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Abstract

We study the flow of an incompressible liquid film down a wavglime. Applying a Galerkin
method with only one ansatz function to the Navier—Stokasaggns we derive a second order
weighted residual integral boundary layer equation, whiciparticular may be used to describe
eddies in the troughs of the wavy bottom. We present numagsalts which show that our model
is qualitatively and quantitatively accurate in wide rasigé parameters, and we use the model to
study some new phenomena, for instance the occurrence afravgaive instability (at least in a
phenomenological sense) for laminar flows which does nat exier flat bottom.

1 Introduction

The gravity driven free surface flow of a viscous incompressible flawrdan inclined plate has various
engineering applications, for instance in cooling and coating proceBses flat bottom the problem,
governed by the Navier—Stokes equations, is extensively studiedmgmeally, numerically and analyt-
ically, see, e.g., [1] for a review. In particular it is well known that thetists a stationary solution with
a parabolic velocity profile and a flat surface, the so called Nusselt solwtioich is unstable to long
waves if the Reynolds number exceeds a critical valyg R 5/6 cot o, wherea is the inclination an-
gle [2, 3]. However, the Navier—Stokes equations in combination with tleesineface are hard to handle
and one is often not interested in the flow field but only in, e.g., the film thicklRieF hus there has been
much effort to derive model equations for the evolutiorFofBecause of the long wave character of the
instability, length scales of free surface perturbations are large cothfmatiee film thickness. Therefore
a small parameter can be introduced to scale downstream derivatives. By an asymptoansrp
approach a scalar evolution equation fowas derived in [4] and later corrected in [5]. However, this so
called Benney equation has finite-time blow-up solutions even at moderatml@synumbers, see [6].
Nevertheless, asymptotically it can be used to check the consistency o¥edprmdels, see [7].

Besides the reduction of the Navier—Stokes problem to a scalar equatithreffilm thicknesst” a
hierarchy of less drastic reductions has been studied, starting with sd balledary layer equations,
see again [1, Chapter 2], for instance. An important step was the tienivd an integral boundary layer
equation (IBL) by Shkadov in [8]. He used the averaging methodarfitin—Pohlhausen which consists
of taking a parabolic velocity profile like the stationary Nusselt solution aatarer the downstream
velocity component/ and integrating the streamwise momentum equation along tbeordinate per-
pendicglar to the bottom. This yields a system of two evolution equations fmd the local flow rate
Q=[, Udz.



Although the IBL reproduces various experimental observations likexiséeace of solitary waves
it shows the following inaccuracies:

1. The predicted critical Reynolds number differs from the exact vajueefactors /6.
2. The IBL is not consistent with the Benney equation.

3. The assumed parabolic velocity profile does not fulfill the dynamic banynebndition at second
order.

The first problem follows from a linear stability analysis which yieldg:Rs. = cot «. For the second
point one derives a scalar evolution equationfdirom the IBL. This can be done by enslaving the flow
rate @ to the film thickness' and expanding it in powers af which gives a scalar equation fofF
differing from the Benney equation already at ordesee [9]. The third problem is due to the fact that
the parabolic velocity profile has its maximum at the free surface which implg$F’) = 0.

Recently there has been much effort to overcome these problems. Alohdl{{ a two-equation
model forF’ and@ has been derived by a Galerkin method. Based again on a long wavesexpaf the
Navier—Stokes equations, the Nusselt solution and three more polynonpaksraqy in the derivation of
the Benney equation served as ansatz and test functions. The resultiebaoosisted of four evolution
equations forF,  and two other quantities measuring the deviation from the parabolic velocifijepro
From this a simplified model, called weighted residual integral boundary Eyeation (WRIBL) for
F and@ was derived which is consistent with the Benney equation at efdand predicts the correct
critical Reynolds number. However, this model does not reproducekneivn solitary wave solutions if
the Reynolds number exceeded a certain value only slightly larger than thkilitg threshold. This de-
ficiency can be cured by a Padike regularization method in [7]. Moreover, in numerical simulations the
extension of the WRIBL to three-dimensional flows yields excellent agreewith recent experimental
results from [11], see again [7]. See also [12] for further detailedarical studies of this model.

The problem over wavy bottom is studied much less extensively. Foriexgaal results we refer
to [13-19]. On the theoretical side, [16, 20] give an expansion ofsblusike stationary solutions in
suitable small parameters and an analysis of their stability. In [21-23] tinepnas studied numerically
by simulations of both the full Navier—Stokes problem and model equationg&den a similar way as
in [8]. Moreover, a detailed numerical stability analysis based on the N&tiekes equations has been
carried out [24]. In [25] a scalar Benney like model has been dérared studied numerically, and
in [26] an IBL over wavy bottom has been derived using Shkadov’s atketkinally, using the method
from [7, 10] a first-order WRIBL has been derived and studied impdetail in [27].

Here we continue into a similar direction as [27] by deriving and analyzimgenically an alterna-
tive WRIBL equation and a regularized version. However, in contraRtpour analysis is based on
curvilinear coordinates from [15] which allow to treat more general sitnatwhere for instance the free
surface is not necessarily a graph over the (flat bottom) downstreardicate. These curvilinear co-
ordinates are also more natural since they allow a clear distinction betwaeodiioponents tangential
and normal to the bottom. Moreover, our WRIBL is second order accusaitgh for instance allows the
description of eddies in the troughs of the wavy bottom. Finally, our apprisagomewhat simpler than
the (more general) approach of [7, 10] which consists of severahpotial ansatz and test functions in
the Galerkin expansion. We find that by taking an accurate velocity pidfas single ansatz and test
function in the Galerkin method the WRIBL can be obtained in one step.

Thus, the outline is as follows: In Section 2 we present the governingiegsaan curvilinear coor-
dinates. Since we focus on film flow over bottoms with long wave undulationasseme the bottom
steepness and the non-dimensional wave number to be ofgrder ¢ <« 1, and expand all equations
up toO(e?). In Section 3 we derive an appropriate velocity profile serving as aasakzest function
used to derive our WRIBL by the Galerkin method in Section 4, and in Sectioe Bheck the con-
sistency of the resulting WRIBL with the Benney equation over wavy bottomsmFEhe WRIBL we



Figure 1: Sketch of the geometry and the curvilinear coordinate system.

derive a regularized version called rwWRIBL in Section 6 by removing rsgé@yder inertia terms which
otherwise may lead to some unphysical behaviour. In Section 7 we finalysgpme numerical results.
First, in§7.1, by comparison with available experimental and full Navier—Stokes ncaheiata we il-
lustrate the accuracy of our rwWRIBL over wide parameter regimes, indutie occurrence of eddies.
Second, irk7.2 we illustrate two new phenomena, namely that the bottom modulation may intraduce
short wave instability (in a phenomenological sense) not present atdrdttom (except for rather ex-
treme parameter ranges), and that and how the free surface may cbasegmph over the (flat bottom)
downstream coordinate. A short summary is givefr8.

2 Governing equations

Figure 1 illustrates the inclined film problem with an undulated bottoffhe liquid is assumed incom-
pressible and Newtonian, the Cartesian coordinate systemy is inclined at an angle: with respect
to the horizontal ¢ = 90° in Fig. 1), and the bottom profilé(i) is periodic with wavelength and
amplitudea. As we want to expand the governing equations in a small paraméter useful and nat-
ural to introduce a curvilinear coordinate system for the following resséirst, although the Nusselt
solution is no longer a stationary solution if the bottom is undulated, for thin filndsi@am Reynolds
numbers the flow(w, w) is still mainly parallel to the bottom. To apply different scalingsut@nd w
the coordinate system thus has to be orientated along the bottom profile atitheth component is
tangential to the bottom, while using a fixed Cartesian coordinate system sicediiges a mixing of
the Cartesian velocity componeritsw. Second, for larger Reynolds numbers we may anticipate situa-
tions as sketched in Fig. 1 where the free surface is not a graptt:@rmed cannot easily be described in
Cartesian coordinates.

Thus, at every point of the bottofre; + l;(i‘)eg we define a local coordinate systemn e, with e,
tangential an@, normal to the bottom. For an arbitrary poistwithin the liquid the arc length of the
bottom and the distancealonge, to the bottom are now taken as curvilinear coordinates. As we focus
on film flow over weakly undulated bottoms this relation is always unique. ,Thus

T —sinf z
A= <l§(i‘) + cos@z)

in ez, e; coordinates, wheré@ = 6(z) is the local inclination angle between ande,. In order to
transform gradients we will also need the bottom curvatunenich is defined by

r(2) =

(1)

@)
b(#))2)?

2
(14 (0z

3



v(z, z,t) = u(z, z,t)e, + w(x, z,t)e, velocity field

f(x,t) film thickness (perpendicular to the bottom)
p(z,2,1) pressure

Dair pressure of the air above the liquid surface
o surface tension

P liquid density

v kinematic viscosity

g gravity acceleration

Table 1: Physical quantities.

For further details concerning the transformation to curvilinear coordinaéerefer to [16].

To describe the free-surface flow we introduce the variables in Tabli Ttontrast to Cartesian
coordinates all quantities measured in curvilinear coordinates are writteouvghhat. The governing
two-dimensional Navier—Stokes equations now read

O + uOyu + woyu + Kuw
14+ kz 14+ kz
1 1 .
=TT maxp + gsin(a —0) + v [Waﬁ(w — 20,u)
1 2 2 2
Ry - 2K0, g ; 2
+<1+m>2(0xu Ku + Hﬁw)+1+ﬂzmau+8zu] 2
1
oyw + w0 w + wo,w — Ku?
14+ kz 14+ k2
— _/1) .p—gcos(a —0) + v [—M@wn(u + z0,w)
1 2 2 2
_— 3 - — 2K0y . )
+ (1+/€Z>2(0xw K w — 2Kk0,u) + 1—1—/sz6 w—l—@zw} (3)
x z = U. 4
1+HZ(6u+/iw)+8w 0 4)
At the bottomz = 0 we have the no-slip and no-flux condition
U‘ZZO :w’z:OZO' (5)
The dynamic boundary condition tangential and normal to the free surfacé reads

0= ((1+rf)* = (9:1)%) (W + aw) +4(1+ Kf)Dy fOw, (6)

(1 + ’Qf)a%f - faz’/faa:f B ((1 + Rf)2 + 2(aacf)2) K

’ (1452 + (0 ) o
B 2pv (0 f)*(Opu + Kw) _ Ouf  (Oew—ku
= e (e ot (g vea)) @
while the kinematic boundary condition is
d
%(f(x,t)—z):o & 8tf—i—1+ﬂfu8wf—w:0. (8)

In order to introduce dimensionless quantities we refer to the stationary solir a flat incline.

This so called Nusselt solution has the mean flow velogity= 952’75”2, whereh is the constant film
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thickness. We set

2 1
x =" 7=z F=<f U= —u,
A h (u)
A 2 A2 1
= ~ w, T = 7TA<U> t, K == j:‘i, P = 2p
2mh(u) A drsa plu)

Additional toaw we can choose four non-dimensional parameters to write the governiagi@us dimen-
sionless. To describe surface tension and viscosity effects we use

422 472 :
Bji= ca_ _"TOC (inverse Bond number),
Msina  pgAZsina
h gh3si
R:= () — gn sma (Reynolds number).

v 32

N

Herelga = (/;Lg) is the capillary length. The relation &f; to the also frequently used Weber number

W= —2 is W = -5B,. For the geometric quantities we introduce
pgh? sin a é

h : .
6= 27ri (dimensionless wave number), ( := 2%% (bottom steepness).

As we are interested in thin films over weakly undulated bottoms we supposkgttmat that bottd and
¢ are of ordek, wheree is a small parameter, while,B; and« are assumed to be of orderThe latter
means thatv is bounded away from zero such that(«) is bounded. Howevery = 90° such that
cot(a) = 0 is allowed.

All calculations will be exact of order £2, i.e. we keep all terms of order, 6, ¢, 62, ¢? and 6¢.
Throughout we will only display thé(s?)-symbol if we want to emphasize that our calculations are
only asymptotically correct. In all other cases we will skip it. In particulaipsig O(s3)-terms, the
dimensionless governing equations read

SRIFU + SRIOXUU + SROAW = —SRIxP + 35”;5:;9) + 820%U 4+ 6CKO + 03U,  (9)
S2RIW + S2RUINW + 6*RINWW — 6¢CRKU? = —RIZP — 3“’2@‘_9) + 5O, (10)
OxU + 0z((1 +¢KZ)W) =0, (11)
U(0) = W (0) =0, (12)
(14+25CK F—6%(0xF)*) 04 (F) + 820xW (F) — 6CKU (F) 4 46°0xF0 WV (F) = 0, (13)
3Bi(0%F — {K) = —R(P(F) — Pair) + 260W (F) 4+ O(&?), (14)
OrF + (1 — 0CKF)oxFU(F) — W(F) = 0. (15)

The dynamic boundary condition normal to the free surface (14), wheresed the abbreviatign:= %
is only given up to ordet. As we are not interested in second-order terms of the pregsthes turns
out to be sufficient.

3 Afirst-order velocity profile

For given F' we derive a solutiofU, W, P) of the time dependent equations (9)—(14) which is exact
to ordere. By introducing the flow rat€) as independent quantity we also construct a velocity profile



U which will serve as ansatz and test function in the Galerkin approach itioSet There, a first-
order profilelU = U, + €U, is sufficient since we can extract all necessary second-order tesmdlie
boundary conditions.

We assume that' is of orderl while the velocity field U, W) and the pressurB are enslaved by’
and can be expanded in powers:zof

U=Uy+eUi+0(EH, W=Wy+eWi+0(?), P=DPy+eP +0O(?). (16)

The geometric quantitieE” andd coming from the bottom profile can be expanded in powets afo.
It turns out that the bottom curvatufe€ does not contain terms of first order while the local inclination
angle has a leading i.e.

K =Ko+ (K +0(¢"), 0=+ 0(¢%)
with 0, (X) = 8x B(X), see Appendix A. This yields

cos(a—0) sin(a—0)

=cota+ (O — %CQ cot ab? + O(¢?), =1—(_cota b — %CQG% +0O(¢?).

sin « sin «
Since bothy and( are of ordek, equations (9)—(14) read éx(1)

3+00y=0, —ROzPy—3cota=0, OxUy+ dWy=0,
Up(0) = Wo(0) =0, 9U(F) =0, 3B;j(0%F —EKy) = —R(Py(F) — Pa).

The O(1)-solution thus is
3 2 3 2 3 2
Uy = _EZ +3FZ, Wy= —50)(FZ , Py= ﬁ(COt Oé(F — Z) — Bié?XF + BngO) + Pajr.
(17)
At O(e) we get the equations

SRy + 6RIxUgUy + ORI Wy = —6RIxPy — 3¢ cot a 0y 4 €021,
—eROzP; — 3C01 + (58%W0 =0,
oxUy + 0,W1 =0, U1<0) :Wl(O) =0, 8ZU1(F) =0, —8RP1(F)+2(582W0(F) =0,

with solutions

el = %5R8TF(ZS—3F2Z) + 0RIXF <ZFZ4 — §F4Z>
1
+ 3(8 cot adxF — 6BiO%F + (BidxKo + ¢ cot aby) <QZQ—FZ> : (18)

1 1 3
6W1 = — §5R8TXF <Z4 —

3
“F27? ZSROFOXFFZ?
1 > >+ 5 OrFox.

— OROLF (fOFZE’ — 2F4Z2> — OR(OxF)? (43025 — 3F322>

+ g(é cot a0xF — (5B18§(F + (B;0xKoy + ( cot 91)6XF22
1
— (8 cot ad%F — 6BiOXF + (Bi9%Ky + ¢ cot adxby) (223 — ;)FZ2> ,

P— — %gel(z _p) - %53XF(Z +F).



To get rid of the time derivatives df we use the kinematic boundary condition (15) which lead3(@?
to the identity

OrF = —0xFUy(F) + Wo(F) 4+ O(e) = —30xFF% 4+ O(e).

ThusU; can be rewritten as

3/2\* 3/2\° Z

_ 512 _ = -

€U1 —5R8)(FF <8 <F> 2<F> +3F>
Z 1/(2

2
_ 3F2((5 cot OzaxF—(SBiag’(F—l-CBiaxKo-i-C cot a bp) (F_Q <F) ) . (29)

If we assume temporarily that also the local flow rgte= fOF UdZ is enslaved by we can easily
state thes-expansion of) = Qo + Q1 + O(?), namely

F
Qo = / UpdZ = F3, (20)
0

F
eQp =¢ / UdZ = §5R6XFF6 — F3(8 cot adxF —Bi0%F+(BidxKo+( cot aby). (21)
0

As mentioned in the introduction we cannot maintain the enslavemepttofF’ since this would lead
to a single evolution equation fdr which fails to reproduce physics correctly. Therefore we tégais
independen®(1)-quantity and introduce a second representation

U=U(F,Q)=U+ U + O(?) (22)

of the velocity profile which depends on bathand(@. For consistency, if we plug the enslaved version
Q = Qo +£Q1 + O(¢?) into (22) we must recover the expansion= U + cU; + O(?) calculated in
(17), (19). This yields the following conditions féf:

F
0] / UpdZ = Q asQis of orderl, i) Up=U if Q=Qo+ Ofe)isassumed.
0

As Q is independent of the first condition implies thap occurs as a factor itfy,. From (20) we know
that in the enslaved version @fin zeroth order we hav@ = F3. Thus

- 3Q( 1/2\* =z
=% (‘2 (7) + F> ’ 23)
which is exactly the lubrication ansatz which is used in the methodasfrén—Pohlhausen. Thus our

new velocity profile will emerge as refinement of the parabolic profile.
On the other hand, plugging = Qq + Q) into Uy yields

R s 9(Z\* 182
Uo = — 2% +3FZ + 6ROXFF < 5<F> + =5
) 5 1/2\* Z

— 3F*(6 cot aOxF — 0BiOxF + (BiOxKo + ( cot a 1) S5 \7 +F . (24)

Thus, comparing (19) and (24), contains terms which belong &, and thereforé/; consists of less
terms tharl/;, namely

4 3 2
eU; = SRIXQQ (; (?) —% (i) +§ (i) — ;?) : (25)



To sum up, if@ is treated as independef(1)-quantity we obtain the first-order velocity profile

- 3Q (27 1(2\? 1/2\* 1/2\® 3/2\* 1Z
=== (= R (=) = (=) +2 (=) —==|. 2
V=7 (F 2<F)>+5 aXQQ(S(F) 2<F> 5\ F 5F (26)
Similarly, the second-order velocity profilés andU; are derived in Appendix B. These are not needed
for the derivation of the WRIBL but for the reconstruction of the flow figl&ection 7.

4 Galerkin method

We start with the derivation of the evolution equation foiby integrating the continuity equation (11)
alongZ, i.e.

F
/ OxUdZ + (1 + dCK Z)W]§ = 0.
0

FromQ = fOF UdZ and the no-flux boundary condition we obt&igQ —0xFU (F)+(1+6¢ KF)W (F) =
0, and eliminating’’ (F) by the kinematic boundary condition (15) and skipping all terms of order
and higher finally gives

orF = —(1 — 6CKF)dxQ. (27)

In order to derive an evolution equation f@ we first eliminate the pressui@ from the streamwise
momentum equation (9) before we apply a Galerkin method. By means oP(t8h be written as

F
SRP(Z) = 6RP(F) — 6R / 0,PdZ
Z

cos(a — 0)

= 0RP(F) + 36 (F —Z) — 60, W (F) — 0 W (Z)).

S1n ¢

To eliminate P(F) we use the dynamic boundary condition normal to the free surface (4jhen
continuity equation (11) to obtain

SRP(Z) = SRPyjr + 6*(0 WV (F) + 0, W (Z))—3B; (003 F —CK) + 35M(F—Z)
= 6RPyjr—6%(OxU (F) + 0xU(Z))—3Bi(60%F —CK) + 35(30251‘1‘;9)(1?—2).
Plugging this into the streamwise momentum equation (9) we obtain
SROTU + SROXUU + SRW O
= 3“2&2‘;9) + O + 26%0%U + 30Bi0%F — 3(¢B;0xK — 35“2&";9)0)(1?
— 35“;?1‘;9)@0@—2) + 52%(8XU(F)) + 6CK . (28)

The next step is to perform a Galerkin method with the single test and ansatioful/ from (26).
Thus we plugU into (28), multiply the residual by itself and integrate the result alor#y We want
all calculations to be exact of order 2. This seems to be a problem since the first two terms on the
right-hand side of (28) are of ordérand we knowlU = Uy + cU; + £2U, only up toO(e). However,

the first ternﬁw is independent of/, and by the definition of) we get

/F3sin(a—9)UdZ: Ssin(a—H)Q'
0

sin « sin «



The second ternd2U is slightly harder to manage. Integration by parts together with the no-slip condi-
tion U(0) = 0 yields
F o 5 5 F B
/ oUdZ = dU(F)U(F) — / (00)%dZ, (29)
0

0
and up to ordeg? the integral on the right-hand side reads

F F
/ (040)2dZ = / (0A00)? + 204000471 + (040 + 222000007 d2

0 0

3Q

2+ 52R21 0xQ)*Q* + 6 2@ (T(1 2 O 0,dZ (30)
At this point we need some information about the second-order t&ff. The velocity profilelr’
emanates from the asymptotic solutidnhand thus fulfills the boundary conditions (12), (13). Moreover,
fOF UpdZ = @, which impIiestF UsdZ = 0. Therefore and due to the no-slip boundary condition the
last integral in (30) satisfies

Fr1ooz 1 zZ\N-1" 1 (F.
iz == - = — dZ =
[ (5 ga) oniz = (5~ ) 0+ g || Otz =0

F
Q° 22 1 212
0 Az = 3— —(5 R*—(0 .
| @y PR (05Q)Q
It remains to calculate the first term on the right-hand side of (29). Fr@&nw& know thaﬁZU( ) =
—020xW (F) — 4620xF 0W (F) + 6¢CKU(F) is of ordere? where the velocity componefit” can be
expressed by due to the continuity equation (11). Thus thé1)-terms ofU are sufficient which means

that we do not have to kno®, explicitly. This leads finally to

which gives

F
27777 3 21 2 2 1 2 2 1 2 9 2 1
/0 OWVAZ = S5 -03QQ - 5 95 5 Q(OxF)? —75 QO + 5% OxQQOXF
1
< D i 2 2 2
TR 3 1755 7OxQ7Q"

The other terms in (28) are all at least of ordeand we can calculate them rather easily by plugging in
U = Uy + eU,. Testing (28) with7 leads to

S5sin(a—0) . 5 Q 5 _cos(a—0) 15 _sin(a—0)

SROQ = 2 p 0 & 0 58Ny rp 26
1Q 2 sina 2F?2 2" sina X 16 sina

17 .Q Q? 2
+ B (603 F — COXK)F——0R0xQ + 6R SOxF + 5 9%Q
e +452 @ > (0xF) —652Q8XF 952 ! 7OxQOxXF

OxOF?

—54}(

2
2p2( & - - - 2 7Q7
+6°R < 2108X7QQ 10587Q8XQ (8XQ) 708XQQ +7O ia 3XQ6XF)
where we made use of (27) to eliminate time derivativeB'oAs there are still time derivatives ¢f on

the right-hand side this is not yet an explicit evolution equatiortfoHowever, from (20) we know that

Q = F3 4 O(e), which leads t@7Q = 3F297F + O(e) = —3%20xQ + O(¢). Together with (27) this



gives the evolution system f¢F’, ), namely

OrF = — (1-0CK F)0xQ, (31)
5ROQ) — §sm(a Q)F_ 50Q §5cos(a 9)8 R —5SIH(,Q_9)8X9F2
sin « 2F? 2 sina sin «
2
+ 5B1(58§’(F — COxK)F — 775RQ8XQ + 5RQ OxF + 528XQ
ﬁ Q 2 Q 2@ 0 < 2l = s52R2 2
+16(5CKF—|—45 —5 (0x F)2—66 8XF (5 F8XQ8XF—2105 R (0xQ)°Q. (32)

If we set the wavines$ = 0 we obtain a system which is up to scaling the same as the non-regularized
WRIBL in [7]. That means that in case of a flat bottom our one-step methindégd equivalent to the
Galerkin method with universal polynomials and subsequent simplificatiawms fidn¢ = 0 our WRIBL

is consistent with the Benney equation and predicts the correct criticaldRlsynumber Bi. In the

next section we will check the consistency for- 0 before we will regularize the equation in Section 6.

5 Consistency

The basic assumption throughout this paper is th# of orderl while U, W and P can be expressed
in powers ofe as stated in (16). In Section 3 this allowed us to solve the Navier—Stoketicetpua
asymptotically, which was used in Section 4 to derive the evolution equatiQfd2F' depending on
the flow rate). The natural approach to achieve a scalar equation is now to plug intth@&xpansion

F F F
Q=Qo+eQ1+%Qr+0() = / UpdZ + 5/ UrdZ + 52/ UsdZ + O(e?).
0 0 0
We call the resulting equation Benney equation for wavy bottoms. In (20X2h) we have already
calculated the zeroth and first order componépgsand(;. Consistency now means the following: In
the evolution equation (32) f@p we formally replace) by an enslaved versiag'B- with the expansion

QlBL — |BL +5QIBL +52QIQBL + 0(53)‘ (33)

It is remarkable thaP2 £ Is the onlyO(1)-term in (32) which containg). Thus we obtain a set of
linear algebraic equations f@P-, Q'BL, Q'BL which can be solved easily. By pluggiigBl into (27)
we obtain a second scalar evolution equation for We call our WRIBL consistent if this approach
yields the Benney equation for wavy bottoms.

To derive the Benney equation for wavy bottoms by a long wave expansitre Navier—Stokes
equations and the associated boundary conditions (9)—(14) we coasnng17), (18). AtO(s?) we
obtainU,. As this is rather lengthy we refer to Appendix B and state here only the ateghwersion,
namely

F
£2Qy = 52/ UsdZ

0
12 381
= 762R28§(FF10
- ;%MR(BiB?(KO + cot adx) FT + E5R(35Bi(a§(F)2 — 95 cot a(OxF)>?

72
+55B18)3(F8)(F—C(Biaxffo+ cot a 91)8)(F)F6+€

52R2(8 F)2F9 + 70 §*R(B;OXF — cot ad%F)F"

§*RB;(0xF)?0%F F®

+§5CK0F4—26@){61F4+3526§(FF4—5§018XFF3+752(8XF)2F3—%§20%F3. (34)
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Replacing® in (31) by Qo + Q1 + £2Q> yields the Benney equation for wavy bottoms.
Now we use (32) to derive a scalar model. Plugging (33) into (32) yield¥ &}:

5 5 IBL
oF - QQF2 =0 < QP =F3 (35)
At first order we get
5 QIBL 5 5
SRITQIE =— Ccota@lF—§ ﬁ—f&:ot a0xF F+0B; O3 F F— gB OxKoF
QIBL ( IBL)

— —5R
7

By applying 9;Q{EL = 3F26TF = —BFQGXQ'BL ( ) = —90xF F*+0O(¢) this equation can be
solved forQ'BL, which yields

- OxQ0 + 5R

OxF. (36)

QB = <§5R6XFF3¢(BiaXKO+ cot o 01)—6 cot o 6XF+5B15)§(F) F3. (37)

Comparing these results with (20), (21) we already see@andQ'B- match at zeroth and first order.
In order to calculaté)'®- we solve (32) atD(c?). As this is somehow elaborate and does not give any
new insight we state here only the result, (8- = Q- as expected. As both the long wave expansion
and the WRIBL approach yield the same expansio ahe scalar evolution equations are in both cases
the same. Therefore our WRIBL is consistent with the Benney equatioricalgo> 0.

6 Regularization

With the WRIBL (31), (32) we now have a second-order model for filnwfawver wavy bottoms which
is consistent with the according Benney equation and reproduces in theflianitad incline the correct
critical Reynolds number &;. In order to achieve consistency the basic idea of the one-step Galerkin
method was to use as test and ansatz function a velocity profile which is a sadiitibe expanded
Navier—Stokes equations (9)—(14) also in the time dependent caseefdrieein (18) the first-order
component/; in particular contains the time derivativi-l" which is substituted by the zeroth-order
identity 07F = —30xF F2. In contrast to setting,F = 0 in the velocity profile this procedure leads
to the additional term- 2i062R2(8XQ)2Q in the WRIBL (31), (32) which turned out to be necessary for
consistency.

However, over flat bottom it is known that a pure asymptotic expansioroapp with the above
substitution ofdpF' can lead to an unphysical behaviour if the Reynolds number exceedsmcalue
Ry not far beyond Rit. In [6] one-hump solitary wave solutions of a scalar Benney-like equdtion
flat inclines are considered. According to the bifurcation diagram [6,3{iguch homoclinic orbits are
only found if the Reynolds number is close to the instability threshold, i R R < Ry. However,
in [28], where the two-dimensional Navier—Stokes equations were stlyedfinite-element method,
such a limit R was not obtained. Thus the asymptotic expansion equation used in [@lragpde valid
only if R is not far beyond R;t, and shows non-physical behaviour if R exceeds a limiting valuélRis
deficiency appears to be closely related to finite-time blow-up solutions in e ®enney equation.

For flat vertical walls it was shown in [7] using homoclinic continuation thatsa limitation also
occurs for the second-order WRIBL, i.e., the branch of homoclinic ocalgigsn turns back if the Reynolds
number becomes too large, see [7, Fig. 1]. However, if the inertia ¢amneterm, which corresponds to

21062R2(8XQ) @ in our notation, is neglected this non-physical loss of solitary waves seAs&ast
for small¢ and otherwise similar parameters as in [7] we must expect similar problems withaulel.

In [7] a Pad-like approximant technique is used to regularize the WRIBL in case dfiadlme, see
also [29] for the case of a scalar surface equation. The main idea is tveehedangerous second-order
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inertia terms by multiplying the residual equation ) with a suitable regularization factdt. This
procedure preserves the degree of consistency since the sacEmdrmrtia terms are still implicitly
included. This becomes clear if one applies the zeroth-order ideftity F2 to S which yields the
original non-regularized WRIBL. Homoclinic continuation now yields solitaigve solutions for the
regularized model with no non-physical behaviour for-RRgi; [7]. More precisely, for a wide regime
of unstable Reynolds numbers solitary wave solutions are found, with angditualy slightly smaller
than those obtained by numerics for the Navier—Stokes equations, ingtdottiae regularization in [29].
For the undulated bottom we again closely follow [7]. First, we split (32) intedhparts, namely

2
Res) = 0R(-01Q — = 205 + 2% 00F) and Resy =~ (0RZ(0:Q)°Q  (38)

containing the inertia terms with leadid® and(JR)?, respectively, and the rest

_5sin(a—0) , 5 Q 5 cos(a—0) 15 _sin(a—0)
osmaTlp 0¥ 0 g g pp gAY
Reso := 2 sma 2F2 2 sina Ox 16 sina

Q+452 @ ~(OxF) —652Q6XF 96216;(@6 F.

8X9F2+§B~(58§(F—§8XK)F
+ 528XQ+ 5§K

The 07Q-equation (32) now readRes + Res; +Resy = 0, and using agaif) = F3 we see that
Resy ~ (OxF)?F7 is highly nonlinear. The aim is to get rid of the potentially dangerous teesy
without loosing the degree of consistency. Therefafeye enslave again Q by F' as in Section 5,

no term up toO(<?) should be deleted or added. This is ensured, e.g., if we multiply the residual
equation by a regularization factst which can depend o', Q and their derivatives. This yields

S Resp +5(Res; + Resy) = 0, and we are done #§ fulfills

S(Res; + Resy) = Res; +O(?). (39)
This ansatz leads to the function .
S = (1 + Res?) . (40)
Resy

Plugging the zeroth-order identiy = F3 into (38) yields
Res; = 36ROXFF + O(c2), Resy = —%(m)?(axp)?ﬂ +0(),

and thus, using agaif) = F3,

-1
S = (1 — 7105RQ8XF> =S+ 0(?). (41)

Then (39) leads t&/(Res; + Resy) = Resy +0(e?), and multiplyingRes, + Resy + Resy = 0 by S
finally yields the “regularized” equatiol Resg + Res; = O(£3). In summary, the regularized version
(rWRIBL) of the weighted residual integral boundary layer equati@ulse

orF = — (1-6CK F)OxQ, (42)
2 : _ _
SROIQ = — 1—75RQ8XQ + 5RQ oy 4 (2ne=) 5 Q Sgeostah)y pp
7 2 sina 2F2 27 sina
15 sin(a—0) 2, 21593 900, 45 Q
16 OXOF® ¢ 2B1(58XF — COXK)F + 50°03Q+ 00K
-1
+462 ¢ > (0xF) —652Q8XF 52;8XQGXF) <1 — 7105RQ8XF) . (43)
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Itis not easy to assess the value of this regularization. First, for flathat®numerically confirmed
the loss of the one-hump solitary waves for the WRIBL (31), (32) in a temgerval [Ry, R;] of R >
Rerit and its regain for the rwWRIBL (42), (43). However, here we use tinemerical simulations (see
Section 7 for details), instead of homoclinic continuation in [7], which is naisjade for( > 0, or in
any case is much more involved since the solitary waves then do not decagotesi@nt state but to
spatially periodic solutions. In these direct numerical simulations we find teantbrval[Ry, Ry] is
typically rather narrow, shrinks quickly with increasigg> 0 and vanishes fof greater somé&, which
depends on the other parameters. Also, the loss of solitary wayBg,iR;] is not related to blow-up
of solutions: instead, small amplitude irregular patterns appear in this inteftagd. might indicate a
transition between two different branches of solitary waves fer Ry and R> Ry, or some other more
complicated structure in the background.

To illustrate the effect of the regularization, Fig. 2 shows (in advang&)adome differences between
the rWRIBL and the WRIBL for a parameter set for which there is no intéR@ R, | where the WRIBL
does not have solitary wave solutions in direct numerical simulations. krgethese differences appear
to be rather small, with the notable exception of the calculation of the criticaldkymumber Ri; in
Fig. 7 below, where the results for the r'WRIBL are closer to available data.

In general, in our simulations both the WRIBL and the rwWRIBL did not showblip of solutions
in parameter regimes of interest, but there appears to be one disadvaitiageWRIBL: for some pa-
rameters, as R becomes large the numerics for the rWRIBL fail more rapathttiose for the WRIBL.
In particular, for the parameters in Fig. 2 we can follow one-hump solitases/éor the WRIBL up to
R = 90 where these split up into two humps, while for the rwRIBL we obtain numeraihires due to
F — 0 pointwise for R not far beyond 12. However, this is strongly related to theaaeof simulation,
i.e., to the fact that ') = 1 is imposed, and should not be considered as blow-up of solutions of the
r'WRIBL: for instance we can follow one-hump solitary waves for the r®Rup to R = 21 if we
double the domain length in Fig. 2. In summary, since we are more interestedegthe R not too far
from Rit, where the rWwRIBL gives results closer to available data than the WRI8bybwe focus on
the rWwRIBL for our numerical simulations.

7 Numerical simulations

Though the rWRIBL (42), (43) is much simpler than the Navier—Stokes sy$8—(8), it is still a
guasilinear parabolic system, with periodic coefficients. Thereforestsstip to explore some of its sta-
tionary and non-stationary solutions are numerical simulations. For thisweeseaup a finite difference
method with periodic boundary conditions in space for both, the rwWRIBLtaedVRIBL. To calculate
stationary solution§F, Q) we use a Newton method starting at constdnt) which corresponds to a
Nusselt flow, which in contrast to the flat bottom casedba stationary solution over wavy bottom. For
the time dependent problem we may also use conéfar) or perturbations of som@, Q); as initial
data. We then use an implicit and adaptive time stepping. Depending on thehifwacteristics, the
spatial discretization was on the order of 50 (Fig. 7) to 400 (Fig. 12) ppatdottom wave. Numerical
convergence was checked by refining the discretization without patiteidifferences in the solutions.

7.1 Comparison with available data

First we want to compare our results with available experimental and nuindata Therefore we
have to somewhat relax the assumption used in the derivation of the WRIBR twadB; are of order

1 compared ta/, § which are assumed to be small. However, similar relaxations often appear in the
application of asymptotic expansions. In other words, one goal of the presditrsécto study how far

the asymptotic expansion can take us. As said above, we focus on th@&tV¢Rice it gives slightly
better comparison with available data.
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Figure 2: Comparison of the WRIBL with the regularized version rWRIBL= 90°,§ = 0.3,( =
0.05, B; = 3.32 (comparable to [7, Fig. 1)A = 5mm, 5 bottom waves, R as indicated, amy and

r eg stand for the original WRIBL and the regularized version rWRIBL. (a)vgs snapshots of the
dimensionless film thicknesB(z) with (F') = 1, and (b) the maximal amplitude df extracted from
one time period of well converged one-hump solitary waves. For thesengéers, solitary waves of
both the WRIBL and the rWRIBL are found for all R (0.3, Ry) with Ry ~ 12, where (for the used
discretizationn = 400) the numerics fail for the rWRIBL due t6" — 0 pointwise. Generically, the
solitary waves for the rwWRIBL have slightly smaller amplitude.

We first simulate the stationary problem for fluid and geometry parameters fiaka [16], namely
v = 1110 mnd#/s, p = 0.969 g/cd, ¢ = 20.4 mN/m. The bottom is a sine with wavelengtk= 300 mm,
amplitudea = 15 mm and trough and crest at= 0,z = 150, respectively. Fig. 3 shows the resulting
local film thickness which is the distance of the free surface to the bottortowomeasured ire;-
direction, see Fig. 1. As inclination angles we takeday 28°, (b) « = 18.05°. Choosing the Reynolds
number such that the maximum local film thickness is the same as in [16, Fig. @ptaim stationary
solutions(F, @) which for the film height are in perfect agreement with experimental de¢ak-g). 4.

In order to explore wider regimes of parameters and to get more detailechdsopalso with full
Navier—Stokes numerics we reconstruct the flow field using the seauled-orofile (47), (48) derived
in Appendix B for sinusoidal bottoms. Following [21], see also [23, 24,simulate the flow of liquid
nitrogen over a vertical sinusoidal bottom with wavelenytk 1.57 mm and amplitudé = 0.0875 mm.
The fluid parameters ate= 0.182 mni/s, p = 0.808 g/cd ando = 8.87 mN/m which yield an inverse
Bond numbeB; = 17.92. As Reynolds numbers we choose-R5 and R= 20. Again we achieve free
surface profiles which are in good agreement with the Navier—Stokesrimsrire[21, Fig. 10], and also
the flow fields are qualitatively and semi-quantitatively reproduced dityrsee Fig. 5 and 6. Namely,
there occurs a recirculation zone of correct size in the trough of therbattmtour if the Reynolds
number is increased.

Above we calculated stationary solutiof¥s, ), which, by analogy with the flat bottom case, must
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Figure 3: Local film thickness for two different inclination angles. Fomparison with [16, Fig. 3] it
is measured not perpendicular to the bottom but to the main flow direetiosee Fig. 1. Parameters:
R = 0.0285,¢ = 0.31 and (a)or = 28°,8 = 0.059,B; = 2 x 1073, (b) a = 18.05°, § = 0.068, B; =

3 x 1073,

Film thickness [mm)]
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Figure 4: Experimental data for the parameters used in Fig. 3. Reprih6ofjg. 3], with permission
from Springer Science+Business Media.
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Figure 5: Free surface and reconstructed flow field for stationaryisotuof (42), (43) for (a) R= 5
and (b) R= 20. The other parameters afe= 0.15 respectivelys = 0.24, o = 90°, B; = 17.92,( =
0.35,A = 1.57mm.
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(a) Distance along gravity [mm]

~0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40
®) Distance along gravity [mm]

Figure 6: Full Navier—-Stokes numerics for the parameters used in Fige@rirR of [21, Fig. 10], with
permission from Elsevier.

be expected to be unstable in the considered regime 90°), see also [18, 20, 23, 24]. In the following
we report on some numerical experiments to investigate the stability of statiamiatipss and on some
time dependent solutions in the unstable case. The standard approadtiytthststability of(F, Q)
would be to calculate the spectrum of the linearization of (42), (43) ar6in@) s, either numerically or
analytically by expansion of first the stationary solution and then the eigengeoblem in suitable small
parameters. Eigenvalues of the linearization can then be calculated usiugHbeory. See [23] for a
detailed parametric study of stability using this approach for an IBL, and¢24he full Navier—Stokes
problem.

Here, since we are mainly interested in the shape of non-stationary bédrsalutions in case of
instability, to determine stability off’, Q) s we rather use a less systematithoc approach. We numer-
ically calculate( F, Q) s for various R, with fluid and geometry parameters fixed. Then, on a donitin w
eight bottom undulations, we apply a localized perturbation, let the systenamnd determine stability
by growth or decay of the perturbations. This yields a critical Reynolashan Ry; in terms of the
remaining parameters.

Again we first focus on non-dimensional parameters from [16], namely 45° and B; = 0.01,
using the dimensional parameter set A from Table 2, and calculgteaR function of¢, see Fig. 7.
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| | A [ B | C|
plalen?] [ 0.969 | 0.969 | 1.00

y[[mmz/s] 24.1 | 24.1 | 1.00
o[mN/m| | 20.0 | 20.0 | 70.0
Almm 108 | 108 | 10.0
a[’] 45 [ 10 | 10

| Bi | 0.01 | 0.04 [16.2 |

Table 2: Parameters used to study stability of stationary solutions, with reslierge Bond numbers.

In agreement with [16, Fig. 7], see also [18, 24], we find that the watioln strongly increasescR
compared to the critical Reynolds numi3g cot « over flat bottom. In particular, also the quantitative
agreement with [16, Fig. 7] is very good. Here the most notable differbetween the WRIBL and
the rWRIBI occurs: Ri; is somewhat larger for the WRIBL and hence the rwWRIBL appears to be mor
accurate.

Rcril

Figure 7: Critical Reynolds numberR as a function of the wavinegsfor parameter set A from Table
2. Along the critical value$ varies fromé = 0.035 (R = 5/6) to § = 0.048 (R = 2.2). [WLAOQ5]
denotes Ri: from [16], multiplied by 2/3 due to a different scaling. The critical Reynaidmbers were
calculated with a tolerance &f0.05.

Figure 8 shows time dependent solutions, wjitk= 0.5 from Fig. 7, but for graphical reasons with
only two bottom undulations. Over flat bottoms, for R R the most prominent solutions are the
(experimentally, numerically and analytically well known) traveling pulse trflihs Also over wavy
bottoms pulse like surface waves develop, and the effect of the bottomegaus a periodic modulation
of the amplitude and speed of the pulses: (a) shows the decay of a logadidedbation in the stable
case, while (b) shows the emergence of a pulse in the unstable case.

7.2 Some new predictions

The numerics ir37.1 have shown that (42), (43) reproduces known phenomena qualijativd quanti-
tatively, in particular the appearance of eddies in troughs of the bottotarfper(, and the occurrence
of a long wave instability when the Reynolds number exceeds a critical vajga®fwell as the increase
of Rerit with . Next we consider a lower inclination angle for which we again investigatsttislity

of stationary solutions by the method specified above. Taking the same fhaichgirs as in parameter
set A but witha = 10° we get the critical values in Fig. 9 denoted by parameter set B. In comdrast
Fig. 7 the critical Reynolds numbers are no longer increasing monotonbusheach a maximum at
¢ =~ 0.17. For larger values of the bottom wavinesgiRlecreases, and fgr> 0.23 it becomes less than
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(b)

Figure 8: Numerical simulations in the sub- resp. supercritical case fanyer set A from Table 2 and

¢ = 0.5 which gives Ryt =~ 1.4, cf. Fig. 7; two bottom waves with periodic boundary conditions. (a),
R = 1.1, f(&); for largert the solution relaxes to a stationary solution. (b}3RL..6, f(Z); the solution

is unstable and a traveling pulse evolves.

the critical Reynolds numbéy/6 cot « for flat bottom.

Next we increase the inverse Bond number by choosing 10 mm and the fluid parameters of
water, see parameter set C in Table 2 and the resulting critical values in. Fldne9dependence afn
turns out to be more pronounced than in Fig. 7. Figure 10 shows related ¢éipemdent solutions for
some supercritical values. For smélle.g.¢ = 0.04 in (a), the instability is long wave (pulses), but
for ¢ = 0.06 in (b) the perturbation evolves into a finite wavelength pattern. Thusy fer 10° and¢
larger than a critical valu&) < 0.06 there appears a finite wave number instability, and the wave number
increases as the bottom waviness becomes larger, see Fig. 10 (8@ also the amplitudes of these
patterns are very small we conclude on a phenomenological basis thaOKig)—(d) shows short wave
instabilities, where, however, the following remarks apply.

The linearization of (42), (43) around sort@, F'); always has a Floquet expongnt(0) = 0 from
conservation of mass. In other words,(0) = 0 since we have a family of stationary solutiof@@, F') s
parameterized by the total mast = f02” F(1+ %5CKF)dX. If K — p(K) is a parameterization of
the Floquet exponents of the linearization by wave number, then shoet wstability in a strict sense
means that unstable Floquet modes appear only in an inteiWa& (K1, K7) with K7 > 0. However, a
finite wave number instability may also be due to a side band (i.e. long wave)ilitgtétnat is, a branch
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u(K) of unstable Floquet exponents with ) Ré() = co K2 — c4K* + O(K") with ¢, ¢4 > 0, which
up to orderk* givesK, = , /2% as the most unstable wave number. To distinguish this from a short

wave instability one should actually calculate the spectrum. However, we igik@) as strong hints
for a short wave instability, since if (b)—(d) were due to side band instabilitie would expect larger
amplitudes. In any case, to distinguish (a) from (b)—(d) we may call the Ettat wave instabilities in
a phenomenological sense.

Finally, if K = O(1) is the wave number of a pattern for the rwWRIBL, ther= %”K is the wave

number in the dimensional Navier-Stokes system. Thus, if for instaneeO(1) anda = O(1) are
fixed such that = 27h/XA = O(e) and¢ = 2ra/\ = O(e) are small due to\ = O(¢~1), then
k = O(e). However, even in this case, as already said at the st bfin applications we always have
finite . For instance, in Fig. 10 (b)—(d) we find= 7/10,k = 7/8,k = 37/20 [nm~!] as the basic
wave numbers (the smallest possible wave number over a domain of length B8ingm /40 [mm~—1]).
Over flat bottom, short wave instabilities are only known for very small intilmaangles, see [1,
Section 2.3]. In particular, calculating the eigenvalues of the linearizatiaheofWRIBL (42), (43)
around the Nusselt solution for the above parameterg bu0 by a Fourier ansatz we find no short wave
instability in case of a flat bottom.

XXX T T T T
x X parameter set B+
Xx parameter set C = x
3 I *x_ . Nusselt (flat bottom) —— i
x *x
Xx
= X ++++EX
5 6 At o .
~ + %%
X et Vo
+,0 XX
;1 SRRSOV OVPAIVERUUNIININS SO LE RS S i -
+4
Ty XXX X
R XXX
Tty
2 | I 1 | |
0 abc0.l1 d 0.3 0.4 0.5

Figure 9: Critical Reynolds numberR as a function of the wavinegdor parameter sets B3 = 0.04)
and C B; = 16.2) from Table 2; for parameter set C the letters a—d indicate the valugss#d for the
time dependent plots in Fig. 10.

In Fig. 11, for fixed R and varying we plot the minimal and maximal downstream velocities of some
stationary solutions used in Fig. 9, which shows that these are continuafitresNusselt solution. For
¢ > (1 the minimal velocityumin, becomes negative which is an easy diagnostic for the existence of
eddies. In particular, fronjy, < ¢; we find that the short wave instability sets in before the appearance
of eddies, which shows that the short wave instability is an effect of thvy Wwattom on a Nusselt like
laminar solution. Figure 11 (b) shows the stationary solution and recotedrsteamlines for the short
wave unstable parametefs= 0.4,R = 4.2.

Finally, Fig. 12 illustrates a rather strongly unstable situation where due tatvedy large trav-
eling pulse the free surface is not a graph overThis was one of the motivations to use curvilin-
ear coordinates. Downstream the bottom maxima where the local inclinatide iargrger tharpo°®
(Omm < z < 150mm in Fig. 12) we find a bearing-out of the free surface as a pulssepa This
overhang is typically rather small since the pulse is small as it lost mass whémlited “uphill”

(150 mm< & < 300 mm in Fig. 12) to the maximum of the bottom. On the other hand, running “down-
hill”, the pulse grows and reaches maximum amplitude arciuime 180 mm. This yields an overhang
(to the left) of the free surface at the beginning of the “uphill” section.

In the literature we did not find data or solutions comparable to Fig. 12, or ghitvt wave instability
explained in Figures 9 to 11. Thus we think it will be interesting to study eithgerxentally or by full
Navier—Stokes numerics the accuracy of these predictions.
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Figure 10: Time dependent simulations for parameter set C, eight bottoaswawts of the flow raté).
(8) ¢ = 0.04,R = 7.4 (long wave instability), (b} = 0.06, R = 9.7 (short wave instability, four waves),

(c) ¢ = 0.08, R = 9.7 (short wave instability, five waves), (d)= 0.2,R = 6.1 (short wave instability,
Six waves).
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Figure 11: Stationary solutions for parameter set C ard 2. (a) Minimal and maximal downstream

velocity umin, umax Of Stationary solutions depending gn For{ > (; =~ 0.38 eddies occur. (b) Free
surface and reconstructed streamlines(fer 0.4.
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Figure 12:ac = 90°, A = 300mma = 20mm, hencg = 0.42, R = 10, § = 0.32; B; = 0.003 and
initial data(F, Q) = (1, 1). (a) Free surface over, dashed line is the bottom contour. (b) Film thickness
f overz.

7.3 Conclusions

Using a Galerkin method with only one ansatz and test function we derived/Ri8L (31), (32) for
film flow over wavy bottom, which in the limit of flat bottom equals the (one-dimemaligersion of the)
WRIBL derived in [7]. In a second step we regularized the WRIBL to tINKIBL (42), (43). Numerical
simulations of the rWRIBL show very good agreement with available data &wperiment and full
scale Navier—Stokes numerics. Finally, our rWRIBL predicts two qualitgtivew phenomena, namely
a short wave instability of Nusselt like solutions (without eddies) at nontsnwdination angles and at
still rather smalk’, and solutions where the free surface is not a graph over the (Caitdsianstream
coordinate. It remains to be seen whether these predictions can bedverifierimentally or by full
Navier—Stokes numerics.

A Curvilinear coordinates

In order to expand the non-dimensional curvatirand the local inclination angkein powers of¢ we
first scale the Cartesian coordinadtand the bottom profilé by

X =25 BX)=1b (M) .
a

A 2m
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This impliesd;b(i) = (0B (2—%) andd?b(&) = 47;—2“83(3 (27%) . The relation betweeX andX is

00 = gz (e

Njw

|+ (aAE %X(XD 2]3 [HC? (8XB(X(X)))2]

X
= —0%B(X) + %@ (36;3(X)(3XB(X))2 +0%B(X) /0 (aXB(X))MX) +0(¢h
=: Ko(X) + (*Ka(X) + O(¢Y). (44)

For the local inclination anglé we get

~

6(X) = arctan (8& <2)\X'(X)>> = arctan(C@XB(f((X))) = C@XB(X) +0(¢3)

™

= (01(X) + O(3). (45)

B Second-order velocity profile

Calculating the second-order component of the downstream vel@citylU + cU; + £2Us + O(£3) by
exactly the same approach as in Section 3 yields

27 27 3 . 9 3 21 . 30
2 2p2 92 8 277 3 76 4 r75 5 r74 6 73 8
=PR2O3F (————FZ84+ P27 - 3764 Aoy bzt S8 8y
el Ox ( 280" © 560 20" “ Tt 7R w0 2T >
27 27 21 9 15 63 948
FPREOxF)? (—— 284+ FZ - 274 “ 375 Sz S 3 FTg
+ (OxF) 1130° 7560 80 10 3 5 35
2 4 2 1 6 3 5 3 2 r74 3 73 18 5
+6%R(B;0%F — cot e O%F) EZ —%FZ +1F 74 oF37 —&-EF 7z

1 3 3 1 3
_ .92 6 5,274 373 Y b
SCR(Bj0%K o+ cot a dxb) (402 s P2 AP 2 =S F 2P+ 2 F Z)
+5R (36B1(6§F)2—2(5 cot a(@XF)Z+56B18§(F6XF—C(B18XK0+ cot « 01)6XF) .

. (2FZ4—3FQZ3+6F4Z> +6°RB; (0xF)?0%F (ZZ4—18FZ?’+36FBZ>

1 1
+0CK, (223—‘;’F22+3F2Z> +3¢Oxb, (—223+§F22—;F2Z>
+620%F (—Z3—§FZQ+125F2Z> +8¢60,0xF (222—31?2)
+6%(0xF)? (§ZQ+15FZ) +¢20% <ZZZzFZ) : (46)

If the flow rate@ is assumed to be enslaved by the film thicknésghen integration of (46) along
Z € [0, F'] gives the second-order componentf= Qo + Q1 + £2Qy + O(£%), see (34). In order
to achieve an accurate velocity profile depending on botli’ and( we again treaf) as independent
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O(1)-quantity. This profile is not needed for the Galerkin method but only fmwmstructing flow fields.
Therefore we restrict our calculations to the practically relevant casetbnary flow over a sinusoidal

bottomb(#) = a cos (%’Kx) This implies according to (44) and (45)

K(X)=cos X +0O(¢?), 6(X)=—CsinX +0O(¢3).

In case of the first-order profile (26) the correction of the parabobélprturned out to be a self-similar
polynomial with a coefficient depending @p and 0x(@) but not onF or its spatial derivatives. The
basic assumption now is that this is also true for the second-order conrégtioTherefore all spatial
derivatives off' emanate frondx(). As we consider here only stationary solutions the evolution equation
for F' (27) givesdx(@) = 0. Thus inUs we neglect all terms containing spatial derivativegofTaking
again into account that treatidgas independent quantity mixes gqorders in the expansion &f finally

yields

csomxa((2) ()

Thus the velocity profile used in Section 7 to reconstruct flow fields reads

7= (1 (2)'+2) sscanna((2)'2(2))

| 2(L(2\' 3 (2\* 1(2\' 9 (2\* 4z
+ 0¢R(cot a + B;) cos X Q (40 2 50 \ 7 +4 fa s\ 7 +35F . (47)
The according velocity componefit is given by the continuity equation, i.e.

- 1 Z
W= X Z Z/o oxUdZ. (48)
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