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Abstract

Given a bounded domain G ⊂ R
d, d ≥ 3, we study smooth solutions of a linear

parabolic equation with non-constant coefficients in G, which at the boundary have to

C1-match with some harmonic function in R
d \ G vanishing at spatial infinity.

This problem arises in the framework of magnetohydrodynamics if certain dynamo-

generated magnetic fields are considered: For example, in the case of axisymmetry or for

non-radial flow fields the poloidal scalar of the magnetic field solves the above problem.

We first investigate the Poisson problem in G with the above described boundary

condition as well as the associated eigenvalue problem and prove the existence of smooth

solutions. As a by-product we obtain the completeness of the well-known poloidal “free

decay modes” in R
3 if G is a ball. Smooth solutions of the evolution problem are then

obtained by Galerkin approximation based on these eigenfunctions.

Key Words: Magnetohydrodynamics, dynamo theory, poloidal field, harmonic field.

1 Introduction

We are concerned in this paper with the following initial-boundary-value problem:

∂tu − a∆u = b · ∇u + c u in G × R+, (1.1a)

∆u = 0 in Ĝ × R+, (1.1b)

u and ∇u continuous in R
d × R+, (1.1c)

u(x, t) → u∞(t) for |x| → ∞, t ∈ R+, (1.1d)

u(·, 0) = u0 on G × {t = 0}. (1.1e)

Here, G ⊂ R
d, d ≥ 3 is a bounded domain with (sufficiently) smooth boundary ∂G, and

Ĝ := R
d \ G. The scalar-valued coefficients a and c, and the vector-valued coefficient b are

sufficiently smooth functions of x ∈ G and t ∈ R+; a is, moreover, bounded from below by

a0 > 0. The asymptotic behaviour of solutions at spatial infinity is described by the (given)

function u∞ : R+ → R, and the initial-value u0 is prescribed on G only.

Problem (1.1) arises in the context of magnetohydrodynamic dynamo theory: The gener-

ation of a magnetic field B by motion of a liquid conductor (of conductivity η > 0) according

to some prescribed flow field v is described by the induction equation (cf. [13])

∂tB = ∇× (v × B) −∇× (η∇× B), ∇ · B = 0. (1.2)

Equation (1.2)1 constitutes a system of parabolic equations for the magnetic field components.

In general, the flow field couples these components in a nontrivial way which makes the
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question for “dynamo solutions”, i.e. solutions which do not decay in time , difficult to

answer. Only in special situations a field component or a related scalar quantity decouples,

and a general decay result, a so-called antidynamo theorem, may be obtained. For instance,

if the conductor fills a ball BR ⊂ R
3 with radius R, if the conductivity is radially symmetric,

and if the flow field has no radial component the quantity P := B · x satisfies the scalar

problem (cf. Appendix A or [11]):

∂tP − η∆P = −∇ · (vP ) in BR × R+, (1.3a)

∆P = 0 in B̂R × R+, (1.3b)

P and ∇P continuous in R
3 × R+, (1.3c)

P (x, t) = O(|x|−2) for |x| → ∞, t ∈ R+, (1.3d)

P (·, 0) = P0 , 〈P0〉 = 0 on BR × {t = 0}. (1.3e)

Note that conditions (1.1b) and (1.1d) with u∞ ≡ 0 imply the spatial decay condition

P (x, t) = O(|x|−1) (see Appendix C). The stronger condition (1.3d) is a consequence of

the additional zero-spherical-mean condition 〈P 〉 := 1
4πr2

∫
Sr

P0 ds = 0, r ∈ (0, R) on the

initial value. This condition is preserved by eqs. (1.3a,b) and holds, consequently, for P on

R
3×R+. Equation (1.3b) describes a vacuum field outside the conductor and condition (1.3c)

guarantees a continuous magnetic field throughout space.

Another instance is the axisymmetric dynamo problem in ordinary space R
3. Again, a

scalar quantity describing the poloidal part of the magnetic field decouples and, if reformu-

lated in R
5, is precisely a solution of problem (1.1) (see Appendix B). Note that the conductor

is here assumed to be axisymmetric but need not be a ball. It is this application which mo-

tivates the investigation of problem (1.1) in more than 3 dimensions and in domains more

general than balls.

The focus of dynamo theory is less on existence theorems than on decay results for the

magnetic field under certain restrictions on the magnetic field and/or the flow field, thus

excluding dynamo action under these restrictions. However, proving decay results requires

sometimes the solution of an auxiliary problem. For instance, in proving a “non-radial velocity

theorem” for solutions of problem (1.3) one needs positive solutions of an auxiliary problem

of type (1.1); and it is this application which requires a non-zero asymptotic condition like

(1.1d) (cf. [11]). Similarly in the axisymmetric problem, Backus makes use of solutions of

an auxiliary problem (cf. [3]). He made the existence of such solutions plausible by physical

arguments but could not establish them rigorously. It is the aim of the present paper to prove

rigorously the existence of smooth solutions of problem (1.1).

A problem closely related to (1.1) has been treated in [16]: It is inspired by the dynamo

problem with plane symmetry (which means d = 2) and differs from (1.1) in that c ≡ 0 and

by a different asymptotic condition at spatial infinity. The authors treat this problem and

two related ones in arbitrary dimension and prove existence of solutions and, moreover, some

decay results. However, this problem does not precisely meet the requirements of the non-

radial problem (1.3) nor those of the axisymmetric problem. Moreover, only weak solutions

are established, whose behavior at the boundary remains open.

The basic idea of our treatment is to consider (1.1) as parabolic problem in a bounded

domain with non-local boundary condition, and to carry over the well-established methods

for linear parabolic equations with standard boundary conditions such as Dirichlet’s or Neu-

mann’s boundary condition to our situation (cf. e.g. [7]): In Section 2 we solve weakly a

Poisson-type problem related to (1.1) in all space. The regularity of the weak solution fol-
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lows with standard arguments in G and Ĝ, only at ∂G we need special considerations. In

Section 3 we treat the corresponding eigenvalue problem, introduce the associated Fourier

series, and characterize the elements of various function spaces which are useful in the follow-

ing by the behaviour of their Fourier coefficients. In Section 4 problem (1.1) is solved by a

Galerkin procedure and for sufficiently smooth data the smoothness of the obtained solution

is established. In two appendices the relation between problem (1.1) and the non-radial-flow

as well as the axisymmetric problem is elucidated. A third appendix collects some facts about

harmonic exterior functions, and clarifies the relation between different kinds of spatial decay

conditions – a topic about which there has been some debate in the literature. In a fourth

appendix the completeness of the so-called poloidal free decay modes is proved, a fact of

common belief which to our knowledge, however, has never been proved. Finally, in a fifth

appendix the evolution problem with time-independent principal coefficient is considered, a

case which can be treated much more easily than the general case.

2 A Poisson problem

We establish in this section smooth solutions of the following Poisson problem in all space

with suitable right-hand side f :

−∆u = f in G, (2.1a)

∆u = 0 in Ĝ, (2.1b)

u and ∇u continuous in R
d, (2.1c)

u(x) → 0 for |x| → ∞. (2.1d)

To obtain a weak formulation of problem (2.1) let us multiply (2.1a) and (2.1b) with a test

function v ∈ C∞
0 (Rd) and integrate over G and BR \ G, G ⊂ BR, respectively. Assuming

∂G ∈ C1 one obtains after integration by parts:
∫

G
(∇u · ∇v − fv) dx −

∫

∂G
n · ∇u v ds = 0, (2.2a)

∫

BR\G
∇u · ∇v dx +

∫

∂G
n · ∇u v ds −

∫

SR

x

|x| · ∇u v ds = 0. (2.2b)

Here SR denotes a sphere with radius R and n is the exterior unit normal at ∂G. Adding up

(2.2a) and (2.2b) one finds in the limit R → ∞:
∫

Rd

∇u · ∇v dx =

∫

G
f v dx (2.3)

In view of (2.3) it is reasonable to consider functions satisfying the “finite energy condition”

(cf. Remark A.1) ∫

Rd

|∇v|2 dx =: ‖v‖2
H < ∞. (2.4)

Condition (2.4) together with condition (2.1d) motivate the definition of the real Hilbert

space

H0 := clos{C∞
0 (Rd), ‖ · ‖H}

with scalar product (v, w)H :=
∫

Rd ∇v · ∇w dx. Observe that v ∈ H0 is locally square-

integrable. In fact, the Gagliardo-Nirenberg-Sobolev-inequality (cf. [7, p. 263]) implies

‖v‖Lp(Rd) ≤ C‖v‖H , p =
2 d

d − 2
(2.5)
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for any v ∈ H0 and a constant C depending only on d. Combining (2.5) with Hölder’s

inequality yields for any K ⋐ R
d:

‖v‖L2(K) ≤ |K|1/d‖v‖Lp(K) ≤ C|K|1/d‖v‖H . (2.6)

So, defining (for later use)

H := {v ∈ H1
loc(R

d) : ‖v‖H < ∞},

there holds clearly H0 ⊂ H. Inequality (2.6) implies, in particular,

‖v‖L2(G) ≤ CG‖v‖H , v ∈ H0 (2.7)

with CG := C|G|1/d; thus, v ∈ H0 yields in eq. (2.3) with f ∈ L2(G) a finite right-hand side

as well.

A function u ∈ H0 is now called a weak solution of problem (2.1) with f ∈ L2(G) iff (2.3)

holds for all v ∈ H0. Rewriting (2.3) in the form

(u, v)H = (f, v)L2(G) for any v ∈ H0 (2.8)

and noting that (f, ·)L2(G) defines a linear functional on H0 (due to (2.7)) the existence of a

unique weak solution follows immediately from the Riesz representation theorem.

Concerning regularity of the weak solution let us define f̂ : R
d → R by f̂ = f on G

and f̂ = 0 on Ĝ. It is a standard result about interior regularity (cf. e.g. [7, p309f]) that

f̂ ∈ Hk(Rd) implies u ∈ Hk+2
loc (Rd), k ∈ N0. This result means in particular:

u ∈ H2
loc(R

d), (2.9a)

f ∈ Hk(G) ⇒ u ∈ Hk+2
loc (G), k ∈ N0, (2.9b)

u ∈ C∞(Ĝ). (2.9c)

With the usual Sobolev embeddings (2.9b) implies u ∈ C2(G) if f ∈ Hk(G), k > d/2. So,

choosing suitable test functions in (2.3) we find u satisfying (2.1b) in Ĝ and, for sufficiently

regular f , (2.1a) in G. At ∂G, however, we need some finer considerations.

As usual we flatten ∂G locally by means of a diffeomorphism Φ : U → W , x 7→ y with

Φ(x0) = 0, x0 ∈ U ∩ ∂G, |DΦ| = 1 (cf. e.g. [7, p626f]). Setting v(y) := u(Φ−1(y)) and

g(y) := f(Φ−1(y)), Φ transforms eqs. (2.1) localized on U into

−Lv = g in W−, (2.10a)

Lv = 0 in W+, (2.10b)

v and ∇v continuous in W. (2.10c)

Here, L(·) =
∑d

i,j=1 ∂yi(aij∂yj ·) is a uniformly elliptic operator with coefficients determined

by Φ, W− := W ∩ {yd < 0} = Φ(U ∩ G), W+ := W ∩ {yd > 0} = Φ(U ∩ Ĝ), and W 0 :=

W ∩ {yd = 0} = Φ(U ∩ ∂G). A function v ∈ H1(W ) is called a weak solution of problem

(2.10) with g ∈ L2(W−) iff

d∑

i,j=1

∫

W
aij∂yjv ∂yiw dy =

∫

W−

g w dy

for any w ∈ H1
0 (W ). Defining “non-isotropic” Sobolev spaces Hm

tan(W ), m ∈ N0 by

Hm
tan(W ) := {v : W → R |Dαv ∈ L2(W ) for any multiindex α with |α| ≤ m, αd = 0}
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with norm

‖v‖2
Hk

tan(W )
:=

∑

|α|≤k
αd=0

‖Dαv‖2
L2(W ),

the regularity of v over W 0 is characterized by

Lemma 2.1 Let g ∈ Hk
tan(W−) with k > (d + 1)/2, let v be the weak solution of (2.10), and

let r be so small that the cylinder V := {y = (y′, yd) ∈ R
d : |y′| < r, |yd| < 2r} ⋐ W . Then

v ∈ C1(V1/2) with V1/2 := V ∩ {|yd| < r} and we have the estimate

‖v‖C1(V 1/2) ≤ C
(
‖g‖Hk

tan(W−) + ‖v‖L2(W )

)
(2.11)

with C depending on W , V , k, and d.

Proof: We prove first the estimate

‖v‖2
C1(V 1/2)

≤ C
∑

i=0,1,2

∑

|α|≤k
αd=0

‖∂ i
yd

Dαv‖2
L2(V ) (2.12)

for functions v ∈ Ck+2(V ) by applying Sobolev embeddings separately for y′ and yd. Let us

start with a 1-dimensional estimate on the interval (−r, r). For functions f ∈ C1((−2r, 2r))

we have

|f(y)| ≤ 1

2r

∫ y+r

y−r
|f(y) − f(x)|dx +

1

2r

∫ y+r

y−r
|f(x)|dx ≤

∫ 2r

−2r
|f ′(x)|dx +

1

2r

∫ 2r

−2r
|f(x)|dx.

This implies

max
|y|≤r

|f |2 ≤ C
( ∫ 2r

−2r
|f ′(x)|2 dx +

∫ 2r

−2r
|f(x)|2 dx

)
(2.13)

for some constant C = C(r). On the other hand, Sobolev embeddings imply for k > (d+1)/2

‖f‖2
C1(B

′

r)
≤ C ‖f‖2

Hk(B′
r) = C

∑

|α|≤k

∫

B′
r

|Dαf(y′)|2 dy′ (2.14)

for some constant C = C(k, d, r) and B′
r := {y′ ∈ R

d−1 : |y′| < r}. Combining (2.13) and

(2.14) we obtain

max
|yd|≤r

‖v(·, yd)‖2
C1(B

′

r)
≤ C

∑

i=0,1

∑

|α|≤k
αd=0

∫ 2r

−2r

∫

B′
r

|∂ i
yd

Dαv(y′, yd)|2 dy′ dyd

= C
∑

i=0,1

∑

|α|≤k
αd=0

‖∂ i
yd

Dαv‖2
L2(V ),

(2.15)

and analogously

max
|yd|≤r

‖∂yd
v(·, yd)‖2

C0(B
′
r)

= C
∑

i=1,2

∑

|α|≤k
αd=0

‖∂ i
yd

Dαv‖2
L2(V ).

This is (2.12). Let now v ∈ L2(V ) with bounded right-hand side in (2.12). It follows with

standard arguments that v has a representative in C1(V 1/2).
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Next, let ĝ be the trivial extension of g on W . g ∈ Hk
tan(W−) implies then ĝ ∈ Hk

tan(W ),

i.e. Dαĝ ∈ L2(W ) for |α| ≤ k, αd = 0. From interior regularity for weak solutions of (2.10)

follows Dβv ∈ L2(V ) for |β| ≤ k + 2, βd ≤ 2 and the estimate

∑

|β|≤k+2
βd≤2

∫

V
|Dβv|2 dy ≤ C

( ∑

|α|≤k
αd=0

∫

W
|Dαĝ|2 dy + ‖v‖L2(W )

)

= C
(
‖g‖Hk

tan(W−) + ‖v‖L2(W )

)
(2.16)

with C depending on W , V , k, and d. Together with (2.12) this proves (2.11). 2

Remark 2.2 Observe for later use that Lemma 2.1 applies especially to the case g := λ v|W−

with λ ∈ R. In fact, given any k ∈ N we find v|W− ∈ H2k
tan(W̃−) for some V ⋐ W̃ ⋐ W

just by iterating the interior regularity argument. So, Lemma 2.1 applies to this eigenvalue

problem as well and yields C1-smoothness of solutions over the boundary.

Concerning the original problem (2.1), Lemma 2.1 implies for ∂G ∈ Ck+2 (i.e. Φ ∈ Ck+2)

and f ∈ Hk(G), k > (d + 1)/2 that u ∈ C1 over ∂G. Collecting the foregoing results we have

Theorem 2.3 (Solution of the Poisson problem) Let G ⊂ R
d, d ≥ 3 be a bounded do-

main with C1-boundary ∂G and f ∈ L2(G). The Poisson problem (2.1) has then a unique

weak (in the sense of eq. (2.3)) solution u ∈ H1
loc(R

d). Moreover, if ∂G ∈ Ck+2 and

f ∈ Hk(G) with k > (d + 1)/2, then u is a classical solution, i.e. u ∈ C1(Rd) ∩ C2(G ∪ Ĝ),

satisfying pointwise eqs. (2.1).

Remark 2.4 The condition d ≥ 3 is crucial for Theorem 2.3. As an example for (2.1) in

R consider −u′′ = 1 in G = (−1, 1), u′′ = 0 in Ĝ, lim|x|→∞ u(x) = 0. The only continuous

solution is u(x) = 1
2 − 1

2x2 in G and u ≡ 0 in Ĝ, which is not C1 over ∂G. Similarly,

in R
2, nontrivial harmonic functions show harmonic growths at infinity and therefore the

only continuous solution of −∆u = 1 in G = B1(0), ∆u = 0 in Ĝ, lim|x|→∞ u(x) = 0 is

u(x) = 1
4 − 1

4 |x|2 in G, u ≡ 0 in Ĝ. However, in R
3 the analogous problem has the C1 solution

u(x) = 1
4 − 1

4 |x|2 in G = B1, u(x) = 1
3 |x|−1 in Ĝ.

Concerning the general asymptotic behaviour of u for large x we refer to well-known facts

about exterior harmonic functions (cf. Appendix C). In particular, condition (2.1d) implies

the representation (C.1), which yields the asymptotics

u = Y0 |x|2−d + O(|x|1−d), Y0 ∈ R for |x| → ∞. (2.17)

The decay is faster (viz. O(|x|1−d)), if f has vanishing mean over G. In fact, one obtains

from (2.1), (2.17), and Gauss’s theorem:

|G| f = −
∫

G
∆u dx = −

∫

∂G
n · ∇u ds = −

∫

SR

x

|x| · ∇u ds = (d − 2)|S1|Y0. (2.18)

Here, f := 1
|G|

∫
G f dx and SR ⊂ Ĝ; the last equality arises in the limit R → ∞. So, f = 0

implies Y0 = 0.

Let us note by the way that in general u = 0 can only be achieved at the expense of

relaxing (2.1d) to u(x) = O(1) for |x| → ∞. In this case the function u − u with u being a

solution of (2.1) is obviously a zero-mean solution ( see also Remark 2.5).
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Remark 2.5 If G is a ball BR it makes sense to consider spherically symmetric solutions

of problem (2.1), i.e. 〈u〉(r) = 0 for any r > 0. Obviously, 〈u〉 = 0 implies 〈f〉 = 0; on the

other hand, any solution of (2.1) with spherically symmetric f is spherically symmetric. This

follows from the unique solvability of the sub-problem for the spherical mean arising from

(2.1):1

−
(
〈u〉′′ + (d − 1)/r 〈u〉′

)
= 〈f〉, 0 ≤ r ≤ R ,

〈u〉(R) = Y0/Rd−2, 〈u〉′(R) = (2 − d)Y0/Rd−1.

Observe here the representation (C.1), which implies 〈u〉 = Y0 r2−d for r > R, and (2.18),

which implies Y0 = 0 if 〈f〉 = 0.

Note, finally, that spherically symmetric solutions decay at least like |x|1−d for large x.

3 The Eigenvalue problem

We treat in this section the eigenvalue problem corresponding to the Poisson problem (2.1)

of the last section:

−∆u = λu in G, (3.1a)

∆u = 0 in Ĝ, (3.1b)

u and ∇u continuous in R
d, (3.1c)

u(x) → 0 for |x| → ∞. (3.1d)

According to Theorem 2.2 we have for any f ∈ L2(G) a unique weak solution u ∈ H0 of (2.1),

defining thus a Green’s operator

G̃ : L2(G) → H0 , f 7→ u .

Thus (2.7), (2.8) yield 2

‖G̃f‖2
H = (u, u)H = (f, u)L2 ≤ ‖f‖L2‖G̃f‖L2 ≤ CG‖G̃f‖H‖f‖L2

and

(f, G̃f)L2 = (f, u)L2 = (u, u)H = ‖G̃f‖2
H ≥ 0.

Therefore, G̃ is a bounded linear operator between Hilbert spaces, which is, furthermore,

positive and hence symmetric. Restricting u on G one obtains the operator

G : L2(G) → L2(G) , f 7→ u|G

which is likewise bounded and symmetric, and, moreover, compact due to the Rellich-

Kondrachov Theorem and the observation {u|G : u ∈ H0} = {u|G : u ∈ H} = H1(G).

The spectral theorem for symmetric compact operators in Hilbert spaces establishes now a

complete (in L2(G)) orthonormal system {vn : n ∈ N} of eigenvectors of G:

G vn = λ−1
n vn , n ∈ N , (3.2)

1Prime means differentiation with respect to r.
2The symbol L2 without specified domain means always L2(G).
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with real, positive eigenvalues λ−1
n of finite multiplicity and limn→∞ λ−1

n = 0. In order to solve

the original problem let us define the “harmonic extension” ṽn := λnG̃vn of vn on R
d.3 By

definition the ṽn are weak solutions of the Poisson problem (2.1) with f := vn and u = λ−1ṽn;

thus, eq. (2.8) takes now the form

(ṽn, v)H = λn(vn, v)L2 for any v ∈ H0 , (3.3)

i.e. the pair (ṽn, λn) is a weak solution of the eigenvalue problem (3.1). Thus, the uniqueness

of weak solutions implies the uniqueness of the harmonic extensions in H0.

Concerning regularity we have ṽn ∈ C∞(G ∪ Ĝ) ∩ C1(Rd), which follows from (2.9c),

iterating (2.9b), and Remark 2.2. So, (ṽn, λn) is a classical solution of problem (3.1) as well.

We summarize these results in

Theorem 3.1 (Solution of the eigenvalue problem) Let G ⊂ R
d, d ≥ 3 be a bounded

domain with Ck-boundary, k > (d + 5)/2. The eigenvalue problem (3.1) has then a countable

set of eigensolutions {(ṽn, λn) : n ∈ N} satisfying (3.3), and their restrictions {vn : n ∈ N}
constitute an orthonormal basis of L2(G).

Powers of the inverse Green’s operator and their domains of definition turn out to provide

the right setting for the solution of the evolution problem in Section 4. The elements of these

spaces can be characterized by the decay behaviour of their Fourier coefficients when expanded

in the above eigenfunctions. This motivates the

Definition 3.2 Let {vn : n ∈ N} be the complete orthonormal system with associated eigen-

values λn according to Theorem 3.1, and α ∈ R. We define then the space of “formal series”

S :=

{ ∞∑

n=1

cnvn : cn ∈ R

}
,

with non-negative functional

‖ · ‖α : S → [0,∞] ,
∞∑

n=1

cnvn 7→
( ∞∑

n=1

λ2α
n |cn|2

)1/2

,

linear mapping

Aα : S → S ,
∞∑

n=1

cnvn 7→
∞∑

n=1

λα
ncnvn,

and subspaces

Dα := D(Aα) = {v ∈ S : ‖v‖α < ∞} ⊂ S.

Obviously, Aα maps Dα into L2(G). Furthermore, there is Dα ⊂ Dβ if α ≥ β and D0 =

L2(G). Thus, if α ≥ 0, there is Dα ⊂ L2(G) and v ∈ Dα has the representation

v =
∞∑

n=1

(vn, v)L2 vn . (3.4)

With the pairing 〈w, v〉 :=
∑∞

n=1 dncn for w =
∑∞

n=1 dnvn ∈ D−α and v =
∑∞

n=1 cnvn ∈ Dα,

D−α is the dual space of Dα.

Applying A on (finite) linear combinations of vn we find A = G−1, and D(A) turns out to

be the maximal domain of definition of G−1. Similarly, D1/2 is related to H0. More precisely

we have
3In this section a quantity with tilde means always the “harmonic extension” on R

d of a quantity defined

on G.
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Theorem 3.3 Let {vn : n ∈ N} be the complete orthonormal system defined by the eigenvalue

problem (3.1), A and Dα as defined in Definition 3.2, and G the Green’s operator associated

to the Poisson problem (2.1). Then,

Dk/2 = Hk(G) , k ∈ N0 , (3.5)

and we have the equivalence of norms:

‖ · ‖k/2 ∼ ‖ · ‖Hk , k ∈ N0 . (3.6)

Futhermore, there holds

D1/2 = {v|G : v ∈ H0 and v| bG
is harmonic}, (3.7)

i.e. any v ∈ D1/2 has a unique harmonic extension ṽ ∈ H0, and

D1 = D(A) = G(L2).

Proof: We start with (3.7). Let v ∈ D1/2 be decomposed as in (3.4), i.e., v =
∑∞

n=1(vn, v)L2 vn

with
∑∞

n=1 λn|(vn, v)L2 |2 < ∞. We define

ṽ :=
∞∑

n=1

(vn, v)L2 ṽn

with ṽn ∈ H0 being the unique harmonic extension of vn. Computing

‖ṽ‖2
H =

∞∑

n,m=1

(vm, v)L2(v, vn)L2(ṽm, ṽn)H =
∞∑

n=1

λn|(vn, v)L2 |2, (3.8)

where we used (3.3), we find ṽ ∈ H0. In order to prove that ṽ| bG
is harmonic it suffices to

show (ṽ, v̂)H = 0 for any v̂ ∈ C∞
0 (G) with supp v̂ ⊂ Ĝ; this follows immediately with (3.3):

(ṽ, v̂)H =

∞∑

n=1

(vn, v)L2(ṽn, v̂)H =

∞∑

n=1

λn(vn, v)L2(vn, v̂)L2 = 0,

since (vn, v̂)L2 =
∫
G vn v̂ dx = 0. Therefore, v ∈ {v|G : v ∈ H0 and v| bG

is harmonic}. The

opposite inclusion follows again with (3.8).

The inclusion {v|G : v ∈ H0 and v| bG
is harmonic} ⊂ H1(G) is obvious; the opposite

inclusion follows with Theorem C.1: Let v ∈ H1(G), v0 an H1-extension of v on R
d with

bounded support, w := v0| bG
∈ Ĥ and û the harmonic exterior solution of (C.6). The function

u defined by v in G and û in Ĝ is then the sought-after function ∈ H0. Together with (3.7)

this proves (3.5) for k = 1.

To estimate the 1/2-norm we supply the last construction with bounds: Let supp v0 ⊂ K,

then

‖v0‖H1(Rd) ≤ C(G, K)‖v‖H1(G) .

Thus, using the minimizing property of solutions of (C.6),

‖û‖ bH ≤ ‖w‖ bH ≤ ‖v0‖H ≤ C(G, K)‖v‖H1(G) ,

and with (3.8):

‖v‖2
1/2 = ‖ṽ‖2

H = ‖∇v‖2
L2(G) + ‖û‖2

bH ≤ C‖v‖2
H1(G) ,

9



which is one half of (3.6) for k = 1. The other half follows with (2.7).

We show next D(A) = G(L2). Let u ∈ G(L2) and f =
∑∞

n=1(vn, f)L2 vn ∈ L2 such that

u = Gf . Computing the coefficients of u we find with (3.2):

(vm, u)L2 = (vm,Gf)L2 =
∞∑

n=1

(vn, f)L2(vm,Gvn)L2 = λ−1
m (vm, f)L2 .

Thus,
∞∑

m=1

λ2
m|(vm, u)L2 |2 =

∞∑

m=1

|(vm, f)L2 |2 < ∞ ,

hence u ∈ D(A). If, on the other hand, u =
∑∞

n=1(vn, u)L2 vn and
∑∞

n=1 λ2
n|(vn, u)L2 |2 < ∞,

then f :=
∑∞

n=1 λn(vn, u)L2 vn ∈ L2 is well-defined and we find Gf = u.

The inclusion G(L2) ⊂ H2(G) is an immediate consequence of the H2-regularity of weak

solutions. To prove the opposite inclusion let w ∈ H2(G). Defining f := −∆w ∈ L2 the

Poisson problem (2.1) yields a solution u ∈ H2
loc. So, u satisfies pointwise a.e. ∆u = ∆w in G

and ∆u = 0 in Ĝ. Denoting the harmonic extension of w by w̃ ∈ H0 and applying standard

regularity arguments we find u − w̃ ∈ H0 ∩ C∞(Rd) and ∆(u − w̃) = 0 in R
d; thus u = w̃

(with Liouville’s theorem) and, in particular, w = Gf . This proves (3.5) for k = 2.

To estimate the 1-norm of v ∈ D(A) observe that we have its harmonic extension ṽ ∈
H0 ∩ H2

loc(R
d), so we are free to integrate by parts in R

d. One obtains with (3.1):

−(λnvn, v)L2(G) = (∆vn, v)L2(G) = (∆ṽn, ṽ)L2(Rd) = (ṽn, ∆ṽ)L2(Rd) = (vn, ∆v)L2(G) . (3.9)

Thus,

‖v‖2
1 =

∞∑

n=1

|(λnvn, v)L2 |2 =
∞∑

n=1

|(vn, ∆v)L2 |2 = ‖∆v‖2
L2 ≤ ‖v‖2

H2(G) ,

and with (2.7):

‖v‖2
1 = ‖∆ṽ‖2

L2(Rd) =
∑

|α|=2

‖Dαṽ‖2
L2(Rd) ≥ C‖v‖2

H2(G) .

This is (3.6) for k = 2.

The general case k ∈ N of eq. (3.5) is now easily proved by induction: Let v ∈ Dk/2+1,

k ∈ N, i.e. Av ∈ Dk/2 = Hk(G). With (3.9) one obtains

Av =
∞∑

n=1

(λnvn, v)L2 vn = −
∞∑

n=1

(vn, ∆v)L2 vn = −∆v ;

thus, ∆v ∈ Hk(G) and standard regularity arguments imply v ∈ Hk+2(G). Similarly, com-

puting ‖v‖k/2 +1 for v ∈ Hk+2(G) yields

‖v‖2
k/2+ 1 =

∞∑

n=1

λk
n |(λnvn, v)L2 |2 =

∞∑

n=1

λk
n |(vn, ∆v)L2 |2 < ∞,

since ∆v ∈ Hk(G) = Dk/2.

Finally, the equivalence relation (3.6) follows with ‖ · ‖k/2+ 1 = ‖∆ · ‖k/2 and ‖ · ‖Hk+2 ∼
‖∆ · ‖Hk .

2
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4 The evolution problem

We solve in this section the evolution problem (1.1) by means of the spaces Dα provided in

the last section. According to eq. (3.7), v ∈ D1/2 has a harmonic extension ṽ on R
d; so, when

working with these spaces it is sufficient to consider problem (1.1) on the simpler domain

G × R+. However, a nontrivial asymptotic function u∞ does not fit into this framework.

Therefore, in a first step, u∞ is eliminated by the time-dependent shift u − u∞ := us. In

terms of us problem (1.1) reads

∂tus − a∆us = b · ∇us + c us + f in G × R+, (4.1a)

∆us = 0 in Ĝ × R+, (4.1b)

us and ∇us continuous in R
d × R+, (4.1c)

us(x, t) → 0 for |x| → ∞, t ∈ R+, (4.1d)

us(·, 0) = us 0 on G × {t = 0} (4.1e)

with f := c u∞ − d
dtu∞.

The “simplified” problem takes then the form

v̇ = −aA v + B v + f, (4.2a)

v(0) = v0, (4.2b)

with the operator A as defined in Definition 3.2 and the lower-order operator B defined by

B v := b·∇v+c v. Here v is a mapping from [0, T ), T > 0 into some function space over G. As

explained above a reasonable such space is Dk/2 = Hk(G) with at least k = 1 (cf. Theorem

3.3). Moreover, for T > 0, when starting with v0 ∈ D1/2 and taking into account parabolic

smoothing we expect v ∈ L2((0, T ), D1) which means in view of (4.2a) v̇ ∈ L2((0, T ), L2(G)).

This motivates the

Definition 4.1 Let T > 0 and v0 ∈ D1/2. A function v ∈ L2((0, T ), D1) with weak time

derivative v̇ ∈ L2((0, T ), L2(G))) satisfying (4.2a) as equality in L2((0, T ), L2(G)) and (4.2b)

as equality in D1/2 is called weak solution of problem (4.2).

Condition (4.2b) makes sense for weak solutions due to the following interpolation result:

Lemma 4.2 Let G be a bounded domain with smooth boundary, T > 0, and k ∈ N0. Let,

furthermore, v ∈ L2((0, T ), Hk+1(G)) and v̇ ∈ L2((0, T ), Hk−1(G)). Then

v ∈ C([0, T ], Hk(G)) ;

moreover, the mapping t → ‖v(t)‖2
L2(G) is absolutely continuous with derivative

1

2

d

dt
‖v(t)‖2

L2(G) = 〈v̇(t), v(t)〉 (4.3)

for a.e. t ∈ [0, T ].

For a proof we refer to [7, p287f.]. We note only in the case k = 0 that D−1/2 is the dual

space of D1/2 = H1(G), thus D−1/2 ⊂ H−1(G). 〈· , ·〉 denotes the dual pairing as explained

after (3.4).

11



Theorem 4.3 (Weak solution of the evolution problem) Let T > 0 and a, b, c ∈ C(G×
[0, T ]), a ≥ a0 > 0. Let, furthermore, v0 ∈ D1/2 and f ∈ C([0, T ], L2(G)). Then problem

(4.2) has a unique weak solution v.

Proof: We start with the construction of Galerkin approximations using the complete sys-

tem {vν : ν ∈ N} from Theorem 3.1. Let Pν be the orthogonal projection in L2(G) onto

span {vν}, P (n) :=
⊕n

ν=1 Pν , and let v(n)(t) ∈ P (n)L2(G) be the unique solution of the

following finite-dimensional initial-value problem

d

dt
v(n) = P (n)(−aA v(n) + B v(n) + f) , (4.4a)

v(n)(0) = P (n)v0 . (4.4b)

Note that P (n) commutes with A but not with a or B. From standard results about ordinary

differential equations follows v(n) ∈ C1([0, T ], D1) for any n ∈ N.

Next we derive some a-priori estimates for v(n), uniform in n, which allow to extract a

weakly convergent subsequence of the sequence (v(n)) of Galerkin approximations. We first

show that

max
[0,T ]

‖v(n)‖2
1/2 ≤ C = C[v0, f ; T ] . (4.5)

Taking the scalar product of (4.4a) with Av(n) we obtain

1

2

d

dt
‖v(n)‖2

1/2 =
1

2

d

dt
(A1/2v(n),A1/2v(n))L2 =

(
A v(n),

d

dt
v(n)

)
L2

= (A v(n),−aA v(n) + B v(n) + f)L2

≤ −a0‖v(n)‖2
1 + (A v(n),B v(n))L2 + (A v(n), f)L2 .

(4.6)

Observing that B is a bounded operator from C([0, T ], D1/2) into C([0, T ], L2(G)) there is a

constant C1 such that

(A v(n),B v(n))L2 ≤ (C1a0)
1/2‖v(n)‖1‖v(n)‖1/2 ≤ a0

2
‖v(n)‖2

1 +
C1

2
‖v(n)‖2

1/2 .

Setting max[0,T ] ‖f‖2
L2 =: C2a0 we thus obtain

d

dt
‖v(n)‖2

1/2 ≤ C1‖v(n)‖2
1/2 + C2 , (4.7)

and Gronwall’s inequality yields

‖v(n)‖2
1/2 ≤ eC1t‖v(n)(0)‖2

1/2 +
C2

C1

(
eC1t − 1

)
≤ eC1T ‖v(n)

0 ‖2
1/2 +

C2

C1

(
eC1T − 1

)

on [0, T ], and hence (4.5).

To obtain a bound on v(n) in L2((0, T ), D1) we estimate similarly to (4.6):

1

2

d

dt
‖v(n)‖2

1/2 ≤ −a0‖v(n)‖2
1 +

a0

4
‖v(n)‖2

1 + C1‖v(n)‖2
1/2 +

a0

4
‖v(n)‖2

1 + C2 . (4.8)

Using (4.5) we rewrite (4.8) in the form

a0‖v(n)‖2
1 ≤ − d

dt
‖v(n)‖2

1/2 + 2(C1C + C2) ;

thus, integrating over [0, T ] and observing once more (4.5) yields the bound

∫ T

0
‖v(n)‖2

1 dt ≤ Ĉ . (4.9)
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With (4.9) the right-hand side in (4.4a) is obviously bounded in L2((0, T ), L2(G)), i.e. there

is Č such that ∫ T

0

∥∥ d

dt
v(n)

∥∥2

L2 dt ≤ Č (4.10)

for the sequence of (classical) derivatives
(

d
dtv

(n)
)
.

The bounds (4.9) and (4.10) imply that there is a subsequence (nl) and functions v ∈
L2((0, T ), D1), v̇ ∈ L2((0, T ), L2(G)) such that v is the weak limit of (v(nl)) in L2((0, T ), D1)

and v̇ that of
(

d
dtv

(nl)
)

in L2((0, T ), L2(G)), respectively, and moreover v̇ is the (weak) deriva-

tive of v.

Testing (4.4a) with functions w of the form w(t) =
∑m

ν=1 dν(t) vν ∈ C1([0, T ], L2(G)),

where m ≤ n and dν : [0, T ] → R are smooth functions, and integrating over [0, T ] yields

∫ T

0

( d

dt
v(n), w

)
L2 dt =

∫ T

0

(
P (n)(−aA v(n) + B v(n) + f), w

)
L2 dt

=

∫ T

0

(
− aA v(n) + B v(n) + f, w

)
L2 dt.

(4.11)

Setting n = nl we find in the limit l → ∞:

∫ T

0
(v̇, w)L2 dt =

∫ T

0
(−aA v + B v + f, w)L2 dt . (4.12)

Since test functions of this type are dense in L2((0, T ), L2(G)), eq. (4.12) holds for any

w ∈ L2((0, T ), L2(G)). This proves (4.2a) to be an equality in L2((0, T ), L2(G)).

Inserting w ∈ C1([0, T ], L2(G)) with w(T ) = 0 in (4.12) we find after integration by parts

on the left-hand side −
∫ T
0

(
v, d

dtw
)
L2 dt + (v(0), w(0))L2 . Doing the same in (4.11) yields in

the limit nl → ∞ on the left-hand side −
∫ T
0

(
v, d

dtw
)
L2 dt+(v0, w(0))L2 . Since w(0) ∈ L2(G)

is arbitrary we have v(0) = v0 in L2(G). These results prove v to be a weak solution of

problem (4.2).

Finally, to prove uniqueness of the weak solution consider v1 − v2 =: v0 satisfying

v̇0 = −aA v0 + B v0 , v0(0) = 0 .

Setting in eq. (4.12) v := v0 ∈ L2((0, T ), D(A)), w := A v0, and f = 0 we obtain for a.e.

t ∈ [0, T ]:

(v̇0,A v0)L2 = −(aA v0,A v0)L2 + (B v0,A v0)L2 . (4.13)

The left-hand side of (4.13) takes with (4.3) the form

(v̇0,A v0)L2 = 〈A1/2v̇0,A1/2v0〉 =
1

2

d

dt
‖A1/2v0‖2

L2 =
1

2

d

dt
‖v0‖2

1/2 ,

whereas estimates analogous to that leading to (4.7) show that the right-hand side of (4.13)

can be bounded by 1
2C1‖v0‖2

1/2. Since t 7→ ‖v0(t)‖1/2 is absolutely continuous by Lemma 4.2,

applying Gronwall on the inequality

d

dt
‖v0‖2

1/2 ≤ C1‖v0‖2
1/2 for a.e. t ∈ [0, T ]

with ‖v0(0)‖1/2 = 0 yields the desired result v0 ≡ 0. 2

Remark 4.4 As to the original (shifted) problem (4.1) Theorems 3.3 and 4.3 imply that

us(x, t) := [ṽ(t)](x), where ṽ(t) is the harmonic extension of v(t), satisfies (4.1a,b) for

a.e. (x, t) ∈ R
d × [0, T ].
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Higher regularity of the weak solution depends on the smoothness of the coefficients and the

initial-value. There holds

Theorem 4.5 (Higher regularity) Let T > 0, k ∈ N \ {1}, and a, b, c ∈ Ck
1 (G × [0, T ]).4

Let, furthermore, v0 ∈ D(k+1)/2, f ∈ C1([0, T ], Dk/2), and v being the weak solution of

problem (4.2). Then

v ∈ L2((0, T ), Dk/2 + 1) , v̇ ∈ L2((0, T ), Dk/2) , v̈ ∈ L2((0, T ), Dk/2− 1) .

Proof: Higher spatial regularity is easily obtained via the operator A: Applying Ak/2 on

(4.2) and setting Ak/2v=:w, Ak/2f =: f (k), Ak/2BA−k/2 =: B(k), (a−Ak/2aA−k/2)A =: C(k),

and Ak/2v0 := w0 we obtain

ẇ = −aAw + B(k) w + C(k) w + f (k) , (4.14a)

w(0) = w0 . (4.14b)

f (k) and w0 fulfill the prerequisites of Theorem 4.3, B(k) : C([0, T ], D1/2) → C([0, T ], L2(G))

is again a bounded operator, and C(k) is of the same type as B(k). Thus Theorem 4.3 applies

to (4.14) with the result

w ∈ L2((0, T ), D1) , ẇ ∈ L2((0, T ), L2(G)) ,

i.e.

v ∈ L2((0, T ), Dk/2 +1) , v̇ ∈ L2((0, T ), Dk/2) .

To obtain higher temporal regularity we need some more a-priori estimates for the Galerkin

approximations v(n). Note that a, b, c are at least ∈ C2
1 (G × [0, T ]), v0 ∈ D3/2, and

f ∈ C1([0, T ], D(A)). So, inserting w(n) := Av(n) into (4.14a) and taking the scalar product

with Aw(n) we obtain

1

2

d

dt
‖w(n)‖2

1/2 = (Aw(n),−aAw(n) + B(2)w(n) + C(2)w(n) + f (2))L2 .

This is analogous to (4.6) and the subsequent estimates leading to (4.5) yield now

max
[0,T ]

‖w(n)‖2
1/2 = max

[0,T ]
‖v(n)‖2

3/2 ≤ C3 , (4.15)

and, via (4.4a),

max
[0,T ]

∥∥ d

dt
v(n)

∥∥2

1/2
≤ C4 . (4.16)

On the other hand, differentiating (4.4a) with respect to t, setting d
dtv

(n) =: v̇(n), d
dtf =: ḟ ,

and (∂tb · ∇v(n) + ∂tc v(n)) =: Ḃ v(n) we obtain

d

dt
v̇(n) = P (n)

(
− aA v̇(n) + B v̇(n) + ḟ − ∂taA v(n) + Ḃ v(n)

)
. (4.17)

We now modify for (4.17) the argument which leads from (4.5) to (4.9). Taking the scalar

product of (4.17) with A v̇(n) and observing that Ḃ is of the same type as B, thus using

4In this notation the upper index at “C” refers to the order of spatial derivatives and the lower one (omitted

if zero) to temporal derivatives; so, a ∈ Ck
1 (G × [0, T ]) means a, ∂ta, and Dα

x a, |α| ≤ k are all continuous

functions on G × [0, T ].
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the bounds ‖B v̇(n)‖L2 ≤ (C1a0)
1/2‖v̇(n)‖1/2, ‖Ḃ v(n)‖L2 ≤ (C1a0)

1/2‖v(n)‖1/2, as well as

max[0,T ] ‖v(n)‖2
1 ≤ C5, (4.5), and a ≥ a0, |∂ta| ≤ A, max[0,T ] ‖ḟ‖2

L2 ≤ C2a0 we obtain

1

2

d

dt
‖v̇(n)‖2

1/2 ≤ −a0‖v̇(n)‖2
1 +

a0

8
‖v̇(n)‖2

1 + 2C1‖v̇(n)‖2
1/2 +

a0

8
‖v̇(n)‖2

1 + 2C2

+
a0

8
‖v̇(n)‖2

1 + 2
A

a0
C5 +

a0

8
‖v̇(n)‖2

1 + 2C1C .

This estimate is analogous to (4.8), so we have

∫ T

0
‖v̇(n)‖2

1 dt ≤ C6

and, using once more (4.17), ∫ T

0

∥∥ d

dt
v̇(n)

∥∥2

L2 dt ≤ C7 .

Recalling the reasoning after (4.10) there is thus a subsequence (nlm) =: (m) of (n) and a

function v̈ ∈ L2((0, T ), L2(G)) such that v̈ is the weak limit of
(

d
dt v̇

(m)
)

and the weak time

derivative of v̇. Finally, inspecting again (4.17) we find that there is enough regularity of the

data a, b, c, f , and v0 left to improve the spatial regularity of v̈ by the order k − 2, i.e. we

have v̈ ∈ L2((0, T ), Dk/2− 1). 2

In view of Lemma 4.2 and Sobolev’s embedding theorems Theorem 4.5 implies the exis-

tence of smooth solutions. Concerning the original evolution problem (1.1) we have

Corollary 4.6 (Classical solution of the evolution problem) Let G ⊂ R
d, d ≥ 3 be

a bounded domain with Ck+3/2-boundary. Let, furthermore, a, b, c ∈ Ck
1 (G × [0, T ]), u∞ ∈

C2([0, T ]), and u0 ∈ Ck+1(G) for some k > 1 + d/2 and any T > 0. Then problem (1.1) has

a unique classical solution u, i.e. u ∈ C2
1 (G×R+)∩C2(Ĝ×R+) satisfies pointwise eqs. (1.1).

Proof: Fixing some T > 0 we find with Theorem 3.3, Lemma 4.2, and Sobolev’s embedding

theorems for v from Theorem 4.5:

v ∈ C([0, T ], Hk+1(G)) ⊂ C([0, T ], C2(G)) ,

v̇ ∈ C([0, T ], Hk−1(G)) ⊂ C([0, T ], C(G)) .

Thus, setting us(x, t) := [ṽ(t)](x) with ṽ(t) being the harmonic extension of v(t) ∈ D1/2,

we have us ∈ C2
1 (G × [0, T ]) satisfying (4.1a) and (4.1e). Since ṽ(t) ∈ H0 is harmonic in

Ĝ conditions (4.1b) and (4.1d) hold for us as well. To prove (4.1c) note that this condition

holds for ṽn. Recalling the maximum principle for harmonic functions this implies

max
x∈Rd

|Dα
x ṽn(x)| = max

x∈G
|Dα

x ṽn(x)|

for any multiindex α with |α| ≤ 1. Setting Smn(x, t) :=
∑n

ν=m cν(t) ṽν(x) we have then with

Sobolev and relation (3.5)

max
t∈[0,T ]

∑

|α|≤1

max
x∈Rd

|Dα
xSmn(x, t)| = max

t∈[0,T ]

∑

|α|≤1

max
x∈G

|Dα
xSmn(x, t)|

≤C max
t∈[0,T ]

‖Smn(·, t)‖Hk(G) ≤ C̃‖Smn‖C([0,T ],Dk/2) .
(4.18)

So, convergence of v(t) =
∑∞

n=1 cn(t) vn in C([0, T ], Dk/2) implies convergence of ṽ(t) =∑∞
n=1 cn(t) ṽn in C([0, T ], C1(Rd)), i.e. us ∈ C1(Rd × [0, T ]).
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Similarly, fixing any K ⋐ Ĝ and using the interior derivative estimate (cf. [9, p23])

max
x∈K

|Dα
x ṽn(x)| ≤ Ĉ max

x∈ bG

|ṽn(x)| ≤ Č max
x∈G

|ṽn(x)|

with |α| = 2 we find us ∈ C2(K × [0, T ]) and hence us ∈ C2(Ĝ × [0, T ]).

Finally, since T > 0 is arbitrary, u := us + u∞ is a classical solution of problem (1.1). 2

Remark 4.7 If the principal coefficient a in eq. (1.1a) does not depend on t, smooth solutions

can be established in a much simpler way than in the time-dependent case (see Appendix E).

Appendices

A The non-radial-flow problem

In the framework of magnetohydrodynamics the kinematic dynamo problem reads [4]:

∂tB + ∇× (η∇× B) = ∇× (v × B) , ∇ · B = 0 in G × R+, (A.1a)

∇× B = 0 , ∇ · B = 0 in Ĝ × R+, (A.1b)

B continuous in R
3 × R+, (A.1c)

B(x, t) = O(|x|−3) for |x| → ∞, t ∈ R+, (A.1d)

B(·, 0) = B0 on G × {t = 0}. (A.1e)

Here, the induction equation (A.1a) describes the generation of the magnetic field B by the

motion (with prescribed flow field v) of a conducting fluid (with conductivity η > 0) in a

bounded region G ⊂ R
3. Outside the fluid region there are no further sources of magnetic

field. Thus, B continues in Ĝ = R
3 \ G as a vacuum field and vanishes at spatial infinity.

If G is a ball BR (or a spherical shell) the so-called poloidal-toroidal decomposition of

solenoidal fields is especially useful [4, 14]:

B = BP + BT = −∇× Λ S − Λ T , 〈S〉 = 〈T 〉 = 0.

Λ denotes here the non-radial derivative operator Λ := x × ∇, Λ · Λ =: L is the Laplace-

Beltrami-operator on the unit sphere S1, and 〈 · 〉 denotes the spherical mean. The poloidal

and toroidal scalars S and T , resp., are uniquely determined (e.g. in L2(BR)) by B:

x · B = −LS , x · ∇ × B = −LT.

In the following we refer to P := x · B instead of S as poloidal scalar.

In the case of a non-radial flow field, i.e. v ·x ≡ 0, and spherically symmetric conductivity

problem (A.1) implies the scalar sub-problem (1.3) for P : (1.3a) is just the radial component

of the first part of (A.1a) and (1.3b) is obtained by applying Λ on the first part of (A.1b).

Condition (1.3c) is in fact enough to ensure a continuous magnetic field B, i.e. continuous

second-order derivatives of S = −L−1P , since B involves not more than one radial derivative

of S. The equivalence of (A.1d) with (1.3d) is clear for B·(x/|x|) and follows for the non-radial

components with the divergence-constraint.

Remark A.1 In the mathematical treatment of problem (1.1) it turns out to be useful to

consider functions v satisfying the integral condition
∫

Rd |∇v|2 dx < ∞. In the context of
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problem (1.3) this condition can be interpreted as one guaranteeing finite total magnetic

energy. In fact, the total energy of the poloidal magnetic field reads

E[BP ] =
1

2

∫

R3

|∇ × Λ S|2 dx =
1

2

∫

R3

|∇L1/2S|2 dx,

and with the variational estimate

inf
f 6=0,〈f〉=0

‖L f‖L2(S1)

‖f‖L2(S1)
= 2

one obtains the bound on E[BP ]:

E[BP ] ≤ 1

4

∫

R3

|∇LS|2 dx =
1

4

∫

R3

|∇P |2 dx.

B The axisymmetric problem

The central assumption is here an axisymmetric magnetic field with representation

B = ∇P ×∇φ + A∇φ = −1

ρ
∂zP eρ +

1

ρ
A eφ +

1

ρ
∂ρP ez (B.1)

by two scalar quantities, the poloidal one P and the toroidal or azimuthal one A, depending

(besides on t) on ρ and z with (ρ, φ, z) being cylindrical coordinates in R
3 \{ρ = 0}. Inserting

(B.1) into the dynamo equation (A.1) the following sub-problem for the poloidal scalar P

arises [3, 12, 10]:

∂tP − η∆∗P = −v · ∇P in G2 × R+, (B.2a)

∆∗P = 0 in Ĝ2 × R+, (B.2b)

P and ∇P continuous in H × R+, (B.2c)

P (ρ, z, t) → 0 for ρ → 0, (z, t) ∈ R × R+, (B.2d)

|∇P (ρ, z, t)| = O(ρ) for ρ → 0, (z, t) ∈ R × R+, (B.2e)
∣∣∣1
ρ
∇P (ρ, z, t)

∣∣∣ = O
(
(ρ2 + z2)−3/2

)
for ρ2 + z2 → ∞, t ∈ R+, (B.2f)

P (·, ·, 0) = P0 , P0 satisfying (B.2d,e) on G2 × {t = 0}. (B.2g)

∆∗ is the elliptic operator ∆∗ := ∂2
ρ − 1

ρ∂ρ + ∂2
z on the half-plane H := R+ × R. G2 ⊂ H

is the “cross-section” of some bounded region G3 ⊂ R
3; more precisely, G3 \ ∂G3 with

G3 := G2 × {0 ≤ φ < 2π} is a bounded domain in R
3 with smooth boundary. Note that the

axisymmetric flow field need not be solenoidal, the azimuthal component, however, w.l.o.g.

can assumed to be zero. Condition (B.2e) ensures a finite magnetic field on the symmetry

axis {ρ = 0}. It implies the limit limρ→0 P (ρ, ·, t) = Ps(t), where Ps depends only on t. As

Ps does not affect the magnetic field it is set to zero for simplicity (condition (B.2d)). Note

that in [12, 10] conditions (B.2d,e) are replaced by

P (ρ, z, t) = O(ρ2) for ρ → 0, (z, t) ∈ R × R+. (B.3)

The cautious Backus [3] requires (B.2e) and (B.3). In fact, conditions (B.2d,e) imply (B.3),

but not vice versa. In the view of the original problem (A.1), condition (B.2e) seems to be

the natural one. Similarly, in these references the “natural” condition (B.2f) is replaced by

P (ρ, z, t) = O
(
(ρ2 + z2)−1/2

)
for ρ2 + z2 → ∞, t ∈ R+. (B.4)
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These conditions are in fact equivalent for solutions of (B.2b) as becomes clear in the subse-

quent formulation of problem (B.2).

There is an elegant way to eliminate the “coordinate–singularity” at ρ = 0 in problem

(B.2), namely by embedding (B.2) in R
5. P is then considered as an axisymmetric function

in R
5 with symmetry axis in x5-direction. Identifying ρ2 with

∑4
i=1 x2

i and z with x5, x ∈ R
5,

and introducing Q(x, t) := Q̃(ρ, z, t) := P (ρ, z, t)/ρ2 the crucial observation is [5]

∆∗P = (∂2
ρ − 1

ρ
∂ρ + ∂2

z )P = ρ2(∂2
ρ +

3

ρ
∂ρ + ∂2

z )Q̃ = ρ2∆5Q

with ∆5 being the Laplacian in R
5. With the further definitions

bi(x, t) := −vρ(ρ, z, t)
xi

ρ
, i = 1, . . . , 4, b5(x, t) := −vz(ρ, z, t).

c(x, t) := −2 vρ(ρ, z, t)/ρ , a(x, t) := η(ρ, z, t)

problem (B.2) takes in R
5 the form

∂tQ − a∆5Q = b · ∇Q + c Q in G5 × R+, (B.5a)

∆5Q = 0 in Ĝ5 × R+, (B.5b)

Q and ∇Q continuous in R
5 × R+, (B.5c)

Q(x, t) = O(|x|−3) for |x| → ∞, t ∈ R+, (B.5d)

Q(·, 0) = Q0 , Q0 axisym. on G5 × {t = 0}. (B.5e)

G5 is now an axisymmetric bounded region in R
5. An axisymmetric initial field Q0 implies

axisymmetry of Q(·, t) for all t > 0. A condition on the symmetry axis is no longer necessary;

conditions (B.2d,e) (as well as (B.3)) are automatically satisfied by P := ρ2Q̃. As to the

behaviour for large x, Q is in Ĝ an exterior harmonic function with representation (C.1);

thus, (B.5d) implies |∇Q(x, ·)| = O(|x|−4) for |x| → ∞ and hence (B.2f) as well as (B.4). On

the other side, in the view of (C.4) either of the conditions (B.2f) and (B.4) implies (B.5d).

Remark B.1 Stredulinsky et al. [16] doubt the correctness of the boundary condition (B.4)

in [10] and cite their own results (Theorem 2) about solutions with nonvanishing asymptotic

value P∞(t) at spatial infinity. They mention the possibility of limt→∞ P∞(t) 6= 0, even when

limt→0 P∞(t) = 0. In fact, condition (B.4) is correct as demonstrated above, which means

P∞ ≡ 0 in the axisymmetric problem. The discrepancy arises because in [16] the authors

are especially interested in the two-dimensional case where their problem (1) makes physical

sense (“dynamo problem with plane symmetry”). In d = 2, in fact, P∞ 6= 0 cannot be avoided

in general. In d > 2, however, problem (1) is underdetermined and the condition P∞ ≡ 0

can be added. Observe in this context that in [16] the authors do not claim uniqueness for

solutions of problem (1), only for weak solutions which are “minimizers” (this is more than

“harmonic”) in Ĝ (Theorem 1).

C Exterior harmonic functions

An exterior harmonic function u is called “harmonic at infinity” iff u(x) → 0 for |x| → ∞.

Those functions have in d ≥ 3 dimensions the series representation

u(x) =
∞∑

n=0

|x|2−n−d Yn(x/|x|) , Yn ∈ Hn , (C.1)
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absolutely and uniformly converging in the exterior of any ball Br ⊂ R
d with r > 1 (cf. [8,

p115]. Hn is the space of all harmonic homogeneous polynomials of degree n in R
d restricted

to the unit sphere Sd−1 with dimension Dn := dim Hn = (2n+d−2)(n+d−3)![n!(d−2)!]−1

(cf. [8, p98f]. In particular, dimH0 = 1 and Y0 = const; any other Yn has vanishing spherical

mean, 〈Yn〉 = 0, n ∈ N. The total of spaces Hn spans L2(Sd−1): L2(sd−1) =
⊕∞

0 Hn. So,

choosing orthonormal bases {Ynm | 1 ≤ m ≤ Dn} in Hn, any f ∈ L2(Sd−1) allows a unique

representation

f =
∞∑

n=0

Dn∑

m=1

cnm Ynm (C.2)

with coefficients cnm := (f, Ynm)L2 ∈ R. Obviously, (C.2) is the higher-dimensional analogue

of the well-known representation

f =
∞∑

n=0

n∑

m=−n

cnm Ynm (C.3)

by spherical harmonics {Ynm |n ∈ N0, |m| ≤ n} in d = 3. Note that the Ynm are in our setting

real quantities; by taking suitable linear combinations this is true for spherical harmonics as

well.

Exterior harmonic functions u satisfying the condition
∫

bBR
|∇u|2 dx < ∞ for some R > 0

are harmonic at infinity up to a constant c0 (cf. [15, p41]. With (C.1) this implies the

representation

u(x) = c0 +
∞∑

n=0

|x|2−n−d Yn(x/|x|) , c0 ∈ R , Yn ∈ Hn . (C.4)

(C.4) holds also in the case of exterior harmonic functions with asymptotic conditions u(x) =

O(1) for |x| → ∞ (cf. [2, p64]) |∇u| = O(|x|1−d) for |x| → ∞. The latter statemennt follows

from the former and the estimate

|u(x)| ≤ |u(R x/|x|)| +
∫ |x|

R
|∇u(r x/|x|)|dr , |x| ≥ R ≥ 0 .

Let us, finally, consider the exterior boundary-value problem

∆u = 0 in Ĝ, (C.5a)

u = φ on ∂Ĝ, (C.5b)

u(x) → c for |x| → ∞. (C.5c)

Here, Ĝ ⊂ R
d, d ≥ 3 is an exterior region, i.e. Ĝ = R

d \ G for some bounded domain

G ⊂ R
d, with C1-boundary ∂Ĝ. For φ ∈ C(∂Ĝ) and c ∈ R we call u ∈ C(Ĝ ∪ ∂Ĝ) ∩ C2(Ĝ)

satisfying (C.5) a classical solution. A weak formulation is based on the spaces Ĥ := {v ∈
H1

loc(Ĝ) | ‖v‖ bH < ∞} and Ĥ0 := clos{C∞
0 (Ĝ) , ‖ · ‖ bH} with ‖v‖2

bH :=
∫

bG
|∇v|2 dx. Describing

the boundary and asymptotic conditions by a function w ∈ Ĥ, a weak version of (C.5) reads:

∫

bG
∇u · ∇v dx = 0 for any v ∈ Ĥ0, (C.6a)

u − w ∈ Ĥ0 . (C.6b)

For problem (C.6) holds:
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Theorem C.1 (Solution of the exterior Dirichlet problem) The exterior boundary-value

problem (C.6) with given w ∈ Ĥ has a unique solution u ∈ Ĥ. Moreover, u ∈ C∞(Ĝ) and

∆u = 0 in Ĝ. If w|
∂ bG

= φ ∈ C(∂Ĝ) and w → c for |x| → ∞, then u is a classical so-

lution of (C.5). Furthermore, u is the unique minimizer of the functional ‖ · ‖ bH on the set

{v + w | v ∈ Ĥ0}.

For a proof we refer to [6, p543]. We note only that ‖ · ‖ bH-convergence already implies

‖ · ‖
L2

loc(
bG)

-convergence, thus Ĥ0 ⊂ Ĥ. In fact, the Gagliardo-Nirenberg-Sobolev-inequality

(cf. [7, p263]) implies the estimate

‖v‖
Lp( bG)

≤ C‖v‖ bH , p =
2 d

d − 2

for any v ∈ Ĥ0 and a constant C depending only on d. So, fixing some K ⋐ Ĝ we obtain:

‖v‖L2(K) ≤ C(K)‖v‖Lp(K) ≤ C(K)‖v‖
Lp( bG)

≤ C(K)C‖v‖ bH .

In particular, our Ĥ0 coincides with the corresponding space B1
0(Ĝ) in [6].

D Poloidal free decay modes

The poloidal free decay modes are a countable set of explicit solutions of the eigenvalue

problem (3.1) if G is a ball BR in R
3. In terms of spherical Bessel functions jl and spherical

harmonics (cf. Appendic C) they take the form

p̃lnm(x) :=

√
2

R3





jn(in−1
l |x|/R)

jn(in−1
l )

Ynm(x/|x|) in BR

(|x|/R)−n−1Ynm(x/|x|) in B̂R

, l ∈ N, n ∈ N0, |m| ≤ n

with eigenvalues λlnm := λln := (in−1
l /R)2; inl is the l-th positive zero of jn. For their

restrictions plnm := p̃lnm|BR
holds

Theorem D.1 The set of functions {plnm : BR → R | l ∈ N, n ∈ N0, |m| ≤ n} constitutes a

complete orthonormal system in L2(BR).

Proof: The orthonormality of the plnm can be checked by explicit calculation using the

orthonormality of the Ynm and the corresponding relation for the jn (cf. [1, p485, eq. 11.4.5].

To prove the completeness we show any solution of problem (3.1) being a linear combination

of the p̃lnm. Theorem 3.1 yields then the completeness of the plnm. So, let u be a solution

of (3.1) with eigenvalue λ > 0. The representation (C.3) for L2-functions on the unit sphere

implies the representation

u(x) =
∞∑

n=0

n∑

m=−n

unm(|x|)Ynm(x/|x|) (D.1)

for u with coefficients unm depending only on |x|. For |x| > R follows with (C.1)

unm(|x|) = cnm|x|−n−1

with cnm ∈ R, whereas inserting (D.1) into (3.1a) yields the differential equation for unm on

(0, R):

− 1

r2

d

dr

(
r2 d

dr
unm

)
+

1

r2
n(n + 1)unm = λ unm (D.2)
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with r := |x|. After rescaling s :=
√

λ r, (D.2) takes the spherical form of Bessel’s differential

equation for vnm(s) := unm(s/
√

λ):

(
s2 d2

ds2
+ 2s

d

ds
+ s2 − n(n + 1)

)
vnm = 0

with (in s = 0) regular solutions jn, n ∈ N0. Matching inner and outer solutions according

to (3.1c) yields the condition

(
s

d

ds
jn(s) + (n + 1)jn(s)

)∣∣∣
s=

√
λR

= (sjn−1(s))
∣∣
s=

√
λR

= 0 (D.3)

fixing the eigenvalue at

λ = λln = (in−1
l /R)2. (D.4)

Note that (D.3) holds also in the case n = 0 with j−1 = cos s/s.

According to Theorem 3.1, the eigenvalue λ is of finite multiplicity. Thus, only finitely

many pairs (l, n) satisfy (D.4), and (D.1) is in fact a (finite) linear combination of the p̃lnm.

2

Remark D.2 The condition of vanishing spherical mean eliminates all n = 0 modes; thus,

{plnm | l ∈ N, n ∈ N, |m| ≤ n} is a complete orthonormal system in {v ∈ L2(BR) | 〈v〉 = 0}.

E The case of time-independent principal coefficient

We outline here a simpler way (than for the general case in section 4) to obtain smooth

solutions of the evolution problem. The basic idea is to absorb the principal coefficient a into

the definition of the operator A. For this purpose we solve the Poisson problem (2.1) with

(2.1a) replaced by

−a∆u = f in G,

where a ∈ C(G), a ≥ a0 > 0. This can easily be achieved by replacing in the weak formulation

(2.8) the L2-scalar product on the right-hand side by a weighted version:

(u, v)H =

∫

G
fv

1

a
dx =: (f, v)L2

a(G) .

The corresponding Green’s operator Ga : L2
a(G) → L2

a(G) yields then a complete orthonormal

system {wn : n ∈ N} with eigenvalues µ−1
n in L2

a(G).5 The associated harmonic extension w̃n

satisfies instead of (3.3):

(w̃n, v)H = µn(wn, v)L2
a

for any v ∈ H0 ,

and solves problem (3.1) with (3.1a) replaced by

−a∆wn = µnwn in G.

Note, however, that the regularity of w̃n depends now on that of a; for instance, a ∈ Ck(G),

k > (d + 1)/2 implies w̃ ∈ C2(G ∪ Ĝ) ∩ C1(Rd) (cf. Theorem 2.3). The system {wn : n ∈ N}
allows the representation

w =
∞∑

n=1

(wn, w)L2
a
wn

5L2
a(G) means just L2(G) equipped with (·, ·)L2

a
(G).
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for any w ∈ L2(G) and to define an operator Aa analogous to A. Theorem 3.3 holds then for

Aa as well, provided a is sufficiently smooth (for instance, a ∈ Ck−2(G) implies wn ∈ Hk(G),

k ≥ 2).

We are now going to solve the initial-value problem

ẇ + Aa w = Bw + f, (E.1a)

w(0) = w0 (E.1b)

with the lower-order operator Bw := b · ∇w + c w on the right-hand side. A suitable notion

of weak solution reads now:

Definition E.1 Let T > 0 and w0 ∈ D1/2. A function w ∈ C([0, T ], D1/2)∩C1([0, T ], D−1/2)

satisfying (E.1a) as equality in C([0, T ], D−1/2) and (E.1b) as equality in D1/2 is called weak

solution of problem (E.1).

Theorem E.2 Let T > 0 and a ∈ C(G), a ≥ a0 > 0, and b, c ∈ C(G × [0, T ]). Let,

furthermore, w0 ∈ D1/2 and f ∈ C([0, T ], L2(G)). Then problem (E.1) has a unique weak

solution w; moreover, w ∈ L2((0, T ), D1).

Furthermore, if a ∈ Ck−2(G),6 b, c ∈ Ck(G×[0, T ]), w0 ∈ D(k+1)/2, and f ∈ C([0, T ], Dk/2)

for some k ∈ N, then

w ∈ C([0, T ]D(k+1)/2) ∩ C1([0, T ], D(k−1)/2) .

Proof: The proof proceeds for the present similar to that of Theorem 4.2, i.e. we construct

Galerkin approximations w(n) based, this time however, on the complete system {wν : ν ∈ N}
introduced above. w(n) ∈ C1([0, T ], D(Aa)) is now the unique solution of the initial-value

problem

d

dt
w(n) = −Aa w(n) + Q(n)(Bw(n) + f) , (E.2a)

w(n)(0) = Q(n)w0 . (E.2b)

with Q(n) :=
⊕n

ν=1 Qν and Qν denoting the orthogonal projection in L2
a(G) onto span {wν}.

The a-priori estimate

max
[0,T ]

‖w(n)‖2
1/2 ≤ C (E.3)

follows completely analogously to (4.5) in the proof of Theorem 4.3. Differently from the

general case, (w(n)) can here be shown to be a Cauchy sequence in C([0, T ], D1/2):

Let wnm := w(n)−w(m) with n ≥ m. Observing that B : C([0, T ], D1/2) → C([0, T ], L2(G))

is a bounded operator we obtain

(Aa wnm, Q(n)Bw(n) − Q(m)Bw(m))L2
a

= (Aa wnm, Q(n)Bwnm + (Q(n) − Q(m))Bw(m))L2
a

≤ C
1/2
1 ‖wnm‖1 ‖wnm‖1/2 + C

1/2
1 ‖wnm‖1 ‖Q(n) − Q(m)‖L2

a→L2
a
‖w(m)‖1/2

≤ 1

2
‖wnm‖2

1 + C1‖wnm‖2
1/2 + C1C εnm .

In the last line we used (E.3) and introduced the abbreviation εnm := ‖Q(n) − Q(m)‖2
L2

a→L2
a
.

Scalar multiplication of (E.2a) with Aawnm yields now

1

2

d

dt
‖wnm‖2

1/2 = (Aa wnm,−Aa wnm + Q(n)(Bw(n) + f) − Q(m)(Bw(m) + f))L2
a

≤ C1‖wnm‖2
1/2 + C1Cεnm +

1

2
C2 εnm ,

6In the case k = 1 “C−1(G)” means C(G).
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where C2 := max[0,T ] ‖f‖2
L2

a
, and with Gronwall we arrive at

max
[0,T ]

‖wnm‖2
1/2 ≤ e2C1T ‖wnm(0)‖2

1/2 + (2C1C + C2) εnm
e2C1T − 1

2C1
.

Observing ‖wnm(0)‖2
1/2 ≤ εnm‖w0‖2

1/2 and limm→∞ εnm = 0 (uniformly in n ≥ m) we find

(w(n)) being a Cauchy sequence in C([0, T ], D1/2) with limit function w.

To see that w is a weak solution in the sense of Definition E.1 consider the sequence

of (classical) derivatives
(

d
dtw

(n)
)
. Going back to eq. (E.2a) we find the right-hand side

converging in C([0, T ], D−1/2) with limit −Aa w + Bw + f . As a consequence d
dtw exists

(classically) and equals −Aa w + Bw + f in C([0, T ], D−1/2); this means, in particular, w ∈
C1([0, T ], D−1/2).

Uniqueness of the weak solution and higher spatial regularity follow just as in the proofs

of Theorems 4.3 and 4.5, respectively.

2

Concerning the original evolution problem (1.1) let us remark that Theorem E.2 provides

the prerequisites to apply Corollary 4.6 even under slightly weaker assumptions on the data

b, c, and f .
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