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Abstract. We provide and explain some simple self-contained matlab (octave)
implementations of Fourier spectral solvers for nonlinear parabolic PDE and for the
2D Navier-Stokes equations in a periodic box, including a discussion of anti-aliasing
and power spectra. We illustrate the solvers with various examples including some
(weakly) turbulent flows.
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Spectral methods for parabolic PDE (Uecker)

1 Introduction

Ordinary differential equations (ODE) can rarely be solved analytically, and this holds
even more for partial differential equations (PDE). Therefore, numerical approxima-
tions of solutions (or, somewhat inaccurately, numerical solutions) play a big role in
applied science. In this lecture we first review very briefly basic facts about ODEs and
their numerical solution in Sec. 2. In Sec. 3 we first consider one of the simplest PDE,
namely the linear diffusion equation in one and two space dimensions, and introduce
spectral methods for its numerical solution. These are then generalized to a number of
semilinear parabolic equations, e.g., the Allen-Cahn equation, the Burgers equation,
and the KS equation, where parabolic means that the linear part is smoothing, and
then semilinear means that the nonlinearity contains less derivatives than the linear
part. This then forms a starting point for the numerical solution of the Navier-Stokes
equations in Sec. 4, which are the ultimate focus of this lecture.

Although there is a vast literature about the numerical solution of ODE and PDE,
for instance [CHQZ88, HNW93, HW96, DB02], and a huge choice of highly developed
software tools, here we only treat very basic methods and for didactic reasons set up
some software by hand. For this we use matlab/octave. In particular the former
comes with a number of highly developed ODE solvers, and some PDE packages,
which however we do not use. 1

After touching very briefly on finite difference method we only consider simple
spectral methods, and for the Navier-Stokes equations focus on 2D problems, 2π-
periodic in both directions. Moreover, we use the simplest possible linearly implicit
nonlinearly explicit first order time-stepping, without stepsize control. The short
matlab/octave scripts2 can be downloaded from

www.staff.uni-oldenburg.de/hannes.uecker/soft.html

as well as – in due time – updates of this document and extensions of the scripts,
for instance to 3D Navier-Stokes equations, which are straightforward but lengthy
to explain. The programs are intended for easy understanding, modification and
interactive exploration of flows. The latter is possible for Reynolds numbers up to
a few hundreds on a laptop computer, and in Sec. 4.4 we give a small selection of
examples, including some first steps towards turbulence.

We assume that the reader has a basic familiarity with matlab, or otherwise looks
at some tutorial. In fact, our usage of matlab is very basic and in particular we do
not aim at optimization (by, e.g., heavy vectorization) of code but rather at simplicity
and easy readability. We do not assume that the reader has prior knowledge about
PDE, although this is certainly helpful. We keep Moreover, we keep mathematics to
a minimum and focus on the practical algorithmic side, and thus do not discuss, e.g.,
function spaces or existence of solutions to any of the PDEs considered.

1octave is a free software alternative to matlab, see www.gnu.org/software/octave/ In this text
we use matlab synonymous for both. The scripts have been tested on matlab 7.3.0 and octave 3.0.
If available, matlab is somewhat more convenient w.r.t. plotting and appears to be somewhat faster.

2we maintain two versions due to tiny differences concerning the plotting
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2 Ordinary differential equations

Finally, this text and the associated programs can be worked through from be-
ginning to end, including a number of exercises which illustrate a number of famous
nonlinear parabolic PDE, but the text is rather modular and hence there are other
options. For instance, for readers with a basic knowledge of PDE who are only inter-
ested in spectral methods for the Navier-Stokes it should be sufficient to only look at
Examples 3.5 and 3.6 and then directly go to Sec. 4.

2 Ordinary differential equations

An ordinary differential equation is an equation of the form

d
dt
u(t) = f(u(t), t) (1)

for an unknown function u ∈ C1(I,Rd), where I ⊂ R is an interval, f : Rd×I → Rd is
called the vector field, and C1(I,Rd) denotes the space of continuously differentiable
functions from the interval I to Rd. The vector field f is called autonomous if it does
not depend explicitly on the time t, i.e., if f = f(u(t)). An initial value problem
consists of (1) together with initial conditions (IC) u0 ∈ Rd at some time t0, i.e.,
u|t=t0 = u0. Instead of d

dtu we sometimes write u′.
It is well-known that for f continuous in time and locally Lipschitz continuous in

u we have the local existence and uniqueness of solutions, i.e., given u0, t0 there exists
a δ = δ(‖u0‖Rd , t0) > 0 such that (1) has a unique solution u ∈ C1((t0− δ, t0 + δ),Rd)
with u(t0) = u0. A function f : Rd → Rd is called locally Lipschitz continuous if for
all C1 there is a C2 such that

max{‖u‖Rd , ‖v‖Rd} ≤ C1 ⇒ ‖f(u)− f(v)‖Rd ≤ C2‖u− v‖Rd .

If the local solution u : (t0−δ, t0 +δ)→ Rd stays bounded, then it can be continued in
time, and then often iteratively to all t ∈ R or at least all t ≥ t0, which is then called
a global solution. However, the following two examples should remind the reader of
basic problems with uniqueness and global existence.

Example 2.1 a) Solutions to ordinary examples can explode in finite time. The
scalar equation u′ = 1 + u2 with initial condition u(0) = 0 has the unique solution
u(t) = tan(t) which becomes unbounded for t = π/2.

b) The scalar equation u′ =
√
|u| with initial condition u(0) = 0 has infinitely

many solutions. Two examples are u(t) = 0 and u(t) = t2/4. c

There are a number of special cases where solutions of (1) can be found explicitly.
In other cases we are only interested in specific questions such as the long time be-
haviour of solutions: do solutions exist for all (positive) times? Do they converge to a
stationary solution, or to a periodic solution? These questions are the starting point
of so called dynamical system theory, and often (1) has enough structure to answer
many of these questions in a qualitative sense.
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Spectral methods for parabolic PDE (Uecker)

However, to extract quantitative information one usually has to resort to numerical
simulations. The basic idea is to choose some small time step h and replace the
differential quotient d

dtu(t) in (1) by some difference quotient involving u(t), u(t+ h)
and possibly u at a number of additional discrete points. The easiest method is the
Euler method, given by d

dtu(t) ≈ 1
h (u(t+ h)− u(t)), hence, in case of an autonomous

equation,

u(t+ h) = u(t) + hf(u(t)). (2)

Setting um = u(tm) with tm = mh, this is often also written as um+1 = um +hf(um)
and called explicit Euler method, since the solution at t+h immediately follows from
u(t). In contrast, the so called implicit Euler method

1
h

(u(t+ h)− u(t)) = f(u(t+ h)), i.e. um+1 = um + hf(um+1), (3)

requires at each time step the solution of a (in general nonlinear) d-dimensional system
for um+1. We will learn more about the significant differences between explicit and
implicit methods in Sec. 3. As already said, there are various refinements of (2), for
instance so called Runge-Kutta methods, Adams-Bashforth methods, and so on, and
a well-developed theory concerning the pros and cons of the different methods as well
as the convergence of the generated approximations to the (unique) solution of (1).
For this we refer to the literature, e.g., [HNW93, HW96, DB02], see also the Lecture
by Burkard Kleihaus at this Summer School. Here we only illustrate with one small
example that different integration methods may perform differently, in particular over
long time scales. This also gives the opportunity to introduce our first matlab script.

Example 2.2 Consider u′ = u, u(0) = u0. The solution is of course u(t) = etu0, but
here we are interested in the comparison of the explicit (2) and the implicit (3) Euler
methods. The explicit method becomes

um+1 = um + hf(um) = (1 + h)um,

and here we can also immediately solve the implicit method um+1 = um + hf(um+1)
for

um+1 =
1

1− h
um.

This is very untypical and essentially only works for linear ODE (which generally do
not require numerics anyway). Thus, it is only intended for illustration here. The
two methods are implemented in the script euler.m,

% euler.m, solving u’=u, explicit vs implicit Euler1

n=50; h=0.1; u=zeros(n,1);v=zeros(n,1);t=0:h:(n-1)*h;u(1)=1;v(1)=1;2

for k=1:n-1; % integration loop3

u(k+1)=u(k)+h*u(k); v(k+1)=v(k)/(1-h);4

end5

plot(t,exp(t),t,u,’-ko’,t,v,’-k*’);6
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3 Diffusion as a model problem

This gives the plot in Fig.1. We see that both methods approximate the true solution
(middle line) well for short times. Over larger times, the explicit/implicit method (cir-
cles/stars) underestimates/overestimates u(t). This can be explained by the Taylor

expansion of exp(h) = 1 + h+
1
2
h2 +

1
6
h3 + . . .. In each step we have

u(t+ h) = ehu(t) = (1 + h+
1
2
h2 + . . .)u(t) > (1 + h)u(t) =: uex(t+ h)

< (1 + h+ h2 + h3 + . . .)u(t) =: uim(t+ h)

where (1 + h+ h2 + h3 + . . .) is the Taylor expansion of 1/(1− h). This also shows,
that the local approximation error of both methods is of order h2, but again we refer
to the literature for details on this. For the sake of completeness we remark that
f=@(t,x) x; [t,x] = ode45(f,[0 5],1); clf;plot(t,exp(t),t,x,’-ks’); invokes one
of the matlab built in ODE solvers (and emulated in ode45.m for octave) which
produces the very accurate solution on the right of Fig. 1. But, as already said, for
reasons of exposition here we shall only use self written code. c
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Figure 1: Left: matlab output from running euler.m; right: output of ode45.

3 Diffusion as a model problem

A very basic PDE is the linear heat equation

∂tu(x, t) = ∆u(x, t), x ∈ Ω ⊂ Rd, t ≥ 0, ∆ = (∂2
x1

+ ∂2
x2

+ . . .+ ∂2
xd

), (4)

also called linear diffusion equation. Here x denotes position, t time, and u(x, t) ∈
R can describe any quantity that may diffuse, for instance some ink in water, but
specifically we may think of the temperature at some point x and time t. First we

5



Spectral methods for parabolic PDE (Uecker)

focus on the 1D case and w.l.o.g. (without loss of generality) take Ω = (0, 2π). Thus
we consider

∂tu(x, t) = ∂2
xu(x, t). (5)

The equation has to be supplemented by an

initial condition u(x, 0) = u0(x), (6)

and boundary conditions which prescribe u (or, e.g., ∂xu) at the boundary of the
spatial domain and at all times t > 0. Physically reasonable boundary conditions
are for instance Dirichlet boundary conditions u(0, t) = a(t) and u(2π, t) = b(t)
with given functions a and b (prescribed temperatures at the boundary) or Neumann
boundary conditions ∂xu(0, t) = c(t) and ∂xu(2π, t) = d(t) (prescribed heat fluxes at
the boundary, for instance, insulation for c = d ≡ 0). However, for simplicity here we
choose so called

periodic boundary conditions, i.e. u(0, t) = u(2π, t), (7)

and similarly for x-derivatives of u, if defined. Although one could think of the heat
distribution in a metal wire in ring shape, or, for instance, of diffusion of something
(e.g., advantageous genes in population dynamics) around the shoreline of an island
with no way across, these periodic boundary conditions often have little physical
significance. However, mathematically they are very convenient for the solution of
(5) by Fourier series.

3.1 First solutions

To get a feeling for the solution of (5), and also an idea of the numerical solution, we
first consider some special solutions. For this we make an ansatz called separation of
variables and write u(x, t) = v(x)w(t). Plugging into (5) we obtain

w′(t)v(x) = v′′(x)w(t) ⇔ w′(t)
w(t)

=
v′′(x)
v(x)

,

where we assumed w(t) 6= 0 and v(x) 6= 0. Since the left hand side depends only on
t but the right hand side only on x we obtain that both must be constant. It turns
out that this constant must be non-positive, say equal to −k2 < 0, where the square
is for notational convenience. Thus

v′′(x) = −k2v(x)⇒ v(x) = c1 cos(kx) + c2 sin(kx)

with arbitrary c1,2 ∈ R, and

w′(t) = −k2w(t)⇒ w(t) = e−k
2tw(0).
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3 Diffusion as a model problem

Moreover, to fulfill the boundary conditions w(2π, t) = w(0, t) we need k ∈ N. In
summary, all so called Fourier modes

u(x, t) = e−k
2t(c1 cos(kx) + c2 sin(kx)) (8)

are solutions of (5), and since (5) is linear, any linear combination of these modes is
again a solution. Notationally and computationally it is much more convenient to use
complex notation and hence consider solutions of (5) in the form

u(x, t) =
∑
k∈Z

cke−tk
2
eikx, (9)

where, since u is a real-valued function, we must have c−k = ck. Below we discuss
which initial conditions can be represented by such linear combinations of eikx, but
for now we note that, for |k| ≥ 1, the Fourier modes decay exponentially in time. The
decay is faster for higher |k|, i.e., faster oscillations (in x) decay more quickly, and
therefore (5) is smoothing in time, which is what we expect diffusion to do. See Fig.2
for an illustration.

Figure 2: Left: the exact solution u(x, t) = 2 + e−t sin(x) + e−4t sin(2x) of (5).
Right: failure of numerical integration for the initial condition u0(x) = 2 + sin(x) +
sin(2x) using an explicit scheme, see Example 3.3.

3.2 Numerics: basic idea, and a numerical failure

To approximate solutions of (5) we write um(·) for a desired approximation at a time
tm = mh. Thus, the superscript m denotes the time-slice and not a power. The
basic idea clearly is to obtain um+1 from um. A straightforward generalization of the
(explicit) Euler method from Example 2.2 to (5) may run into serious trouble. We
explain the problem by first choosing a so called finite difference discretization of the
spatial derivatives.
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Spectral methods for parabolic PDE (Uecker)

Example 3.1 For u ∈ C3(0, 2π) we know that

∂2
xu(x) ≈ 1

δ2
x

[
u(x+ δx)− 2u(x) + u(x− δx)

]
gives an approximation of order O(δ3

x) as δx → 0. Thus

1
h

[
u(x, t+ h)− u(x, t)

]
≈ 1
δ2
x

[
u(x+ δx)− 2u(x) + u(x− δx)

]
,

and given um = (um(xj))j=1,...,n we may attempt to approximate um+1 from um via

um+1(xj) = um(xj) +
h

δ2
x

[
um(xj+1)− 2um(xj) + um(xj−1)

]
, (10)

where due to the periodic boundary conditions we put xn+1 = x1, x0 = xn. To see
what may go wrong with this scheme we consider an example, taken from [Str92,
§8.2], where it is analyzed in some detail. Let h = δ2

x, for which (10) becomes

um+1(xj) = um(xj+1)− um(xj) + um(xj−1), (11)

and for u0 consider a function which is 1 at some xj and 0 else, i.e.,

u0 = (0, 0, . . . , 0, 1, 0, . . . , 0).

Using (11) to advance u0 we obtain

m = 0 0 0 0 0 1 0 0 0 0

m = 1 0 0 0 1 −1 1 0 0 0

m = 2 0 0 1 −2 3 −2 1 0 0

m = 3 0 1 −3 6 −7 6 −3 1 0

...

(12)

which is completely wrong (in the true solution the peak in the middle decays and
widens). The oscillations in (12) are related to a phenomenon called instability (of the
numerical method). It can be shown that solutions produced via (10) approximate
solutions of (5) as δx → 0 provided that the CFL (Courant-Friedrichs-Lewy) condition
h/δ2

x < 1/2 holds. In practice, this often introduces a too severe restriction on the
time step h. There are (well known) ways to modify (10) to relax this condition, for
instance by treating diffusion implicitly, i.e.,

um+1(xj) = um(xj) +
h

δ2
x

[
um+1(xj+1)− 2um+1(xj) + um+1(xj−1)

]
. (13)

8



3 Diffusion as a model problem

Then, however, in each time step we have to solve the (tridiagonal) linear system

[
I − h

δ2
x

A

]

um+1(x1)

um+1(x2)
...

um+1(xn)

 =


um(x1)

um(x2)
...

um(xn)

 , (14)

where, for periodic boundary conditions,

A =

0BBBBBBBBBBBBB@

−2 1 0 · · · 0 1

1 −2 1 0 · · ·

0
. . .

. . .
. . . 0 · · ·

. . .
. . .

. . .

1 −2 1

1 0 · · · 0 1 −2

1CCCCCCCCCCCCCA
.

Schemes of type (14) are typically unconditionally stable, i.e., there is no restriction
on the quotient h/δ2

x. Moreover, there are efficient numerical methods for systems of
type (14) and variants of it, see for instance Crank-Nicholson in the literature. Here,
however, we shall consider implicit methods based on the Fourier modes (9). c

3.3 Spectral methods

Methods which use a representation of u by orthogonal eigenfunctions of some linear
(partial differential) operator A, and which thus are related to the spectrum of A,
are called “spectral methods”. The eigenfunctions of the operator A = ∆ over the
domain Ω = (0, 2π)d with periodic boundary conditions are the Fourier modes eik·x,
k ∈ Zd, since

∆eik·x = −|k|2eik·x.

The representation

u(x) := F−1(ûk)(x) :=
∑
k∈Zd

ûke
ik·x, (15)

of a function u by these modes is called the Fourier series of u, and the Fourier
coefficients are given by

ûk := (Fu)k :=
1

(2π)d

∫
(0,2π)d

u(x)e−ik·x dx. (16)
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Spectral methods for parabolic PDE (Uecker)

The question what functions u can be represented as (15) and in what sense is dis-
cussed in Appendix A. Here we note that if (15) holds, i.e., u(x, t) =

∑
k∈Zd ûk(t)eik·x,

then

∂tu(x, t) =
∑
k∈Zd

∂tûk(t)eik·x = ∆u(x, t) =
∑
k∈Zd

−|k|2ûk(t)eik·x, (17)

and the linear PDE (5) becomes the infinite system of uncoupled linear ODEs

∂tûk = −|k|2ûk with solution ûk(t) = e−t|k|
2
ûk(0), k ∈ Zd. (18)

Thus, for (5) we now have the following solution steps:

1) decompose (or analyze) u0(x) =
∑
k∈Zd ûk(0)eik·x;

2) solve ∂tûk = −|k|2ûk, i.e. ûk(t) = (Ŝ(t)û(0))k = e−t|k|
2
ûk(0);

3) synthesize u(x, t) =
∑
k∈Zd ûk(t)eik·x.

If we denote the solution operator of (5) by S(t), i.e., u(x, t) = (S(t)u0)(x), then we
have S(t) = F−1Ŝ(t)F , i.e., the following diagram commutes.

u(·, 0)
S(t)- u(·, t)

û·(0)

F

? Ŝ(t)- û·(t)

F−1

6

In other words, F is a change of coordinates which diagonalizes ∂x and hence also ∂2
x

and S(t). Again we remark that (18) shows that all Fourier modes except for k = 0
decay exponentially in time. As a consequence, the solution u(·, t) becomes C∞ (even
analytic) for t > 0.

To set up a numerical solver, we first remark that for reasons explained below
we do not want to use the explicit solution ûk(t) = e−t|k|

2
ûk(0) in (18), but only the

structure ∂tûk = −|k|2ûk. The point is that now it is very simple to set up an implicit
scheme: choose an implicity parameter η ∈ [0, 1] and a time step h, set tm = hm and
ûmk = ûk(tm) and write

1
h

(ûm+1
k − ûmk ) ≈ ∂tûk(tm) ≈ −|k|2

[
(1− η)ûmk + ηûm+1

k

]
.

Solving for ûm+1
k yields

ûm+1
k = µkû

m
k with so called multipliers µk =

1− (1− η)h|k|2

1 + hη|k|2
. (19)

The key observation is that |µk| ≤ 1 for η ≥ 1/2 such that the Fourier coefficients
(and hence the solution u(·, t)) can never grow in time, and moreover 0 < µk ≤ 1 for

10



3 Diffusion as a model problem

the fully implicit scheme with η = 1, which excludes oscillations in time of the Fourier
coefficients.

Of course, to set up the numerics we have to truncate the Fourier series of u, i.e.,
approximate

u(x, t) =
∑
|k|≤n/2

ûk(t)eik·x with suitable n,

and, moreover, need an efficient method to calculate (approximate) the Fourier co-
efficients ûk from u and vice versa. To approximate the ûk we use the so called
discrete Fourier transform DFT, see Appendix A. The DFT can be evaluated by
the so called Fast Fourier Transform FFT [CT65], which is one of the major compu-
tational achievements of the 1960ties, since it allows to compute the (approximate)
Fourier transform of n sampling points in O(n log n) time, in contrast to O(n2) time
using a naive approach.

3.3.1 1D FFT and 1D diffusion

In matlab, let u = (u1, . . . , un) be an n-vector, n even, to be read as a sampling of
a (2π-periodic) function u on a domain of length 2π. Then the command d=fft(u)
produces a (complex) n-vector (d1, . . . , dn) which is related to the first n so called
discrete Fourier coefficients ũj of u via(

d1 d2 d3 . . . dn/2−1 dn/2 dn/2+1 dn/2+2 . . . dn
)

n
(
ũ0 ũ1 ũ2 . . . ũn/2−2 ũn/2−1 ũ−n/2 ũ−n/2+1 . . . ũ−1

) (20)

The ũj approximate the first n − 1 Fourier coefficients ûj , |j| < n/2 − 1 of u, if the
sampling rate of u is sufficiently high; otherwise we may have so called aliasing, see
Appendix A and Example 3.5 below.

In the following we assume that n (i.e., the sampling rate) is sufficiently large and
thus in (20) we identify ûk = ũk. The main difficulty then is to always keep in mind
the indexing: d=fft(u) starts with û0, then contains n/2−1 Fourier coefficients with
k > 0, and then n/2 Fourier coefficients for k < 0. Consequently, swapping the left
and right halves of d gives the FFT of u with zero frequency û0 at the “center” position
n/2 + 1. In matlab, this can be achieved by uhat=fftshift(d), see also Example
3.15 below. The inverse FFT is then given by u = F−1(uhat)/n, i.e. u=ifft(d).

Remark 3.2 The Fourier coefficients ûk of a real (i.e. real-valued) function u satisfy

û−k = ûk. (21)

In particular, one always has û0 ∈ R. Moreover, the complex vector d=fft(u) contains
a lot of redundant information. There are alternative real FFTs, but for simplicity
we shall not use these. Finally, for n even, there is a slight imbalance in d=fft(u)
since ũ−n/2 appears but ũn/2 does not. However, ifft in matlab takes care of this.
c
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Spectral methods for parabolic PDE (Uecker)

Example 3.3 The script h1d.m solves (5) using FFT. Line 5 defines the space and
time parameters. In lines 8 we store the multipliers µk in an array to later take
advantage of array multiplication in matlab for increased speed. Note that nv by
fftshift takes care of the indexing (20). Lines 9,10 prepare the data, and Lines
11-13 are the actual integration loop. However, note that the inverse FFT in line
12 is only needed for later plotting, and the solution is entirely advanced in Fourier
variables.

% h1d.m solving u_t=u_xx by FFT and implicit (eta>0) time stepping1

% Note: if c_k is the k-th DFT-coeff then2

% fft(u)=(c_0 c_1...c_(n/2-1) c_(-n/2) c_(-n/2+1)...c_(-1))3

% i.e.: position 1 2 n/2 n/2+1 n/2+2 n4

n=50; dx=2*pi/n; x=0:dx:2*pi-dx; eta=0.5; h=0.1;5

psteps=11; tmax=h*(psteps-1); % psteps=# time-slices to plot6

nv=fftshift(-n/2:1:n/2-1); % wave numbers7

mu=(1-h*(1-eta)*nv.^2)./(1+eta*nv.^2*h); % F-multiplier vector8

u0=2+sin(x)+sin(2*x); u=u0; uf=fft(u); % initial condition9

t=0:h:h*(psteps-1); ua=zeros(psteps,n); ua(1,:)=u0; % for plotting10

for i=2:psteps % integration loop11

uf=mu.*uf; u=ifft(uf);ua(i,:)=u; % back to x only for plotting12

end13

[X,T]=meshgrid(x,t);surf(X,T,ua); % plot14

Executing h1d.m with η ≥ 0.5 produces an output which is indistinguishable from the
exact solution on the left of Fig.2. On the other hand, similar to the explicit Euler
method for finite differences, running h1d.m with η = 0 yields again (wrong!) fast
growing oscillations as shown on the right of Fig. 2. c

3.3.2 Some nonlinear examples

In Example 3.3 the only reason for going back to x-space by inverse FFT during time
stepping is for plotting. For nonlinear problems, such as the Navier-Stokes equations,
it is often useful – though not strictly necessary – to go back to x space to evaluate
the nonlinearity. Moreover, the nonlinearity usually cannot be handled implicitly in
an easy way. Therefore a so called semi-implicit scheme is used, where the linear part
is treated implicitly and the nonlinearity explicitly. In particular, in the following
examples we always treat the linear part fully implicit. Thus we always set η from
Example 3.3 equal to 1 (and hence drop it). We remark that our treatment of these
examples is extremely short and each of these famous equations has hundreds of
research papers (and some entire books) devoted to it. The first nonlinear problem is
a simple so called semi-linear variant of (5), namely the Allen-Cahn equation.

Example 3.4 The Allen-Cahn equation, discussed in most modern textbooks on
nonlinear PDE, describes, for instance, coarsening in non-conservative phase separa-
tion. It is given by

∂tu = ν∂2
xu+ u− u3

12



3 Diffusion as a model problem

where u = u(x, t) ∈ R is a so called order parameter field which describes the (two)
phases of some medium: u(x, t) ≈ 1 means that at position x and time t the medium
is in phase 1, while u(x, t) ≈ −1 corresponds to phase 2. Phase separation and
coarsening means that starting from initial conditions u close to 0 (mixed phases)
after a short time the solution develops a structure consisting of bulk regions of one
of the two phases. The diffusion term ν∂2

xu with small ν>0 models some diffuse
interfaces of width

√
ν between the regions.

We approximate

1
h

(ûm+1
k − ûmk ) = −νk2ûm+1

k + f̂m ⇔ ûm+1
k = µk(ûmk + hf̂mk ), (22)

where µk = (1 + νhk2)−1 and f̂m = F(f(um)) is the Fourier transform of the “non-
linearity” f(um) = um−(um)3. Thus, f̂ is evaluated in x-space and then transformed
by FFT, and it appears with index m as it is treated explicitly. Alternatively to (22)
one could use a split step scheme which uses the (available) exact solution

ûm+1
k = e−ν|k|

2hûmk (23)

of the linear part, see Remark 3.9. However evolving the nonlinear part by Euler
stepping introduces an O(h2) error anyway, and we think that split-step schemes are
conceptually slightly more involved than (22) and require a longer discussion.

Here is a matlab script which implements the scheme (22), and which we reproduce
completely since it serves as a template for later scripts, for which we then only give
the key changes.

% ac.m solving u_t=u_xx+u-u^3 by semi-implicit time stepping via FFT1

n=32; dx=2*pi/n; x=0:dx:2*pi-dx; nu=0.05; h=0.1;2

ssteps=5; % ssteps=small steps, internal integration loop3

psteps=20;% psteps=plotting steps=number of time slices to plot4

tmax=h*(psteps-1)*ssteps;t=0;5

nv = fftshift(-n/2:1:n/2-1);mu=1./(1+nv.^2*h*nu); % mu holds F-multipliers6

% generate IC ’blockwise random’7

nb=4; u0=[]; for k=1:n/nb; u0=[u0 0.5*(rand(1,1)-0.5)*ones(1,nb)]; end8

tv=0:h*ssteps:h*(psteps-1)*ssteps; % for plotting9

[X,T]=meshgrid(x,tv); [N,T]=meshgrid(-n/2:n/2-1,tv);10

ua=zeros(psteps,n); ua(1,:)=u0; u=u0; uh=fft(u0);% ua holds u for plotting11

va=zeros(psteps,n); va(1,:)=abs(fftshift(uh))/n; % va holds uhat for plotting12

for i=2:psteps % outer integration loop, with plotting13

for j=1:ssteps % inner integration loop, no plotting14

fh=fft(u-u.*u.*u); uh=mu.*(uh+h*fh);u=ifft(uh); % integration step15

end16

ua(i,:)=real(u);va(i,:)=abs(fftshift(uh))/n;t=t+ssteps*h;17

end18

figure(1);surf(X,T,ua);figure(2);surf(N,T,va); % plotting19

We only remark that in the integration loop we use an inner loop (lines 14-16) since
we are not interested in plotting the solution every step. This is controlled by the
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Spectral methods for parabolic PDE (Uecker)

parameters ssteps and psteps in lines 3,4, and which will again be used in most
further examples. Figure 3 shows an example output with small n. If, however one
uses smaller ν and larger n then it can be seen that the dynamics of the equation
take place on two different time scales. Initially, the nearly uniform solution develops
on an O(1) time scale a fine structure with sharp gradients between the two phases.
Then, on an O(e1/ν) time scale the solution coarsens, see also Example 3.16. c

Figure 3: Example output of ac.m, u0 is blockwise random, ν = 0.01, n = 32, left
u(x, t), right ûk(t).

The next scalar nonlinear example is the Burgers equation, sometimes called a
1D model of the Navier-Stokes equations. However, before this we need to discuss
aliasing by the nonlinearity.

Example 3.5 Band limits, aliasing and anti-aliasing. Given some function
f : [0, 2π] → R, its sampling fj = f(xj), j = 1, . . . , n in general contains less infor-
mation than f and thus we expect that any Fourier coefficients obtained from the
sampling can only be approximations. Interestingly, f can be reconstructed exactly
from (fj)j=1,...,n if f is band-limited, i.e., if f̂k = 0 for |k| > N , and if the sampling
frequency is sufficiently high. Otherwise we have so called aliasing, explained now by
means of an example, see Appendix A for mathematical background.

We consider the simple example in Fig. 4, where again for reasons of exposition
we use very small n. If we sample cos(3x) with n = 8 points then we get a somewhat
faithful representation (dotted line). Moreover, the FFT ũ of udis yields 0.0000 0.0000

0.0000 4.0000 -0.0000 4.0000 0.0000 0.0000 which is n = 8 times the exact ûk since u is
band limited. However, if we choose n = 4 we rather believe the original function to
be cos(x), and indeed FFT then gives -0.0000 2.0000 0.0000 2.0000. Thus, the original
function cos(3x) appears under the alias 0.5 cos(x) if “undersampled”. The problem
is: not only is the small scale structure (cos(3x)) undetected (unresolved), but it
falsely appears as a large scale cos(x).

Finally, due to eikxeimx = ei(k+m)x nonlinearity is a problem for aliasing: if k is
the highest wave-number in u, then u2 contains modes at 2k. Therefore, a solution
to a nonlinear t-dependent PDE is never band limited, even if the initial condition is.

14



3 Diffusion as a model problem

Figure 4: Nonlinearity aliasing and anti-aliasing as discussed in Example 3.5.

In Fig. 4 we have u2(x) = 1
2 (1 + cos(6x)) but cos(6x) cannot be sampled by 8 points

and instead appears as cos(2x).
In the context of numerics for parabolic PDE a way to counter aliasing (and of

course to improve the accuracy of approximation in general) is to make sure that
high wavenumber Fourier coefficients, i.e., |k| close to n/2 should be “well decayed”.
In practice, this means that n should be chosen sufficiently large, which obviously
produces costs. However this aliasing of the nonlinearity can be avoided at little
extra costs using the so called 3/2 rule. The idea is to pad û, v̂ by m− n zeros with
m = 3n/2 before transforming back to x-space, i.e., set

ûp = (0, . . . , 0, û−n/2, û−n/2+1, . . . , ûn/2−1, 0, . . . , 0)

and similar for v̂p. Then up =ifft(ûp) and vp =ifft(v̂p) will consist of m sampling
points, and hence higher frequencies can be resolved in upvp. It then remains to
extract the pertinent n Fourier coefficients from fft(upvp). See [CHQZ88, §3.2] for the
mathematics why this works and how the factor 3/2 arises, and for more sophisticated
anti-aliasing methods. A matlab implementation of this anti-aliased product is given
in aap.m, i.e.

function ph=aap(uh,vh) %anti-aliased product,1

% in: uh,vh from fft with n samples, out: product in F-space2

n=length(uh);m=n*3/2;3

uhp=[uh(1:n/2) zeros(1,(m-n)) uh(n/2+1:n)]; % pad uhat with zeros4

vhp=[vh(1:n/2) zeros(1,(m-n)) vh(n/2+1:n)]; % pad vhat with zeros5

up=ifft(uhp); vp=ifft(vhp); w=up.*vp; wh=fft(w);6

ph=1.5*[wh(1:n/2) wh(m-n/2+1:m)]; % extract F-coefficients7

end8

For the example in Fig.4 anti-aliasing yields u2
p=0.5. This might not look like a good

approximation of 1
2 (1+ cos(6x)), but at least the Fourier modes for −4 ≤ k ≤ 3 are

correct, i.e., u2
p no longer contains the completely wrong contribution 0.5 cos(2x). c
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In the Allen-Cahn equation in Example 3.4 we did not use the anti-alias-product
aap since we want to introduce things step by step, and because in the Allen-Cahn
equation the nonlinearity does not contain derivatives and, therefore, if ûk is small for
|k| large, f̂k is also small for k large, and nonlinearity-aliasing does not play a crucial
role. However, if the nonlinearity contains derivatives, then high wave numbers get
multiplied by factors involving k with large k, and therefore f̂k may be large even if
ûk decays quickly. As an example consider f(u) = ∂x(u2) such that f̂k = ikF(u2)
which appears in the Navier-Stokes equations in a similar way. We now illustrate this
with the Burgers equation.

Example 3.6 The (viscous) Burgers equation

∂tu = ν∂2
xu−

1
2
∂x(u2), u = u(x, t) ∈ R,

where ν > 0 is called viscosity, arises as a model in various settings, for instance
traffic flow, see [BK00, Chapters 7 and 10] for a very readable account. The Burgers
equation has remarkable structural properties, but here we exclusively focus on a
numerical simulation. We approximate

1
h

(ûn+1
k − ûnk ) = −νk2ûn+1

k + f̂nk ⇔ ûn+1
k = µk(ûnk + hf̂nk ), (24)

where µk = (1+νhk2)−1 and f̂k = − i
2kF(u2)k. The integration step from burgers.m

thus reads fh=-0.5*aap(uh,uh); uh=mu.*(uh+h*kv.*fh); here kv.*fh implements
the multiplication by ik, also called spectral differentiation.

Of particular interest is the case of small ν, similar to large Reynolds number in
the Navier-Stokes equations, see Sec. 4.4. To illustrate the significance of anti-aliasing
in the Burgers equation, in Fig. 5 we use ν = 10−2 and n = 32 which can be shown
to be a minimal necessary resolution. c

Remark 3.7 Spectral methods which do not use anti-aliasing, or, more generally,
which do not attempt to project all terms onto the (finite set of) basis functions, are
often called pseudo-spectral methods. c

Example 3.8 The Kuramoto-Sivashinsky equation

∂τv = −∂2
ξv − ∂4

ξv −
1
2
∂ξ(v2), ξ ∈ I ⊂ R, τ ≥ 0, v(ξ, τ) ∈ R (25)

can be considered as a variant of the Burgers equation with a long wave instability.
It arises for instance in the description of instabilities of flame fronts in pipes, and
in various other contexts with a long wave instability. The term −∂2

ξv models anti-
diffusion, which is arrested by the fourth order dissipative term −∂4

ξv. In passing we
note that solving (25) with an explicit method as in Example 3.1 would require the
extremely restrictive stability condition h ∼ δ4

x due to the term −∂4
ξv.
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3 Diffusion as a model problem

Figure 5: Example output of burgers.m, u0 = sech(4x), ν = 0.01, n=32. Left and
middle: u(x, t) and |ûk(t)| without anti-aliasing. Right: |ûk(t)| with anti-aliasing.
With anti-aliasing, also the solution u in x space shows slightly less oscillations,
which are unphysical, i.e. only due to the poor numerical resolution.

The Kuramoto-Sivashinsky equation is usually considered for I = R or I some
large domain [0, L] with periodic boundary conditions. Additionally to (25) being
a famous and very interesting equation, here we consider (25) for two reasons: a)
to explain how to rescale an equation to x ∈ [0, 2π] such that FFT can directly be
applied; b) to explain how the spectral properties are useful to get a first analytical
understanding.

To rescale (25) we let u(x, t) = v(Lx/(2π), Lt/(2π)) to obtain

∂tu = −s∂2
xu− s3∂4

xu−
1
2
∂x(u2), x ∈ [0, 2π], (26)

where s = 2π/L is a scale factor3. To illustrate the significance of s we consider the
linearization ∂tu = −s∂2

xu− s3∂4
xu of (25) around u ≡ 0. The solutions are eikx+λkt,

k ∈ Z and λ(k) = sk2 − s3k4, and in Fig. 6 we show the growth rates λk for s = 1
and s = 1/20, respectively. We see that for s = 1 there are three neutral modes k = 0
and k = ±1, and all other modes again decay exponentially since λk < 0 for |k| ≥ 2.
In contrast, for s = 1/20 we have bands of unstable modes, i.e., modes eikx with
1 ≤ |k| ≤ 19 linearly grow exponentially with maximal rate near |k| = 10

√
2 ≈ 14.

These k correspond to long waves in the original formulation (25), hence the name
long wave instability.

The (difficult) question then is, if and how the nonlinearity − 1
2∂x(u2), for which

it is unclear if it has a stabilising or destabilising influence,4 can arrest this linear
growth, see, e.g., [Tem97, Chapter III.4.1] for a detailed discussion. In any case,
for L > 2π large we may expect interesting dynamics. As usual, numerically we

3the rescaling of time is not strictly necessary; it is convenient in order to keep the factor − 1
2

in
front of the nonlinearity.

4In fact, it is both.
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Figure 6: The spectrum of the linearization of the KS equation 26 for s = 1 (left)
and s = 1/20 (right).

approximate

ûm+1
k = µk(ûmk + hf̂mk ), where now µk =

1
1 + h(s3k4 − sk2)

. (27)

Except for (27) and different ways of plotting, the implementation of the initial value
problem for (6) is identical to the one for the Burgers equation, see ks.m. For small
L (s ≥ 1), (26) is indeed rather boring (or more precisely: qualitatively similar to
the Burgers equation). But Fig. 7a) shows the so called “chaos” (or “turbulence”)
which is produced by (26) for s = 1/20, and b) illustrates this chaos in the behavior
of the (low |k|) Fourier coefficients. Moreover, averaging |ûk(t)| over time, denoted by
〈|ûk|〉 = limT→∞

1
T

∫ T
0
|ûk(t)|dt, shows that 〈|ûk(t)|〉 is maximal for |k| close to 14 as

expected from the linear instability analysis illustrated in Fig.6. Also note that û0 is
exactly conserved. Finally we remark that to plot the original v as a solution of (25) we
simply have to use the original time and space scales, e.g., use waterfall(X/s,T/s,ua)

instead of waterfall(X,T,ua) for plotting. c

Remark 3.9 An alternative to the very simple “linearly implicit nonlinearly explicit”
one-step method (22) are split step methods, where one integration step (of length
h) is split into two (or more) steps as follows. Assume that we want to integrate
∂tu = Au+ f(u) where A is some linear (differential) operator, for instance A = ∂2

x,
and f some nonlinearity. Moreover, assume that we have one method M to advance
the solution of ∂tu = Au by h, i.e., um+1 = Mum and a second method G to advance
the solution of ∂tv = f(v) by h, i.e., vm+1 = G(vm). A method for ∂tu = Au+ f(u)
can then be set up as, for instance,

ũm+1 = Mum, um+1 = ũm+1 +G(um)

or some variant, taking e.g. um+1 = ũm+1 +G(ũm+1) or um+1 = ũm+1 + 1
2 (G(um) +

G(ũm+1)) in the second step. Such split step methods often become necessary if the
nonlinearity requires some special treatment, e.g., for so-called stiff nonlinearities,
but in this lecture methods of type (22) will be sufficient, although we remark again
that accuracy of solutions can be strongly improved if some problem adapted time
stepping is used.
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Figure 7: So called chaos in the KS equation over a large domain, L = 40π, hence
s = 1/20 in (26); initial conditions u0(x) = sech(4(x− 2)) + 1

2
sech(2(x− 4)). Left:

the solution; right: the evolution of the |ûk|.

In any case, comparing (22) with, e.g., the “linearly implicit nonlinearly explicit”
split-step method

ûm+1
k = µkû

m
k + hf̂(um)k (28)

we note the following: for both methods the local approximation error is (formally)
of order h2, but while (22) has significant damping of high wave numbers of f̂ due
to multiplication of hf̂k by µk, this is not the case for (28). The (over)damping
of f in (22) is sometimes also called numerical viscosity. For “nice” parabolic (i.e.,
diffusion-like) problems this usually plays no important role since high wave numbers
are strongly damped anyway, but it should be kept in mind if very accurate solutions
are required, or if the underlying physics suggest that solutions do contain significant
high wavenumber contributions as in turbulence simulations. c

The following series of exercises is intended to get some familiarity with matlab
and the general idea (22), and at the same time to get to know some further interesting
and famous equations. In particular, Exercises 3.12 to 3.14 study systems of (roughly)
reaction diffusion equations and hence require a bit more programming effort. As a
hint, you should get pictures as in Fig.8, or more fancy ones.

Exercise 3.10 In ks.m, implement and plot the averaging of ûk. c
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Exercise 3.11 a) Modify ac.m to study the Kolmogorov, Petrovsky, Piscounuv
(KPP) equation ∂tu = ∂2

xu + u − u2, x ∈ [0, L], which occurs as a model for var-
ious systems in nature, for instance for chemical reactions or population dynamics.
Rescale to x ∈ [0, 2π], take periodic boundary conditions and as intial condition a
small localized perturbation of u = 0, and watch the evolution of fronts.
b) Modify ks.m (or ac.m) to study the Swift-Hohenberg equation ∂τv = −(1+∂2

ξ )2v+
αv − v3, ξ ∈ [0, L], where α ∈ R. Take periodic boundary conditions, rescale to
x ∈ [0, 2π], take arbitrary initial conditions, and watch the difference between α < 0
and α > 0. c

Exercise 3.12 As an example of a reaction diffusion system consider the Schnaken-
berg model [Sch79, Mur89]

∂tu = ∂2
xu− u+ u2v,

∂tv = d∂2
xv + b− u2v,

(29)

where u = u(x, t) ∈ R and v = v(x, t) ∈ R denote the concentrations of two
chemical species and b > 0 and the ratio 0 < d = dV/dU of the diffusion con-
stants are parameters. This is a prototype for a reaction diffusion system with
a Turing instability. Implement (29) for x ∈ [0, L], with large L and periodic
boundary conditions, and watch the pattern formation for, e.g., (b, d) = (3, 60) and
(u0, v0) = (b+ sech(x− L/2), 1/b+ 0.01sech(x− L/2). c

Exercise 3.13 The Gray Scott model [GS83] is a model for cubic autocatalysis of
two species. After suitable nondimensionalization the system reads

∂tu = d1∂
2
xu− uv2 + f(1− u),

∂tv = d2∂
2
xv + uv2 − (f + k)v,

(30)

with typically 0<d2<d1 in applications, and where the two parameters f, k appear
in the above way for modeling reasons. Implement (30) for x ∈ [0, L], with large L,
initial conditions (u0, v0) = (1− 0.5sech(0.1(x− 3L/5)), 0.3sech(0.1(x− 3L/5))), and
periodic boundary conditions, and study fronts for (30) for (d1, d2) = (1, 0.5), (f, k) =
(0.023, 0.05), and self replicating patterns for (d1, d2)=(1, 0.5), (f, k)=(0.038, 0.06). c

Exercise 3.14 The Fitz-Hugh-Nagumo (FHN) system is used as a (cartoon) model
for the transmission of a nerve impulses, see [BK00] for background. After suitable
nondimensionalization it reads

∂tu = ∂2
xu+ f(u)− v,

∂tv = d∂2
xv + bu− cv,

(31)

where f(u) = u(1 − u)(u − a) and where a ∈ R, b, c > 0 and d ≥ 0 are some
parameters. Implement (31) for x ∈ [0, L], with large L and periodic boundary
conditions, Watch the emergence of pulses in the so called excitable regime, i.e., let
(a, b, c, d) = (1/4, 0.00075, 0.005, 0.1) and (u0, v0)(x) = (sech(x − 3L/5),−sech(x −
3L/5) sin(x− 3L/5). c
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a) u for (29) b) v for (30) c) u for (31)
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Figure 8: Example outputs for Exercises 3.12 to 3.14

3.3.3 2D FFT and 2D diffusion

All we need to extend the above method to higher space dimensions is a suitable FFT.
In matlab this is provided by fftn and ifftn. Here we focus on d = 2. The 2D heat
equation reads ∂tu = ν∆u, hence ∂tûk = −ν(k2

1 + k2
2)ûk = −|k|2ûk gives the scheme

ûm+1
k = µkû

m
k with multipliers µk =

1
1 + νh|k|2

. (32)

Let uij be an n × n matrix, n even, to be considered as a sampling of a function u
over (x, y) ∈ [0, 2π]2, for instance obtained from the typical matlab commands
n=6; dx=2*pi/n;dy=dx;x=-pi:dx:pi-dx;y=x; [X Y]=meshgrid(x,y); u=sin(X)+cos(Y);

Thus

u(i, j) = u(xj , yi), (33)

where it is important to keep in mind the “swapping of the indexing” due to matlabs
“rows first” convention as in matrices. fft2(u) then is the n× n matrix (again with
taking ũk for ûk)

û0,0 û0,1 . . . û0,n/2−1 û0,−n/2 . . . û0,−1

û1,0 û1,1 . . . û1,n/2−1 û1,−n/2 . . . û1,−1

.

.

. . . .

. . . . . . . . .

ûn/2−1,0 ûn/2−1,1 . . . ûn/2−1,n/2−1 ûn/2−1,−n/2 . . . ûn/2−1,−1
û−n/2,0 û−n/2,1 . . . û−n/2,n/2−1 û−n/2,−n/2 . . . û−n/2,−1

.

.

. . . .

. . .
.
.
.

û−1,0 û−1,1 . . . û−1,n/2−1 û−1,−n/2 . . . û−1,−1


, (34)

where again as a consequence of the matlab “matrix” indexing the wave numbers
indices in (34) denote (k2, k1), k1 corresponding to x and k2 corresponding to y.

Example 3.15 h2d.m implements the scheme (32); here we only give the code snip-
pet where the multiplier matrix mu=µk is defined, namely

21



Spectral methods for parabolic PDE (Uecker)

%h2d.m, solving u_t=Delta u by FFT1

n=32; dx=2*pi/n; dy=dx; x=-pi:dx:pi-dx; y=x; [X Y]=meshgrid(x,y);2

nu=1; h=0.1; mu=zeros(n,n); % holds F-multipliers3

for j1=1:n; % fill multiplier matrix mu as if fft(u) was centered4

for j2=1:n;5

k1=j2-n/2-1;k2=j1-n/2-1;mu(j1,j2)=1/(1+nu*(k1^2+k2^2)*h);6

end7

end8

mu=fftshift(mu); % now adapt mu to true fft,9

% then define IC and go to integration loop with uf=mu.*uf10

In lines 4-8 the multipliers µk are again first stored corresponding to û, and not
corresponding to fft2(u), see (34) for the different indexing. To adapt the matrix mu
to the indexing (34) we then need to swap the upper left with the lower right quarter,
and the lower left with the upper right. This is done by fftshift in line 9. Also
note the swapping of indizes between k1,k2 and j1,j2 in line 6, which is due to (33).
This is actually irrelevant for the problem considered here, namely isotropic diffusion
with domain length 2π in both directions, but nevertheless should be kept in mind
for generalization to anisotropic diffusion (∂tu = d1∂

2
x1
u + d2∂

2
x2
u with d1 6= d2) or

boxes with aspect ratio different from 1 ((x1, x2) ∈ [0, L1] × [0, L2] with L1 6= L2),
which after rescaling to [0, 2π]2 lead to anisotropic diffusion. The actual integration
step is given by uf=mu.*uf. Call h2d to see the result. c

Example 3.16 As a simple nonlinear generalization of Example 3.15 consider the 2D
Allen-Cahn equation ∂tu = ν∆u+u−u3. Using the multiplier matrix mu from above
the integration step now becomes uf=mu.*(uf+h*fft2(u-u.^3)); u=ifft2(uf);
see ac2d.m. Here we mainly comment on this to once more illustrate the interesting
(transient) patterns during the phase separation, see Fig.9. See also Exercise 3.17 for
the conservative phase separation in the Cahn-Hilliard equation. c

Figure 9: Phase separation in the 2D Allen-Cahn equation, ν = 0.001, n = 128,
random initial conditions near u = 0.
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4 The Navier-Stokes equations

Exercise 3.17 a) Modify ac2d.m to study the 2D Swift-Hohenberg equation

∂tu = −(1−∆)2u+ αu− u3. (35)

b) Consider the Cahn-Hilliard equation

∂tu = −∆(ν∆u+ u− u3), (36)

which describes phase separation under conservation of the total phase
∫

Ω

udx. Im-

plement the scheme ûm+1 = (1+hν|k|4)−1(ûm+h|k|2f̂mk ) for (36). Thus obtain plots
similar to Fig. 10. Also plot the |ûk(t)| and, as t → ∞, compare this to the |ûk(t)|
for the 2D Allen-Cahn equation. c

Exercise 3.18 Study the models from Exercises 3.12-3.14 in 2D. For instance, for
(30) in 2D there are self-replicating spots, see Fig. 11, which are fun to watch alive. c

Figure 10: Phase separation in the 2D Cahn-Hilliard equation, ν = 0.01, n = 128,
random initial conditions near u = 0.

4 The Navier-Stokes equations

4.1 Introduction

The Navier-Stokes equations describe the velocity field of a fluid which is modeled as
a continuum, i.e., we do not consider individual molecules of the fluid. Knowing the
derivation of some model is useful to avoid applications which conflict with intrinsic
limits of the theory. Thus, in Appendix B we recall the basic steps in the derivation,
but, again, refer to the literature for more details.

The velocity at a position x ∈ Rd, d = 2 or d = 3, at a time t is denoted with
u(x, t) ∈ Rd. The Navier-Stokes equations consist of a scalar equation for the con-
servation of mass and a d-dimensional system for the conservation of the momentum.
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Figure 11: Self replicating spots in the 2D Gray-Scott model, v-component:

u0(x, y) = 1− e−5(x̃2+ỹ2), v0(x, y) = 0.3e−5(x̃2+ỹ2)/(5+x̃), (x̃, ỹ) = (x/50− π, y/50−
π), (d1, d2) = (0.1, 0.05), (f, k) = (0.038, 0.06).

Here we focus on the so-called incompressible case, where the density of the fluid is
constant in space and time. In dimensionless form the Navier-Stokes equations then
become

∂tu+ (u · ∇)u = −∇p+
1
R

∆u+ g, ∇ · u = 0. (37)

Here ∇p = (∂x1p, . . . , ∂xd
p)T denotes the pressure gradient, (u ·∇)u is called the con-

vective nonlinearity and denotes the vector
( ∑
j=1,...,d

uj∂xj
u1, . . . ,

∑
j=1,...,d

uj∂xj
ud

)T
,

∆u is taken component wise, i.e., ∆u =
(

∆u1, . . . ,∆ud
)T

, and g = g(x, t) ∈ Rd is
an external volume force, e.g., gravity. Finally, the so-called Reynolds number R > 0
measures the ratio between inertial and viscous forces. Large R roughly means fast
flows or flows on a large scale, e.g. flows around a ship, while small R means slow
flows, typically of very viscous fluids, for instance the motion of a drop of honey.

The equations (37) hold for x ∈ Ω ⊂ Rd an open subset and for t ≥ 0. Thus
they have to be complemented by initial conditions and boundary conditions. For
the latter we shall again content ourselves with periodic boundary conditions, which
again have no physical meaning but allow to focus on the equations. Moreover,
to treat (37) as an initial value problem there appears to be the problem that the
second equation, ∇·u=0, is without time derivative, and that p appears without
time derivative. This problem is solved by imposing the incompressibility ∇·u=0 as
a condition on the function space for u; the term −∇p in the first equation then
has a natural interpretation as a projection P onto the divergence free vector fields,
see Sec. 4.2.

Remark 4.1 In 2D, i.e., d = 2, for reasonable g the global existence and uniqueness
of smooth solutions is well known, and, moreover, for g ≡ 0 all solutions of (37) decay
to u ≡ 0, see, e.g., [Rob01] for a very readable exposition.
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However, even for g ≡ 0, the global existence of smooth solutions of the 3D
Navier-Stokes equations is one of the seven so called One Million Dollar or Millennium
problems in mathematics presented by the Clay-Foundation in the year 2000. There
are a number of reasons. On one hand, the Navier-Stokes equations describe the
motion of fluids and the answer to this question would allow us to understand the
world in a much better way. On the other hand, in mathematics the 3D Navier-
Stokes equations are interesting partial differential equations, which so far resisted all
attempts to prove the global existence of smooth solutions.

It is however a matter of debate whether answering the Millenium problem has
consequences to applications. From a mathematical point of view, the convergence of
numerical schemes is only guaranteed for smooth solutions. If the solutions become
non-smooth in finite time then it is not clear that the numerical schemes describe
reality. On the other hand, a proof of global existence of smooth solutions of the 3D
Navier-Stokes equations which involve astronomically large bounds (on the order of,
say, 10100) will of course inhibit practical application, see, e.g. [HJ08, HJ07].

Classical books about local existence and uniqueness of the solutions of the Navier-
Stokes- and Euler-equations are [Tem01, vW85]. A modern treatment of these equa-
tions as dynamical system and the existence theory of semilinear parabolic equations
can be found for instance in [Hen81, Rob01]. Background on the derivation and
applications of the Navier-Stokes equations and related equations can also be found
in [Fow97]. Finally, turbulence in the Navier-Stokes equations is discussed from a
mathematical point of view in [Cho94, DG95, FRMT01]. c

4.2 The linearized homogeneous equations

To understand the impact of the imcompressibility condition ∇ · u = 0 and of the
pressure gradient ∇p we first solve the linearized equations with g = 0, which is also
the first step towards the construction of a numerical solver.

4.2.1 Explicit solution in Fourier space

To solve the linear system ∂tu = −∇p+ 1
R∆u, ∇ · u = 0, for notational simplicity we

first restrict ourselves to the two-dimensional case, i.e. x ∈ R2 and for our purposes
w.l.o.g. to R = 1. Then u = (u1, u2) satisfies

∂tu1 = ∂2
x1
u1 + ∂2

x2
u1 − ∂x1p, ∂tu2 = ∂2

x1
u2 + ∂2

x2
u2 − ∂x2p,

0 = ∂x1u1 + ∂x2u2.

For periodic boundary conditions the solutions can again be written as Fourier series,
i.e.

u1(x, t) =
∑
k∈Z2

û1,k(t)eik·x, u2(x, t) =
∑
k∈Z2

û2,k(t)eik·x, p(x, t) =
∑
k∈Z2

p̂k(t)eik·x,
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with û1,k, û2,k and p̂k complex-valued coefficients only depending on time, satisfying

∂tû1,k = −(k2
1 + k2

2)û1,k − ik1p̂k, ∂tû2,k = −(k2
1 + k2

2)û2,k − ik2p̂k,

0 = ik1û1,k + ik2û2,k.

This is a system of ordinary differential equations on the linear subspace of C3 defined
by the third equation, and hence can be solved explicitly. We set

û1,k

û2,k

p̂k

 =


c1

c2

c3

 eλt

and look for a λ, such that

det


−λ− |k|2 0 −ik1

0 −λ− |k|2 −ik2

ik1 ik2 0

 = 0

with |k|2 = k2
1 + k2

2. For |k| 6= 0 the determinant vanishes for λ = −|k|2 and then
c1

c2

c3

 =
ck
|k|


−k2

k1

0

 ,

with arbitrary ck ∈ C and where the normalization by |k| turns out to be convenient
later. Hence, the general solution u of the linearized equations is then given by

u(x, t=
∑
k∈Z2

ck
|k|
e−t|k|

2

 −k2

k1

 eik·x=
∑
k∈Z2

ûk(t)eik·x, ûk(t)=
ck
|k|
e−t|k|

2

 −k2

k1

 .

Since we consider a real-valued problem we must have û−k(t) = ûk(t) for k 6= 0,
i.e. c−k = −ck. The subspace k = 0 will be considered later on in more detail. Note
that in this calculus the pressure disappeared completely. However, it will play a role
when considering the nonlinear problem, thus we next need to deal with it.

4.2.2 Dealing with the pressure gradient as a projection

In x-space we have, using integration by parts,∫
Ω

u · ∇p dx = −
∫

Ω

p∇ · udx = 0,
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where the boundary terms vanish for periodic boundary conditions, i.e. ∇p is L2

orthogonal on the space of divergence free vector fields {u ∈ L2 : ∇ · u = 0}. In k
space we have

ûk ∈ Uk = {ûk ∈ C2 : k · ûk = 0},

due to ∇ · u = 0. The pressure gradient ∇p defines in C2 a vector ip̂kk with p̂k ∈ C,
orthogonal to Uk. Therefore, ∇p can be interpreted as orthogonal projection onto
this subspace.

For the inhomogeneous problem or the nonlinear problem we need to calculate
this projection P . Thus we consider

u+∇p = f, ∇ · u = 0, (38)

in order to map a function f with ∇·f 6= 0 via the pressure gradient ∇p to a function
u with ∇ · u = 0. Again we restrict ourselves to the case x ∈ R2 with 2π-periodic
boundary conditions. As above we make the ansatz

uj(x) =
∑
k∈Z2

ûj,ke
ik·x, p(x) =

∑
k∈Z2

p̂ke
ik·x, fj(x) =

∑
k∈Z2

f̂j,ke
i·x,

with ûj,k, ûj,k, f̂j,k, j = 1, 2, and p̂k complex-valued coefficients. Plugging into (38)
yields

f̂1,k = û1,k + ik1p̂k, f̂2,k = û2,k + ik2p̂k, 0 = ik1û1,k + ik2û2,k. (39)

In the case |k| 6= 0, we find the solution
û1,k

û2,k

p̂k

 =
1

k2
1 + k2

2


k2

2 −k1k2 −ik1

−k1k2 k2
1 −ik2

−ik1 −ik2 1




f̂1,k

f̂2,k

0

 .

For the subspace k1 = k2 = 0 there are two possibilities.
i) We prescribe the periodicity of the pressure p. Then ûj,0 = f̂j,0 in (39), which
means that for f̂j,0 6= 0 we have a mean flow (or rather mean force) in direction xj ,
and p̂0 is arbitrary, which is fine, since only ∇p plays a role.
ii) We require that the mean flows (forces)

∫
[0,2π]2

uj(x1, x2)dx, j = 1, 2, vanish,
i.e. û1,0 = û2,0 = 0, and set

p(x, t) =
2∑
j=1

αjxj + p̃(x, t),

where p̃(x, t) is 2π periodic in the xj . Then ∂xj
p(x, t) = αj + ∂xj

p̃(x, t) and so

ûj,0 + αj = f̂j,0.
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Thus, to a f̂j,0 we always find an αj , so that ûj,0 = 0.
To illustrate the difference between i) and ii), in Fig. 12 we consider the example

f(x, y) = e−2(x−π)2−2(y−π)2

2 + tanh(y − π)

0

 , (40)

which corresponds to a slightly asymmetric volume force kicking to the right in the
middle of the domain.
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Figure 12: Illustration of the difference between cases i) and ii) concerning the
boundary conditions for the pressure in the projection u = Pf , f from (40). Left:
f and Pf , right: p, where in the top row we require a periodic pressure, giving
a mean flow in Pf , while in the bottom row we require zero mean flow, giving a
linear growth of the pressure.

Thus, choosing between i) and ii) is a question of modeling. i) has the disadvantage
that a (constant) mean force leads to unbounded growth of (laminar) mean flows.
Therefore, in the following we opt for ii), i.e. ûj,0 = 0 for j = 1, 2 and define the
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projection P̂ as direct sum of the projections P̂k, i.e. ûk = (P̂ f̂)k = P̂kf̂k,

û0 = 0 and

 û1,k

û2,k

 =
1

k2
1 + k2

2

 k2
2 −k1k2

−k1k2 k2
1

 f̂1,k

f̂2,k

 for k 6= 0. (41)

In x-space we define P by P = F−1P̂F .

Remark 4.2 The operator P is also called Stokes projector. In the general case of
some arbitrary domain Ω one proceeds as follows to solve (38) and hence define P .
Taking the divergence of (38) yields the Poisson equation

∆p = ∇ · f, (42)

and then u = f − ∇p. The difference between i) and ii) becomes the question of
appropriate boundary conditions for p in (42). Typically one uses homogeneous Neu-
mann boundary conditions ∂np = 0 if u is prescribed on the boundary, for instance
if u|∂Ω = 0. Since ∆ûkeik·x = −|k|2ûkeik·x, in a periodic box we have that P and ∆
commute. In general (i.e., general domains) this is not true; then the operator P∆ is
called the Stokes operator. c

4.3 The numerical scheme

In Fourier space, the Navier-Stokes equations now read

∂tûk = − 1
R
|k|2ûk + P̂kf̂k (43)

where we use the incompressibility ∇ · u = 0 to rewrite the nonlinearity in an algo-
rithmically friendly way as

(u · ∇)u = ((u2
1)x + (u1u2)y, (u1u2)x + (u2

2)y),

which in Fourier space becomes

f̂k = F((−u · ∇)u+ g)k =

−ik1F(u2
1)k − ik2F(u1u2)k + ĝ1,k

−ik1F(u1u2)k − ik2F(u2
2)k + ĝ2,k

 . (44)

Applying our usual linearly implicit nonlinearly explicit scheme we obtain

1
h

(ûm+1
k − ûmk ) = − 1

R
|k|2ûm+1

k + P̂kf̂
m
k , (45)

i.e.

ûm+1
k = µk

[
ûmk + hP̂kf̂

m
k

]
with µk =

1
1 + h|k|2/R

. (46)

29



Spectral methods for parabolic PDE (Uecker)

To turn (46) into a program is now rather a question of organization, visualization
and study of interesting flows, than of mathematical or algorithmic difficulty. As
already said, the full program, including a number of interesting right hand sides g
and various comments can be downloaded, see page 3. Here we only briefly discuss the
main building blocks and then visualize some flows, including some further discussion
of, e.g., the power spectrum and ideas related to turbulence.

The implementation Different from the matlab files so far we break the code into
a script file ns2d.m and some function files makemult.m, proj2d1.m, proj2d2.m,
aap2.m, ns2dstep.m.

Using a script ns2d.m, which contains the preparations like declaration of variables
and the integration loop has the advantage that the variables can be inspected (e.g.,
replotted) from the command line, while using function files gives more structure to
the code. Although the net matlab code is less than 60 lines, the files above are
longer due to a number of options and comments, and therefore we do not print them
completely but rather comment on the crucial parts.

For convenience we declare some matrices in ns2d.m as global, i.e.,

global av bv mm w1 w2 w3 w4 p1 p2 p3 p4 p5 g1h g2h;

where
X,Y are the meshgrids,

av,bv,mm are the vectors (ik1) = i(0 1 . . . n/2 − 1 − n/2 − n/2 + 1 . . . − 1) and
(ik2) = i(0 1 . . . n/2−1 −n/2 −n/2+1 . . . −1)T used in the differentiation
of the nonlinearity in (44), and the multiplier matrix (µk1,k2), set up for
centered FFT and corrected by fftshift (see comments in makemult.m),

p1,...,p5 are the multiplier matrices for the projection step, (see proj2d),

w1,...,w4 are workspace matrices used to hold the nonlinearities (see ns2dstep.m),

g1h,g2h hold the forcing (ĝ1, ĝ2), which can be used for speed-up in the case of
stationary forcing.

In g.m we define the forcing (g1, g2), for instance the “kick in the middle” (see Fig. 12)
Xt=X-pi; Yt=Y-pi;dec=exp(-4*Xt.^2-4*Yt.^2); g1=dec.*(2+tanh(Yt)); g2=0.*Y;

Next, in ns2d.m there are options to plot g, its projection Pg and the associated
p (which were used to generate Fig. 12). The projection is done in proj2d1 and
proj2d2, resp. The difference is that the former does not return or calculate p, but
the latter does.

As initial data we take u ≡ 0 and then go into the main integration loop, where
the actual integration is done by ns2dstep which implements (46). There are three
auxiliary functions, namely red2d which “resamples” a matrix (i.e., a meshgrid) for
nicer quiver plots, vof(u1,u2) which calculates the vorticity

ω = ∂x2u1 − ∂x1u2 = F−1(ik2û1 − ik1û2), (47)

which is a good mathematical and visual diagnostic of the plot, and hence plotted in
the integration loop, and aap2 which returns an anti-aliased product. For this and
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for the structure of the integration loop and its various plot options see the comments
in the respective files.

4.4 Let it flow

4.4.1 A stationary kick

The first flow we consider belongs to the stationary forcing (40), slightly changed, i.e.

g(x, y) = e−4(x̃2+ỹ2)

2 + tanhỹ

0

 where (x̃, ỹ) = (x− π, y − π). (48)

This might be considered as an (asymmetric) waterwheel which kicks the fluid locally
in the middle of the flow domain. The asymmetry, given by 2 + tanh(y), is useful
since without it the flow would be symmetric around y = 0 and hence less interesting.

Starting from zero initial conditions, for small R the flow converges to a stationary,
i.e. time independent one: the fluid flows to the right in the middle of the domain,
and, due to the vanishing mean flow, see ii) on page 27, to the left at the top and
the bottom. The left panel of Fig. 13 shows the flow field. As already said, a good
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t= 25,   Rey=10, n=64, h=0.0098039, max|u|=1.5601

Figure 13: The stationary flow obtained for (48) at R = 10, and the associated
vorticity.

visual diagnostic of the flow is the vorticity ω defined in (47) and plotted in the
right panel, which illustrates that (for well-defined vortices also called eddies) ω > 0
(ω < 0) corresponds to a vortex with clockwise (counterclockwise) flow. This in fact
can be taken as a general intuitive idea, even if proper vortices (i.e., flows with roughly
circular closed streamlines) are not present. In the following we illustrate flows mainly
by plotting the vorticity.

For larger R the flow no longer becomes stationary but develops a more and more
(with increasing R) complicated time (and space) dependence. As an example consider
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t= 35,   Rey=50, n=100, h=0.00625, max|u|=2.0359

Figure 14: Non stationary flow obtained for (48) at R = 50.

Fig. 14 with R = 50. Initially, i.e., up to t = 5, say, the flow looks qualitatively
similar to the one for R = 10 in Fig. 13 and seems to converge to a stationary flow
us consisting of two vortices. However, us is unstable, i.e., a flow close to us moves
away from us. This physical instability of us leads to the formation of a so-called
vortex-sheet which bends and oscillates in time.

4.4.2 Shearing and stirring, and steps towards turbulence

As a second example we choose, for no particular reason, the forcing

g(x, y, t) = e−2(x̃−1)4−2(ỹ−1)4 cos(t)

 ỹ−1

−(x̃−1)

+ e−2(x̃+1)4−(ỹ+1/2)4 cos(t/5)

 0

x̃+1

,
(49)

where again (x̃, ỹ) = (x− π, y− π). At t = 0 (49) corresponds to a so-called shearing
localized around (x̃, ỹ) = (−1,−1/2) and to some stirring localized around (x̃, ỹ) =
(1, 1), see Fig.15 for Pg(0). A time dependent forcing of course always gives a time
dependent flow. However, for small R, i.e., R < 40, the flow essentially follows (with
some delay) the forcing, see again Fig. 15 for an example.

For larger R the flow belonging to (49) becomes again more and more compli-
cated, and for R ≥ 500, say, it is tempting to call the flow “turbulent”. We strongly
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t= 20,   Rey=10, n=64, h=0.0098039, max|u|=0.36651

Figure 15: Pg(0) with g from (49), a typical snapshot of the flow at small R, and
the associated vorticity spectrum for comparison with Fig. 16.

encourage the reader to first explore this interactively. Concerning turbulence we
start with the following words of caution: Despite more than 100 years of research
in turbulence, it is not (yet) clear what turbulence is, i.e., how it should be defined
mathematically. Physically it involves the idea of very complicated flows which in par-
ticular cannot be completely calculated or predicted and hence should be described
using some statistical quantities like (time and space) averages.

That said, it should be clear that we do not claim that we now study turbulence.
Rather we want to illustrate some very basic concepts. A set of quantities which play
a big role in the description of turbulence are so called power spectra. Given some
function f : Rd → R, its power spectrum Ef : R+ → R is defined as

Ef (κ) =

 |f̂(κ)|2 if d = 1,∫
|k|=κ |f̂(k)|2 dk if d ≥ 2,

(50)

where f̂(k)=(2π)−d/2
∫
x∈Rd eik·xf(x) dx is the (proper) Fourier transform of f . The

name power spectrum is based on Parsevals equality ‖f‖L2=‖f̂‖L2 which shows that
the “energy” 1

2‖f‖
2
L2 of f can be expressed as the integral over the energy contained

in all Fourier modes. Consequently Ef (κ) denotes the energy (or power) contained
in all Fourier modes with wave vectors of modulus κ.

Kolmogorov’s theory of (stationary, homogeneous and isotropic5) turbulence, see,
e.g., [Cho94, §3], amongst other things states that for turbulent flows the power
spectrum in the “inertial range” (see below) has some universal (inverse) power law
behaviour, independent of the flow details. One particular prediction is that for 3D
turbulent flows the energy spectrum behaves (on time average) like

Eu(κ) = cε2/3κ−5/3, (51)

which is called Kolmogorovs 5/3 law and was essentially derived using dimensional
5on average, flow characteristics do not depend on time, position or direction
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considerations. Here c is a numerical constant, and ε is the energy dissipation rate
per unit volume, which again is assumed to be statistically stationary.

For 2D turbulent flows similar considerations yield that the power spectrum Wω(κ)
of the vorticity, aka enstrophy spectrum, behaves like

Hω(κ) ∼ β2/3κ−1, (52)

where β = d
dt

∫
‖ω‖2 dx is called the enstrophy injection rate, again assumed to

be statistically stationary. Consequently, since |û(k)|2 = |ω̂(k)|2/|k|2, the energy
spectrum behaves like

Eu(κ) ∼ βκ−3. (53)

There is considerable numerical and experimental evidence for these power laws, see,
e.g.[Sch00] and [KG02] for recent 2D compilations.

Figure 16 shows snapshots of the flow for a low-pass filtered version of (49) for
R = 500, in three different coordinates, all produced by ns2d.m. This low pass is
given by

gf (x) = F−1(χκû)(x), (54)

where χκ(k) = 1 if ‖k‖∞ ≤ κ and zero else, see lowp2d.m for the implementation.
Although g from (49) is an analytic vector field and hence ĝk decays exponentially
in k, the idea is to let the forcing act only on low order modes in a well controlled
manner. This is useful to study in detail the energy transport to higher |k|, and in
Fig. 16 we used κ = 6.

The vorticity plots in a), d) give impressions how the flow looks, b) show the decay
of |ω̂k|2, while c), e) attempt to illustrate (52). Calculating the integral in (50) in some
simulation is not straightforward since we would need to interpolate the circle |k| = κ
from the discrete wave numbers (k1, k2) ∈ Z2. Therefore, in c), e) we simply plot |ω̂k|2
over κ = |k|, in doubly logarithmic scale.

We then find (with a bit of good-will) a scaling κ−2 for the upper envelope, in
the inertial range which here ranges from about κ = 2 to κ = 10. Beyond κ ≈ 10
the so-called dissipation range starts where |ω̂k|2 decays exponentially (at least faster
than any inverse power of κ). The scattered data in c), e) are due to the fact that
these are just snapshots at some fixed time. If we average over time, then k 7→ |ω̂k|2 in
b) becomes more radially symmetric, and hence |ω̂k|2 over κ becomes less scattered.
Then the enstrophy spectrum can be obtained from the envelope κ−2 by multiplication
by 2πκ (the length of the circle with diameter κ in (50)), which indeed confirms
H(κ) ∼ κ−1 in the inertial range. This should be compared to Fig. 15 where at
R = 10 there is no inertial range in the above sense.

Exercise 4.3 Implement the averaging
〈
|ω̂k|2

〉
into ns2d.m c
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a) vorticity plot b) log10 |ω̂k|2 c) log10 |ω̂k|2 over log10 κ

d) vorticity plot e) log10 |ω̂k|2 over log10 κ

Figure 16: Towards turbulence: snapshots of the flow for forcing (49) with R =
500, calculation time 400s on a laptop computer. If we average the scatterplots in
c), e) over time then we obtain the “universal scaling” H(κ) ∼ κ−1 in the inertial
range κ ∈ (2, 10), say. This becomes more evident at yet higher R. Then, however,
we also need to increase n which ultimately leads to much longer calculation times
and the simulations cannot be called “interactive” anymore (on standard laptop
computers).

A Fourier series, DFT, FFT, and aliasing

Definition A.1 A series of the form

u(x) =
∑
k∈Zd

ûke
ik·x, (A.1)

is called Fourier series, and ûk is called the kth Fourier coefficient.

The question is if and in what sense a function can be represented by its Fourier
series, or, equivalently, in which norm Fourier series converge. The basic result is (see
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any textbook on Analysis)

Theorem A.2 a) For u ∈ L2((0, 2π)d) we have L2-convergence of the Fourier series,
i.e., ‖u−

∑
|k|≤N ûke

ik·x‖L2 → 0 where

ûk = 〈eik·x, u〉 =
1

(2π)d

∫
u(x)e−ik·x dx. (A.2)

b) We have Parsevals equality ‖û‖2l2 =
∑
k∈Zd |ûk|2 = 1

(2π)d ‖u‖2L2 .
c) There exists a c > 0 such that if u ∈ Cm is 2π-periodic in each direction, then
|ûk| ≤ c(1 + |k|)−m.

Pointwise convergence of Fourier series is a rather delicate issue. For instance, the
Fourier series of u ∈ L1 may diverge almost everywhere (Kolmogorov 1921), while
for u ∈ L2 we have convergence almost everywhere (Carleson 1966). In summary, no
necessary and sufficient conditions are known that the Fourier series of a function u
converges pointwise to u(x). There are however various sufficient conditions in the
literature, see for instance the Dini criterion.

Moreover, there is a very helpful connection between so-called Sobolev spaces of
functions and weighted `2 spaces for their Fourier coefficients. Sobolev spaces are a
standard tool in the analysis of PDE; for instance the global existence and uniqueness
of (smooth) solutions of the 2D Navier-Stokes can easily be proved using the space
H1

per((0, 2π)2), see, e.g. [Rob01].
Numerically we can only deal with finitely many Fourier coefficients, functions

u(x) are only known in a discrete sense, and the integrals (A.2) in general have to be
evaluated numerically. The basic idea is to use the trapezoidal rule, which leads to
the so-called discrete Fourier transform DFT. We focus on 1D, consider x ∈ [0, 2π],
and for reference give the main formulas, see, e.g., [CHQZ88, §2.1.2] or [Coo98, §6.5,
including comments on matlab] for more details.

For n ∈ N let u be given at n equally spaced points xj = 2πj/n, j = 0, . . . , n− 1.
Then the discrete Fourier coefficients ũk are defined as

ũk =
1
n

n−1∑
j=0

u(xj)e−ikxj , −n/2 ≤ k ≤ n/2− 1, (A.3)

and from the orthogonality

1
n

n−1∑
j=0

e−ipxj =

 1 if p = nl, l ∈ Z

0 else
(A.4)

we immediately find the inversion formula

u(x) =
n/2−1∑
k=−n/2

ũkeikxj . (A.5)
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In (A.3) we need O(n2) operations to calculate the DFT of u, and similar in
(A.5). The FFT exploits symmetries of the DFT to calculate the DFT in O(n log n)
operations. It works best for n some power of 2. The matlab command fft computes
(A.3) without the factor 1/n but instead puts it in front of the inverse transform, called
as ifft. Also note that fft calculates a vector d with a shifted indexing compared
to (A.3), see (20).

For our purposes the most important fact is that if the Fourier series of u converges
pointwise at each xj , then the ũk approximate the ûk via

ũk = ûk + ek, k = −n/2, . . . , n/2− 1, where ek =
∑

l∈Z\{0}

ûk+nl. (A.6)

The ek are called the aliasing errors. However, if u ∈ Cm, then |ûk| ≤ c(1 + |k|)−m
by Theorem A.2c), such that for fixed k the aliasing error ek goes to zero as n→∞.
Moreover, if u is band limited, i.e., if there exists some M ∈ N such that ûk = 0 for
|k| > M , then

ek = 0 if n > 2M, (A.7)

i.e., if the sampling frequency is high enough. This is called the Nyquist-Shannon
sampling theorem. In particular, a band limited function u can be reconstructed
exactly from its finite DFT with n > 2M . As a further application we mention the
CD: for CDs, musical signals are treated as band limited to 20kHz and therefore
sampled at 44.1 kHz, allowing some margin for technical issues like the operation of
filters, which technically cannot give an ideal sharp cut-off in Fourier space similar to
the mathematical low-pass in (54).

B Derivation of the Navier-Stokes equations

The fluid is modeled as a continuum, i.e. we do not consider the molecules of the
fluid separately. The velocity field at a position x ∈ Rd at a time t is denoted by
u(x, t) ∈ Rd for d = 2, 3, and the density by ρ = ρ(x, t) ∈ R. In general by the
internal friction of the fluid heat will be produced which leads to a coupling of the
Navier-Stokes equations with a heat equation. We neglect this aspect and ignore the
coupling of the Navier-Stokes equations with heat. Also, we focus on the so-called
incompressible case where the density is constant in space and time.

Conservation of mass. We consider a fixed test volume V with surface S. The
mass in V can only change by the flow through the boundary S, i.e.

∂t

∫
V

ρdV = −
∫
S

ρu · ndS = −
∫
V

∇ · (ρu)dV

using Gauss’ integral theorem, where n(x) = (n1, . . . , nd)(x) is the outer unit normal
in the point x at the boundary S. Since this relation holds for all test volumes V the
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integrands must be equal, i.e.

∂tρ+ div(ρu) = 0. (B.1)

For imcompressible fluids ρ is constant in space and time such that (B.1) reduces to
∇ · u = 0.

Conservation of momentum. Similarly the momentum
∫
V
ρu dV of a test volume

V can only change by flow through the boundary and forces on the volume. Internal
forces, especially friction, are modeled by forces fi on the surface of the test volume.
In order to do so we assume the existence of a matrix σ = (σij)i,j=1,...,d, the stress
tensor, such that

fi =
∑

j=1,...,d

σijnj .

Application of the integral theorem of Gauss and the above arguments yield

ρ[∂tui + (u · ∇)ui] = ∇ · σi· + gi

where gi models external volume forces, or, in coordinates,

ρ

∂tui +
∑

j=1,...,d

(uj · ∂xj
)ui

 =
∑

j=1,...,d

∂xj
σij .

In order to obtain a closed set of equations we need relations between the stress
tensor σ and (u, ρ). These depend on the fluid, e.g. the function σ = σ(u, ρ) differs
strongly between water and honey. It is possible that σ also depends on the past.
Such a relation is called constitutive law.

A fluid with internal friction is called viscous. The constitutive law is then given
by

σij = −pδij + τij , δij =

 1 i = j

0 else
.

Here p denotes the pressure and τij models internal friction also called viscous stress.
It can be shown that σ must always be symmetric. Moreover, the simplest assumption
is that the viscous stress is proportional to the strains ∂xi

uj . For incompressible fluids
this leads to the definition

τij = µ(∂xj
ui + ∂xi

uj).

where µ is called dynamic viscosity.6 Using the kinematic viscosity ν = µ/ρ, the
Navier-Stokes equations are then given by

∂tu+ (u · ∇)u = −1
ρ
∇p+ ν∆u+

1
ρ
g,

∇ · u = 0.
(B.2)

6This is really a modeling issue: apart from simplicity there is no reason why τ and hence σ
should only depend on the first derivatives of u, and only linearly.

38



References

The Reynolds number. In order to eliminate the physical units from the Navier-
Stokes equations, let U be a typical velocity and l be a typical length of the flow. We
set

u = Uu∗, x = lx∗, p = ρU2p∗, t = lt∗/U, g∗ =
l

ρU2
g,

and, after dropping the ∗, obtain the dimensionless Navier-Stokes equations (37) with
Reynolds number R = Ul/ν. Thus R is large if any of the following holds (or any two,
or all three together): “fast flow” (U large) or “large scale” (l large) or small viscosity
(ν small). In nature, Reynolds numbers vary over several orders of magnitude. Al-
though these values depend on exact definitions of typical lengths and velocities, here
are some typical values from http://en.wikipedia.org/wiki/Reynolds number: Sper-
matozoa: 10−4, blood flow in aorta: 103, person swimming: 106, large ship 109.
Reynolds numbers for atmospheric flows can easily exceed 1012. In the limit R→∞
we obtain the Euler equations which in the incompressible case correspond to (B.2)
with ν = 0.

The inverse Reynolds number roughly sets the linear decay rate e−t|k|
2/R of modes

with wave number k. Thus, large R means that even high wave number (small scale)
modes decay slowly. The forcing f and the nonlinearity (u · ∇)u may then create
“turbulent flows” by transfering energy from low modes (small |k|) to intermediate
modes (intermediate |k|) in a so-called energy cascade (inertial range). Modes with
very large |k| are however always exponentially small (dissipation range), see also the
discussion in Sec. 4.4. Depending on further characteristics like the geometry of some
flow, the onset of turbulence in engineering applications typically is around R ≈ 104

to R ≈ 106. A rule of thumb then says that for the numerical discretization with
a uniform grid one needs about n = R3/4 points or equivalently n = R3/4 Fourier
modes in each space direction.
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