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Abstract

We study the flow of an incompressible liquid film down a wavy incline. Applying a Galerkin
method with only one ansatz function to the Navier–Stokes equations we derive a second order
weighted residual integral boundary layer equation, whichin particular may be used to describe
eddies in the troughs of the wavy bottom. We present numerical results which show that our model
is qualitatively and quantitatively accurate in wide ranges of parameters, and we use the model to
study some new phenomena, for instance the occurrence of a short wave instability (at least in a
phenomenological sense) for laminar flows which does not exist over flat bottom.

1 Introduction

The gravity driven free surface flow of a viscous incompressible fluid down an inclined plate has various
engineering applications, for instance in cooling and coating processes.For a flat bottom the problem,
governed by the Navier–Stokes equations, is extensively studied experimentally, numerically and analyt-
ically, see, e.g., [1] for a review. In particular it is well known that there exists a stationary solution with
a parabolic velocity profile and a flat surface, the so called Nusselt solution, which is unstable to long
waves if the Reynolds number exceeds a critical value Rcrit = 5/6 cot α, whereα is the inclination an-
gle [2,3]. However, the Navier–Stokes equations in combination with the free surface are hard to handle
and one is often not interested in the flow field but only in, e.g., the film thicknessF . Thus there has been
much effort to derive model equations for the evolution ofF . Because of the long wave character of the
instability, length scales of free surface perturbations are large compared to the film thickness. Therefore
a small parameterε can be introduced to scale downstream derivatives. By an asymptotic expansion
approach a scalar evolution equation forF was derived in [4] and later corrected in [5]. However, this so
called Benney equation has finite-time blow-up solutions even at moderate Reynolds numbers, see [6].
Nevertheless, asymptotically it can be used to check the consistency of improved models, see [7].

Besides the reduction of the Navier–Stokes problem to a scalar equation for the film thicknessF a
hierarchy of less drastic reductions has been studied, starting with so called boundary layer equations,
see again [1, Chapter 2], for instance. An important step was the derivation of an integral boundary layer
equation (IBL) by Shkadov in [8]. He used the averaging method of Kármán–Pohlhausen which consists
of taking a parabolic velocity profile like the stationary Nusselt solution as ansatz for the downstream
velocity componentU and integrating the streamwise momentum equation along theZ coordinate per-
pendicular to the bottom. This yields a system of two evolution equations forF and the local flow rate
Q =

∫ F
0 UdZ.
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Although the IBL reproduces various experimental observations like the existence of solitary waves
it shows the following inaccuracies:

1. The predicted critical Reynolds number differs from the exact value by a factor5/6.

2. The IBL is not consistent with the Benney equation.

3. The assumed parabolic velocity profile does not fulfill the dynamic boundary condition at second
order.

The first problem follows from a linear stability analysis which yields Rcrit, IBL = cotα. For the second
point one derives a scalar evolution equation forF from the IBL. This can be done by enslaving the flow
rateQ to the film thicknessF and expanding it in powers ofε, which gives a scalar equation for∂TF
differing from the Benney equation already at orderε, see [9]. The third problem is due to the fact that
the parabolic velocity profile has its maximum at the free surface which implies∂ZU(F ) = 0.

Recently there has been much effort to overcome these problems. Along [7, 9, 10] a two-equation
model forF andQ has been derived by a Galerkin method. Based again on a long wave expansion of the
Navier–Stokes equations, the Nusselt solution and three more polynomials appearing in the derivation of
the Benney equation served as ansatz and test functions. The resulting model consisted of four evolution
equations forF, Q and two other quantities measuring the deviation from the parabolic velocity profile.
From this a simplified model, called weighted residual integral boundary layerequation (WRIBL) for
F andQ was derived which is consistent with the Benney equation at orderε2 and predicts the correct
critical Reynolds number. However, this model does not reproduce wellknown solitary wave solutions if
the Reynolds number exceeded a certain value only slightly larger than the instability threshold. This de-
ficiency can be cured by a Padé-like regularization method in [7]. Moreover, in numerical simulations the
extension of the WRIBL to three-dimensional flows yields excellent agreement with recent experimental
results from [11], see again [7]. See also [12] for further detailed numerical studies of this model.

The problem over wavy bottom is studied much less extensively. For experimental results we refer
to [13–19]. On the theoretical side, [16, 20] give an expansion of Nusselt like stationary solutions in
suitable small parameters and an analysis of their stability. In [21–23] the problem is studied numerically
by simulations of both the full Navier–Stokes problem and model equations derived in a similar way as
in [8]. Moreover, a detailed numerical stability analysis based on the Navier–Stokes equations has been
carried out [24]. In [25] a scalar Benney like model has been derived and studied numerically, and
in [26] an IBL over wavy bottom has been derived using Shkadov’s method. Finally, using the method
from [7,10] a first-order WRIBL has been derived and studied in great detail in [27].

Here we continue into a similar direction as [27] by deriving and analyzing numerically an alterna-
tive WRIBL equation and a regularized version. However, in contrast to[27] our analysis is based on
curvilinear coordinates from [15] which allow to treat more general situations where for instance the free
surface is not necessarily a graph over the (flat bottom) downstream coordinate. These curvilinear co-
ordinates are also more natural since they allow a clear distinction between flow components tangential
and normal to the bottom. Moreover, our WRIBL is second order accuratewhich for instance allows the
description of eddies in the troughs of the wavy bottom. Finally, our approach is somewhat simpler than
the (more general) approach of [7, 10] which consists of several polynomial ansatz and test functions in
the Galerkin expansion. We find that by taking an accurate velocity profileŨ as single ansatz and test
function in the Galerkin method the WRIBL can be obtained in one step.

Thus, the outline is as follows: In Section 2 we present the governing equations in curvilinear coor-
dinates. Since we focus on film flow over bottoms with long wave undulations weassume the bottom
steepness and the non-dimensional wave number to be of orderε, 0 < ε ≪ 1, and expand all equations
up toO(ε2). In Section 3 we derive an appropriate velocity profile serving as ansatzand test function
used to derive our WRIBL by the Galerkin method in Section 4, and in Section 5we check the con-
sistency of the resulting WRIBL with the Benney equation over wavy bottoms. From the WRIBL we
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Figure 1: Sketch of the geometry and the curvilinear coordinate system.

derive a regularized version called rWRIBL in Section 6 by removing second-order inertia terms which
otherwise may lead to some unphysical behaviour. In Section 7 we finally give some numerical results.
First, in §7.1, by comparison with available experimental and full Navier–Stokes numerical data we il-
lustrate the accuracy of our rWRIBL over wide parameter regimes, including the occurrence of eddies.
Second, in§7.2 we illustrate two new phenomena, namely that the bottom modulation may introducea
short wave instability (in a phenomenological sense) not present over flat bottom (except for rather ex-
treme parameter ranges), and that and how the free surface may cease tobe a graph over the (flat bottom)
downstream coordinate. A short summary is given in§7.3.

2 Governing equations

Figure 1 illustrates the inclined film problem with an undulated bottomb̂. The liquid is assumed incom-
pressible and Newtonian, the Cartesian coordinate systemex̂, eẑ is inclined at an angleα with respect
to the horizontal (α = 90◦ in Fig. 1), and the bottom profilêb(x̂) is periodic with wavelengtĥλ and
amplitudeâ. As we want to expand the governing equations in a small parameterε it is useful and nat-
ural to introduce a curvilinear coordinate system for the following reasons. First, although the Nusselt
solution is no longer a stationary solution if the bottom is undulated, for thin films and low Reynolds
numbers the flow(u, w) is still mainly parallel to the bottom. To apply different scalings tou andw
the coordinate system thus has to be orientated along the bottom profile such that theu component is
tangential to the bottom, while using a fixed Cartesian coordinate system scalinginvolves a mixing of
the Cartesian velocity componentsû, ŵ. Second, for larger Reynolds numbers we may anticipate situa-
tions as sketched in Fig. 1 where the free surface is not a graph overx̂ and cannot easily be described in
Cartesian coordinates.

Thus, at every point of the bottom̂xex̂ + b̂(x̂)eẑ we define a local coordinate systemex, ez with ex

tangential andez normal to the bottom. For an arbitrary pointA within the liquid the arc lengthx of the
bottom and the distancez alongez to the bottom are now taken as curvilinear coordinates. As we focus
on film flow over weakly undulated bottoms this relation is always unique. Thus,

A =

(

x̂ − sin θ z

b̂(x̂) + cos θ z

)

in ex̂, eẑ coordinates, whereθ = θ(x) is the local inclination angle betweenex̂ andex. In order to
transform gradients we will also need the bottom curvatureκ which is defined by

κ(x̂) = −
∂2

x̂b̂(x̂)

(1 + (∂x̂b̂(x̂))2)
3

2

. (1)
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v(x, z, t) = u(x, z, t)ex + w(x, z, t)ez velocity field
f(x, t) film thickness (perpendicular to the bottom)
p(x, z, t) pressure
pair pressure of the air above the liquid surface
σ surface tension
ρ liquid density
ν kinematic viscosity
g gravity acceleration

Table 1: Physical quantities.

For further details concerning the transformation to curvilinear coordinates we refer to [16].
To describe the free-surface flow we introduce the variables in Table 1.In contrast to Cartesian

coordinates all quantities measured in curvilinear coordinates are written without a hat. The governing
two-dimensional Navier–Stokes equations now read

∂tu +
1

1 + κz
u∂xu + w∂zu +

1

1 + κz
κuw

= −
1

ρ

1

1 + κz
∂xp + g sin(α − θ) + ν

[

1

(1 + κz)3
∂xκ(w − z∂xu)

+
1

(1 + κz)2
(∂2

xu − κ2u + 2κ∂xw) +
1

1 + κz
κ∂zu + ∂2

zu

]

, (2)

∂tw +
1

1 + κz
u∂xw + w∂zw −

1

1 + κz
κu2

= −
1

ρ
∂zp − g cos(α − θ) + ν

[

−
1

(1 + κz)3
∂xκ(u + z∂xw)

+
1

(1 + κz)2
(∂2

xw − κ2w − 2κ∂xu) +
1

1 + κz
κ∂zw + ∂2

zw

]

, (3)

1

1 + κz
(∂xu + κw) + ∂zw = 0. (4)

At the bottomz ≡ 0 we have the no-slip and no-flux condition

u
∣

∣

z=0
= w

∣

∣

z=0
= 0. (5)

The dynamic boundary condition tangential and normal to the free surfacez ≡ f reads

0 =
(

(1 + κf)2 − (∂xf)2
)

(

∂xw − κu

1 + κf
+ ∂zu

)

+ 4(1 + κf)∂xf∂zw, (6)

σ
(1 + κf)∂2

xf − f∂xκ∂xf −
(

(1 + κf)2 + 2(∂xf)2
)

κ

((1 + κf)2 + (∂xf)2)3/2
+ (p − pair)

=
2ρν

1 + (∂xf/(1 + κf))2

(

(∂xf)2(∂xu + κw)

(1 + κf)3
+ ∂zw −

∂xf

1 + κf

(

∂xw − κu

1 + κf
+ ∂zu

))

(7)

while the kinematic boundary condition is

d

dt
(f(x, t) − z) = 0 ⇔ ∂tf +

1

1 + κf
u∂xf − w = 0. (8)

In order to introduce dimensionless quantities we refer to the stationary solution over a flat incline.

This so called Nusselt solution has the mean flow velocity〈u〉 = g sin αĥ2

3ν , whereĥ is the constant film
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thickness. We set

X =
2π

λ̂
x, Z =

1

ĥ
z, F =

1

ĥ
f, U =

1

〈u〉
u,

W =
λ̂

2πĥ〈u〉
w, T =

2π〈u〉

λ̂
t, K =

λ̂2

4π2â
κ, P =

1

ρ〈u〉2
p.

Additional toα we can choose four non-dimensional parameters to write the governing equations dimen-
sionless. To describe surface tension and viscosity effects we use

Bi :=
4π2l2ca

λ̂2 sinα
=

4π2σ

ρgλ̂2 sin α
(inverse Bond number),

R :=
〈u〉ĥ

ν
=

gĥ3 sinα

3ν2
(Reynolds number).

Herelca =
(

σ
ρg

)
1

2

is the capillary length. The relation ofBi to the also frequently used Weber number

W = σ
ρgĥ2 sin α

is W = 1
δ2 Bi. For the geometric quantities we introduce

δ := 2π
ĥ

λ̂
(dimensionless wave number), ζ := 2π

â

λ̂
(bottom steepness).

As we are interested in thin films over weakly undulated bottoms we suppose throughout that bothδ and
ζ are of orderε, whereε is a small parameter, while R, Bi andα are assumed to be of order1. The latter
means thatα is bounded away from zero such thatcot(α) is bounded. However,α = 90◦ such that
cot(α) = 0 is allowed.

All calculations will be exact of order ε2, i.e. we keep all terms of order1, δ, ζ, δ2, ζ2 and δζ.
Throughout we will only display theO(ε3)-symbol if we want to emphasize that our calculations are
only asymptotically correct. In all other cases we will skip it. In particular, skippingO(ε3)-terms, the
dimensionless governing equations read

δR∂TU + δR∂XUU + δR∂ZUW = −δR∂XP + 3
sin(α−θ)

sinα
+ δ2∂2

XU + δζK∂ZU + ∂2
ZU, (9)

δ2R∂TW + δ2RU∂XW + δ2R∂ZWW − δζRKU2 = −R∂ZP − 3
cos(α−θ)

sinα
+ δ∂2

ZW, (10)

∂XU + ∂Z((1 + δζKZ)W ) = 0, (11)

U(0) = W (0) = 0, (12)

(1+2δζKF−δ2(∂XF )2)∂ZU(F ) + δ2∂XW (F ) − δζKU(F ) + 4δ2∂XF∂ZW (F ) = 0, (13)

3Bi(∂
2
XF − ξK) = −R(P (F ) − Pair) + 2δ∂ZW (F ) + O(ε2), (14)

∂TF + (1 − δζKF )∂XFU(F ) − W (F ) = 0. (15)

The dynamic boundary condition normal to the free surface (14), wherewe used the abbreviationξ := ζ
δ ,

is only given up to orderε. As we are not interested in second-order terms of the pressureP this turns
out to be sufficient.

3 A first-order velocity profile

For givenF we derive a solution(U, W, P ) of the time dependent equations (9)–(14) which is exact
to orderε. By introducing the flow rateQ as independent quantity we also construct a velocity profile
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Ũ which will serve as ansatz and test function in the Galerkin approach in Section 4. There, a first-
order profileŨ = Ũ0 + εŨ1 is sufficient since we can extract all necessary second-order terms from the
boundary conditions.

We assume thatF is of order1 while the velocity field(U, W ) and the pressureP are enslaved byF
and can be expanded in powers ofε:

U = U0 + εU1 + O(ε2), W = W0 + εW1 + O(ε2), P = P0 + εP1 + O(ε2). (16)

The geometric quantitiesK andθ coming from the bottom profile can be expanded in powers ofε, too.
It turns out that the bottom curvatureK does not contain terms of first order while the local inclination
angle has a leadingζ, i.e.

K = K0 + ζ2K2 + O(ζ4), θ = ζθ1 + O(ζ3)

with θ1(X) = ∂XB̂(X), see Appendix A. This yields

cos(α−θ)

sin α
= cotα + ζθ1 −

1

2
ζ2 cot αθ2

1 + O(ζ3),
sin(α−θ)

sinα
= 1 − ζ cot α θ1 −

1

2
ζ2θ2

1 + O(ζ3).

Since bothδ andζ are of orderε, equations (9)–(14) read atO(1)

3 + ∂2
ZU0 = 0, −R∂ZP0 − 3 cot α = 0, ∂XU0 + ∂ZW0 = 0,

U0(0) = W0(0) = 0, ∂ZU0(F ) = 0, 3Bi(∂
2
XF − ξK0) = −R(P0(F ) − Pair).

TheO(1)-solution thus is

U0 = −
3

2
Z2 + 3FZ, W0 = −

3

2
∂XFZ2, P0 =

3

R
(cot α(F − Z) − Bi∂

2
XF + BiξK0) + Pair.

(17)

At O(ε) we get the equations

δR∂TU0 + δR∂XU0U0 + δR∂ZU0W0 = −δR∂XP0 − 3ζ cot α θ1 + ε∂2
ZU1,

− εR∂ZP1 − 3ζθ1 + δ∂2
ZW0 = 0,

∂XU1 + ∂ZW1 = 0, U1(0) = W1(0) = 0, ∂ZU1(F ) = 0, −εRP1(F ) + 2δ∂ZW0(F ) = 0,

with solutions

εU1 =
1

2
δR∂TF (Z3−3F 2Z) + δR∂XF

(

3

8
FZ4 −

3

2
F 4Z

)

+ 3(δ cot α∂XF − δBi∂
3
XF + ζBi∂XK0 + ζ cot αθ1)

(

1

2
Z2−FZ

)

, (18)

εW1 = −
1

2
δR∂TXF

(

1

4
Z4 −

3

2
F 2Z2

)

+
3

2
δR∂TF∂XFFZ2

− δR∂2
XF

(

3

40
FZ5 −

3

4
F 4Z2

)

− δR(∂XF )2
(

3

40
Z5 − 3F 3Z2

)

+
3

2
(δ cot α∂XF − δBi∂

3
XF + ζBi∂XK0 + ζ cot α θ1)∂XFZ2

− (δ cot α∂2
XF − δBi∂

4
XF + ζBi∂

2
XK0 + ζ cot α∂Xθ1)

(

1

2
Z3 −

3

2
FZ2

)

,

εP1 = −
3

R
ζθ1(Z − F ) −

3

R
δ∂XF (Z + F ).
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To get rid of the time derivatives ofF we use the kinematic boundary condition (15) which leads atO(1)
to the identity

∂TF = −∂XFU0(F ) + W0(F ) + O(ε) = −3∂XFF 2 + O(ε).

ThusU1 can be rewritten as

εU1 =δR∂XFF 5

(

3

8

(

Z

F

)4

−
3

2

(

Z

F

)3

+ 3
Z

F

)

− 3F 2(δ cot α∂XF−δBi∂
3
XF+ζBi∂XK0+ζ cot α θ1)

(

Z

F
−

1

2

(

Z

F

)2
)

. (19)

If we assume temporarily that also the local flow rateQ =
∫ F
0 UdZ is enslaved byF we can easily

state theε-expansion ofQ = Q0 + εQ1 + O(ε2), namely

Q0 =

∫ F

0
U0dZ = F 3, (20)

εQ1 =ε

∫ F

0
U1dZ =

6

5
δR∂XFF 6 − F 3(δ cot α∂XF−δBi∂

3
XF+ζBi∂XK0+ζ cot αθ1). (21)

As mentioned in the introduction we cannot maintain the enslavement ofQ to F since this would lead
to a single evolution equation forF which fails to reproduce physics correctly. Therefore we treatQ as
independentO(1)-quantity and introduce a second representation

Ũ = Ũ(F, Q) = Ũ0 + εŨ1 + O(ε2) (22)

of the velocity profile which depends on bothF andQ. For consistency, if we plug the enslaved version
Q = Q0 + εQ1 + O(ε2) into (22) we must recover the expansionU = U0 + εU1 + O(ε2) calculated in
(17), (19). This yields the following conditions for̃U0:

(i)
∫ F

0
Ũ0dZ = Q asQ is of order1, (ii) Ũ0 = U0 if Q = Q0 + O(ε) is assumed.

As Q is independent ofZ the first condition implies thatQ occurs as a factor iñU0. From (20) we know
that in the enslaved version ofQ in zeroth order we haveQ = F 3. Thus

Ũ0 =
3Q

F

(

−
1

2

(

Z

F

)2

+
Z

F

)

, (23)

which is exactly the lubrication ansatz which is used in the method of Kármán–Pohlhausen. Thus our
new velocity profile will emerge as refinement of the parabolic profile.

On the other hand, pluggingQ = Q0 + εQ1 into Ũ0 yields

Ũ0 = −
3

2
Z2 + 3FZ + δR∂XFF 5

(

−
9

5

(

Z

F

)2

+
18

5

Z

F

)

− 3F 2(δ cot α∂XF − δBi∂
3
XF + ζBi∂XK0 + ζ cot α θ1)

(

−
1

2

(

Z

F

)2

+
Z

F

)

. (24)

Thus, comparing (19) and (24),̃U0 contains terms which belong toU1, and thereforẽU1 consists of less
terms thanU1, namely

εŨ1 = δR∂XQQ

(

1

8

(

Z

F

)4

−
1

2

(

Z

F

)3

+
3

5

(

Z

F

)2

−
1

5

Z

F

)

. (25)
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To sum up, ifQ is treated as independentO(1)-quantity we obtain the first-order velocity profile

Ũ =
3Q

F

(

Z

F
−

1

2

(

Z

F

)2
)

+ δR∂XQQ

(

1

8

(

Z

F

)4

−
1

2

(

Z

F

)3

+
3

5

(

Z

F

)2

−
1

5

Z

F

)

. (26)

Similarly, the second-order velocity profilesU2 andŨ2 are derived in Appendix B. These are not needed
for the derivation of the WRIBL but for the reconstruction of the flow fieldin Section 7.

4 Galerkin method

We start with the derivation of the evolution equation forF by integrating the continuity equation (11)
alongZ, i.e.

∫ F

0
∂XUdZ + [(1 + δζKZ)W ]F0 = 0.

FromQ =
∫ F
0 UdZ and the no-flux boundary condition we obtain∂XQ−∂XFU(F )+(1+δζKF )W (F ) =

0, and eliminatingW (F ) by the kinematic boundary condition (15) and skipping all terms of orderε3

and higher finally gives
∂TF = −(1 − δζKF )∂XQ. (27)

In order to derive an evolution equation forQ we first eliminate the pressureP from the streamwise
momentum equation (9) before we apply a Galerkin method. By means of (10)P can be written as

δRP (Z) = δRP (F ) − δR
∫ F

Z
∂ZPdZ

= δRP (F ) + 3δ
cos(α − θ)

sinα
(F − Z) − δ2(∂ZW (F ) − ∂ZW (Z)).

To eliminateP (F ) we use the dynamic boundary condition normal to the free surface (14) and the
continuity equation (11) to obtain

δRP (Z) = δRPair + δ2(∂ZW (F ) + ∂ZW (Z))−3Bi(δ∂
2
XF−ζK) + 3δ

cos(α−θ)

sinα
(F−Z)

= δRPair−δ2(∂XU(F ) + ∂XU(Z))−3Bi(δ∂
2
XF−ζK) + 3δ

cos(α−θ)

sinα
(F−Z).

Plugging this into the streamwise momentum equation (9) we obtain

δR∂TU + δR∂XUU + δRW∂ZU

= 3
sin(α−θ)

sinα
+ ∂2

ZU + 2δ2∂2
XU + 3δBi∂

3
XF − 3ζBi∂XK − 3δ

cos(α−θ)

sinα
∂XF

− 3δ
sin(α−θ)

sinα
∂Xθ(F−Z) + δ2 d

dX
(∂XU(F )) + δζK∂ZU. (28)

The next step is to perform a Galerkin method with the single test and ansatz functionŨ from (26).
Thus we plugŨ into (28), multiply the residual bỹU itself and integrate the result alongZ. We want
all calculations to be exact of order ε2. This seems to be a problem since the first two terms on the
right-hand side of (28) are of order1 and we knowŨ = Ũ0 + εŨ1 + ε2Ũ2 only up toO(ε). However,
the first term3 sin(α−θ)

sin α is independent ofZ, and by the definition ofQ we get

∫ F

0
3
sin(α − θ)

sinα
ŨdZ = 3

sin(α − θ)

sin α
Q.
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The second term∂2
ZU is slightly harder to manage. Integration by parts together with the no-slip condi-

tion Ũ(0) = 0 yields
∫ F

0
∂2

ZŨ ŨdZ = ∂ZŨ(F )Ũ(F ) −

∫ F

0
(∂ZŨ)2dZ, (29)

and up to orderε2 the integral on the right-hand side reads

∫ F

0
(∂ZŨ)2dZ =

∫ F

0

(

(∂ZŨ0)
2 + 2ε∂ZŨ0∂ZŨ1 + ε2(∂ZŨ1)

2 + 2ε2∂ZŨ0∂ZŨ2

)

dZ

= 3
Q2

F 3
+

1

175
δ2R2 1

F
(∂XQ)2Q2 + 6ε2 Q

F

∫ F

0

(

1

F
−

Z

F 2

)

∂ZŨ2dZ. (30)

At this point we need some information about the second-order termε2Ũ2. The velocity profileŨ
emanates from the asymptotic solutionU , and thus fulfills the boundary conditions (12), (13). Moreover,
∫ F
0 Ũ0dZ = Q, which implies

∫ F
0 Ũ2dZ = 0. Therefore and due to the no-slip boundary condition the

last integral in (30) satisfies

∫ F

0

(

1

F
−

Z

F 2

)

∂ZŨ2dZ =

[(

1

F
−

Z

F 2

)

Ũ2

]F

0

+
1

F 2

∫ F

0
Ũ2dZ = 0

which gives
∫ F

0
(∂ZŨ)2dZ = 3

Q2

F 3
+

1

175
δ2R2 1

F
(∂XQ)2Q2.

It remains to calculate the first term on the right-hand side of (29). From (13) we know that∂ZŨ(F ) =
−δ2∂XW̃ (F ) − 4δ2∂XF∂ZW̃ (F ) + δζKŨ(F ) is of orderε2 where the velocity component̃W can be
expressed bỹU due to the continuity equation (11). Thus theO(1)-terms ofŨ are sufficient which means
that we do not have to know̃U2 explicitly. This leads finally to

∫ F

0
∂2

ZŨ ŨdZ =
3

2
δ2 1

F
∂2

XQQ −
9

2
δ2 1

F 3
Q2(∂XF )2 −

9

4
δ2 1

F 2
Q2∂2

XF +
9

2
δ2 1

F 2
∂XQQ∂XF

+
9

4
δζK

Q2

F 2
− 3

Q2

F 3
−

1

175
δ2R2 1

F
(∂XQ)2Q2.

The other terms in (28) are all at least of orderε and we can calculate them rather easily by plugging in
Ũ = Ũ0 + εŨ1. Testing (28) withŨ leads to

δR∂TQ =
5

2

sin(α−θ)

sinα
F−

5

2

Q

F 2
−

5

2
δ
cos(α−θ)

sinα
∂XFF−

15

16
δ
sin(α−θ)

sinα
∂XθF 2

+
5

2
Bi(δ∂

3
XF−ζ∂XK)F−

17

7
δR

Q

F
∂XQ +

9

7
δR

Q2

F 2
∂XF +

9

2
δ2∂2

XQ

+
45

16
δζK

Q

F
+ 4δ2 Q

F 2
(∂XF )2−6δ2 Q

F
∂2

XF−
9

2
δ2 1

F
∂XQ∂XF

+ δ2R2

(

−
1

210
∂XTQQF−

1

105
∂TQ∂XQF−

1

21
(∂XQ)2Q−

1

70
∂2

XQQ2+
1

70

Q2

F
∂XQ∂XF

)

where we made use of (27) to eliminate time derivatives ofF . As there are still time derivatives ofQ on
the right-hand side this is not yet an explicit evolution equation forQ. However, from (20) we know that
Q = F 3 + O(ε), which leads to∂TQ = 3F 2∂TF + O(ε) = −3Q

F ∂XQ + O(ε). Together with (27) this
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gives the evolution system for(F, Q), namely

∂TF = − (1−δζKF )∂XQ, (31)

δR∂TQ =
5

2

sin(α−θ)

sinα
F −

5

2

Q

F 2
−

5

2
δ
cos(α−θ)

sinα
∂XFF −

15

16
δ
sin(α−θ)

sinα
∂XθF 2

+
5

2
Bi(δ∂

3
XF − ζ∂XK)F −

17

7
δR

Q

F
∂XQ +

9

7
δR

Q2

F 2
∂XF +

9

2
δ2∂2

XQ

+
45

16
δζK

Q

F
+4δ2 Q

F 2
(∂XF )2−6δ2 Q

F
∂2

XF−
9

2
δ2 1

F
∂XQ∂XF−

1

210
δ2R2(∂XQ)2Q. (32)

If we set the wavinessζ = 0 we obtain a system which is up to scaling the same as the non-regularized
WRIBL in [7]. That means that in case of a flat bottom our one-step method isindeed equivalent to the
Galerkin method with universal polynomials and subsequent simplification. Thus forζ = 0 our WRIBL
is consistent with the Benney equation and predicts the correct critical Reynolds number Rcrit. In the
next section we will check the consistency forζ > 0 before we will regularize the equation in Section 6.

5 Consistency

The basic assumption throughout this paper is thatF is of order1 while U, W andP can be expressed
in powers ofε as stated in (16). In Section 3 this allowed us to solve the Navier–Stokes equations
asymptotically, which was used in Section 4 to derive the evolution equation (27) for F depending on
the flow rateQ. The natural approach to achieve a scalar equation is now to plug into (27)the expansion

Q = Q0 + εQ1 + ε2Q2 + O(ε3) =

∫ F

0
U0dZ + ε

∫ F

0
U1dZ + ε2

∫ F

0
U2dZ + O(ε3).

We call the resulting equation Benney equation for wavy bottoms. In (20) and (21) we have already
calculated the zeroth and first order componentsQ0 andQ1. Consistency now means the following: In
the evolution equation (32) forQ we formally replaceQ by an enslaved versionQIBL with the expansion

QIBL = QIBL
0 + εQIBL

1 + ε2QIBL
2 + O(ε3). (33)

It is remarkable that−5
2

Q
F 2 is the onlyO(1)-term in (32) which containsQ. Thus we obtain a set of

linear algebraic equations forQIBL
0 , QIBL

1 , QIBL
2 which can be solved easily. By pluggingQIBL into (27)

we obtain a second scalar evolution equation forF . We call our WRIBL consistent if this approach
yields the Benney equation for wavy bottoms.

To derive the Benney equation for wavy bottoms by a long wave expansionof the Navier–Stokes
equations and the associated boundary conditions (9)–(14) we continueas in (17), (18). AtO(ε2) we
obtainU2. As this is rather lengthy we refer to Appendix B and state here only the integrated version,
namely

ε2Q2 = ε2

∫ F

0
U2dZ

=
12

7
δ2R2∂2

XFF 10 +
381

35
δ2R2(∂XF )2F 9 +

10

7
δ2R(Bi∂

4
XF − cot α∂2

XF )F 7

−
8

35
δζR(Bi∂

2
XK0 + cotα∂Xθ1)F

7 +
12

5
δR(3δBi(∂

2
XF )2 − 2δ cot α(∂XF )2

+5δBi∂
3
XF∂XF−ζ(Bi∂XK0+ cotα θ1)∂XF )F 6+

72

5
δ2RBi(∂XF )2∂2

XFF 5

+
9

8
δζK0F

4−
3

8
δζ∂Xθ1F

4+3δ2∂2
XFF 4−δζθ1∂XFF 3+7δ2(∂XF )2F 3−

1

2
ζ2θ2

1F
3. (34)
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ReplacingQ in (31) byQ0 + εQ1 + ε2Q2 yields the Benney equation for wavy bottoms.
Now we use (32) to derive a scalar model. Plugging (33) into (32) yields atO(1):

5

2
F −

5

2

QIBL
0

F 2
= 0 ⇔ QIBL

0 = F 3. (35)

At first order we get

δR∂TQ
IBL
0 =−

5

2
ζ cot α θ1F−

5

2
ε
QIBL

1

F 2
−

5

2
δ cot α∂XFF+

5

2
δBi∂

3
XFF−

5

2
ζBi∂XK0F

−
17

7
δR

QIBL
0

F
∂XQIBL

0 +
9

7
δR

(QIBL
0 )2

F 2
∂XF. (36)

By applying∂TQ
IBL
0 = 3F 2∂TF = −3F 2∂XQIBL

0 +O(ε) = −9∂XFF 4+O(ε) this equation can be
solved forQIBL

1 , which yields

εQIBL
1 =

(

6

5
δR∂XFF 3−ζ(Bi∂XK0+ cotα θ1)−δ cot α ∂XF+δBi∂

3
XF

)

F 3. (37)

Comparing these results with (20), (21) we already see thatQ andQIBL match at zeroth and first order.
In order to calculateQIBL

2 we solve (32) atO(ε2). As this is somehow elaborate and does not give any
new insight we state here only the result, i.e.QIBL

2 = Q2 as expected. As both the long wave expansion
and the WRIBL approach yield the same expansion ofQ, the scalar evolution equations are in both cases
the same. Therefore our WRIBL is consistent with the Benney equation alsofor ζ > 0.

6 Regularization

With the WRIBL (31), (32) we now have a second-order model for film flow over wavy bottoms which
is consistent with the according Benney equation and reproduces in the limit of a flat incline the correct
critical Reynolds number Rcrit. In order to achieve consistency the basic idea of the one-step Galerkin
method was to use as test and ansatz function a velocity profile which is a solution of the expanded
Navier–Stokes equations (9)–(14) also in the time dependent case. Therefore in (18) the first-order
componentU1 in particular contains the time derivative∂TF which is substituted by the zeroth-order
identity ∂TF = −3∂XFF 2. In contrast to setting∂TF = 0 in the velocity profile this procedure leads
to the additional term− 1

210δ2R2(∂XQ)2Q in the WRIBL (31), (32) which turned out to be necessary for
consistency.

However, over flat bottom it is known that a pure asymptotic expansion approach with the above
substitution of∂TF can lead to an unphysical behaviour if the Reynolds number exceeds a certain value
R0 not far beyond Rcrit. In [6] one-hump solitary wave solutions of a scalar Benney-like equationfor
flat inclines are considered. According to the bifurcation diagram [6, Fig. 5] such homoclinic orbits are
only found if the Reynolds number is close to the instability threshold, i.e. Rcrit < R < R0. However,
in [28], where the two-dimensional Navier–Stokes equations were solvedby a finite-element method,
such a limit R0 was not obtained. Thus the asymptotic expansion equation used in [6] appears to be valid
only if R is not far beyond Rcrit, and shows non-physical behaviour if R exceeds a limiting value R0. This
deficiency appears to be closely related to finite-time blow-up solutions in the scalar Benney equation.

For flat vertical walls it was shown in [7] using homoclinic continuation that such a limitation also
occurs for the second-order WRIBL, i.e., the branch of homoclinic orbitsagain turns back if the Reynolds
number becomes too large, see [7, Fig. 1]. However, if the inertia correction term, which corresponds to
− 1

210δ2R2(∂XQ)2Q in our notation, is neglected this non-physical loss of solitary waves ceases. At least
for smallζ and otherwise similar parameters as in [7] we must expect similar problems with our model.

In [7] a Pad́e-like approximant technique is used to regularize the WRIBL in case of a flat incline, see
also [29] for the case of a scalar surface equation. The main idea is to remove the dangerous second-order
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inertia terms by multiplying the residual equation for∂tQ with a suitable regularization factorS. This
procedure preserves the degree of consistency since the second-order inertia terms are still implicitly
included. This becomes clear if one applies the zeroth-order identityQ = F 3 to S which yields the
original non-regularized WRIBL. Homoclinic continuation now yields solitarywave solutions for the
regularized model with no non-physical behaviour for R> Rcrit [7]. More precisely, for a wide regime
of unstable Reynolds numbers solitary wave solutions are found, with amplitudes only slightly smaller
than those obtained by numerics for the Navier–Stokes equations, in contrast to the regularization in [29].

For the undulated bottom we again closely follow [7]. First, we split (32) into three parts, namely

Res1 := δR(−∂TQ −
17

7

Q

F
∂XQ +

9

7

Q2

F 2
∂XF ) and Res2 := −

1

210
(δR)2(∂XQ)2Q (38)

containing the inertia terms with leadingδR and(δR)2, respectively, and the rest

Res0 :=
5

2

sin(α−θ)

sinα
F−

5

2

Q

F 2
−

5

2
δ
cos(α−θ)

sinα
∂XFF−

15

16
δ
sin(α−θ)

sinα
∂XθF 2+

5

2
Bi(δ∂

3
XF−ζ∂XK)F

+
9

2
δ2∂2

XQ+
45

16
δζK

Q

F
+4δ2 Q

F 2
(∂XF )2−6δ2 Q

F
∂2

XF−
9

2
δ2 1

F
∂XQ∂XF.

The ∂TQ-equation (32) now readsRes0 + Res1 + Res2 = 0, and using againQ = F 3 we see that
Res2 ∼ (∂XF )2F 7 is highly nonlinear. The aim is to get rid of the potentially dangerous termRes2
without loosing the degree of consistency. Therefore,if we enslave again Q by F as in Section 5,
no term up toO(ε2) should be deleted or added. This is ensured, e.g., if we multiply the residual
equation by a regularization factorS which can depend onF, Q and their derivatives. This yields
S Res0 +S(Res1 + Res2) = 0, and we are done ifS fulfills

S(Res1 + Res2) = Res1 +O(ε3). (39)

This ansatz leads to the function

S =

(

1 +
Res2
Res1

)

−1

. (40)

Plugging the zeroth-order identityQ = F 3 into (38) yields

Res1 = 3δR∂XFF 4 + O(ε2), Res2 = −
3

70
(δR)2(∂XF )2F 7 + O(ε3),

and thus, using againQ = F 3,

S̃ :=

(

1 −
1

70
δRQ∂XF

)

−1

= S + O(ε2). (41)

Then (39) leads tõS(Res1 + Res2) = Res1 +O(ε3), and multiplyingRes0 + Res1 + Res2 = 0 by S̃
finally yields the “regularized” equatioñS Res0 + Res1 = O(ε3). In summary, the regularized version
(rWRIBL) of the weighted residual integral boundary layer equation reads

∂TF = − (1−δζKF )∂XQ, (42)

δR∂TQ = −
17

7
δR

Q

F
∂XQ +

9

7
δR

Q2

F 2
∂XF +

(

5

2

sin(α−θ)

sinα
F −

5

2

Q

F 2
−

5

2
δ
cos(α−θ)

sinα
∂XFF

−
15

16
δ
sin(α−θ)

sinα
∂XθF 2 +

5

2
Bi(δ∂

3
XF − ζ∂XK)F +

9

2
δ2∂2

XQ+
45

16
δζK

Q

F

+4δ2 Q

F 2
(∂XF )2−6δ2 Q

F
∂2

XF−
9

2
δ2 1

F
∂XQ∂XF

)(

1 −
1

70
δRQ∂XF

)

−1

. (43)
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It is not easy to assess the value of this regularization. First, for flat bottom we numerically confirmed
the loss of the one-hump solitary waves for the WRIBL (31), (32) in a certain interval [R0, R1] of R >
Rcrit and its regain for the rWRIBL (42), (43). However, here we use direct numerical simulations (see
Section 7 for details), instead of homoclinic continuation in [7], which is not possible forζ > 0, or in
any case is much more involved since the solitary waves then do not decay to aconstant state but to
spatially periodic solutions. In these direct numerical simulations we find that the interval[R0, R1] is
typically rather narrow, shrinks quickly with increasingζ > 0 and vanishes forζ greater someζ0 which
depends on the other parameters. Also, the loss of solitary waves in[R0, R1] is not related to blow-up
of solutions: instead, small amplitude irregular patterns appear in this interval.This might indicate a
transition between two different branches of solitary waves for R< R0 and R> R1, or some other more
complicated structure in the background.

To illustrate the effect of the regularization, Fig. 2 shows (in advance of§7) some differences between
the rWRIBL and the WRIBL for a parameter set for which there is no interval [R0, R1] where the WRIBL
does not have solitary wave solutions in direct numerical simulations. In general, these differences appear
to be rather small, with the notable exception of the calculation of the critical Reynolds number Rcrit in
Fig. 7 below, where the results for the rWRIBL are closer to available data.

In general, in our simulations both the WRIBL and the rWRIBL did not show blow-up of solutions
in parameter regimes of interest, but there appears to be one disadvantageof the rWRIBL: for some pa-
rameters, as R becomes large the numerics for the rWRIBL fail more rapidly than those for the WRIBL.
In particular, for the parameters in Fig. 2 we can follow one-hump solitary waves for the WRIBL up to
R ≈ 90 where these split up into two humps, while for the rWRIBL we obtain numerical failures due to
F → 0 pointwise for R not far beyond 12. However, this is strongly related to the method of simulation,
i.e., to the fact that〈F 〉 = 1 is imposed, and should not be considered as blow-up of solutions of the
rWRIBL: for instance we can follow one-hump solitary waves for the rWRIBL up to R = 21 if we
double the domain length in Fig. 2. In summary, since we are more interested in theregime R not too far
from Rcrit, where the rWRIBL gives results closer to available data than the WRIBL, below we focus on
the rWRIBL for our numerical simulations.

7 Numerical simulations

Though the rWRIBL (42), (43) is much simpler than the Navier–Stokes system (2)–(8), it is still a
quasilinear parabolic system, with periodic coefficients. Therefore, a first step to explore some of its sta-
tionary and non-stationary solutions are numerical simulations. For this we have set up a finite difference
method with periodic boundary conditions in space for both, the rWRIBL andthe WRIBL. To calculate
stationary solutions(F, Q)s we use a Newton method starting at constant(F, Q) which corresponds to a
Nusselt flow, which in contrast to the flat bottom case isnot a stationary solution over wavy bottom. For
the time dependent problem we may also use constant(F, Q) or perturbations of some(F, Q)s as initial
data. We then use an implicit and adaptive time stepping. Depending on the flow characteristics, the
spatial discretization was on the order of 50 (Fig. 7) to 400 (Fig. 12) pointsper bottom wave. Numerical
convergence was checked by refining the discretization without perceivable differences in the solutions.

7.1 Comparison with available data

First we want to compare our results with available experimental and numerical data. Therefore we
have to somewhat relax the assumption used in the derivation of the WRIBL that R andBi are of order
1 compared toζ, δ which are assumed to be small. However, similar relaxations often appear in the
application of asymptotic expansions. In other words, one goal of the present section is to study how far
the asymptotic expansion can take us. As said above, we focus on the rWRIBL since it gives slightly
better comparison with available data.
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Figure 2: Comparison of the WRIBL with the regularized version rWRIBL.α = 90◦, δ = 0.3, ζ =
0.05, Bi = 3.32 (comparable to [7, Fig. 1]);̂λ = 5 mm, 5 bottom waves, R as indicated, andorg and
reg stand for the original WRIBL and the regularized version rWRIBL. (a) shows snapshots of the
dimensionless film thicknessF (x̂) with 〈F 〉 = 1, and (b) the maximal amplitude ofF extracted from
one time period of well converged one-hump solitary waves. For these parameters, solitary waves of
both the WRIBL and the rWRIBL are found for all R∈ (0.3, R2) with R2 ≈ 12, where (for the used
discretizationn = 400) the numerics fail for the rWRIBL due toF → 0 pointwise. Generically, the
solitary waves for the rWRIBL have slightly smaller amplitude.

We first simulate the stationary problem for fluid and geometry parameters taken from [16], namely
ν = 1110 mm2/s, ρ = 0.969 g/cm3, σ = 20.4 mN/m. The bottom is a sine with wavelengthλ̂ = 300 mm,
amplitudeâ = 15 mm and trough and crest atx̂ = 0, x̂ = 150, respectively. Fig. 3 shows the resulting
local film thickness which is the distance of the free surface to the bottom contour measured ineẑ-
direction, see Fig. 1. As inclination angles we take (a)α = 28◦, (b) α = 18.05◦. Choosing the Reynolds
number such that the maximum local film thickness is the same as in [16, Fig. 3] weobtain stationary
solutions(F, Q)s which for the film height are in perfect agreement with experimental data, see Fig. 4.

In order to explore wider regimes of parameters and to get more detailed comparison also with full
Navier–Stokes numerics we reconstruct the flow field using the second-order profile (47), (48) derived
in Appendix B for sinusoidal bottoms. Following [21], see also [23, 24], we simulate the flow of liquid
nitrogen over a vertical sinusoidal bottom with wavelengthλ̂ = 1.57 mm and amplitudêa = 0.0875 mm.
The fluid parameters areν = 0.182 mm2/s, ρ = 0.808 g/cm3 andσ = 8.87 mN/m which yield an inverse
Bond numberBi = 17.92. As Reynolds numbers we choose R= 5 and R= 20. Again we achieve free
surface profiles which are in good agreement with the Navier–Stokes numerics in [21, Fig. 10], and also
the flow fields are qualitatively and semi-quantitatively reproduced correctly, see Fig. 5 and 6. Namely,
there occurs a recirculation zone of correct size in the trough of the bottom contour if the Reynolds
number is increased.

Above we calculated stationary solutions(F, Q)s which, by analogy with the flat bottom case, must
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Figure 3: Local film thickness for two different inclination angles. For comparison with [16, Fig. 3] it
is measured not perpendicular to the bottom but to the main flow directionex̂, see Fig. 1. Parameters:
R = 0.0285, ζ = 0.31 and (a)α = 28◦, δ = 0.059, Bi = 2 × 10−3, (b) α = 18.05◦, δ = 0.068, Bi =
3 × 10−3.

Figure 4: Experimental data for the parameters used in Fig. 3. Reprint of [16, Fig. 3], with permission
from Springer Science+Business Media.
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Figure 5: Free surface and reconstructed flow field for stationary solutions of (42), (43) for (a) R= 5
and (b) R= 20. The other parameters areδ = 0.15 respectivelyδ = 0.24, α = 90◦, Bi = 17.92, ζ =
0.35, λ̂ = 1.57 mm.

Figure 6: Full Navier–Stokes numerics for the parameters used in Fig. 5. Reprint of [21, Fig. 10], with
permission from Elsevier.

be expected to be unstable in the considered regime(α = 90◦), see also [18,20,23,24]. In the following
we report on some numerical experiments to investigate the stability of stationary solutions and on some
time dependent solutions in the unstable case. The standard approach to study the stability of(F, Q)s

would be to calculate the spectrum of the linearization of (42), (43) around(F, Q)s, either numerically or
analytically by expansion of first the stationary solution and then the eigenvalue problem in suitable small
parameters. Eigenvalues of the linearization can then be calculated using Floquet theory. See [23] for a
detailed parametric study of stability using this approach for an IBL, and [24] for the full Navier–Stokes
problem.

Here, since we are mainly interested in the shape of non-stationary bifurcated solutions in case of
instability, to determine stability of(F, Q)s we rather use a less systematicad hoc approach. We numer-
ically calculate(F, Q)s for various R, with fluid and geometry parameters fixed. Then, on a domain with
eight bottom undulations, we apply a localized perturbation, let the system run, and determine stability
by growth or decay of the perturbations. This yields a critical Reynolds number Rcrit in terms of the
remaining parameters.

Again we first focus on non-dimensional parameters from [16], namelyα = 45◦ andBi = 0.01,
using the dimensional parameter set A from Table 2, and calculate Rcrit as function ofζ, see Fig. 7.
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A B C

ρ[ g/cm3] 0.969 0.969 1.00

ν[ mm2/s] 24.1 24.1 1.00

σ[ mN/m] 20.0 20.0 70.0

λ̂[ mm] 108 108 10.0

α[◦] 45 10 10

Bi 0.01 0.04 16.2

Table 2: Parameters used to study stability of stationary solutions, with resultinginverse Bond numbers.

In agreement with [16, Fig. 7], see also [18, 24], we find that the wavy bottom strongly increases Rcrit

compared to the critical Reynolds number5/6 cot α over flat bottom. In particular, also the quantitative
agreement with [16, Fig. 7] is very good. Here the most notable difference between the WRIBL and
the rWRIBl occurs: Rcrit is somewhat larger for the WRIBL and hence the rWRIBL appears to be more
accurate.

Figure 7: Critical Reynolds number Rcrit as a function of the wavinessζ for parameter set A from Table
2. Along the critical valuesδ varies fromδ = 0.035 (R = 5/6) to δ = 0.048 (R = 2.2). [WLA05]
denotes Rcrit from [16], multiplied by 2/3 due to a different scaling. The critical Reynoldsnumbers were
calculated with a tolerance of±0.05.

Figure 8 shows time dependent solutions, withζ = 0.5 from Fig. 7, but for graphical reasons with
only two bottom undulations. Over flat bottoms, for R> Rcrit the most prominent solutions are the
(experimentally, numerically and analytically well known) traveling pulse trains[1]. Also over wavy
bottoms pulse like surface waves develop, and the effect of the bottom waviness is a periodic modulation
of the amplitude and speed of the pulses: (a) shows the decay of a localizedperturbation in the stable
case, while (b) shows the emergence of a pulse in the unstable case.

7.2 Some new predictions

The numerics in§7.1 have shown that (42), (43) reproduces known phenomena qualitatively and quanti-
tatively, in particular the appearance of eddies in troughs of the bottom forlargerζ, and the occurrence
of a long wave instability when the Reynolds number exceeds a critical value Rcrit as well as the increase
of Rcrit with ζ. Next we consider a lower inclination angle for which we again investigate thestability
of stationary solutions by the method specified above. Taking the same fluid parameters as in parameter
set A but withα = 10◦ we get the critical values in Fig. 9 denoted by parameter set B. In contrastto
Fig. 7 the critical Reynolds numbers are no longer increasing monotonouslybut reach a maximum at
ζ ≈ 0.17. For larger values of the bottom waviness Rcrit decreases, and forζ > 0.23 it becomes less than
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Figure 8: Numerical simulations in the sub- resp. supercritical case for parameter set A from Table 2 and
ζ = 0.5 which gives Rcrit ≈ 1.4, cf. Fig. 7; two bottom waves with periodic boundary conditions. (a),
R = 1.1, f(x̂); for largert the solution relaxes to a stationary solution. (b) R= 1.6, f(x̂); the solution
is unstable and a traveling pulse evolves.

the critical Reynolds number5/6 cot α for flat bottom.
Next we increase the inverse Bond number by choosingλ̂ = 10 mm and the fluid parameters of

water, see parameter set C in Table 2 and the resulting critical values in Fig. 9. The dependence onζ
turns out to be more pronounced than in Fig. 7. Figure 10 shows related time dependent solutions for
some supercritical values. For smallζ, e.g.ζ = 0.04 in (a), the instability is long wave (pulses), but
for ζ = 0.06 in (b) the perturbation evolves into a finite wavelength pattern. Thus, forα = 10◦ andζ
larger than a critical valueζ0 . 0.06 there appears a finite wave number instability, and the wave number
increases as the bottom waviness becomes larger, see Fig. 10 (c)–(d).Since also the amplitudes of these
patterns are very small we conclude on a phenomenological basis that Fig.10 (b)–(d) shows short wave
instabilities, where, however, the following remarks apply.

The linearization of (42), (43) around some(Q, F )s always has a Floquet exponentµ1(0) = 0 from
conservation of mass. In other words,µ1(0) = 0 since we have a family of stationary solutions(Q, F )s

parameterized by the total massM =
∫ 2π
0 F (1 + 1

2δζKF )dX̂. If K 7→ µ(K) is a parameterization of
the Floquet exponents of the linearization by wave number, then short wave instability in a strict sense
means that unstable Floquet modes appear only in an interval±K ∈ (K1, K2) with K1 > 0. However, a
finite wave number instability may also be due to a side band (i.e. long wave) instability, that is, a branch
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µ(K) of unstable Floquet exponents with Reµ(K) = c2K
2 − c4K

4 + O(K6) with c2, c4 > 0, which

up to orderK4 givesKc =
√

c2
2c4

as the most unstable wave number. To distinguish this from a short

wave instability one should actually calculate the spectrum. However, we take (b)–(d) as strong hints
for a short wave instability, since if (b)–(d) were due to side band instabilities we would expect larger
amplitudes. In any case, to distinguish (a) from (b)–(d) we may call the lattershort wave instabilities in
a phenomenological sense.

Finally, if K = O(1) is the wave number of a pattern for the rWRIBL, thenk = 2π
λ̂

K is the wave

number in the dimensional Navier–Stokes system. Thus, if for instanceĥ = O(1) and â = O(1) are
fixed such thatδ = 2πĥ/λ̂ = O(ε) and ζ = 2πâ/λ̂ = O(ε) are small due tôλ = O(ε−1), then
k = O(ε). However, even in this case, as already said at the start of§7.1, in applications we always have
finite ε. For instance, in Fig. 10 (b)–(d) we findk = π/10, k = π/8, k = 3π/20 [mm−1] as the basic
wave numbers (the smallest possible wave number over a domain of length 80 mmbeingπ/40 [mm−1]).

Over flat bottom, short wave instabilities are only known for very small inclination angles, see [1,
Section 2.3]. In particular, calculating the eigenvalues of the linearization ofthe rWRIBL (42), (43)
around the Nusselt solution for the above parameters butζ = 0 by a Fourier ansatz we find no short wave
instability in case of a flat bottom.

Figure 9: Critical Reynolds number Rcrit as a function of the wavinessζ for parameter sets B (Bi = 0.04)
and C (Bi = 16.2) from Table 2; for parameter set C the letters a–d indicate the values ofζ used for the
time dependent plots in Fig. 10.

In Fig. 11, for fixed R and varyingζ we plot the minimal and maximal downstream velocities of some
stationary solutions used in Fig. 9, which shows that these are continuationsof the Nusselt solution. For
ζ > ζ1 the minimal velocityumin becomes negative which is an easy diagnostic for the existence of
eddies. In particular, fromζ0 < ζ1 we find that the short wave instability sets in before the appearance
of eddies, which shows that the short wave instability is an effect of the wavy bottom on a Nusselt like
laminar solution. Figure 11 (b) shows the stationary solution and reconstructed streamlines for the short
wave unstable parametersζ = 0.4, R = 4.2.

Finally, Fig. 12 illustrates a rather strongly unstable situation where due to a relatively large trav-
eling pulse the free surface is not a graph overx̂. This was one of the motivations to use curvilin-
ear coordinates. Downstream the bottom maxima where the local inclination angle is larger than90◦

(0 mm < x̂ < 150 mm in Fig. 12) we find a bearing-out of the free surface as a pulse passes. This
overhang is typically rather small since the pulse is small as it lost mass when it climbed “uphill”
(150 mm< x̂ < 300 mm in Fig. 12) to the maximum of the bottom. On the other hand, running “down-
hill”, the pulse grows and reaches maximum amplitude aroundx̂ ≈ 180 mm. This yields an overhang
(to the left) of the free surface at the beginning of the “uphill” section.

In the literature we did not find data or solutions comparable to Fig. 12, or to theshort wave instability
explained in Figures 9 to 11. Thus we think it will be interesting to study either experimentally or by full
Navier–Stokes numerics the accuracy of these predictions.
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Figure 10: Time dependent simulations for parameter set C, eight bottom waves, plots of the flow rateQ.
(a)ζ = 0.04, R = 7.4 (long wave instability), (b)ζ = 0.06, R = 9.7 (short wave instability, four waves),
(c) ζ = 0.08, R = 9.7 (short wave instability, five waves), (d)ζ = 0.2, R = 6.1 (short wave instability,
six waves).

Figure 11: Stationary solutions for parameter set C and R= 4.2. (a) Minimal and maximal downstream
velocity umin, umax of stationary solutions depending onζ. For ζ > ζ1 ≈ 0.38 eddies occur. (b) Free
surface and reconstructed streamlines forζ = 0.4.
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Figure 12:α = 90◦, λ̂ = 300 mm, â = 20 mm, henceζ = 0.42, R = 10, δ = 0.32; Bi = 0.003 and
initial data(F, Q) ≡ (1, 1). (a) Free surface over̂x, dashed line is the bottom contour. (b) Film thickness
f overx̂.

7.3 Conclusions

Using a Galerkin method with only one ansatz and test function we derived theWRIBL (31), (32) for
film flow over wavy bottom, which in the limit of flat bottom equals the (one-dimensional version of the)
WRIBL derived in [7]. In a second step we regularized the WRIBL to the rWRIBL (42), (43). Numerical
simulations of the rWRIBL show very good agreement with available data fromexperiment and full
scale Navier–Stokes numerics. Finally, our rWRIBL predicts two qualitatively new phenomena, namely
a short wave instability of Nusselt like solutions (without eddies) at non-small inclination angles and at
still rather smallζ, and solutions where the free surface is not a graph over the (Cartesian) downstream
coordinate. It remains to be seen whether these predictions can be verified experimentally or by full
Navier–Stokes numerics.

A Curvilinear coordinates

In order to expand the non-dimensional curvatureK and the local inclination angleθ in powers ofζ we
first scale the Cartesian coordinatex̂ and the bottom profilêb by

X̂ =
2π

λ̂
x̂, B̂(X̂) =

1

â
b̂

(

λ̂

2π
X̂

)

.
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This implies∂x̂b̂(x̂) = ζ∂X̂B̂
(

2π
λ̂

x̂
)

and∂2
x̂b̂(x̂) = 4π2â

λ̂2
∂2

X̂
B̂
(

2π
λ̂

x̂
)

. The relation between̂X andX is

X = 2π
λ̂

x = 2π
λ̂

∫ x̂
0

√

1 +
(

∂x̂b̂(x̂)
)2

dx̂ =
∫ X̂
0

√

1 + ζ2
(

∂X̂B̂(X̂)
)2

dX̂ = X̂+1
2ζ2

∫ X̂
0

(

∂X̂B̂(X̂)
)2

dX̂+

O(ζ4), thusX̂(X) = X − 1
2ζ2

∫ X
0

(

∂X̂B̂(X̂)
)2

dX̂ + O(ζ4), and thereforeK(X) reads (cf. (1))

K(X) =
λ̂2

4π2â
κ

(

λ̂

2π
X̂(X)

)

= −
λ̂2

4π2â

∂2
x̂b̂
(

λ̂
2π X̂(X)

)

[

1 +
(

∂x̂b̂
(

λ̂
2π X̂(X)

))2
]

3

2

= −
∂2

X̂
B̂(X̂(X))

[

1 + ζ2
(

∂X̂B̂(X̂(X))
)2
]

3

2

= −∂2
X̂
B̂(X) +

1

2
ζ2

(

3∂2
X̂
B̂(X)(∂X̂B̂(X))2 + ∂3

X̂
B̂(X)

∫ X

0
(∂X̂B̂(X̂))2dX̂

)

+ O(ζ4)

=: K0(X) + ζ2K2(X) + O(ζ4). (44)

For the local inclination angleθ we get

θ(X) = arctan

(

∂x̂b̂

(

λ̂

2π
X̂(X)

))

= arctan(ζ∂X̂B̂(X̂(X))) = ζ∂X̂B̂(X) + O(ζ3)

=: ζθ1(X) + O(ζ3). (45)

B Second-order velocity profile

Calculating the second-order component of the downstream velocityU = U0 + εU1 + ε2U2 +O(ε3) by
exactly the same approach as in Section 3 yields

ε2U2 = δ2R2∂2

X
F

(

−
27

4480
FZ8+

27
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F 2Z7−

3

20
F 3Z6+

9

40
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8
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10
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7
F 8Z

)

+δ2R2(∂XF )2
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−
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9
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15

8
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5
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948

35
F 7Z

)

+δ2R(Bi∂
4

X
F− cot α ∂2

X
F )

(

1

40
Z6−

3
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3
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18
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)

−δζR(Bi∂
2

X
K0+ cot α ∂Xθ1)

(

1

40
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3
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1
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3
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F 5Z

)

+δR
(

3δBi(∂
2

X
F )2−2δ cot α(∂XF )2+5δBi∂

3

X
F∂XF−ζ(Bi∂XK0+cot α θ1)∂XF

)

·

·

(

3

4
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)

+δ2RBi(∂XF )2∂2

X
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X
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(
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(
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. (46)

If the flow rateQ is assumed to be enslaved by the film thicknessF , then integration of (46) along
Z ∈ [0, F ] gives the second-order component ofQ = Q0 + εQ1 + ε2Q2 + O(ε3), see (34). In order
to achieve an accurate velocity profilẽU2 depending on bothF andQ we again treatQ as independent
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O(1)-quantity. This profile is not needed for the Galerkin method but only for reconstructing flow fields.
Therefore we restrict our calculations to the practically relevant case ofstationary flow over a sinusoidal

bottomb̂(x̂) = â cos
(

2π
λ̂

x̂
)

. This implies according to (44) and (45)

K(X) = cos X + O(ζ2), θ(X) = −ζ sinX + O(ζ3).

In case of the first-order profile (26) the correction of the parabolic profile turned out to be a self-similar
polynomial with a coefficient depending onQ and∂XQ but not onF or its spatial derivatives. The
basic assumption now is that this is also true for the second-order correction Ũ2. Therefore all spatial
derivatives ofF emanate from∂XQ. As we consider here only stationary solutions the evolution equation
for F (27) gives∂XQ = 0. Thus inU2 we neglect all terms containing spatial derivatives ofF . Taking
again into account that treatingQ as independent quantity mixes upε-orders in the expansion ofU finally
yields

ε2Ũ2 = δζR(cot α + Bi) cos XQ2

(

1

40

(

Z

F

)6

−
3
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(

Z

F
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+
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4

(
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+
4

35

Z

F

)

+ δζ cos XQ

(

(

Z

F
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−
3

4

(

Z

F

)2
)

.

Thus the velocity profile used in Section 7 to reconstruct flow fields reads

Ũ =
3Q

F

(

−
1

2

(

Z

F

)2

+
Z

F

)

+ δζ cos XQ

(

(

Z

F
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−
3

4

(

Z

F

)2
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+ δζR(cot α + Bi) cos XQ2
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(
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9
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(

Z

F

)2
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4

35

Z

F

)

. (47)

The according velocity component̃W is given by the continuity equation, i.e.

W̃ = −
1

1 + δζ cos X Z

∫ Z

0
∂XUdZ. (48)
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