
Approximating the dynamics of active cells in a diffusive medium

by ODEs – Homogenization with Localization

Johannes Müller∗, Hannes Uecker†

December 12, 2011

Abstract

Bacteria may change their behavior depending on the population density. Here we study
a dynamical model in which cells of radius R within a diffusive medium communicate with
each other via diffusion of a signalling substance produced by the cells. The model consists of
an initial boundary value problem for a parabolic PDE describing the exterior concentration
u of the signalling substance, coupled with N ODEs for the masses ai of the substance within
each cell. We show that for small R the model can be approximated by a hierarchy of models,
namely first a system of N coupled delay ODEs, and in a second step by N coupled ODEs.
We give some illustrations of the dynamics of the approximate model.

1 Introduction

In recent years it became more and more clear that bacteria are not solitary individuals that
only interact via competition for resources, but are social creatures. Bacteria communicate by
sophisticated mechanisms with members of their own as well as with members of different species.
This communication can be performed by means of small signaling molecules which are released
into the environment. The concentration of the molecules at the location of a cell depends on the
combination of several factors, of which the density of cells producing the signaling molecules
is the most prominent: the cell is – up to a certain degree – able to measure the cell density.
This kind of communication is usually called quorum sensing (QS) [FWG94]. Often enough, a
certain action is started by a cell population if a certain cell density is reached. E.g., cells start
to luminesce (Vibrio fischeri), or start to build a biofilm (Pseudomonas aerigunosa).

Further features influencing this type of information exchange are the diffusion coefficient
in the medium the cell is located in and the geometry of the space surrounding the cell. If
the cell is inside some small bounded impermeable container, the molecules cannot diffuse away
and will accumulate, while the concentration of signaling molecules in an open sea will diffuse
away. This aspect is called diffusion sensing (DS) [Red02]. QS and DS are only extreme cases
of a more general concept, namely local efficiency sensing [HKM+07]: the ultimate aim for
a cell is homeostasis and reproduction, and in order to realize this aim it is of advantage to
know how large the molecular concentration of an exudate will be. Exoenzymes, released in the
environment are effective only if they reach a certain density. For the cell it is of no importance
if this concentration is reached because the molecules cannot diffuse away (DS), or if it is high
because a large population produces the exoenzymes (QS). As exoenzymes are expensive to
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produce, the cells use small, cheap molecules as proxies to check what would happen if they
would produce these exoenzymes.

Often enough, the cellular signaling pathway is rather complex and incorporates positive
feedback, or the interaction of multiple species of signaling molecules. The reason for this
complexity is still under discussion. A positive feedback loop, leading to a highly increased
production of the signaling molecule if the threshold is reached, may ensure a synchronized
action among a heterogeneous cell population [DK01, WKK+04]. However, a positive feedback
may also lead to an increased sensitivity on population level, using stochasic effects [MKH08].
Multiple species of signaling molecules can be interpreted as a radio with several radio channels;
one idea is that one channel is used for the intra- the other for the interspecies communication.
Even reactions of plants and animals on signaling molecules are reported. Our picture of the
bacterial world changes – we find more and more individuals communicating in a complex
manner.

In order to understand this communication, experiments on single cell level are performed.
The data are often obtained by confocal laser scanning microscopy: cells are tagged with re-
porter constructs that luminesce in different colors indicating different states of a cell. In this
way, location and state of a cell is determined. It is hard to use classical spatially structured
population models to interpret these data. These models usually describe cell densities. The
data, on the other hand, express the state of single cells. Another approach chosen in [MKH+06]
is to keep the cells as single, extended objects with a spatially homogeneous interior. I.e., the
pathway within each cell is formulated as an ordinary differential equation, describing the total
mass of certain molecule species within the cell.

The cells communicate with their environment via the cell membrane. In the extracellular
space, we find a parabolic equation describing the diffusion and (possible) absorption of the sig-
naling molecules. As we assume only abiotic processes in the extracellular space, this submodel
assumes a rather simple, linear form. However, as we have a system of nonlinear ODE’s coupled
by a linear PDE defined on a region with little holes (the cells), it is not easy to handle this
model. Analytical solutions are not available in the case of several cells, and numerical schemes
require a fine discretization around the tiny holes, leading to high computational costs. Equa-
tions of this type attracted a high degree of interest in the framework of homogenization [CD99]:
if one chooses the appropriate measure for averaging, it is possible to get rid of single cells and
to recover an equation that is homogeneous in space (the holes are gone), and describes cell
densities only.

This theory, however, is in our case of limited use, as we wish to keep the single cells
as individuals and do not want to approximate the individual based model by a classical cell
density model. In the stationary case, the paper [MKH+06] choses another approach: the cell
radius is shrunk to zero, leading to a homogeneous equation for the signaling substance. The
cells however, appear as delta peaks on the right hand side, where the coefficients couple with
the ODE’s describing the dynamics of the states within the corresponding cells. In case of the
homogeneous space, this PDE can be solved explicitly, such that the stationary points of the
system can be computed as the solution of a finite dimensional algebraic equation.

The present work extends this and presents a solution to the problem how to handle models
of cell interaction with the environment and cell to cell communication in non-equilibrium situ-
ations. We first investigate the case of one single cell thoroughly, present approximate models,
and approximation theorems indicating that for long times the solutions of original and approx-
imate models are close to each other. Depending on the desired order of approximation, the
approximate models take the form of an ODE or of a delay differential equation (DDE). For
N ≥ 2 cells, we get systems of DDEs, which can only be approximated consistently by ODEs
by assuming a scaling of distances between the cells in the radius.

2



Acknowledgment: The authors thank B.A. Hense, and A. Hutzenthaler, Helmholtz Zentrum
München, for fruitful discussions.

2 Model, approximate models, and approximation results

We consider N cells that communicate via diffusible signaling substances. In the extracellular
space, the spatio-temporal dynamics of these substances are well described by linear diffusion
equations. Within the cells, the spatial structure is less important, and an ODE represents
appropriately the dynamics of the internal state of a cell. The extracellular field and the internal
state communicate via boundary conditions (in- and outflow).

The cells are described as balls Ωi = {x ∈ R
3 : ‖x − xi‖ ≤ R} with radius R in R

3, the
total mass of the signaling substance within each cell is denoted by ai = ai(t) ∈ R, and the
exterior is denoted by Ω = R

3 \
⋃N
i=1Ωi. The model then takes the form [MKH+06] of an

initial boundary value problem for the diffusion equation for the exterior concentration u of the
signalling substance, coupled with N ODEs for the ai, i = 1, . . . , N , namely

ut = D∆u in Ω, u(x, 0) = u0(x), (1a)

Biu =
d2
R2

ai(t) on ∂Ω, where Biu :=

[
D
∂

∂ν
u+

d1
R
u

] ∣∣∣∣
∂Ωi

, (1b)

a′i = f(ai(t)) +

∫

∂Ωi

(
d1u

R
− d2ai(t)

R2

)
do, ai(0) = ai0. (1c)

Here D > 0 is a diffusion coefficient, d1, d2 > 0 are inflow/outflow constants representing
permeability of the cell wall, and ν denotes the outer normal of Ω. Clearly, (1c) can be rewritten
as

a′i = f(ai(t))− 4πd2ai +

∫

∂Ωi

d1u

R
do.

We are interested in the limit R → 0, and the factors 1
R and 1

R2 in (1c) are due to scaling.
The efflux of ai is proportional to the surface area of the cell which is 4πR2, hence efflux is
scaled by 1/R2. For R→ 0 each cell should act as a point source, i.e., u ∼ 1/‖x−xi‖, hence the
influx by u is proportional to R−14πR2 = 4πR, and we therefore scale it by 1/R, see [MKH+06]
for more details.

The internal production rate of signaling molecules a in each cell is modelled by a function
f , for instance of the form

f(a) = α0 +
β0a

n

anthresh + an
− γca. (2)

Thus, depending on the choice of α0, β0, athresh, γc > 0, the problem a′ = f(a) may have up to
three positive stationary states. It is straightforward to generalize the model to, e.g., the case
of more complex ODE’s where the state of a cell is described by a vector of different chemicals,
and the case where u is a vector of concentration, (and hence d1, d2, D are suitable tensors).
Also, f as well as d1, d2 may also vary from cell to cell.

As already said, computionally the model (1) has the disadvantage to be expensive for
numerical schemes, since cells appear as little holes in the three dimensional space, which forces
a rather fine discretization around the cells leading to high computational costs. In any case, it
is desirable to draw as many analytical conclusions as possible. If f(·) is monotone, the theory
of monotone dynamical systems allows to draw some conclusions about stationary states and
ω-limit sets (see [MKH+06]), but the detailed transients cannot be revealed by this method. We
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use the fact that cells are often scattered at distances large in comparison with their radius and
investigate the limit R→ 0. However, in contrast to [MKH+06], for the validity of the simplest
reduction to coupled ODEs in case N ≥ 2 we shall also assume that ‖xi−xj‖ = O(Rη) for some
0 < η < 1.

Our assumptions are summarized as: D, d1, d2 > 0, f ∈ C1(R), and

there exist C1, C2 > 0 such that |f(a)| ≤ C1 + C2|a| for all a ≥ 0. (3)

Additionally, reasonable models have f(a) ≤ C1 − C2a for a ≥ 0, but we shall not use such an
assumption. In the following C > 0 denotes various constants that may depend on D, d1, d2 and
the choice of f , but not on R.

2.1 A single cell

Let N = 1 and x1 = 0. Our goal is to show that under some natural conditions the dynamics of
a(t) := a1(t) can be well approximated by solutions of the ODE

b′ = f(b)−Mb, b(0) = a0, (4)

where the rate

M =
4πDd2
d1+D

(5)

turns out to be a fundamental quantity for (1). It describes the efflux rate out of the cell in (4).
One may interpret this model as an compartmental model, describing the signaling substance
within one cell. The loss rate of signaling substance is M . This is, a stochastic Poisson process
that corresponds to this compartmental model predicts the mean time a particle stays within
the cell to be 1/M (see e.g. [VHL+06]). The interpretation for the original model is that 1/M
is the mean total residence time of a particle within the cell for a small cell radius, when we
take into account that a particle may re-enter several times until it eventually diffuses away.
For N ≥ 2 cells and assuming some scaling of distances we similarly to (4) find a system of N
ODEs, see (31) below.

To justify (4) we first of all need local existence for (1). Here we opt for L2(Ω) based theory;

however, using
d1
R

∫

∂Ω

1

R
do = 4πd1, (1) has stationary solutions of the form

u(x) =
d2

D + d1
asψ(‖x‖), with ψ(r) = r−1 and f(as)−Mas = 0. (6)

Thus, the fundamental solution ψ, i.e., ∆ψ = −4πδ0 is not Lp(Ω). Therefore we fix some
constants 0 < ρ1 < ρ2, O(1) with respect to R, and a nonincreasing smooth cutoff function χ
with

χ(ρ) ≡ 1 for ρ ≤ ρ1, χ(ρ) ≡ 0 for ρ ≥ ρ2,

and define
ψc(r) = ψ(r)χ(r).

Then clearly ψc ∈ Hm(Ω) for all m ≥ 0, and for all m0 ≥ 0 there exists a Cψ such that

‖ψc‖Hm ≤ Cψ for 0 ≤ m ≤ m0. (7)

In particular, using ∆ψ = 1
r2
∂r(r

2∂rψ) and
∫
Ω fdx =

∫∞
R r2fdr for radial functions we find

‖∆ψc‖2L2 =
∫ ρ2
ρ1
χ′′2dr = O(1).
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We now transform (1) to a system with zero Robin boundary conditions. Letting

u(x, t) = α(t)ψc(r) + v(x, t), (8)

where here and henceforth

α(t) =
d2a(t)

D + d1
=

M

4πD
a(t),

(1) takes the form

∂tv = D∆v − α′ψc + αD∆ψc, v0 = u0 − α(0)ψc, (9a)

Bv = 0, (9b)

a′ = f(a)−Ma+

∫

∂Ω

d1
R
vdo, (9c)

and given v0 ∈ H1(Ω) we can rather conveniently show local existence for (9). For

E(t) :=
1

2

[∫

Ω
v2 +D|∇v|2dx+ a2(t) +

d1
R

∫

∂Ω
v2do

]

we obtain, setting
h = −α′ψc + αD∆ψc

and using integration by parts,

d

dt
E =aa′ +

∫

Ω
v∂tv − (D∆v)∂tvdx+

∫

∂Ω
vtD∂νvdo+

d

dt

d1
2R

∫

∂Ω

v2do,

=aa′ +
∫

Ω
−D|∇v|2 + hv −D2|∆v|2 −D∆vhdx+

∫

∂Ω
vD∂νvdo, (10)

where the last two terms in the first line add to zero since D∂νv = −d1v/R. The last term
equals −d1

R

∫
∂Ω v

2do and is thus non-positive. Next, using (7),

∣∣∣∣
∫
hvdx

∣∣∣∣ ≤
∫
δv2 +

1

4δ
h2dx ≤

∫
δv2dx+

C

4δ
(a2 + a′2),

and since ‖v‖L1(∂Ω) ≤
√
4πR‖v‖L2(∂Ω) ≤ C

√
4πR‖v‖H1(Ω) we have a′2 ≤ (f(a) − Ma)2 +

C(d1‖v‖H1)2 and thus ∣∣∣∣
∫
hvdx

∣∣∣∣ ≤ δ‖v‖2L2 +
1

4δ
(C4 + C5a

2).

Similarly, |
∫
D∆vhdx| ≤ D2‖∆v‖2L2 +C(C4+C5a

2), and the first term can be absorbed by the
third in (10). Finally, aa′ ≤ C6 + C7a

2 + C8‖v‖2H1 , and alltogether

d

dt
E ≤ C9 + C10E, hence E(t) ≤ eC10tE0 +

C9

C10
(eC10t − 1)

by Gronwall’s lemma. Combining this a priori estimate with, e.g., a standard Galerkin method,
see, e.g., [Eva98, §7.1], or [Sal08, §9.1, §9.2], in particular §9.2.8 for the Cauchy-Robin problem,
we obtain local existence for (1). We set

H2
Rob(Ω) := {v ∈ H2(Ω) : Bv = 0}.
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Theorem 2.1 Let a0 ≥ 0 and v0 ∈ H1(Ω). For any t1 > 0 there exists a unique local weak
solution (v, a) of (9) with v ∈ L2([0, t1], H

2
Rob(Ω)) ∩ H1([0, t1], L

2(Ω)), a ∈ C1([0, t1],R+). In
particular, v ∈ C([0, t1], H

1(Ω)), and there exists a C3 > 0 such

sup
0≤t≤t1

(‖v(·, t)‖H1 + |a(t)|) ≤ C3. (11)

Remark 2.2 a) Since ‖v‖L1(∂Ω) ≤ C
√
4πR‖v‖H1(Ω) we also obtain ‖a‖C1 ≤ CC3 from (11),(9c).

b) For higher regularity we need more regular data and some compatibility conditions. For in-
stance v0 ∈ H2

Rob(Ω) implies v ∈ L2([0, t1], H
3(Ω) ∩ H2

Rob(Ω)) ∩ H1([0, t1], H
1(Ω)), hence also

v ∈ C([0, t1], H
2
Rob(Ω)). Moreover, then also t 7→

∫

∂Ω

d1
R
vdo ∈ H1([0, t1],R) in (9) and therefore

a ∈ C1,1/2([0, t1],R). This observation is important when considering higher order approxima-
tions, see Theorem 2.6.

For simplicity, in the following we shall in fact assume that

v0 = 0, i.e. u0 = α(0)ψc. (12)

An interpretation is as follows: up to t = 0 the cell is in state a0 but inactive, and thus u can
adapt to the associated stationary solution, in an O(1) neighborhood of the cell, cf. (6). At
t = 0 the cell then switches on its dynamics.

Going through the proof of Theorem 2.4 below we find that for our purposes (12) can at
least be relaxed to

u0 = α(0)ψc + v0 with v0 ∈ H1(Ω), ‖v0‖H1 = O(1). (13)

The simplest way to fulfill any compatibility conditions is of course to assume a0 = u0 = 0.
c) Note that (9c) formally yields (4) if we have ‖v‖L∞(∂Ω) = O(1). Thus, (8), (9) also contain
the heuristics for (4). ⌋

We provide a hierarchy of approximations of the full model (1), which, using a(t) := a1(t),
we rewrite as

a′(t) = f(a(t))− 4πd2a(t) + (TRa)(t), (14)

where the operator TRa is defined as follows, which makes sense due to Theorem 2.1 and Sobolev
traces.

Definition 2.3 Let u ∈ L2
loc(R+, H

2(Ω)) denote the solution of (1a),(1b) for given a ∈ C1(R+)
and define

TR : C1(R+) → L2
loc(R+), (TRa)(t) =

1

R

∫

∂Ω
u(t, x)do.

The key idea is to approximate u in (1) by a diffusion equation with a delta source repre-
senting the cell. This yields an approximation of TR by an operator T̂R which incorporates a
distributed delay. In Appendix A we prove the following result.

Theorem 2.4 Assume the compatibility conditions (12). Let a be the solution of (14) and b the
solution of

b′(t) = f(b(t))− 4πd2b+ d1(T̂RMb)(t), b(0) = a0, (15)
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where we recall that M =
4πDd2
d1+D

, and T̂R is defined by

(T̂Rb)(t) = 4πR

∫ t

0

1

(4πDτ)3/2
e−R

2/4Dτ b(t− τ)dτ. (16)

For all t1 > 0 there exist R0 > 0 and Ce > 0 such that for 0 < R < R0 we have

sup
0≤t≤t1

|a(t)− b(t)| ≤ CeR‖a‖C0,1/2 . (17)

The solutions a of (14) and b =: bR of (15) depend on R. Next, by Arzela–Ascoli we find (see
Appendix A for the details) that bR → b as R → 0, where b satisfies (4). Taking into account
that T̂Rf → 1

Df , cf. (49), we obtain the following corollary.

Corollary 2.5 Assume (12). For all t1 > 0 there exist R0 > 0 and Ce > 0 such that for all
0 < R < R0 and with b the solution of (4), i.e., b′ = f(b)−Mb, we have

sup
0≤t≤t1

|a(t)− b(t)| ≤ CeR‖a‖C1 . (18)

The approximation in Theorem 2.4 can be improved by introducing higher order delays. For
simplicity we restrict to the case a0 = 0 and u0 = 0. In Appendix A.4 we prove

Theorem 2.6 Let a be the solution of (14) with a0 = 0 and u0 = 0, and c be the solution of

c′(t) = f(c(t))− 4πd2c+ d1(T̂RMcdel)(t), c(0) = 0, (19)

where

cdel(t) = (SRc)(t) := 2c(t)− π

d1+D

∫ t

0
c(t−σ) 4D

R2
φ(R2/(4Dσ)) dσ, (20)

φ(τ) = π−3/2τ3/2e−τ (d1 + 2Dτ). (21)

For all t1 > 0 there exist R0 > 0 and Ce > 0 such that for all 0 < R < R0 we have

sup
0≤t≤t1

|a(t)− c(t)| ≤ CeR
2‖a‖C1,1/2 . (22)

Remark 2.7 Thus, (20) is the somewhat complicated formula making precise the intuitive
idea to take the history into account to higher order. The calculations in Appendix A, see in
particular Lemma A.3, show that for a ∈ C1

b (R
+) and t1 > 0 we of course have

−4πd2c(t) + d1(T̂Rcdel)(t) = −4πd2c(t) + d1(T̂RMc)(t) +O(R) = −Mc(t) +O(R), (23)

uniformly in 0 ≤ t ≤ t1, i.e., (19) agrees with (4) to O(R). ⌋

2.2 N ≥ 2 cells

By Corollary 2.5, the interaction of a small cell with the medium can be explicitly calculated,
up to a small error. As expected, the interaction of a single cell with the exterior is always
damping (M > 0), i.e. there is a net outflow of signaling substance from the cell.

If there are several cells then we may also expect a net inflow due to the information exchange
between the cells. The goal is again to find simple approximate solutions for ai of (1c). To
acknowledge the communication between cells the communication terms must not be dominated
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by the error terms. In a naive approximation both are of order O(R). Thus, we either need to
rescale the model s.t. the communication scales with R1−η, or to improve the approximation s.t.
the error term scales with Rβ , β > 1. We discuss both possibilities.

The basic setting parallels that of the single cell scenario. Again we start with a local
existence theorem, transforming (1) to a system with zero Robin boundary conditions. We first
let δij = ‖xi − xj‖ = O(1), choose 0 < ρ1 < ρ2 = O(1) in such a way that ρ2 < min{δij} and
define

ψc(x, t) =
N∑

i=1

d2ai(t)

d1+D

χ(‖x− xi‖)
‖x− xi‖

∣∣∣∣
Ω

. (24)

Then again ‖ψc‖Hm ≤ Cψ for m ≤ m0, and setting u(x, t) = ψc(x, t) + v(x, t) we obtain

∂tv = D∆v − ∂tψc(x, t), Biv = 0, v0(x) = u0(x)− ψc(x, 0), (25a)

a′i(t) = f(ai(t))−Mai +

∫

∂Ωi

d1v

R
do, ai(0) = ai0. (25b)

Using the energy

E =
1

2

[∫

Ω
v2 + |∇v|2dx+

N∑

i=1

(
a2i +

d1
R

∫

∂Ωi

v2do

)]
,

existence of solutions to (25) is now a straightforward adaption of Theorem 2.1, and also Remark
2.2 transfers in an obvious way to the case of N cells.

Theorem 2.8 Let a0 = (a1, . . . , aN )|t=0 ≥ 0 and v0 ∈ H1(Ω). For any t1 > 0 there exists
a unique local weak solution v ∈ L2([0, t1], H

2
Rob(Ω)) ∩H1([0, t1], L

2(Ω)), a ∈ C1([0, t1],R
N
+ ) of

(25). In particular, v ∈ C([0, t1], H
1(Ω)) and

sup
0≤t≤t1

(‖v(·, t)‖H1 + ‖a(t)‖) ≤ C3. (26)

To motivate an approximate ODE model for (1), alternatively to (24) we define

ψ̃c(x, t) := χ(r)
N∑

i=1

αi(t)+Rβi(t)

‖x− xi‖
, αi(t) :=

d2
d1+D

ai(t), βi(t) := − d2d1
(d1+D)2

∑

j 6=i

aj(t)

δij
, (27)

where now ρ1 > 0 is chosen large enough such that all cells are contained in Bρ1/2(0). This

yields, for v = u− ψ̃c,

∂tv = D∆v − ∂tψ̃c(x, t), Biv = hi(x, t), v0(x) = u0(x)− ψ̃c(x, 0), (28a)

a′i(t) = f(ai(t))− 4πd1ai +

∫

∂Ωi

d1ψ̃c
R

do+

∫

∂Ωi

d1v

R
do, ai(0) = ai0, (28b)

with ‖hi(x, t)‖L∞ ≤ C‖a(t)‖. This last estimate is straightforward but quite lengthy, and there-
fore we omit the details, see [MKH+06, Lemma 10] for a similar construction in the stationary
case. Now, similar to Remark 2.2c), heuristically plugging v ≡ 0 into (28b) we find, replacing
ai by bi, and solving the integral,

b′i = f(bi)−Mbi +R
d1M

d1 +D

∑

j 6=i

bj
δij
. (29)
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The first goal would be to show that solutions bi of (29) approximate solutions ai of (1c) up
to an O(R) error. However, for δij = O(1) the communication terms R d1M

d1+D

∑
j 6=i bj/δij in (29)

are then of the same order as the error and could be dropped. Thus we either need to reduce the
error, or, by an additional scaling of some parameters, increase the order of the communication
terms. First we assume that

‖xi − xj‖ = δij = R2η δ̃ij with 0 < η < 1/2 and δ̃ij = O(1), (30)

to find the approximate model

b′i = f(bi)−Mbi +R1−2η d1M

d1 +D

∑

j 6=i

bj

δ̃ij
. (31)

Remark 2.9 The simple proof of Theorem 2.8 sketched above has the disadvantage that it
cannot easily be adapted to the scaling (30): if we change (24) to

ψc(x, t) =

N∑

i=1

d2ai(t)

d1+D

χ(R−2η‖x− xi‖)
‖x− xi‖2

∣∣∣∣
Ω

,

then ‖ψc‖2L2 = O(‖a‖2R2η) but ‖∆ψc‖2L2 = O
(
|a|2

∫ Rηρ2

Rηρ1

R−2ηχ′′2(r)dr

)
= O(R−η|a|2) which

leads to the a priori estimate E(t) ≤ CeCR
−2ηtE0 + C(eCR

−2ηt − 1). Therefore, to find O(1)
bounded solutions of (1) on an O(1) time scale we need to refine the proof. One possibility is
to derive a priori estimates for (28), which again is lengthy but straightforward, and yields (26)
even under the scaling (30). ⌋

The basic idea to justify (31) is to introduce a delta source for each cell. This leads to the
delayed ODE system

b′i = f(bi)− 4πd2bi +
d1
R

∫

∂Ωi



∫ t

0

N∑

j=1

(4πD(t−τ))−3/2e−‖x−xj‖2/4D(t−τ)b̃j,app(τ)dτ


 do, (32a)

b̃i,app =Mbi(t)−R1−2η d1M

d1 +D

∑

j 6=i

bj(t)

δ̃i,j
, i = 1, . . . , N, (32b)

and again we first prove an estimate for the error between a and the solution b of (32).

Theorem 2.10 Let v0 ∈ H1(Ω), a0 ∈ R
n
+. For all t1 > 0 there exist R0 > 0 and Ce > 0 such

that for all 0 < R < R0 we have

sup
0≤t≤t1

|a(t)− b(t)| ≤ CeR‖a‖C0,1/2 , (33)

where (u, a) solves (1) with a = (a1, . . . , aN ) ∈ C1, and b = (b1, . . . , bN ) is the solution of (32).

Denoting the solution of (32) by b(R) we find b(R) → b as R→ 0 where b solves (31):

Corollary 2.11 Let v0 ∈ H1(Ω), a0 ∈ R
n
+. For all t1 > 0 there exist R0 > 0 and Ce > 0 such

that for all 0 < R < R0 we have

sup
0≤t≤t1

|a(t)− b(t)| ≤ CeR‖a‖C1 , (34)

where b = (b1, . . . , bN ) is the solution of (31).
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Instead of scaling the distances between cells we may improve the approximation to decrease
the error term, – for the price of a more complex equation. To be precise, consider

c′i = f(ci)− 4πd2ci + d1T̂Rc
0
i,del(t)−

Rd1√
4D


(T̂Rc

1
i,del)(t) +

π

D

∑

j 6=i
(Ii,j1,0c

0
j,del)(t)


 , (35a)

c0i,del(t) =MSR(ai)(t), c1i,del(t) =
πd1

d1 +D

∑

j 6=i
(SR ◦ Ii,j1,0)(c0j,del)(t), (35b)

where SRf(t) = 2f(t)− π
d1+D

∫ t
0 f(t−σ)4DR2 φ(R

2/(4Dσ)) dσ with φ(τ) = π−3/2τ3/2e−τ (d1+2Dτ)

and T̂Rf(t) = 4πR

∫ t

0
f(t−τ)(4Dπτ)−3/2e−

R2

4Dτ dτ as before, cf. (16) and (20), and

(Ii,j1,0f)(t) =

∫ t

0
f(t− τ)π−3/2 τ−3/2 e−

‖xi−xj‖
2

4Dτ dτ

are the pertinent interaction terms. This yields (see Appendix B for the proof):

Theorem 2.12 Let a = (a1, . . . , aN ) be the solution from (1) with a0 = 0 and u0 = 0, and let
c = (c1, . . . , cN ) denote the solution of (35). For all t1 > 0 there exist R0 > 0 and Ce > 0 such
that for all 0 < R < R0 we have

sup
0≤t≤t1

|a(t)− c(t)| ≤ CeR
2‖a‖C1,1/2 . (36)

The last approximation does not require a rescaling of the distances but this conclusion is
payed for by a complex delay model. Most likely, this model is too clumsy to be of practical
use. However, we will make clear by heuristic arguments in the next section that many of the
operators incorporating a delay can be simplified under certain circumstances. The ODE system
(31) may lead to considerable wrong time scales as the traveling time between cells is not taken
into account. The DDE model (35), however, also takes the history of one cell into account in
order to consistently approximate the self-interaction. It is plausible that this is not necessary,
such that the DDE model (38) will be proposed as a kind of compromise. This is much simpler
than (35), though it considers the delay due to diffusion between different cells.

3 Illustrations and conclusions

3.1 Comparison between approximation by ordinary differential equations

and delay equations

We derived a variety of approximations, of which that by ODEs and that by DDEs are the
most interesting: ODEs are simple to handle and to analyze, while the DDE models are more
complicated but give an error bound of second order. In this paragraph, we address the question
which approximation should be applied in a given situaion. If we consider more than one cell
with O(1) distances, then clearly the DDE model is preferential, as the error in the ODE is
of the same order as the communication terms. The stationary states of both approximations
agree; in all cases of practical importance we do not expect that the dynamics of ODE and DDE
model are qualitatively different, e.g. one model will oscillate while the other will not. What
we do expect is that the time scales at which these stationary states are approached differ; the

10



DDE is expected to react slower than the ODE. In order to check this conjecture, we first focus
on one cell only, and subsequently consider the case of several interacting cells.

In the case of one cell only, the difference between the two models is the term describing the
net outflow of substance out of a cell,

−bM in case of the ODE, −4πd2c+ d1MT̂ iRSRc in case of the DDE,

where we again denote the solution of the ODE by b, and that of the DDE by c. In cases of
practical relevance, the time scale of the reaction f(·) is similar to or slower than the mean
resident time 1/M , i.e., the ODE solution will vary on a time scale 1/M . In the DDE, for a
constant function c(t) ≡ c0 we know that

−4πd2c0 + d1MT̂ iRSRc0 → −Mc0.

If this convergence is fast in comparison with 1/M , the solution b(t) can be considered as quasi-
stationary, and

−4πd2b(t) + d1MT̂ iRSRb(t) ≈ −Mb(t).

Therefore, given a rapid convergence of the delay operator, the solution b(t) of the ODE solves
approximately the DDE. This is the key insight to exploit.
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Figure 1: Comparison between ODE and DDE in case of one cell. Upper panels: comparison
between 4πd2f − d1MT̂ iRSRf and Mf in case that f(t) ≡ 1. Lower panels: Solution of DDE
(solid lines) and ODE (dashed line). In panel (d) the two solutions lie on top of each other.
Parameters are the same for (a), (c) resp. (b), (d), see Tab. 1.

In Fig. 1 we consider two cases. The upper panels show 4πd2f(t) − d1MT̂ iRSRf for f ≡ 1.
In (a) we find convergence to M on the time scale defined by 1/M , while in (b) convergence
is much faster than 1/M . Thus for (a) we expect the solutions to be different for DDE and
ODE, while for (b) we predict the solutions of ODE and DDE to be indistinguishable. This is
confirmed by the numerical simulation (Fig. 1 (c) and (d)).
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Fig. 1 (a), (c) Fig. 1 (b), (d)

R 0.01 0.01
D 0.0005 1
d1 0.0005 1
d2 0.1 0.1
a 10 10

1/M 1.59 15.9

Table 1: Parameter used for the simulations in Fig. 1.

In the same spirit as above, for the DDE (35) for several cells we compare the time scale at
which the delay terms converge to a constant. The most interesting term is Ii,j0,1 as this operator is
the one that describes the diffusion between cells. And indeed, numerical observations show that
this operator is the one which by far converges most slowly, at least for parameters interesting
for cell-cell communication as stated in Tab. 2. All other operators become constant as fast as in
the one-cell-example. This observation does not allow to remove all delay terms, but to simplify
the DDE considerably: the delays SR and T̂R can be replaced by appropriate constants, and
only Ii,j1,0 stays an integral operator. Thus, (35) simplifies to

e′i = f(ei)−Mei +R
d1M

2

d2

∑

j 6=i

∫ t

0

1

(4Dπ τ)3/2
e−

‖xi−xj‖
2

4Dτ ej(t− τ) dτ. (37)

One (minor) problem in this equation is that for the derivation of (35) we assume u|t=0 = 0.
This can be relaxed to a class of nonzero initial conditions for u by prescribing a history ei(t)
for t0 < t < 0. Given ei, a distribution u0 = u|t=0 of particles traveling between the cells at
time zero can be calculated from (1a,b), or better approximated by the auxiliary system (40a),
cf. Lemma A.3, and afterwards arguments similar to Lemma A.4, Lemma A.5 give estimates
on sup0≤t≤t1 |a(t) − e(t)|. Due to the τ−3/2 decay of the memory as τ → ∞ it is clear that for
L∞–histories we may take t0 → −∞ to arrive at

e′i = f(ei)−Mei +R
d1M

2

d2

∑

j 6=i

∫ ∞

0

1

(4Dπ τ)3/2
e−

‖xi−xj‖
2

4Dτ ej(t− τ) dτ, (38)

with the upper limit of the integral as the only difference to (37).
Although still a DDE model, (38) is simple enough to allow for practical applications. To

check the differences between (29) and (38) we consider a spatial setup of 27 cells, arranged
at a cubic grid (see also Fig. 3 (a)). We use the parameters for cell-cell communication given
in Tab. 2, only the nonlinearity in f(·) is removed, i.e. we set β = 0. This is, to isolate the
behaviour of the delay operators we only consider a linear model. We focus on the central cell,
named “cell 1” in Fig. 3(a). The distance L between neighboring cells is taken to 40 µm, which
is a realistic length scale. In the right panel of Fig. 2 a comparison between the ODE model
the simplified DDE model and the trajectory for one single cell is presented. We find the ODE
model to quickly approach the equilibrium. The simple DDE model behaves for the very first
time interval as the solution of a solitary cell; only after about 0.5 s to 1 s the solution slowly
increases as signaling molecules start to arrive. After a considerable delay, the DDE model
approaches the stationary solution of the ODE model. The difference of the single cell solution
and the solution of the central cell within a cube of 33cells seems not to be large; however, we
will see below that this difference is exactly what the cells focus on, and nonlinearities amplify
the difference. Thus, the effect we find here is able to alter the time scales of the dynamics
significantly.
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Figure 2: Left: The convergence of the operator Ii,j1,0 responsible for cell-cell-communication.
Right: trajectory for one cell in a given spatial configuration (see text). Solid line: simple DDE
model, dashed line: ODE model, dotted-dashed line: ODE model for a single cell. In all three
models zero initial conditions are used but only a narrow interval on the y-axes is plotted. The
distance is δi,j = 40µm, model parameters as in Tab. 2, only β = 0.

3.2 Application to quorum sensing

Many major questions concerning quorum sensing are rather basic: what is this pathway good
for? Is this really quorum sensing (i.e. communication), or diffusion sensing, or local efficiency
sensing or something completely different? If it is communication, why did this communication
evolve, why is it evolutionarily stable? These questions are closely related to the behavior of
one or several cells in a given geometry.

In the present section we focus on quorum sensing, which is perhaps the best investigated
mode of bacterial communication. It is of interest to obtain information about the necessary
number or cell density that constitutes a quorum. This definitely depends on the diffusion
coefficient and the geometry of the cell distribution. In order to demonstrate the applicability of
our theory, we consider a colony of 27 cells, arranged in a cubic pattern. The parameter values
describing the behavior of the bacteria are assumed to resemble the behavior of Pseudomonas
putida. These bacteria basically possess a resting and an activated state, depending on the
concentration of signaling substance. In the activated state the bacteria show an increased
production rate of signaling substance. Models of ordinary differential equations, describing a
homogeneous population of bacteria of this type can be e.g. found in [DK01, MKH+06]. For
simulations, we use the simplified DDE model (38). The parameters chosen for the simuations
are partially obtained by the analysis of batch experiments [FKR+09], partially chosen ad hoc.
The production rates, threshold, and the Hill coefficient are rather well known. How to chose
the permeabilities d1 and d2 is not this clear. Here, these parameters are selected in such a way
that a clear threshold behavior can be observed. For the history of ei(t), t ≤ 0, we assume that
ei are constant.

Results of the simulation are presented in Fig. 3. We follow the mass of signalling substance
in the central cell and in a corner cell, where we use two different initial conditions: one is zero,
and one is rather large. If the distance between two neighboring cells is small (L = 3 µm), the
cells become activated no matter where the cells start from. If we increase the distance, we find
a bistable regime (L = 25 µm), while all cells go to the resting state for large distances between
two cells (L = 50 µm). The range of distances where activated cells are possible is comparable
with that observed in batch culture experiments (approximately 107 cells per ml, corresponding
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parameter value paper

α0 6.4 · 10−23 mol/sec [FKR+09]
β0 10α0 [FKR+09]
Vc Volume of a cylinder of 1 µm length

and 0.5 µm diameter
R 0.36 µm (a ball with volume Vc).
D 3 · 10−10m2/s [Hors+07]
d2 2.7/s
d1 8.085 · 10−11m2/s
τ 70 n mol/l ≃ 1.37 · 10−23 mol/cell [FKR+09]
n 2.5 [FKR+09]

Table 2: Parameter values used in simulations. The cell volume is chosen in such a way that it
resembles the size of a bacterium; literature supporing a parameter is indicated; parameters d1
and d2 are chosen ad hoc, see text.

to 40 µm distance).
As expected, the position of a cell matters: the mass of signalling substances in the central

cell is always above that of the corner cell. This central cell may act as a trigger, which becomes
activated first and then activates the other cells, and the activation mechanism of a colony works
as follows: the broad mass (also the cells in the border region of a colony) contribute to the
concentration of signaling substance in the center. In the center, eventually the first cells become
supercritical and increase the output of signaling substances. This, in turn, activates the other
cells: a front of activation runs from the center to the outer region, until the complete colony
is activated. In this way, a synchronized action can be archived. For appropriate parameters,
especially a large Hill coefficient, it is also possible to find stationary solutions where the central
cells are activated but the outer are not. However, these configurations are only possible for
rather small parameter ranges, see also [AP+09]. A more likely source of variable behavior
within one colony is either a different sensitivity of the regulated genes within one species, or
stochastic effects. There is experimental support for both sources of variability.

Looking at the simulations, a further conclusion can be drawn: in experiments, the time
to activation (transition from subcritical to supercritical state) is on the order of hours rather
than seconds like in our simulation. This is a hint that the factor determining the time scale
is not the biophysics (time constant implied by the diffusion rate and the geometry) but the
biochemistry, which agrees with the considerations presented in [MKH08], where the authors
analyze the reason why cells are able to react on minimal amount of signaling molecules in a
reliable way. They show that a low pass filter, biochemically realized by receptor molecules that
form long living complexes with the signaling molecules, allow the cell a reliable measurement
of very low concentrations of signaling molecules. This measurement necessarily takes a longer
time, typically on the order of ten minutes. Also transcription and translation needs time. Thus,
the time scale of the biochemical pathway necessarily is much slower than the time scale implied
by the communication distance. This is an indication that several papers (also from the first
author of the present paper) are valid only for the analysis of stationary states, as they assume
that large parts of the pathway are fast and can be thus approximated by much simpler models
(Hill functions) using singular perturbation theory.

The simplification of complex models via singular perturbation theory may be an appealing
theoretical approach allowing a reduction of parameters and complexity but may not be based
on true biochemical time scales. For a realistic dynamic description, models need to be slightly
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Figure 3: (a) A cubic colony of 27 cells. (b)-(d) presents the dynamics of the signaling molecules
for the central cell and a cell in a corner of the colony for distances of L = 3µm, L = 25µm,
and L = 50µm. The solid lines displays the dynamics for a large initial value, while the dotted
line presents the dynamics for zero initial conditions. The horizontal bar indicates the threshold
concentration. In (c), (d) the two solutions for zero initial conditions lie on top of each other.
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more complex. In models that do not address single cell data but results of batch experiments,
this difficulty is often hidden by the growth of the population. From the analysis of the signaling
aspect, this growth is a non-autonomous, external input which creates a slow time scale. If the
population growth is taken as a reference time scale, the pathways of the cells altogether can be
(approximately) assumed to be in a quasi-steady state. If, for example, we study the response
to a rapid change in the environment (e.g. wash out of the supernatant), then the models should
be more sophisticated in order to meet the appropriate timing. A further discussion is needed
whether the usual approach for batch experiments may hide some central aspect in the signaling
pathway not fully comprehended or acknowledged by the modelling community.

A Proof of approximation results: One cell

A.1 The idea

We want to approximate a solution a of (1) with N = 1, i.e.,

ut = D∆u in Ω, u(·, 0) = u0 =
d2

D + d1
a0ψc|Ω, Bu =

d2
R2

a on ∂Ω, (39a)

a′ = f(a)− 4πd2a+

∫

∂Ω

d1u

R
do, a(0) = a0, (39b)

by a solution b of (4), i.e., b′ = f(b) − Mb, b(0) = a0. For u0 we assume the compatibility
conditions (12). The main idea is to consider the auxiliary problem

pt = D∆p+ b̃(t)δ0(x), p(·, 0) = d2
D + d1

a0ψc(·), (40a)

b′ = f(b)− 4πd2b+

∫

∂Ω

d1p

R
do, b(0) = a0. (40b)

and to calculate a suitable b̃. Since (40a) can be explicitly solved to leading order, the ODE
(40b) for b can then be written as

b′(t) = f(b(t))− 4πd2b(t) + d1(T̂Rb̃)(t) + r(t) (41)

with T̂R defined in (16), and small r due to the initial conditions in (40a). The main step is to
derive a priori estimates for the difference between TRa and T̂Rb̃, which, to lowest order, lead
to the optimal choice b̃ =Mb. With the notation bR for the solution of (41) we then show that
bR → b where b solves (4) and thus prove Corollary 2.5.

A.2 The auxiliary problem

We compare solutions of (39) with solutions of (40). As already said, it turns out that in lowest
order b̃(t) =Mb(t) is optimal, but first we keep b̃ free. To simplify notation we introduce

ρ = R2/(4D)

and define

(Fρ,kf)(t) :=
1

ρ

∫ t

0
f(t− τ)(ρ/τ)k/2e−ρ/τdτ =

∫ ∞

ρ/t
f(t− ρ/ζ)ζk/2−2e−ζdζ,

(Kρf)(t) := d1π
−3/2(Fρ,3f)(t) + 2Dπ−3/2(Fρ,5f)(t).
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Lemma A.1 Let w(x, t) = u(x, t)− p(x, t)|Ω. Then w(x, t) satisfies

wt = D∆w in Ω, w(x, 0) = 0, Bw = −g(x, t) on ∂Ω, (42)

where

g(x, t) =
1

16D2

1

ρ

{
(Kρ[b̃− 4πDα0])(t)− 4Dd2(a(t)− a0)

}
+

1

R
g2(x, t),

and ‖g2‖∞ = O(1).

Proof. We have Bw = Bu−Bp = d2
R2a−Bp =: −g(x, t). The leading order terms of p can be

calculated explicitly. For p̃ = p− α0ψc, where we recall α(t) = d2
D+d1

a(t) = M
4πDa(t), we find

p̃t = D∆p̃+ ĉδ0 + α0h, p̃0 = 0. (43)

Here ĉ = b̃− 4πDα0, using D∆ψc = −4πDδ0 + h with ‖h‖H2 ≤ C, cf. (7). Letting

k(x, t) =
1

(4πDt)3/2
e−x

2/(4Dt),

we obtain, since p̃(0) = 0,

p̃(x, t) =

∫ t

0

∫

R3

k(x−y, t−τ)[ĉ(τ)δ0(y) + α0h(y, τ)]dydτ =

∫ t

0
k(x, t−τ)ĉ(τ)dτ + p2(x, t)

with ‖p2(·, t)‖H2 ≤ Cα0, and in particular ‖p2‖L∞(∂Ω) ≤ Cα0. Thus

p(x, t) = p1(x, t) + p2(x, t) =

∫ t

0
k(x, t− τ)ĉ(τ)dτ + α0ψc + p2(x, t). (44)

Therefore,

g(x, t) =
1

R

∫ t

0
(b̃(τ)− 4πDα0) [d1k(R, t− τ)−RDkx(R, t− τ)] dτ − d2(a(t)− a0)

R2
+

1

R
g2

with ‖g2(·, t)‖L∞(∂Ω) ≤ Cα0. The integral kernels read

d1
R
k(R, t) =

d1

R (4πDt)3/2
e−R

2/(4Dt) =
d1

16D2

1

R4/(4D)2(πt 4D/R)3/2
e−ρ/t

=
d1

16D2

1

ρ2
π−3/2(ρ/t)3/2e−ρ/t

Dkx(R, t) =
1

(4πDt)3/2
e−R

2/(4Dt) 2DR

4Dt
=

2D

R(4πDt)3/2
e−R

2/(4Dt) R2

4Dt

=
2D

16D2

1

ρ2
π−3/2(ρ/t)5/2e−ρ/t,

and thus

g(x, t) =
1

16D2

1

ρ
(Kρ[b̃− 4πDα0])(t)−

4D

R2
d2(a(t)− a0) +

1

R
g2(x, t)

=
1

16D2

1

ρ

{
(Kρ[b̃− 4πDα0])(t)− 4Dd2(a(t)− a0)

}
+

1

R
g2(x, t). �

17



Lemma A.2 For solutions w of (42) we have

‖w‖2L2(Ω) ≤
2R

d1

∫ t

0

∫

∂Ω
g2(x, τ)dodτ, (45)

‖w‖2L2([0,t],H1(Ω)) ≤
2R

d1D

(∫ t

0

∫

∂Ω
g2(x, τ)dodτ +D

∫ t

0

∫ τ

0

∫

∂Ω
g2(x, σ)dodσdτ

)
. (46)

Proof. We have the a priori estimate

D

∫

Ω
|∇w|2dx+

d

dt

1

2

∫

Ω
w2(x, t)dx = D

∫

Ω
|∇w|2dx+D

∫

Ω
w∆wdx

= D

[∫

Ω
|∇w|2dx−

∫

Ω
|∇w|2dx+

∫

∂Ω
w∂νwdo

]
= −

∫

∂Ω
w

[
d1
R
w + g(x, t)

]
do

≤ −d1
R

∫

∂Ω
w2do+

d1
R

∫

∂Ω
w2do+

R

d1

∫

∂Ω
g2(x, t)do =

R

d1

∫

∂Ω
g2(x, t)do.

Integrating over time we find (45), and integrating a second time w.r.t. time yields (46). �

By (43), the key step to minimize the right hand sides in (45),(46) for given a, is to approx-
imately solve for f the integral equation

(Kρf)(t) := d1π
−3/2(Fρ,3f)(t) + 2Dπ−3/2(Fρ,5f)(t)

!
= 4Dd2â(t) (47)

with â(t) = a(t)− a0, and f = b̃+ 4πDα0. Formally, for τ > 0

lim
ρ→0

(Fρ,kf)(τ) = Γ(k/2− 1)f(τ) =: (F0,kf)(τ).

With Γ(1/2) =
√
π and Γ(3/2) =

√
π/2, we may write

lim
ρ→0

(Kρf) = π−1(d1 +D)f(τ) =: (K0f)(τ).

In order to establish this equation not only formally we define the residual

(Rρf)(τ) := (Kρf)(τ)− (K0f)(τ).

Lemma A.3 Let f ∈ C0,1/2(R+), f(0) = 0. Then for all t1 > 0 there exists a C > 0 such that

‖Rρf‖C0[0,t1] ≤ C‖f‖C0,1/2[0,t1]
ρ1/2.

Proof. We have

(Fρ,kf)(τ)− (F0,kf)(τ) =
1

ρ

∫ τ

0
(f(τ − x)− f(τ))(ρ/x)k/2e−ρ/xdx+

f(τ)

ρ

∫ ∞

τ
(ρ/x)k/2e−ρ/xdx

=

∫ ∞

ρ/τ
[f(τ − ρ/ζ)− f(τ)]ζk/2−2e−ζdy + f(τ)

∫ ρ/τ

0
ζk/2−2e−ζdζ

= ρα
∫ ∞

ρ/τ

f(τ − ρ/ζ)− f(τ)

|(τ − ρ/ζ)− τ |α ζk/2−2−αe−ζdy + f(τ)

∫ ρ/τ

0
ζk/2−2e−ζdζ
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for α ∈ (0, 1). Thus, with A = π−3/2d1 and B = 2π−3/2D,

|(Kρf)(τ)− (K0f)(τ)| ≤
∣∣∣∣∣ρ
α1 A

∫ ∞

ρ/τ

f(τ − ρ/ζ)− f(τ)

|(τ − ρ/ζ)− τ |α1
ζ3/2−2−α1e−ζdy

∣∣∣∣∣

+

∣∣∣∣∣ρ
α2 B

∫ ∞

ρ/τ

f(τ − ρ/ζ)− f(τ)

|(τ − ρ/ζ)− τ |α2
ζ5/2−2−α2e−ζdy

∣∣∣∣∣

+

∣∣∣∣∣ f(τ)
∫ ρ/τ

0
(Aζ3/2−2 +Bζ5/2−2)e−ζdζ

∣∣∣∣∣
=:I1(τ) + I2(τ) + I3(τ).

Select α1 ∈ (0, 1/2). We find by partial integration

I1(τ) ≤ρα1 A

∫ ∞

ρ/τ

|f(τ − ρ/ζ)− f(τ)|
|(τ − ρ/ζ)− τ |α1

ζ3/2−2−α1e−ζdζ ≤ ρα1A|f |C0,α1 [0,τ ]

(∫ ∞

ρ/τ
ζ−1/2−α1e−ζdζ

)

=ρα1A|f |C0,α1 [0,τ ]

(
−1

(1/2− α1)
(ρ/τ)1/2−α1e−ρ/τ +

1

(1/2− α1)

∫ ∞

ρ/τ
ζ1/2−α1e−ζdζ

)

≤ρα1C‖f‖C0,α1 [0,τ ](ρ/τ)
1/2−α1 = ρ1/2C ‖f‖C0,α1 [0,τ ]/τ

1/2−α1 ≤ ρ1/2C ‖f‖C0,1/2[0,τ ].

In I2 we may directly choose α2 = 1/2, and obtain I2(τ) ≤ ρ1/2B ‖f‖C0,1/2Γ(3/2− 1/2). Last,

I3(τ) ≤|f(τ)|
∫ ρ/τ

0
(Aζ−1/2 +Bζ1/2)e−ζdζ

=|f(τ)|
(∫ ρ/τ

0
(A+B/2)ζ−1/2e−ζdζ −B(ρ/τ)1/2e−ρ/τ

)

≤|f(τ)|
∫ ρ/τ

0
(A+B/2)ζ−1/2dζ −B(ρ/τ)1/2e−ρ/τ ≤ ρ1/2

f(τ)

τ1/2
C ≤ Cρ1/2 ‖f‖C0,1/2

where we used in the last step that f(0) = 0. �

Lemma A.4 For all t1 > 0 there exists a C > 0 such that if b̃(t) =M a(t) then

∫ t

0

∫

∂Ω
g2(x, τ)dodτ ≤ Ct

(
1 + ‖a‖2

C0,1/2

)
for t ≤ t1. (48)

Proof. First note that without suitable choice of b̃, e.g., for b̃ ≡ 0 and a 6≡ 0, we obviously have∫ t
0

∫
∂Ω g

2(x, τ)dodτ ∼ R−2. Denote

ã(t) := a(t)− a0

such that ĉ(t) := b̃ − 4πDα0 = ˆ̃a. Then, since ã(0) = 0, we have, for |x| = R, and using
ρ = R2/(4D),

∫ t

0
g2(x, τ)dτ =

∫ t

0

[
1

R4

∫ τ

0

ˆ̃a(τ − σ)φ
( R2

4Dσ

)
dσ − d2

R2
ã(τ) +

1

R
g2(x, τ)

]2
dτ

=

∫ t

0

[
1

ρ

1

4D
(Kρ

ˆ̃a(τ)− 4Dd2ã(τ)) +
1

R
g2(x, t)

]2
dτ

≤ 1

ρ2
1

16D2

∫ t

0
|(Kρ

ˆ̃a)(τ)− 4Dd2ã(τ)|2dτ +
1

R2

∫ t

0
g22(x, τ)dτ.
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Thus, choosing ˆ̃a =Mã(t) the first integrand can be estimated, for each τ , as

|(Kρ
ˆ̃a)−4Dd2ã| = |Kρ

ˆ̃a−K0
ˆ̃a| ≤ ‖Rˆ̃a‖C0 ≤ C ρ1/2 ‖ˆ̃a‖C0,1/2 ≤ CR2(1 + ‖a‖C0,1/2).

Moreover, 1
R2

∫ t
0 g

2
2(x, τ)dτ ≤ CtR−2, thus

∫ t

0
g2(x, τ)dτ ≤ CtR−2(1 + ‖a‖2

C0,1/2),

and integrating over ∂Ω now yields the result. �

To compare solutions of the full problem (39) and the auxiliary problem (40) we finally need
to estimate the differences of the traces of u and p on ∂Ω. For this we start with some explicit
calculations involving T̂R. For b ∈ C1(R+), let p = p1 + p2 be the solution of

∂tp = D∆p+M b(t)δ0, p0 = α0ψ,

i.e., p1(x, t) =
∫ t
0 k(x, t− τ)(Mb(τ)− 4πDα0)dτ + α0ψc, cf. (44), such that

(T̂RMb)(t) =
1

R

∫

∂Ω
p1(x, t)do.

We find

(T̂RMb)(t) =
1

R

∫

∂Ω

∫ t

0

1

(4πD(t− τ))3/2
e−x

2/(4D(t−τ))(Mb(τ)− 4πDα0)dτdo+ 4πα0

= 4πR

∫ t

0

1

(4πD(t− τ))3/2
e−R

2/(4D(t−τ))(Mb(τ)− 4πDα0)dτ + 4πα0

=
1√
πD

∫ ∞

R2/4Dt
ξ−1/2e−ξ(Mb(t−R2/(4Dξ)− 4πDα0)dξ + 4πα0.

Moreover, using ∫ ∞

R2/4Dt
ξ−1/2e−ξdξ = Γ(1/2)−

∫ R2/4Dt

0
ξ−1/2e−ξdξ

and Mb(0) = 4πDα0 we obtain
∣∣∣∣(T̂RMb)(t)− M

D
b(t)

∣∣∣∣

=

∣∣∣∣
M√
πD

[
(b(t)− 4πDα0)

∫ R2/4Dt

0
ξ−1/2e−ξdξ +

∫ ∞

R2/4Dt
ξ−1/2e−ξ(b(t− R2

4Dξ
)− b(t))dξ

]∣∣∣∣

≤C‖b′‖C0

∫ R2/4Dt

0
ξ−1/2e−ξdξ + CR2‖b′‖C0

∫ ∞

R2/4Dt
ξ−3/2e−ξdξ

≤CR
√
t‖b′‖C0 (49)

Finally, for a, b ∈ C0 we have

‖T̂Ra− T̂Rb‖L∞(0,t1) ≤ C‖a− b‖L∞(0,t1). (50)

Setting ζ = a− b and assuming w.l.o.g. a0 = b0 this follows from

‖T̂Ra− T̂Rb‖L∞(0,t1) =
1

R
sup

t∈(0,t1)

∫

∂Ω

∫ t

0

1

(4πD(t− τ))3/2
e−x

2/(4D(t−τ))ζ(τ)dτdo

≤4π‖ζ‖L∞(0,t1)R sup
t∈(0,t1)

∫ t

0

1

(4πD(t− τ))3/2
e−R

2/(4D(t−τ))dτ

≤C‖ζ‖L∞(0,t1) sup
t∈(0,t1)

∫ ∞

R2/(4Dt)
ξ−1/2e−ξdξ ≤ C‖ζ‖L∞(0,t1)Γ(1/2) = C‖ζ‖L∞(0,T ).
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Lemma A.5 For a, b as above we have ‖TRa− T̂RMa‖L1(0,t1) ≤ CRt1(1 + ‖a‖C0,1/2).

Proof. We have

(TRa)(t)− (T̂RMa)(t) =
1

R

∫

∂Ω
u(x, t)− p1(x, t)do =

1

R

∫

∂Ω
w(x, t) + p2(x, t)do,

with ‖p2‖L∞(∂Ω) ≤ C, cf. Lemma A.1. Next, reasoning like in Lemma A.2 we have

0 ≤ D

∫ t

0

∫

Ω
|∇w|2dxdτ + 1

2

∫

Ω
w2(x, t)dx

= −
∫ t

0

d1
R

∫

∂Ω
w2do−

∫

∂Ω
[R−1/2d

1/2
1 w][g(x, t)R1/2d

−1/2
1 ]dodτ

≤ − d1
2R

∫ t

0

∫

∂Ω
w2dodτ +

R

2d1

∫ t

0

∫

∂Ω
g2(x, t)dodτ

and hence
∫ t

0

∫

∂Ω
w2dodτ ≤ R2

d21

∫ t

0

∫

∂Ω
g2dodτ.

Thus

‖TRa− T̂RMa‖L1(0,t1) ≤
1

R

∫ t1

0

∣∣∣∣
∫

∂Ω
w(x, τ)do

∣∣∣∣ dτ + CRt1

≤ 1

R

∫ t1

0

(∫

∂Ω
12do

)1/2(∫

∂Ω
w(x, τ)2do

)1/2

dτ + CRt1 ≤ C

∫ t1

0

(∫

∂Ω
w2(x, τ)do

)1/2

dτ + CRt1

≤
√
t1C

(∫ t1

0

∫

∂Ω
w2(x, τ)do

)1/2

dτ + CRt1 ≤ CR
√
t1

(∫ t1

0

∫

∂Ω
g2(x, τ)dodτ

)1/2

+ CRt1

and the result now follows from Lemma A.4. �

A.3 The full problem

Proof of Theorem 2.4. Let a, b be the solutions of (14), (15), respectively. We write the
ODEs for a resp. b as

a′(t) = f(a(t))− 4πd2a(t) + d1(TRa)(t), a(0) = a0,

b′(t) = f(b(t))− 4πd2b(t) + d1(T̂RMb)(t), b(0) = a0,

where we know that

‖TRa− T̂RMa‖L1(0,t1) ≤ CRt1(1 + ‖a‖C0,1/2),

‖T̂Ra− T̂Rb‖L∞(0,t1) ≤ C2‖a− b‖L∞(0,t1).

For ζ = a− b we obtain

|ζ(t)| =
∣∣∣∣ζ(0) +

∫ t

0
ζ ′dτ

∣∣∣∣

≤
∫ t

0

[
|f(a)−f(b)|+ 4πd2|a− b|+ d1|TRa− T̂RMa|+ d1|T̂RMa− T̂RMb|

]
dτ

≤ d1‖TRMa− T̂RMa‖L1 + C

∫ t

0
ηdτ ≤ CRt(1 + ‖a‖C0,1/2) + C

∫ t

0
ηdτ
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where η(τ) = sup0≤σ≤τ ζ(σ). In particular, η(t) ≤ CRt(1 + ‖a‖C0,1/2) + C
∫ t
0 η(τ)dτ , and

Gronwall’s inequality yields the result. �

Proof of Corollary 2.5. The solutions a, b of (14), (15) depend on R and thus henceforth
in particular b is denoted by bR. From Theorem 2.4 we have bR(t) = a(t) + RcR(t) with
‖cR(t)‖C0 ≤ C and a ∈ C0([0, t1]) uniformly bounded by Theorem 2.1 and also equicontinuous
since also ‖a‖C1 ≤ C independent of R. Therefore, (bR)0<R<R0 is also uniformly bounded and
equicontinuous, and thus by Arzela–Ascoli we have bR → b ∈ C0([0, t1]) as R → 0, at least for
a subsequence. It remains to show that b fulfills (4).

Equation (15) for bR is equivalent to

bR(t) = bR(0) +

∫ t

0
hR(bR)(τ)dτ

with hR(bR)(τ) = f(bR(τ))− 4πd2bR(τ) + d1(T̂RMbR)(τ). We show that

∫ t

0
hR(bR)(τ)dτ →

∫ t

0
h(b(τ))dτ for R→ 0

with h(b(τ)) = f(b(τ))−Mb = f(b(τ))− 4πd2b(τ)+d1
M
D b(τ). For the first two terms in hR(bR)

we have uniform convergence |f(bR(τ))−4πd2bR(τ)−f(b(τ))−4πd2b(τ)| ≤ C‖bR− b‖C0 ≤ CR.
Finally, using (49), and setting bR = b+ReR with ‖eR‖C0 ≤ C and eR(0) = 0 we also find

∫ t

0

∣∣∣∣(T̂RMbR)(τ)−
M

D
b(τ)

∣∣∣∣ dτ ≤
∫ t

0

∣∣∣∣(T̂RMb)(τ)−M
D
b(τ)

∣∣∣∣+R
∣∣∣(T̂ReR)(τ)

∣∣∣ dτ ≤ CR‖b‖C1 (51)

uniformly in 0 ≤ t ≤ t1. �

A.4 Improved Approximation with delay

In Lemma A.3 we showed that, for f(0) = 0,

‖Rρf‖C0 ≤ Cρ1/2‖f‖C0,1/2[0,t1]
, (52)

with the residual Rρf defined by
Rρf = Kρf −K0f

where we recall (Kρf)(t) = d1π
−3/2(Fρ,3f)(t) + 2Dπ−3/2(Fρ,5f)(t), K0f(t) = π−1(d1 +D)f(t).

This was used in Lemma A.4 to construct and estimate the approximation b̃(t) =Ma(t) of the
solution b of the integral equation

Kρb = 4Dd2a. (53)

The purpose of this appendix is to find the improved approximation bdel of (53), i.e., to prove
Theorem 2.6. From Kρ → K0 we may use, for ρ sufficiently small, a formal Neumann’s series

K−1
ρ = K−1

0 (Id− (Id−K−1
0 Kρ))

−1 = K−1
0

(
2Id−K−1

0 Kρ +O
(
(Id−K−1

0 Kρ)
2
))

= 2K−1
0 Id−K−2

0 Kρ +O
(
K−1

0 (Id−K−1
0 Kρ)

2
)
. (54)

The problem with this formula is the loss of regularity in (52). To iterate, i.e., to estimate the
second order terms K−2

0 (K0 −Kρ)
2 in (54), we need a C0,1/2-bound for Rρf .

Lemma A.6 Let f ∈ C1,1/2(R+), f(0) = 0. Then

‖Rρf‖C0,1/2[0,t1]
≤ C‖f‖C1,1/2[0,t1]

ρ1/2. (55)
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We postpone the proof to the end of the section and first show that we obtain an improved
approximation of a.

Corollary A.7 Let a ∈ C1,1/2 with a(0) = 0. Defining

bdel(t) = ((2K−1
0 −K−2

0 Kρ)4Dd2a)(t) = 2Mb(t)− πM

d1 +D

∫ t

0
b(t− σ)

4D

R2
φ(R2/(4Dσ)) dσ

(56)

we find
‖(Kρbdel)(τ)− 4Dd2a(τ)‖C0 ≤ Cρ‖a‖C1,1/2 .

Proof. This follows from combining Lemma A.3 and Lemma A.6, i.e.,

(
√
π(A+ 2B))2|Kρbdel − a| = (

√
π(A+B/2))2

∣∣∣∣
−KρKρa

π(A+B/2)2
+

2Kρa√
π(A+B/2)

− a

∣∣∣∣
=
∣∣−Kρ(Kρa−

√
π(A+B/2)a+

√
π(A+B/2)(Kρa−

√
π(A+B/2)a

∣∣

= |Rρ(Rρa)| ≤ Cρ1/2‖Rρa‖C0,1/2 ≤ Cρ‖a‖C1,1/2 . �

Proof of Theorem 2.6. We now compare the solution a of (14) for a0 = 0 and u0 = 0 with
the solution of the delayed ODE

b′(t) = f(b(t))− 4πd2b+ d1(T̂Rbdel)(t), b(0) = 0. (57)

Since a ∈ C1,1/2([0, t1]), see Remark 2.2, and as

g(x, t) =
1

R4

∫ t

0
b(τ)φ

(
R2/(4D(t− τ))

)
dτ − d2a(t)

R2
=

1

4DR2

[
KR2/(4D)bdel)(t)− 4Dd2a(t)

]
,

we find
∫ t

0

∫

∂Ω
g2(x, τ)do ≤ 1

16D2R4

∫ t

0

∫

∂Ω
[KR2/(4D)bdel)(t)− 4Dd2a(t)]

2 dt

≤ 1

16D2R4

∫ t

0

∫

∂Ω
[C‖a‖C1,1/2R2/(4D)]2 dt = CtR2 ‖a‖2

C1,1/2 ,

and the remainder of the proof works as the one of Theorem 2.4. �

It remains to give the somewhat lengthy
Proof of Lemma A.6. We claim that ‖Rρf‖C0,1/2 = ‖Kρf − K0f‖C0,1/2 ≤ Cρ1/2‖f‖C1,1/2

where
(Rρf)(τ) = (Fρ,3f)(τ) + Fρ,3f)(τ)− (F0,3f(τ) + F0,5f(τ)).

For k = 3, 5 we split

|τ2 − τ1|−1/2

[
(Fρ,kf)(τ1)− (Fρ,kf)(τ2)− (F0,kf(τ1)− F0,kf(τ2))

]

=|τ2 − τ1|−1/2

(∫ ∞

ρ/τ1

[f(τ1 − ρ/ζ)− f(τ1)]ζ
k/2−2e−ζdy + f(τ1)

∫ ρ/τ1

0
ζk/2−2e−ζdζ

)

− |τ2 − τ1|−1/2

(∫ ∞

ρ/τ2

[f(τ2 − ρ/ζ)− f(τ2)]ζ
k/2−2e−ζdy + f(τ2)

∫ ρ/τ2

0
ζk/2−2e−ζdζ

)

=T1,k + T2,k + T3,k + T4,k,
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where 0 < τ1 < τ2 < t1 and

T1,k =|τ2 − τ1|−1/2

∫ ∞

ρ/τ1

[f(τ1 − ρ/ζ)− f(τ2 − ρ/ζ)− f(τ1) + f(τ2)]ζ
k/2−2e−ζ dζ,

T2,k =|τ2 − τ1|−1/2

∫ ρ/τ1

ρ/τ2

[f(τ2 − ρ/ζ) + f(τ2)]ζ
k/2−2e−ζdζ,

T3,k =|τ2 − τ1|−1/2f(τ1)

∫ ρ/τ1

ρ/τ2

ζk/2−2e−ζdζ,

T4,k =|τ2 − τ1|−1/2[f(τ1)− f(τ2)]

∫ ρ/τ2

0
ζk/2−2e−ζdζ.

In the following we estimate term by term, always assuming 0 < τ1 < τ2 < t1. The critical
terms are T1,k which yield ‖f‖C1,1/2 on the right hand side of (55), while the estimates for all
other Ti,k involve only ‖f‖C1 .
a) ad T1,k. We have

T1,k =

∫ ∞

ρ/τ1

(∫ ρ/ζ

0

|f ′(τ2 − x)− f ′(τ1 − x)|√
|τ2 − τ1|

dx

)
ζk/2−2e−ζdζ

≤ ρ

∫ ∞

ρ/τ1

‖f ′‖C0,1/2ζk/2−3e−ζdζ ≤ Cρ1/2‖f‖C1,1/2 ,

where for k = 3 we used

∫ ∞

ρ/τ1

ζ3/2−3e−ζdζ =

∫ 1

ρ/τ1

ζ3/2−3e−ζdζ +
∫ ∞

1
ζ3/2−3e−ζdζ ≤ 2ρ−1/2τ

1/2
1 + C.

while for k = 5 we integrate by parts.
b) ad T3,k. For k = 3 we have

|T3,3| =
|f(τ1)|√
τ2 − τ1

∫ ρ/τ1

ρ/τ2

ζ−1/2e−ζdζ ≤ |f(τ1)|√
τ2 − τ1

∫ ρ/τ1

ρ/τ2

ζ−1/2dζ

=|f(τ1)|2 ρ1/2
(

1√
τ1

− 1√
τ2

)
1√

τ2 − τ1
= 2ρ1/2

|f(τ1)|√
τ1τ2

√
τ2 −

√
τ1√

τ2 − τ1

≤2ρ1/2
|f(τ1)|
τ1

(
√
τ2 −

√
τ1)(

√
τ1 +

√
τ2)√

τ2 − τ1(
√
τ1 +

√
τ2)

= 2ρ1/2
|f(τ1)|
τ1

√
τ2 − τ1√
τ1 +

√
τ2
.

Now, f(τ1)/τ1 = f ′(θ) for some θ ∈ (0, τ1) as f(0) = 0, and thus |f(τ1)/τ1| ≤ ‖f‖C1 . The second
factor

√
τ2 − τ1/(

√
τ1+

√
τ2) = 1 for τ1 = 0 and is monotonously decreasing in τ1, thus bounded

on 0 < τ1 < τ2. Hence |T3,3| ≤ Cρ1/2‖f‖C1

For k = 5 we use integration by parts to find

|T3,5| =
|f(τ1)|√
τ2 − τ1

∫ ρ/τ1

ρ/τ2

ζ1/2e−ζdζ

≤ |f(τ1)|√
τ2 − τ1

1

2

[
−
(
ρ

τ1

)1/2

e−ρ/τ1 +

(
ρ

τ2

)1/2

e−ρ/τ2 +
∫ ρ/τ1

ρ/τ2

ζ−1/2e−ζdζ

]
.
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From k = 3 we already know that |f(τ1)|
∫ ρ/τ1
ρ/τ2

ζ−1/2e−ζdζ/
√
τ2 − τ1 ≤ C

√
ρ‖f‖C1 , and it re-

mains to estimate the remaining part

|f(τ1)|√
τ2 − τ1

1

2

[
−
(
ρ

τ1

)1/2

e−ρ/τ1 +

(
ρ

τ2

)1/2

e−ρ/τ2

]
=

√
ρ

2

|f(τ1)|√
τ1τ2

−√
τ2e

−ρ/τ1 −√
τ1e

−ρ/τ2
√
τ2 − τ1

=

√
ρ

2

|f(τ1)|√
τ1τ2

√
τ1 −

√
τ2√

τ2 − τ1
e−ρ/τ1 +

√
ρ

2

|f(τ1)|√
τ1τ2

√
τ1
e−ρ/τ2 − e−ρ/τ1√

τ2 − τ1
.

The first term in the last sum is again known from case k = 3. Concerning the second we

have |f(τ1)|/
√
τ1τ2 ≤ ‖f‖C1 as before, and it remains to show that

√
τ1
e−ρ/τ2−e−ρ/τ1√

τ2−τ1 is bounded.

With x = τ1/τ2 ∈ (0, 1) and z = ρ/τ2 ∈ R+ we have

√
τ1
e−ρ/τ2 − e−ρ/τ1√

τ2 − τ1
=
√
τ1/τ2

e−ρ/τ2 − e−(ρ/τ2)(τ2/τ1)

√
1− τ1/τ2

=
√
x
e−z − e−z/x√

1− x
= h1(x, z).

We fix x0 ∈ (0, 1) and compute z0 = z0(x0) = −x0 ln(x0)/(1 − x0) which maximizes h1(x0, ·).
This defines

h2(x) =
√
x
e

x ln(x)
1−x − e

x ln(x)
x(1−x)

√
1− x

=
√
xe

ln(x)
1−x

1/x− 1√
1− x

=
e

ln(x)
1−x

√
x

√
1− x = x1/(1−x)−1/2

√
1− x,

which on [0, 1] is bounded by x1/2(1− x)1/2 ≤ 1/2 Alltogether, |T3,k| ≤ Cρ1/2‖f‖C1 .
c) ad T2,k. For k = 3 we have

|T2,3| ≤
ρ‖f ′‖C0√
τ2 − τ1

∫ ρ/τ1

ρ/τ2

ζ3/2−3dζ ≤ ρ1/2‖f ′‖C0

√
τ2 −

√
τ1√

τ2 − τ1
.

The last factor equals

√
τ2 − τ1√
τ1 +

√
τ2

and is therefore bounded as in b). Thus |T2,3| ≤ Cρ1/2‖f‖C1 .

Also |T2,5| ≤ Cρ1/2‖f‖C1 by a similar estimate.

d) ad T4,k. Here |T4,3| ≤ ‖f ′‖C0

√
τ2 − τ1

∫ ρ/τ2
0 ζ3/2−2dζ ≤ Cρ1/2‖f‖C1 , and integrating by parts

for k = 5 yields a similar result. �

B Proof of approximation results: several cells

The basic idea for N ≥ 2 cells is to introduce a delta source for each cell, i.e., to consider

pt = D∆p+

N∑

i=1

b̃i(t)δxi(x), p|t=0 = ψc|t=0, (58a)

b′i = f(bi)− 4πd2bi +

∫

∂Ωi

d1
R
pdo, bi(0) = ai0, i = 1, . . . , N, (58b)

with ψc(x, t) =
N∑

i=1

d2ai(t)

d1+D

χ(‖x− xi‖)
‖x− xi‖

∣∣∣∣
Ω

, cf. (24). The ODEs (58b) can then be rewritten as

b′i = f(bi)− 4πd2bi + d1(T̂
i
Rb̃)(t) + r, (59)

(T̂ iRb̃)(t) =
1

R

∫

∂Ωi

p(x, t)do =
1

R

∫

∂Ωi



∫ t

0

∑

j

1

(4πD(t−τ))3/2 e
−‖x−xj‖2/4D(t−τ)b̃j(τ)dτ


 do,

(60)
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with r due to the initial conditions, i.e., r ≡ 0 if ψc|t=0 = 0. The proof Theorem 2.10 again
consists of two parts: first, given a := (a1(t), .., aN (t)), we need a good choice of b̃ := (b̃1, .., b̃N )
to control the difference between the solution p of (58) and the outer field u(x, t) on the bound-
ary ∂Ω; see Lemma B.4. Second, the communication terms

∫
∂Ωi

d1
R p do are to be replaced by

functionals of b̃; see Lemma B.6. The proofs parallel that for one cell; most computations are
straight forward (though often tedious) generalization of the one-cell-case. We only sketch the
differences, and start with the scaled case ‖xi − xj‖ = δij = R2η δ̃ij .

Using explizit heat kernel calculations we first obtain the following generalization of
Lemma A.1.

Lemma B.1 Let w(x, t) = u(x, t)− p(x, t)|Ω. Then w(x, t) satisfies

wt = D∆w in Ω, w(0, x) = 0, Biw = −gi(x, t) on ∂Ωi, (61)

where

gi(x, t) =
1

16D2

1

ρ

{
(Kρ[b̃i − 4πDαi0])(t)− 4Dd2(ai(t)− ai0)

}

+
∑

j 6=i

{
d1

16D2
ρ−1/2−η(Hj

1,ρb̃j)(x, t)− 2D(4D)4−2ηρ−η/2(H i,j
2,ρb̃j)(x, t)

}

+ ρ−1/2gi2(x, t),

with

(Hj
1,ρf)(x, t) = ρηπ−3/2

∫ t

0
f(t− τ) τ−3/2e−‖x−xj‖2/(4Dτ) dτ,

(H i,j
2,ρf)(x, t) = ρη−1/2π−3/2

∫ t

0
f(t− τ) τ−5/2 e−‖x−xj‖2/(4Dτ)dτ

〈
x− xi, x− xj

〉
,

and ‖gi2‖∞ = O(1).

Remark B.2 The reason for splitting off ρ−1/2−η respectively ρ−η/2 from Hj
1,ρf and H i,j

2,ρf is

that this way both terms are of order ρ0. For Hj
1,ρf we show this explicitly in Lemma B.7 below,

while for H i,j
2,ρf we may estimate, using ‖x− xi‖ = O(ρ1/2) and ‖xi − xj‖ = O(ρη/2),

‖H i,j
2,ρf‖C0 ≤ Cρ3η/2‖f‖C0

∫ t

0
τ−5/2e−ρ

η/τ ≤ C‖f‖C0Γ(3/2).

Thus, the second interaction term H i,j
2,ρb̃j can be neglected, while the first interaction term has

to be taken into account, also if we scale the distances of cells ‖xi − xj‖ by ρη, η ∈ (0, 1/2).

B.1 Low order approximation

Let δij = R2η δ̃ij . Similarly to Kρ in Lemma A.3, the interaction delay terms Hj
1,ρf may be

approximated by undelayed terms as ρ→ 0. Also the proof parallels that of Lemma A.3.

Lemma B.3 Assume η ∈ (0, 1/2) and f ∈ C0,1/2[0, t]. There exists a C > 0 such that for all
x ∈ ∂Ωi and j 6= i

‖Hj
1,ρf(x, ·)−H i,j

1,0f(·)‖C0 ≤ Cρη‖f‖C0,1/2[0,t], where H i,j
1,0f(t) :=

(4D)1/2−η

πδ̃i,j
f(t).
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We now transfer Lemma A.4 and explain the (to this order) optimal choice b̃i.

Lemma B.4 Let η ∈ (0, 1/2). For all t1 > 0 there exists a C > 0 such that if

b̃i(t) =Mai(t)− (4Dρ)1/2−η
d1M

d1 +D

∑

j 6=i

aj(t)

δ̃i,j
, (62)

then for i = i, . . . , N and t ≤ t1

∫ t

0

∫

∂Ωi

g2i (x, τ)dodτ ≤ Ct(1 + ‖a‖2
C0,1/2).

Proof. We know that

∫ t

0
gi(x, τ)

2 dτ =
1

(16D2)2

∫ t

0

{
1

ρ

[
(Kρ[b̃i − 4πDαi0])(τ)− 4Dd2(ai(τ)− ai0)

+
∑

j 6=i
d1ρ

1/2−η(Hj
1,ρb̃j)(x, τ)

]
+O(ρ−1/2)

}2

dτ

≤
(

1

16D2

)2

ρ−2 Ii,ρ(x, t) + Ctρ−1,

with

Ii,ρ(x, t) =

∫ t

0

[
(Kρ[b̃i − 4πDαi0])(τ)− 4Dd2(ai(τ)− ai0) +

∑

j 6=i
d1ρ

1/2−η(Hj
1,ρb̃j)(x, τ)

]2
dτ

The aim is to select b̃i in such a way that Ii,ρ = O(ρ). We know that, for x ∈ ∂Ωi,

|Kρf −K0f | ≤ Cρ1/2‖f‖C0,1/2 , |Hj
1,ρf −Hj

1,0f | ≤ Cρη‖f‖C0,1/2

where K0f =
d1 +D

π
f and Hj

1,0f =
(4D)1/2−η

πδ̃i,j
f . Thus, if we define I0 by

Ii,0(t) =

∫ t

0

[
(K0[b̃i − 4πDαi0])(τ)− 4Dd2(ai(τ)− ai0) +

∑

j 6=i
d1ρ

1/2−η(Hj
1,0b̃j)(τ)

]2
dτ

=

∫ t

0

[
d1 +D

π
[b̃i(t)− 4πDαi0])− 4Dd2(ai(t)− ai0) +

∑

j 6=i
(4Dρ)1/2−η

d1

πδ̃i,j
b̃j(t)

]2
dt,

then |Iρ−I0| ≤ Cρ‖b̃i‖C0,1/2 , using αi0 =
M
4πDai0. It is sufficient to choose b̃i, such that I0 = O(ρ).

Defining b̃i =Mai + ρ1/2−ηBi and solving for Bi at O(ρ1/2−η) yields (62). �

Given ai(t) we have an approximation p of u such that gi = (Bu−Bp)|Ωi is O(1). Next we
control the inflow into the cell by a lemma paralleling Lemma A.5; we skip the proof.

Lemma B.5 Given a = (a1, .., aN ), let b̃i be defined by (62). Let Ti,Ra = 1
R

∫
∂Ωi

u(t, x) and

T̂i,Rb̃ = 1
R

∫
∂Ωi

p1(t, x) where p1 is the solution of (58) with zero initial data, as in (44) for
N = 1. There exists a C > 0 such that

‖Ti,Ra− T̂R,ib̃‖L1(0,t1) ≤ Cρ1/2(1 + ‖a‖2
C0,1/2).
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The Lipschitz-continuity of T̂ iR can be shown similarly like that of T̂R, and the proof of The-
orem 2.10, i.e., the justification of the delayed ODE system (32), now follows from Gron-
walls inequality, exactly as in the proof of Theorem 2.4, replacing ρ by R2/(4D) to obtain

b̃i(t) =Mai(t)−R1−2η d1M

d1 +D

∑

j 6=i

aj(t)

δ̃i,j
.

In order to obtain an ODE from (32) we approximate the delays

Cij(t) :=
1

R

∫

∂Ωi

∫ t

0

1

(4πD(t− τ))3/2
e−‖x−xj‖2/4D(t−τ)b̃j(τ)dτdo.

Lemma B.6 There exists a C > 0 such that
∣∣∣∣∣Cii(t)−

b̃i(t)

D

∣∣∣∣∣ ≤ CRt1/2‖b̃′‖C0 , and, for i 6= j,

∣∣∣∣∣R
−(1−2η)Cij −

b̃j(t)

Dδ̃ij

∣∣∣∣∣ ≤ CRt1/2‖b̃′‖C0 .

Proof. The first estimate has been already derived in (49). Recalling ‖xi−xj‖ = δij = δ̃ijR
2η

we obtain for j 6= i

R−(1−2η)Cij = R−(1−2η) 1

R

∫

∂Ωi

∫ t

0

1

(4πD(t− τ))3/2
e−‖x−xj‖2/4D(t−τ)b̃j(τ)dτdo

= 4πR2η

∫ t

0
(4πDτ)−3/2e−(δij+O(R))2/4Dτ b̃j(t− τ)dτ

=
R2η

Dπ1/2(δij +O(R))

∫ ∞

(δij+O(R))/4Dt
ξ−1/2e−ξ b̃j(t− (δij +O(R))2/4Dξ)dξ

→ 1

Dπ1/2δ̃ij
Γ(1/2)b̃j(t) =

1

Dδ̃ij
b̃j(t) as R→ 0,

as in (49). �

Similar to (51), this last estimate is used in the proof of Corollary 2.11, that is, the justifi-
cation of the approximate system (31), i.e.,

b′i = f(bi)− 4πd2bi + d1

N∑

i=1

Cij = f(bi)−Mbi +R1−2η d1M

d1 +D

∑

j= 6=i

1

Dδ̃ij
bj , (63)

where in the second equality we dropped the O(R) resp. O(R2−2η) terms from Lemma B.6.

B.2 Improved Approximation

We now do not scale the distances between cells (η = 0), and aim at an error bound of order
R2. For simplicity we again assume zero initial conditions, s.t. αi0 = ai0 = 0 and consequently
gi,2 = 0 in Lemma B.1. The analysis proceeds similar to that before; the pertinent approximation

of Hj
1,ρ, however, is different.

Lemma B.7 There exists a C > 0 such that ‖Hj
1,ρf − Ii,j1,0f‖C0 ≤ Cρ1/2‖f‖C0[0,t] for x ∈ ∂Ωi,

where

Ii,j1,0f :=

∫ t

0
f(t− τ)π−3/2 τ−3/2 e−

‖xi−xj‖
2

4Dτ dτ. (64)
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Proof. For x ∈ ∂Ωi,

‖Hj
1,ρf − Ii,j1,0f‖C0[0,t] = sup

t1∈[0,t]

∣∣∣∣
∫ t1

0
f(t1 − τ)π−3/2 τ−3/2

(
e−

‖xi−xj‖
2

4Dτ − e−
‖x−xj‖

2

4Dτ

)
dτ

∣∣∣∣

≤ C‖f‖C0[0,t]

∫ ∞

0
τ−3/2

∣∣∣∣e
− ‖xi−xj‖

2

4Dτ − e−
‖x−xj‖

2

4Dτ

∣∣∣∣ dτ

≤ C‖f‖C0[0,t]

(∫ 1/
√
ρ

0
ζ−1/2

∣∣∣∣∣e
−ζ − e

− ‖x−xj‖
2

‖xi−xj‖
2 ζ

∣∣∣∣∣ dζ +
∫ ∞

1/
√
ρ
ζ−1/2

∣∣∣∣∣e
−ζ − e

− ‖x−xj‖
2

‖xi−xj‖
2 ζ

∣∣∣∣∣ dζ
)

Now, as |‖x− xj‖ − ‖xi − xj‖| ≤ Cρ,

T1 :=

∫ ∞

1/
√
ρ
ζ−1/2

∣∣∣∣∣e
−ζ − e

− ‖x−xj‖
2

‖xi−xj‖
2 ζ

∣∣∣∣∣ dζ =

∫ ∞

1/
√
ρ
ζ−1/2 e−ζ/2

∣∣∣∣∣e
−ζ/2 − e

−
(

‖x−xj‖
2

‖xi−xj‖
2− 1

2

)

ζ

∣∣∣∣∣ dζ

≤ 2
√
ρ ρ−1/2

∫ ∞

1/
√
ρ
ζ−1/2 e−ζ/2 dζ ≤ C

√
ρ

by l’Hospital’s rule. Similarly,

T2 :=

∫ 1/
√
ρ

0
ζ−1/2

∣∣∣∣∣e
−ζ − e

− ‖x−xj‖
2

‖xi−xj‖
2 ζ

∣∣∣∣∣ dζ ≤ Cρ1/2
∫ 1/

√
ρ

0
ζ−1/2 e−ζ dτ,

using

∣∣∣∣
( ‖x− xj‖2
‖xi − xj‖2

− 1

)
ζ

∣∣∣∣ ≤ Cρρ−1/2 = Cρ1/2 for 0 ≤ ζ ≤ 1/
√
ρ. �

Lemma B.4 is slightly modified in order to define the appropriate approximation.

Lemma B.8 For all t1 > 0 there exists a C > 0 such that if

c̃0i,del(t) = M(2I −K−1
0 Kρ)(ai)(t)

c̃1i,del(t) =
πd1

d1 +D

∑

j 6=i
((2I −K−1

0 Kρ) ◦ Ii,j1,0)(c̃0j,del)(t)

c̃i,del(t) = c0i,del(t)− ρ1/2 c̃1i,del(t)

then, replacing b̃j by c̃j,del in the definition of g(x, t), for i = i, . . . , N and t ≤ t1

∫ t

0

∫

∂Ωi

g2i (x, τ)dodτ ≤ Cρ1/2t(1 + ‖a‖2
C1,1/2).

Proof. We start off as in the proof of Lemma B.4, and find that (ai,0 = 0, u0 = 0)

∫ t

0
gi(x, τ)

2 dτ ≤
(

1

(4D)2

)2 1

ρ2
Ii,ρ

where Ii,ρ assumes the form (η = 0, ai,0 = 0, u0 = 0 and replacing b̃j by c̃j)

Ii,ρ(x, t) =

∫ t

0

[
(Kρc̃i)(τ)− 4Dd2ai(τ) +

∑

j 6=i
d1ρ

1/2(Hj
1,ρc̃j)(x, τ)

]2
dτ
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We aim at a choice of c̃i that leads to Ii,ρ = O(ρ2). As we know from Corollary A.7 that
the integral equation Kρc̃i = 4Dd2ai is solved up to order ρ by the choice c̃0i,del(t) = M(2I −
K−1

0 Kρ)(ai)(t), we plug in the ansatz c̃i,del(t) = c0i,del(t)− ρ1/2Bi(t) to obtain

Ii,ρ(x, t) =

∫ t

0

[
(Kρc̃

0
i )(τ)− 4Dd2ai(τ)− ρ1/2KρBi(τ) +

∑

j 6=i
d1ρ

1/2(Hj
1,ρc̃

0
j )(x, τ) +O(ρ)

]2
dτ

=

∫ t

0

[
− ρ1/2


KρBi(τ) +

∑

j 6=i
d1(I

i,j
1,0c̃

0
j )(τ)


+

∑

j 6=i
d1ρ

1/2((Hj
1,ρ − IH i,j

1,0)c̃
0
j )(x, τ) +O(ρ)

]2
dτ

The natural choice for Bi that guarantees the necessary approximation order reads

Bi =
πd1

d1 +D
(2I −K−1

0 Kρ)
∑

j 6=i
(Ii,j1,0c̃

0
j )(τ).

As for x ∈ ∂Ωi we know ‖(Hj
1,ρ − Ii,j1,0)f‖C0 ≤ Cρ1/2‖f‖C0 , we find Ii,ρ = O(ρ2).

�

This lemma implies

‖T iRa− T̂ iRc̃del‖L1(0,t1) ≤ Cρ(1 + ‖a‖2
C1+1/2(0,t1)

),

and as T̂ iR is Lipschitz-continuous, Gronwall’s lemma yields the approximation theorem as before,
i.e., the solution c̃i,del of

c̃′i,del = f(c̃i,del)− 4πd2c̃i,del + T̂ iRc̃del (65)

approximates a(t) up to an error of O(ρ) = O(R2). In order to finish the proof of Theorem 2.12
it only remains to computate explicitly an approximation of

T̂ iRc̃i,del = R−1(4Dπ)−3/2

∫

∂Ωi

∫ t

0
τ−3/2

N∑

j=1

e−‖x−xj‖2/(4Dτ)c̃j,del(t− τ)dτdo

=
∑

j 6=i
ρ−1/2(4D)−2

∫

∂Ωi

(Hj
1,ρc̃i,del)(t, x)do+ T̂Rc̃i,del(t)

where, of course we take η = 0 in the defintion of Hj
1,ρ. Lemma B.7 indicates that in case j 6= i

and x ∈ ∂Ωi we have the estimate ‖(Hj
1,ρf)(t, x)− (Ii,j1,0f)(t)‖C0 ≤ Cρ1/2‖f‖C0 . Hence,

T̂ iRc̃i,del = T̂Rc̃i,del(t) +
π

D

∑

j 6=i
ρ1/2(Ii,j1,0c̃j,del)(t) +O(ρ).

If we take into account that c̃i,del(t) = c̃0i,del(t)− ρ1/2c̃1i,del(t), we find

T̂ iRc̃i,del = T̂Rc̃
0
i,del(t) + ρ1/2


 π

D

∑

j 6=i
(Ii,j1,0c̃

0
j,del)(t)− (T̂Rc̃

1
i,del)(t)


+O(ρ).

Thus we may replace T̂ iRc̃i,del by this expression in (65) without increasing the approximation
error and this completes the proof of Theorem 2.12.
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Remark B.9 In order to find stationary solutions of (35) we consider a constant function
c(t) ≡ f0 as input into the pertinent delays and consider the limit t → ∞. We either already
proved, or it is possible to prove with similar methods, that

c̃0i,del(t) =M(2I −K−1
0 Kρ)f0 → Mf0

Ii,j1,0f → f0

√
4D

πδij

πd1
d1 +D

∑

j 6=i
((2I −K−1

0 Kρ) ◦ Ii,j1,0)(c0j,del)(t) → M
d1
√
4D

(d1 +D)δij
f0

T̂R → f0/D.

Therefore, the stationary solutions of the DDE (35) and the ODE (31) agree (up to the scaling
of the cell distances in the ODE case). ⌋
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