp 3 iez @] e .

Lemma3.2 Letp > 3/2 ands > 3(p — 1)/p. Then there exists @ > 0 such that forw € XP we
have
I(Na (@, 0))nezll gr < Cll@NI%s

Moreover, forp € (3,4) ands > 1 we have|| No(©,D)||z= < C|[@]%,.

Proof. By Corollary 2.6, we have

(N2 (@, D)nezllgr = D HQ@.Dillze = Y 1> Q@535
leZ I€Z €L
<CY D Nogllzloslie < CY Nz Y 1502 = Clol%
I€Z jEL I€Z JET
and theL2°-estimate is also a trivial consequence of Corollary 2.6. [



Lemma 3.3 There exists &' > 0 such that

[ (in2] — E)flif' e
H(ZTLQI - z)_lﬁmsif' HL’S’HLQ

n € Z\{-1,0,1},

C,
C, n = =£1.

IN N

Proof. L = B+2i¢-Q(@.,®) is sectorial inL2 sinceB is a sectorial operator ih? and2i¢-Q (&, D)

is B relatively bounded (in fact relatively compact due to Lem8). Thus, for the invertibility of
inQI — T it is sufficient that the spectrum is strictly bounded awayrfrzero, which holds due to
(A3). The estimates follow from Lemma 2.9. |
To proceed, we abbreviate (7)—(9) Bs= F(w.,ws) = 0 where

We = (...,O,Q_lc,O,Qlc,O,...) and Ws = (...,@_2,@_15,@0,@15,@2,...).

By Lemmas 3.1 to 3.3F : X x X — X7 is well defined and smooth fgr € (3,4) ands >
3(p — 1)/p. In order to resolvel’(w.,ws) = 0 with respect tas, we have to prove’(0,0) = 0
and the invertibility ofD,,, F(0,0) : X — XP. The first condition trivially holds, and we have
D; F(0,0) = I. Thus, there exists a unique smooth functiogn= &, (@.) with &, : AP — AP
SatiSfying"as(@c)||)Eg’ < CHQCH?)?;?

Thus, the bifurcation problem can be reduced to a problemyferandw_; . alone which has exactly
the same properties as the one in case of a classical Hapthifon. Thus, we only sketch the
concluding arguments. Setting, = A,p,, n = *1, wherep,, € LP(s) are the eigenfunctions
associated with the eigenvalues(), andA4,, € C with A_; = A;, we find the reduced problem

g1 (Oé — O, Q- QCa AlvAfl) — 07
gfl(a_aCaQ_chAlvAfl) = 0.

Since we have an autonomous problem, the reduced probleto bagvariant unded; — A; exp(i¢)
andA_; — A_jexp(—i¢). Thereforeg; andg_; are of the form

Algl (Oé — O, Q- QC7 |A1‘2) =
A g a(a—a,Q—Q,]4)%) = o

o

Introducing polar coordinated; = rexp(i¢) yields

(a—ac)—}—’yT‘Q—}—O(‘a—ac‘Q—}-‘Q—QC‘Q—}-TA) = Oa

(10)
Q—Qo+0(r+|a—al> + Q- QJ?) = 0,

which is the well-known reduced system for a Hopf-bifureati For givem — .. the second equation
can be solved with respect £ — Q2. and then the first equation with respect-tolherefore, we are
done. [
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