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Abstract

We formally derive and rigorously justify the modulation equations of

lowest order for the interaction of two modulated pulses on a one-dimensional

nonlinear oscillator chain. We show that solutions with the initial form of the

assumed ansatz preserve this form over time intervals with positive macro-

scopic length, and we show a bound on the possible shift of the envelope

caused by the interaction. Thus we rigorously justify and quantify the state-

ment that under the given conditions there is almost no interaction of the

modulated pulses.
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1 Introduction

Finding continuum models for discrete, atomistic systems of ODEs is a major prob-
lem in contemporary multiscale analysis. In this paper we consider the macroscopic
limit of a one-dimensional nonlinear oscillator chain (NOC) with interaction poten-
tials between neighboring oscillators and a stabilizing background potential. We
choose the initial data in a specific class of functions and obtain an evolution of the
data in the given function class. This will be called the macroscopic limit problem.

For instance, in different scaling regimes the famous FPU model [FPU55] can
be reduced to different macroscopic limit problems. In the long wave limit one ob-
tains the Korteveg–deVries equation (KdV), see, e.g., [ZK65, SW00, McM05], while
macroscopic envelopes of modulated microscopic carrier waves fulfill the Nonlinear
Schrödinger equation (NLS), see [GM04] and the references therein. Both macro-
scopic equations, KdV and NLS, possess soliton solutions, i.e. localised pulses which
interact in a particle–like fashion. In the NLS case these formally yield approximate
modulating pulse solutions of the NOC. Moreover, in [GM04] the NLS approxima-
tion of NOCs was rigorously justified for the case of a single carrier wave, which also
yields rigorous results for approximate modulating pulses (with one wave number)
in NOCs.

Here we investigate the interaction of two modulating pulses with different carrier
waves on a NOC. These two pulses travel with different group speeds cA and cB, and,
loosely speaking, our main result is as follows, see Section 3 for the precise result
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and Fig. 1 for an illustration. If we assume that initially the pulses are separated,
with the slower one ahead of the faster one, then the faster one will overtake the
slower one on some macroscopic time interval. Under some (generic) non–resonance
conditions we show that there is almost no interaction of the two pulses and quantify
this statement appropriately. In detail, we show that after interaction the pulses
retain their shape and the main effect is an envelope shift, i.e., a shift in position
experienced by each pulse due to the interaction. However, we also show that this
shift is at most O(ε), where ε is the order of the amplitude (and of the inverse width)
of each pulse.

O( )1/ε

)εO(
cA

cB

initial time

after interaction

hypothetical positions of the envelopes
without interaction (shift exagerated)

Figure 1: Sketch of pulse interaction.

This result should be contrasted to the position shift due to interaction experi-
enced by N -solitons of a single NLS, which is proved by inverse scattering transform,
see, e.g. [AS81]. Our analysis involves a system of two NLS, each one corresponding
to one pulse, with different underlying wave numbers, and the proof relies on esti-
mates for the approximation of the NOC by the system of NLS and not on genuine
properties of the NLS itself.

Analogous results were obtained in [CBSU07, CBCSU08] for a similar problem
on a continuous one-dimensional string, while in [BF06, see in particular §2.1] almost
linear (interaction) behavior was shown in a more general setting including nonlinear
lattice equations, but with less detailed asymptotics, in particular only leading to
an O(1) upper bound for the envelope shift. Compared to the continuous case, the
asymptotic expansions in the discrete case become slightly more involved due to
the mixing of the discrete lattice site variable and the continuous macroscopic space
variable.

Physically, the shifts caused by the interaction of pulses may for instance be
used to probe the presence of a standing (or slow) pulse by sending a traveling pulse
with a different wave number through the material. For the (continuous) case of
photonic crystals this has been proposed in [TPB04]. In lattices, such shifts have
for instance been experimentally observed for (non-modulated) pulses which are
modeled by solitons in Toda lattices, see, e.g. [Tsu89]. Finally, the shifts may be
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used to distinguish nonlinear from linear material which shows no interaction at all.
The plan of this paper is as follows. In Section 2 we present a formal derivation

of the equations for the approximation of the pulse interaction. This is called formal
derivation since a priori the existence of solutions of the required form is not clear
at all. In Section 3, we prove the validity of the approximation by introducing a
suitable phase space for our system and by estimating the norm of the error on
an O(1/ε2) time scale. This finally allows us to show the desired estimate for the
envelope shift of the pulses after the interaction.

2 Formal Description of the Pulse Interaction

2.1 The NLS Pulse

We consider equations of the form

ẍj = V ′(∂+
j x) − V ′(∂−j x) −W ′(xj), j ∈ Z, (2.1)

where xj(t) is the deviation at time t ≥ 0 of an oscillator from its rest position in
an infinite chain (xj)j∈Z, and where ∂±j x = ±(xj±1−xj). Thus we assume that each
oscillator interacts with its nearest neighbor via the potential V , and additionally
the existence of a stabilizing background potential W . More general chain equations
are possible and lead to similar results (e.g.[GM06]).

To simplify the presentation we make the basic assumption that the potentials
do not contain cubic terms, i.e., that there are no quadratic nonlinearities. However
see Remark 3.8. Prototypical potentials which yield cubic nonlinearities in (2.1) are

V (d) =
v1

2
d2 + Ṽ (d) with Ṽ (d) =

v3

4
d4,

W (y) =
w1

2
y2 + W̃ (y) with W̃ (y) =

w3

4
y4.

We split (2.1) into a linear and a nonlinear part, i.e. ẍj = Ljx+Nj(x). The linearized
system

ẍj = Ljx := v1(∂
+
j x− ∂−j x) − w1xj = v1(xj+1 − 2xj + xj−1) − w1xj (2.2)

has exact spatiotemporally periodic basic solutions E(t, j) = ei(ω̂t+ϑj), where the
frequency ω̂ = ω̂(ϑ) depends on the wave number ϑ via the dispersion relation
ω̂2(ϑ) = 2v1(1−cosϑ)+w1. Throughout the paper, we require the stability condition
ω̂2(ϑ) > 0 for all ϑ, and choose ω̂(ϑ) > 0. The stability condition is equivalent to
min{w1, w1 + 4v1} > 0.

We fix a wave number ϑ and write ω̂, ω̂′ and ω̂′′ for ω̂(ϑ), ω̂′(ϑ) and ω̂′′(ϑ),
where ϑ needs to be chosen in such a way that ω̂′′ 6= 0; this is always satisfied in a
neighborhood of 0. Following [GM04], (2.1) has solutions which are slow modulations
of the periodic basic pattern, in the form

Xj(t) = εA(ε2t, ε(j − ct))E(t, j) + cc + O(ε2). (2.3)

where c = c(ϑ) is the group velocity of wave packets with wave number ϑ, and cc
denotes complex conjugate. We let τ = ε2t and ξ = ε(j − ct) for the macroscopic
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time- and space-variable, respectively. Since the solutions given by (2.3) have small
amplitude and narrow spectral content only the long time scale allows to see the
effects of nonlinearity and dispersion. Inserting the ansatz (2.3) into (2.1) yields
that the group velocity must satisfy c = −ω̂′, and that A must satisfy a Nonlinear
Schrödinger Equation (NLS)

i∂τA =
1

2
ω̂′′∂2

ξA+ ρ|A|2A with ρ = −12v3(1 − cosϑ)2 + 3w3

2ω̂
. (2.4)

A general time–dependent spatially localized solution of equation (2.4) describes a
modulating pulse of (2.1). However, to describe the interaction of pulses, we shall
restrict to functions which are time-independent in lowest order. See Remark 3.7
for the general time dependent case. It turns out that a time-independent solution
of the modulation equation (2.4) can only assume the form of a pulse if we add a
correction term of order O(ε2) to the frequency, i.e., we define

ω2(ϑ) = 2v1(1 − cosϑ) + w1 + ε2γ (2.5)

with a constant γ and determine which values this constant may take such that the
modulation equation has modulating pulse solutions. This means that we slightly
change the ansatz (2.3), but not the equation (2.1), and thus obtain a modulation
equation different from (2.4). Note that ω′(ϑ) = ω̂′(ϑ)+O(ε2) and ω′′(ϑ) = ω̂′′(ϑ)+
O(ε2).

In detail, fixing ϑ, choosing ω = ω(ϑ), and inserting the lowest-order time-
independent ansatz

Xj(t) = εA(ε(j − ct))E(t, j) + cc + O(ε2), E(t, j) = ei(ωt+ϑj), (2.6)

into (2.1) now yields the modulation equation

0 = γA+ ωω′′∂2
ξA− σ|A|2A, (2.7)

with σ = 12v3(1 − cosϑ)2 + 3w3. For γ = 0 this is the stationary case of (2.4) due
to ρ = σ

2ω
. For (2.7) we seek solutions in the form

A(ξ; ξ(0), φ(0)) = Apulse(ξ − ξ(0))eiφ(0)

,

where the envelope shift ξ(0) and phase shift φ(0) are parameters, and where Apulse

satisfies the equation
∂2

ξ Ã = C1Ã− C2Ã
3 (2.8)

with Ã(ξ) real-valued, C1 = −γ/ωω′′ and C2 = −σ/ωω′′. This equation has pulse
solutions if and only if C1 > 0 and C2 > 0. These pulses may be calculated explicitely
to

A±
pulse(ξ) = ±

(
2C1

C2

)1/2

sech(C
1/2
1 ξ), (2.9)

and in the (A, ∂XA)-plane correspond to homoclinic connections of the origin with
itself. We summarize the conditions for C1 and C2, which in particular imply that
γ and v1 must have the same sign, as follows,

Lemma 2.1. (2.8) admits pulse solutions if and only if

C1 =
−γ
ωω′′

> 0 and C2 =
− [12v3(1 − cosϑ)2 + 3w3]

ωω′′
> 0.
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2.2 The pulse interaction

We are looking for approximate solutions Z of amplitude O(ε) of (2.1) which repre-
sent the interaction of two pulses. The two pulses, which we will symbolically denote
by PA and PB, are required to have different wave numbers. Therefore we introduce
a double set of variables: For each pulse, we define wave number, frequency, and
group velocity ϑA, ωA = ω(ϑA), and cA resp. ϑB, ωB = ω(ϑB), and cB, and the two
different macroscopic space variables ξA = ε(j − cAt) and ξB = ε(j − cBt). The
values for ϑA and ϑB must be chosen according to Lemma 2.1.

In order to quantify how well Z approximates a true solution, we shall use the
residual defined componentwise by

ρ(Z)j = LjZ +Nj(Z) − Z̈j, (2.10)

and the goal is to compute a formal approximation Z so that the residual is of high
order in ε. Thus we propose the multiscale ansatz

Zj(t) = ZA
j (t) + ZB

j (t) + ε3Mj(t) (2.11)

with

ZA
j (t) = εA1EA + ε3A3E

3
A + ε3YAEA + ε4A4,3E

3
A + ε5A5,5E

5
A + ε5A5,3E

3
A + cc,

ZB
j (t) = εB1EB + ε3B3E

3
B + ε3YBEB + ε4B4,3E

3
B + ε5B5,5E

5
B + ε5B5,3E

3
B + cc,

explained in the following. EA and EB denote the basic pattern

EA(t, j) = ei(ωAt+ϑAj+εΩA(ξB)), EB(t, j) = ei(ωBt+ϑBj+εΩB(ξA)),

where the functions ΩA resp. ΩB represent the phase shifts of the pulses during
interaction. Since the phase shift of a pulse should depend on the other pulse, we
set ΩA = ΩA(ξB) and ΩB = ΩB(ξA). Furthermore, as already said, we require A1

and B1 to be time-independent, i.e. A1 = A1(ξA) and B1 = B1(ξB), and similarly
A3 = A3(ξA) and B3 = B3(ξB), while the remaining macroscopic functions depend
on τ and ξA, ξB. The idea of the ansatz is as follows:

• A1, A3 and B1, B3 determine the shape of the modulating pulse; in particular,
they represent internal dynamics of each pulse since for each pulse they will
be chosen independently of the other pulse.

• YA and YB are correction functions which evolve in slow time τ ; they are zero
at time τ = 0.

• A4,3, A5,3, . . ., and M are higher order corrections. M contains mixed terms,
i.e. terms which contain mixed frequencies E

m
AE

n
B with mn 6= 0.

We start with the computation of the macroscopic functions which generally works
as follows: During the expansion of the multiscale ansatz (2.11) we obtain e.g. a term
at εk

E
m
AE

n
B, where for now we assume (|m|, |n|) 6= (1, 0) and (|m|, |n|) 6= (0, 1). To

compensate this, we extend the ansatz by a term εkHk,m,nE
m
AE

n
B with a macroscopic
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function Hk,m,n = Hk,m,n(τ, ξA, ξB) and obtain an equation for Hk,m,n at εk
E

m
AE

n
B,

namely [
(ω(mϑA + nϑB))2 − (mωA + nωB)2

]
Hk,m,n = Gk,m,n, (2.12)

where the term Gk,m,n only contains functions Hk̃,m̃,ñ with k̃ < k. This allows us
to compute the macroscopic functions Hk,m,n step-by-step if the terms [(ω(mϑA +
nϑB))2 − (mωA + nωB)2] in (2.12) are nonzero. We formalize this nonresonance
condition:
(FORM) In order to compute all macroscopic functions of an approximation to
order k, we must have, for all m,n ∈ Z, |m| + |n| ≤ k with Gk,m,n 6= 0,

(ω(mϑA + nϑB))2 − (mωA + nωB)2 6= 0. (FORM)m,n

Even for single frequencies, this condition may not be satisfied for all ϑ, cf. [GM06,
Proposition 2.2]. For (2.11) it is rather straightforward to find ϑA, ϑB such that
(FORM)m,n is violated for smallm,n, see Fig.2 for an example. However, if (FORM)m,n

holds to sufficient order, then we may calculate all macroscopic functions in the
ansatz (2.11).

-3
-2

-1
 0

 1
 2 -3

-2

-1

 0

 1

 2

 3

-3
-2
-1
 0
 1

Figure 2: Violation of (FORM)1,1 for v1 = −0.24, w1 = 1 at zero contour lines.

Lemma 2.2. Let (FORM) hold for all k ≤ 5. Then we may explicitly calculate all
functions in the ansatz (2.11) such that formally ρ(Z) = O(ε6). The equations for
A1 and B1 have the form given by (2.7), and A1 and B1 may be chosen to have the
form (2.9) of a pulse.

Proof. See Section 2.3.

2.3 Proofs

Proof of Lemma 2.2. We insert (2.11) into (2.1) and then group terms according
to their order and frequency, i.e. according to their factor εk

E
m
AE

n
B. We first outline

the results of this expansion. Therefore, let H = H(τ, ξA, ξB) : [0, τ0] × R
2 → C
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(τ0 > 0) be any sufficiently smooth function. Then, on the left hand side of (2.1),

∂2
t (HE

n
A) =

{
− n2ω2

A (2.13)

+ ε [2niωA(−cA∂ξA
H − cB∂ξB

H)]

+ ε2
[
c2A∂

2
ξA
H + c2B∂

2
ξB
H + 2cAcB∂ξA

∂ξB
H + 2niωA∂τH + 2n2cBH∂ξB

ωA

]

+ ε3
[
− 2cA∂τ∂ξA

H − 2cB∂τ∂ξB
H − 2nicB∂ξB

ωA(−cA∂ξA
H − cB∂ξB

H)
]

+ ε4
[
∂2

τH + 2nicB∂ξB
ωA∂τH + nic2B∂

2
ξB
ωAH − n2(c2B∂ξB

ωA)2H
]}

E
n
A.

Analogous formulas hold for terms with other frequencies.
To deal with the difference operators on the right hand side of (2.1) we first note

the formula

EA(t, j ± 1) = eiγ±

A EA(t, j), where eiγ±

A = e±iϑA+iε(ωA(ξB±ε)−ωA(ξB)),

and then use a Taylor expansion of the macroscopic functions to obtain LjZ
A and

Nj(Z) as an expansion in powers of ε and EA. In detail, for

Z = εa1 + ε3a3 + ε4r1,

with

a1 = A1EA +B1EB + cc, a3 = A3E
3
A +B3E

3
B + YAEA + YBEB + cc +M,

we find

∂±j Z = εa±1 + ε2a±2 + ε3a±3 + ε4r±1 ,

where

a±1 = ±(e±iϑA − 1)A1EA ± (e±iϑB − 1)B1EB + cc,

a±2 = e±iϑA∂ξA
A1EA + e±iϑB∂ξB

B1EB + cc,

a±3 = ±
[
e±iϑA

(
1

2
∂2

ξA
A1 + i∂ξB

ωAA1

)]
EA

±
[
(e±3iϑA − 1)A3

]
E

3
A ±

[
(e±iϑA − 1)YA

]
EA

±
[
e±iϑB

(
1

2
∂2

ξB
B1 + i∂ξB

ΩBB1

)]
EB

±
[
(e±3iϑB − 1)B3

]
E

3
B ±

[
(e±iϑB − 1)YB

]
EB + cc + ∂±j M.

Inserting this into the nonlinear part yields

Nj(Z) = ε3
{
v3

[
(a+

1 )3 − (a−1 )3
]
− w1a

3
1

}

+ ε4
{

3v3

[
(a+

2 )(a+
1 )2 − (a−2 )(a−1 )2

]}

+ ε5
{

3v3

[
(a+

3 )(a+
1 )2 + (a+

2 )2(a+
1 ) − (a−3 )(a−1 )2 − (a−2 )2(a−1 )

]
+ 3w3a3a

2
1

}

+ ε6RN(j).
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Due to (FORM), we know that we can calculate all macroscopic functions at
orders εk

E
m
AE

n
B, where (|m|, |n|) 6= (1, 0) and (|m|, |n|) 6= (0, 1). Therefore we only

need to perform the calculations at orders εk
EA. The case εk

EB gives the same
results with exchanged variables.

At order ε1 and ε2 we observe only linear effects. At εEA, we choose ωA > 0 to
satisfy [

v1((e
iϑA − 1) − (1 − e−iϑA)) − w1 − ε2γA + ω2

A

]
A1 = 0,

which is the dispersion relation with the O(ε2) correction. At ε2
EA, we get

2iωAω
′
A + 2icAωA = 0,

which implies cA = −ω′
A. At order ε3, nonlinearity and dispersion appear. At ε3

EA,
we get

0 = γAA1 + 2v1 sinϑA∂ξB
ΩAA1 + v1 cosϑA∂

2
ξA
A1 − ω̂2

AYA

+ v3

[ (
12(1 − cosϑB)|B1|2(eiϑA − 1)A1

+ 6(1 − cosϑA)|A1|2(eiϑA − 1)A1

)

−
(
12(1 − cosϑB)|B1|2(1 − e−iϑA)A1

+ 6(1 − cosϑA)|A1|2(1 − e−iϑA)A1

) ]

− 3w3|A1|2A1 + 6w3|B1|2A1 −
(
2cBωA∂ξB

ΩAA1 + c2A∂
2
ξA
A1

)
+ ω2

AYA.

(2.14)

At ε3
EB, we get a similar equation. Since these equations are coupled, we cannot

extract modulation equations for A1 and B1 directly. However, there is a simple
way to uncouple these equations, namely by associating the coupling terms |B1|2A1

resp. |A1|2B1 with the phase shifts ΩA resp. ΩB. Thus, by combining these terms,
we get

(cA − cB)∂ξB
ΩA = −s(1)

A |B1|2 and (cB − cA)∂ξA
ΩB = −s(1)

B |A1|2

with coefficients

s
(1)
A =

v3(cosϑA − 1)(1 − cosϑB)

ωA

and s
(1)
B =

v3(cosϑB − 1)(1 − cosϑA)

ωB

,

and we choose ΩA and ΩB as

ΩA(ξB) = Ω0
A +

∫ ξB

−∞

−s(1)
A

cA − cB
|B1|2dξ̃B, ΩB(ξA) = Ω0

B +

∫ ξA

−∞

−s(1)
B

cB − cA
|A1|2dξ̃A,

with real constants Ω0
A and Ω0

B, which are determined by initial phase shifts. This
means that the phase shift of a pulse travels with the other pulse.

At ε3
EA, we now have

0 = γAA1 + v1 cosϑA∂
2
ξA
A1 − c2A∂

2
ξA
A1 − ω̂2

AYA

− [12v3(1 − cosϑA)2 + 3w3]|A1|2A1 + ω2
AYA.

+ ε3v3

{ [
(eiϑA − 1)2e−iϑA − (1 − e−iϑA)2eiϑA

]
A2

1∂ξA
Ā1

+ 2(1 − cosϑA)|A1|22i sinϑA∂ξA
A1

}
,

(2.15)
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where the O(ε) terms come from terms at order ε4
EA resp. ε4

EB.
Since ωA − ω̂A = O(ε2), the terms with YA disappear from the equation at order

ε3. We similarly deal with the equation at ε3
EB and finally obtain two uncoupled

equations for A1 and B1, namely

0 = γAA1 + ωAω
′′
A∂

2
ξA
A1 − [12v3(1 − cosϑA)2 + 3w3]|A1|2A1 + O(ε),

0 = γBB1 + ωBω
′′
B∂

2
ξB
B1 − [12v3(1 − cosϑB)2 + 3w3]|B1|2B1 + O(ε).

(2.16)

Choosing our parameters according to Lemma 2.1, this system has pulse solutions
for A1 and B1 which are O(ε) perturbations of (2.9).

Next we consider the correction functions YA and YB. At ε5
EA and ε5

EB we
get a system of evolution equations for YA and YB, namely

2iωA∂τYA = (v1 cos(3ϑA) − c2A)∂2
ξA
YA +GA(YA, YB)

+ ε−1

{
2v1 cosϑA

(
A1

i

2
∂2

ξB
ΩA + ∂ξA

A1i∂ξB
ΩA

)

+ 6iv3

(
2(1− cosϑB)|B1|2 sin ∂ξA

A1 − cB∂ξB
ΩAcA∂ξA

A1

)}
(2.17)

and

2iωB∂τYB = (v1 cos(3ϑB) − c2B)∂2
ξB
YB +GB(YA, YB)

+ ε−1

{
2v1 cosϑB

(
B1

i

2
∂2

ξA
ΩB + ∂ξB

B1i∂ξA
ΩB

)

+ 6iv3

(
2(1− cosϑA)|A1|2 sin ∂ξB

B1−cA∂ξA
ΩBcB∂ξB

B1

)}
.

(2.18)

Here, GA and GB contain only algebraic terms in YA and YB and terms which only
depend on functions which we have already calculated. Lemma 2.3 below states
that the system (2.17),(2.18) with initial conditions YA|τ=0 = 0 and YB|τ=0 = 0 has
a unique solution, bounded independent of ε.

By these calculations all terms of orders εk
EA and εk

EB, k ≤ 5, cancel from
ansatz (2.11). We could now proceed with calculating the modulation functions at
the remaining orders, but here we restrict to A3 and B3 since these determine the
next order shape of the single pulses. We obtain

A3 = νAA
3
1 and B3 = νBB

3
1 (2.19)

with

νA =
v3s

2
A(3 − sA) − w3

ω2(3ϑA) − 9ω2
A

, where sA = 2(1 − cosϑA),

and analogously for νB, provided that (FORM)(3,0) and (FORM)(0,3) are satisfied.
In particular, A3 and B3 also only depend on ξA resp. ξB.

Lemma 2.3. For all s ≥ 2 and τ0 > 0 there is a constant CY = CY (s, τ0) such
that for all ε ∈ (0, 1] the following holds: (2.17)–(2.18) with the initial conditions
YA|τ=0 = YB|τ=0 = 0 has a unique solution YA, YB ∈ C([0, τ0], H

s). This solution
satisfies

sup
τ∈[0,τ0]

∥∥∥∥
(
YA

YB

)∥∥∥∥
Hs

≤ CY .
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Proof. We rewrite (2.17),(2.18) as

∂τ

(
YA

YB

)
= L

(
YA

YB

)
+
i

2

(
ω−1

A GA

ω−1
B GB

)
, L =

1

2i

(
v1 cos(3ϑA)−c2A

ωA
∂2

ξA
0

0
v1 cos(3ϑB)−c2B

ωB
∂2

ξB

)
.

By Fourier transform we obtain
∥∥eτL

∥∥
L(Hs,Hs)

≤ 1, and the remainder of the proof

now works exactly as in [CBSU07, Lemma 4.2].

Remark 2.4. The only terms which might create problems are those which appear
in equations (2.17) or (2.18) at the order O(ε−1). The main statement of this lemma
is that despite those terms, YA and YB are of order O(1).

2.4 Summary

The ansatz used to describe the pulse interaction is

Zj(t) = ZA
j (t) + ZB

j (t) + ε3Mj(t),

ZA
j (t) = εA1EA + ε3A3E

3
A + ε3YAEA + ε4A4,3E

3
A + ε5A5,5E

5
A + ε5A5,3E

3
A + cc,

ZB
j (t) = εB1EB + ε3B3E

3
B + ε3YBEB + ε4B4,3E

3
B + ε5B5,5E

5
B + ε5B5,3E

3
B + cc,

EA(t, j) = ei(ωAt+ϑAj+εΩA(ξB)), EB(t, j) = ei(ωBt+ϑBj+εΩB(ξA)),

and yields the following hierarchy of equations to minimize the residual:

• the dispersion relation ω2
A(ϑA) = 2v1(1 − cosϑA) + w1 + ε2γA and the group

speed cA = −ω′
A, and similar for ωB, cB;

• at O(ε3
EA) resp. O(ε3

EB) the uncoupled NLS equations (2.16), i.e.,

0 = γAA1 + ωAω
′′
A∂

2
ξA
A1 − [12v3(1 − cosϑA)2 + 3w3]|A1|2A1 + O(ε),

0 = γBB1 + ωBω
′′
B∂

2
ξB
B1 − [12v3(1 − cosϑB)2 + 3w3]|B1|2B1 + O(ε).

together with explicit expressions

ΩA(ξB) = Ω0
A+

∫ ξB

−∞

−s(1)
A

cA − cB
|B1|2dξ̃B, ΩB(ξA) = Ω0

B +

∫ ξA

−∞

−s(1)
B

cB − cA
|A1|2dξ̃A,

for the phase corrections;

• two evolution equations (2.17), (2.17) for the lowest order corrections YA, YB,
with O(1) solutions, and a number of algebraic equations like (2.19) for higher
order terms as A3, B3 and the mixed terms contained in M ; these can all be
solved if (FORM) holds for all k ≤ 5, which henceforth we always assume.
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3 Justification of the Approximation

3.1 The Phase Space

In the previous section, we formally derived the macroscopic limit equations to be
satisfied by the modulating functions A1, B1,etc. from the ansatz (2.11). It remains
to prove that approximate solutions of (2.1) in the form (2.11) actually exist, i.e. to
prove that the error stays small on a sufficiently long time scale. Therefore we need
a phase space for (2.1).

Following [GM04], we rewrite (2.1) in a phase space Y which is isomorphic to
ℓ2 × ℓ2 as

˙̃x = Lx̃+ N (x̃) with x̃ =

(
x
ẋ

)
, (3.1)

where L is the linear part and N is the nonlinear part of the system. This yields

(Lx̃)j := (ẋj, Ljx) with Ljx = v1(∂
+
j x− ∂−j x) − w1xj,

(N (x̃))j := (0, Nj(x)) with Nj(x) = Ṽ ′(∂+
j x) − Ṽ ′(∂−j x) − W̃ ′(xj).

(3.2)

The space Y is equipped with the norm ‖·‖Y defined by ‖(x, y)‖2
Y = ‖x‖2

E + ‖y‖2
ℓ2 ,

where the energy norm ‖·‖E is defined by

‖x‖2
E :=

∑

j∈Z

(
v1|∂+

j x|2 + w1|xj|2
)

= v1

∑

j∈Z

|∂+
j x|2 + w1 ‖x‖2

ℓ2 .

Due to the stability condition min{w1, w1 +4v1} > 0, the energy norm ‖·‖E and the
standard norm on ℓ2 are equivalent with

min{w1, w1 + 4v1} ‖x‖2
ℓ2 ≤ ‖x‖2

E ≤ max{w1, w1 + 4v1} ‖x‖2
ℓ2 .

Additionally we have the embedding

‖x‖∞ ≤ CNorm ‖x̃‖Y . (3.3)

The oscillator chain is a standard Hamiltonian system on ℓ2 × ℓ2 with Hamiltonian

H(x, ẋ) =
1

2
‖ẋ‖2

ℓ2 +
∑

j∈Z

[
V (∂+

j x) +W (xj)
]
.

The squared norm ‖·‖2
Y is twice the quadratic part of H. This yields the following

result [GM04].

Lemma 3.1. The solutions x̃ : t 7→ x̃(t) = etLx̃(0) of the linearized system (2.2)
satisfy ‖x̃(t)‖Y = ‖x̃(0)‖Y for all t ∈ R.

Proof. Since the linearized system reads ẍj − v1(xj+1 − 2xj + xj−1) + w1xj = 0 we
have

d

dt
‖x̃(t)‖2

Y =
d

dt

∑

j∈Z

[
ẋ2

j + v1(xj+1 − xj)
2 + w1x

2
j

]

= 2
∑

j∈Z

ẋj [ẍj − v1(xj+1 − 2xj + xj−1) + w1xj] = 0.

11



We can now estimate the residual of the formal approximation Z in the space
Y , where compared to the formally obtained result ρ(Z) = O(ε6) we lose the order
O(ε1/2) due to the scaling properties of the Y -Norm.

Lemma 3.2. There exists a CRes such that for all ε ≤ ε0, ε0 sufficiently small, the
following holds. For the ansatz Z according to (2.11) we have

‖ρ̃‖Y =

∥∥∥∥
(

0
ρ

)∥∥∥∥
Y

= ‖ρ‖ℓ2 ≤ CResε
11/2.

Proof. See section 3.3.

3.2 Approximation of a Solution

Recall that we always assume (FORM) for all k ≤ 5. We claim that initial data for
(2.1) which may be approximated well by the ansatz Z at time t = 0, cf. (2.11),
gives a solution with this property over macroscopic time scales. We start with

Lemma 3.3. Let Z be the approximation (2.11), cf. the summary on page 10, with
parameters ϑA, ϑB ∈ (−π, π], ϑA 6= ϑB, γA, γB 6= 0 according to Lemma 2.1. Let
Z̃ = (Z, Ż), and let τ0 > 0. Then for every CA > 0, there exist ε0 > 0 and C > 0
such that for all ε ∈ (0, ε0) the following holds: If

∥∥∥Ũ(0) − Z̃(0)
∥∥∥

Y
≤ CAε

7/2, (3.4)

then there exists a unique solution Ũ ∈ C([0, τ0/ε
2), Y ) of (2.1), and

∥∥∥Ũ(t) − Z̃(t)
∥∥∥

Y
≤ Cε7/2 for all t ∈ [0, τ0/ε

2]. (3.5)

Proof. See Section 3.3.
In order to state the main theorem, we need the following definition:

Definition 3.4. Let

XA(t, j) := εA1(ε(j − cAt))EA(t, j) + ε3A3(ε(j − cAt))EA(t, j)3 + cc,

XB(t, j) := εB1(ε(j − cBt))EB(t, j) + ε3B3(ε(j − cBt))EB(t, j)3 + cc,

with A1 and B1 chosen as homoclinic solutions of (2.7), and EA,EB, A3, B3 and
ΩA,ΩB chosen as above. Then

Ξj(t) = Ξ(t, j) = XA(t, j) +XB(t, j)

is called a well-formed approximation of the pulse interaction.

The purpose of this definition is to have an approximation of the pulse interaction
without the correction functions from the ansatz (2.11). The following theorem
states that we may approximate a pulse interaction even without those higher order
corrections.

12



Theorem 3.5. For every C1, CDist, τ0, δ > 0, there exist ε0 > 0 and C2 > 0 such
that for all ε ∈ (0, ε0) the following holds. Assume that the initial condition for Ũ is
chosen in such a way that it may be approximated by a well-formed approximation Ξ
of the pulse interaction with the parameters ϑA, ϑB ∈ (−π, π], ϑA 6= ϑB, γA, γB 6= 0
according to Lemma 2.1, and where, moreover, the initial distance fulfills, for some
δ > 0,

|ξ(0)
A − ξ

(0)
B | ≥ CDistε

−(1+δ).

Then there exists a unique solution Ũ ∈ C([0, τ0/ε
2), Y ) of (2.1), and can be well

approximated by Ξ on the long time scale. In detail, if
∥∥∥Ũ(0) − Ξ̃(0)

∥∥∥
Y
≤ C1ε

7/2, (3.6)

then
‖U(t) − Ξ(t)‖∞ ≤ C2ε

3 for t ∈ [0, τ0/ε
2]. (3.7)

From Theorem 3.5 we also obtain:

Theorem 3.6. Under the conditions of Theorem 3.5 the envelope shifts between U
and Ξ are at most of order O(ε).

Proof. Note that Ξ = O(ε) and therefore (due to the initial approximation) U =
O(ε).

Since we have already dealt with the microscopic phase shift of the approxima-
tion, we only have to deal with the macroscopic functions. In order to simplify
the notation, we write U = U(X) and Ξ = Ξ(X) for X = εj and leave out the
time-dependence.

We assume that the “vertical” error (i. e. the error in the supremum norm),
which is of order O(ε3) (see equation (3.7)), is caused by an amplitude shift σ,
i.e.we have a shift function j 7→ j + σ. In the macroscopic space scaling, this shift
becomes X 7→ X + εσ, and we obtain the estimate

U(X) = Ξ(X + εσ) + O(ε3).

From Theorem 3.5 we obtain

U(X) − Ξ(X) = εσΞ′ + (εσ)2Ξ′′(X + θεσ) ≤ C̃4ε
3

for some θ ∈ (0, 1), and since Ξ′ ∼ ε (i.e.limε→0
Ξ′

ε
∈ (0,∞)), we immediately get

σ = O(ε).

Remark 3.7. Similar to [CBCSU08] for the PDE case, the above analysis can be
generalized to general modulating pulses, i.e., to A1, B1 not necessary in the form of
NLS solitons but rather general spatially localized solutions of the (time-dependent)
NLS. For this, the ansatz (2.11) has to be modified to

Zj(t) = (εA1 + ε2A2 + ε3A3)EA + (εB1 + ε2B2 + ε3B3)EB + cc + ε3MMixed,

where EA and EB are also modified such that the phase shifts ΩA and ΩB depend
not only on the macroscopic space variables, but also on the macroscopic time. As
can be seen, an additional term of order O(ε2) is added at the basic frequencies EA

and EB. Since the terms at mixed frequencies occur due to the nonlinear interaction,
their lowest order remains O(ε3).
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Remark 3.8. Our analysis can also be extended to quadratic nonlinearities. The
idea is that under (additional) non–resonance conditions and near the basic waves
EA(t, j) and EB(t, j) the quadratic terms in (2.1) can be eliminated by normal form
transforms see, e.g. [Sch98, GM06].

3.3 Proofs

Proof of Lemma 3.2. There is a constant CMF such that for τ ∈ [0, τ0] and
κ+λ+2µ ≤ 6, all macroscopic functions H in (2.11) satisfy

∥∥∂κ
ξA
∂λ

ξB
∂µ

τH(τ, ·)
∥∥

L2 ≤
CMF, respectively

∥∥∂κ
ξA
∂λ

ξB
∂µ

τH(τ, ξA, ·)
∥∥

L2 ≤ CMF,
∥∥∂κ

ξA
∂λ

ξB
∂µ

τH(τ, ·, ξB)
∥∥

L2 ≤ CMF.

if H depends on both ξA and ξB. This follows first for H = A1 or H = B1 from
equation (2.9) and subsequently for all further macroscopic functions from their
definitions. Thus, for τ ∈ [0, τ0] and κ+ λ+ 2µ ≤ 5 we have

∥∥∂κ
ξA
∂λ

ξB
∂µ

τH(τ, ξA, ξB)
∥∥

H1(R)
≤ 2CMF. (3.8)

Due to the Sobolev embedding theorem

‖u(·)‖∞ ≤ CSob ‖u‖H1(R)

we obtain for all types of modulation functions

sup
τ∈[0,τ0]

∥∥∂κ
ξA
∂λ

ξB
∂µ

τH(τ, · · · )
∥∥
∞
< CMFCSob <∞ (3.9)

for κ+ λ+ 2µ ≤ 5 and a constant CSob.
Now let T (t) an arbitrary term of the residual ρ. We first assume that T stems

from the linear part of (2.1). Then T must have the form

T (t) = εkC̃TΩ(t)H̃

{
E

n
A

E
n
B

}
,

where k ≥ 6, |n| ≤ k, C̃ > 0 and

H̃ = H(τ, ε(j − cAt+ θ1), ε(j − cBt+ θ2)) (3.10)

for a macroscopic function H and |θ1,2| ≤ 1, and where TΩ(t, x) either equals 1 or
is a term which is caused by the series expansion of eiε(ΩA,B(ξB,A±ε)−ΩA,B(ξB,A)). Since
e.g.

ΩA(ξB + ε) − ΩA(ξB) =

∫ ξB+ε

ξB

−s(1)
A

cA − cB
|B1(ξ̃B)|2dξ̃B ≤ −s(1)

A

cA − cB
‖B1‖2

L2
,

and due to equation (3.8), there is a constant CΩ such that

sup
τ∈[0,τ0]

∥∥TΩ(τ, ·)
∥∥
∞

≤ CΩ
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for any such term TΩ.
Now we can estimate T . We restrict to H = H(τ, ξA) and obtain

‖T (t)‖ℓ2 ≤ εkC̃CΩ

(
∑

j∈Z

max
H∈M

max
κ+2µ≤5

sup
|θ|<1

∂κ
ξA
∂µ

τH(τ, ε(j − cAt+ θ))

)1/2

⋆

≤ εkC̃CΩ

(
8

ε
max
H∈M

max
κ+2µ≤5

∥∥∂κ
ξA
∂µ

τH
∥∥2

H1

)1/2

≤ εkC̃CΩ

(
8

ε
(2C2

MF)

)1/2

.

The estimate ⋆ is based on Lemma 3.9 below. Since we assumed k ≥ 6, we obtain,
for all ε ∈ (0, 1),

‖T (t)‖ℓ2 ≤ ε11/2C̃CΩ4CMF.

A similar estimate holds if H = H(τ, ξB) or H = H(τ, ξA, ξB). Finally, we get
‖T (t)‖ℓ2 ≤ ε11/2Ĉ, which is what we wanted to show.

We estimate the terms coming from other parts of (2.1) in a similar way: A term
from the nonlinearity has the form

T (t) = εkC̃TΩ
1 (t)TΩ

2 (t)TΩ
3 (t)H̃1H̃2H̃3E

m
AE

n
B,

where the H̃i are defined as in (3.10). We estimate H̃1 and H̃2 by their supremum
and treat H̃3 as above, obtaining

‖T (t)‖ℓ2 ≤ εkC̃C3
Ω

(
8

ε

)1/2 (
4C2

SobC
2
MF2CMF

)
.

Since k ≥ 6, we obtain for all ε ∈ (0, 1) that ‖T (t)‖ℓ2 ≤ ε11/2Ĉ as above.
Terms from the left-hand side of (2.1) are estimated similarly, and we finally get

‖ρ̃‖Y =

∥∥∥∥
(

0
ρ

)∥∥∥∥
Y

= ‖ρ‖ℓ2 ≤ ε11/2CRes. (3.11)

for the residual and for sufficiently small ε.
We used the following lemma, which describes the scaling of the ℓ2-norm under

the transformation x 7→ εx. This is an extended version of Prop. 3.3 from [GM04].

Lemma 3.9. For φ ∈ H1(R), ε ∈ (0, 1) and c ∈ R we have

∑

j∈Z

sup
|θ|≤1

|φ(ε(j + c+ θ))|2 ≤ 8

ε
‖φ‖2

H1(R) .

For φ ∈ H2(R2), ε ∈ (0, 1) and c ∈ R we have

∑

j∈Z

sup
|θ|≤1

|φ(εj, ε(j + c+ θ))|2 ≤ 32

ε
‖φ‖2

H2(R2) .

Proof. The proof of the first part is repeated for convenience from [GM04]. Let
φ = φ(x) ∈ H1(R), j ∈ Z and x, x̃ ∈ (j + c − 1, j + c + 1). From the fundamental
theorem of calculus we obtain

|φ(x)| ≤ |φ(x̃)| +
∫ j+c+1

j+c−1

|∂xφ(ξ)|dξ.
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Integration over x̃, the estimate (a+b)2 ≤ 2(a2+b2), and Cauchy-Schwarz inequality
yield

|φ(x)| ≤
∫ j+c+1

j+c−1

(|φ(ξ)| + |∂xφ(ξ)|)dξ ≤
√

2

∫ j+c+1

j+c−1

(|φ(ξ)|2 + |∂xφ(ξ)|2)1/2dξ

≤ 2

(∫ j+c+1

j+c−1

(|φ(ξ)|2 + |∂xφ(ξ)|2)dξ
)1/2

and thus sup|θ|≤1 |φ(ε(j+ c+ θ))|2 ≤ 4 ‖φ(ε·)‖2
H1((j+c−1,j+c+1)). Summing over j ∈ Z,

we obtain ∑

j∈Z

sup
|s|≤1

|φ(ε(j + c+ θ))|2 ≤ 8 ‖φ(ε·)‖H1(R) .

The substitution ξ = εx yields

‖φ(ε·)‖H1(R) =

∫

x∈R

(|φ(εx)|2 + |∂xφ(εx)|2)dx

=
1

ε

∫

ξ∈R

(|φ(ξ)|2 + ε2|∂xφ(ξ)|2)dξ ≤ 1

ε
‖φ‖2

H1(R)

for ε ∈ (0, 1), which is the desired estimate.
In order to prove the second part, we assume that φ ∈ H2(R2), x ∈ R, y ∈

[x+ εc− ε, x+ εc+ ε]. Then as above,

|φ(x, y)| ≤ 2

(∫ x+εc+ε

x+εc−ε

|φ(x, η)|2 + |∂yφ(x, η)|2dη
)1/2

=: ψε(x).

We have

‖ψε(·)‖2
H1 = 4

∫ ∞

−∞

∫ x+εc+ε

x+εc−ε

|φ|2 + |∂yφ|2 + |∂xφ|2 + |∂xyφ|2dydx

≤ 4 ‖φ‖2
H2(R2) = O(1).

Application of the first part yields

∑

j∈Z

|ψε(εj)|2 ≤
8

ε
‖ψε‖2

H1 ≤
32

ε
‖φ‖2

H2(R2) .

Therefore we get the desired estimate

∑

j∈Z

sup
|θ|≤1

|φ(εj, ε(j + c+ θ))|2 ≤ 32

ε
‖φ‖2

H2(R2) .

Proof of Lemma 3.3. We define R̃ =

(
R

Ṙ

)
= ε−7/2(Ũ − Z̃). Our goal is to show

that R̃ remains uniformly bounded for τ ≤ τ0. Using the definition of the residual
(2.10) we obtain the error equation

˙̃R = LR̃ +

(
0
M

)
+ ε−7/2ρ̃ (3.12)
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with (
0
M

)
= ε−7/2

[
N (ε7/2R̃ + Z̃) −N (Z̃)

]
,

where (Lx̃)j = (ẋj, Ljx), (N (x̃))j = (0, Nj(x)), cf. (3.2), and

ρ̃ =

(
0
ρ

)
=

(
0

LjZ +Nj(Z) − Z̈j

)
.

First we estimate M with

ε7/2Mj = Ṽ ′(ε7/2∂+
j R + ∂+

j Z) − Ṽ ′(∂+
j Z) − Ṽ ′(ε7/2∂−j R + ∂−j Z)

+ Ṽ ′(∂−j Z) − W̃ ′(ε7/2Rj + Zj) + W̃ ′(Zj).

The mean value theorem gives

Mj = Ṽ ′′(εd+
j )∂+

j R− Ṽ ′′(εd−j )∂−j R− W̃ ′′(εdj)Rj (3.13)

with d±j = θ±j ε
5/2∂±j R+ 1

ε
∂±j Z and dj = θjε

5/2Rj + 1
ε
Zj, where θ±j , θj ∈ (0, 1). From

(3.9) and Sobolev’s embedding theorem we get the existence of a constant CZ such
that ‖Z‖∞ ≤ εCZ for ε ∈ (0, 1). Thus

|d±j |, |dj| ≤ ε5/2(|Rj+1| + |Rj| + |Rj−1|) + 2CZ ≤ 3ε5/2
∥∥∥R̃
∥∥∥

Y
+ 2CZ

for all j ∈ Z, ε < ε0 and ε2t ≤ τ0.

We assume for now that for a given D > 0 we have
∥∥∥R̃
∥∥∥

Y
≤ D such that

|d±j |, |dj| ≤ 2CZ + 3ε5/2D for all j ∈ Z, ε < ε0, ε
2t ≤ τ0. Next we assume that, by

choice of ε0 > 0,
2CZ + 3ε5/2D ≤ 2CZ + 1 = Cd. (3.14)

By the cubic form of the nonlinearity, i.e. Ṽ ′′(d) = 3v3d
2 + O(d3) and W̃ ′′(y) =

3w3y
2 + O(y3), (3.13) implies

Mj = 3ε2
[
v3(d

+
j )2∂+

j R− v3(d
−
j )2∂−j R− w3(dj)

2Rj

]
+ O(ε3)

and thus, for sufficiently small ε0 > 0,

|Mj| ≤ ε2Ĉ(D)(|Rj+1| + |Rj| + |Rj−1|)

with Ĉ(D) := 6(2|v3| + |w3|)C2
d . For

∥∥∥R̃
∥∥∥

Y
≤ D, ε < ε0 and ε2t ≤ τ0 this implies

∥∥∥∥
(

0
M

)∥∥∥∥
Y

= ‖M‖ℓ2 ≤ ε2Ĉ(D)
∥∥∥R̃
∥∥∥

Y
. (3.15)

The error equation (3.12) for R̃ may be rewritten with the variation of constant
formula as

R̃(t) = G(t)R̃(0) +

∫ t

0

G(t− s)

((
0

M(s)

)
+ ε−7/2ρ̃(s)

)
ds,
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where G(t) = etL is the evolution operator of the linearized system (2.2). By (3.4)

we have
∥∥∥R̃(0)

∥∥∥
Y
≤ CA. This implies, together with Lemma 3.2, (3.15) and Lemma

3.1 that
∥∥∥R̃(t)

∥∥∥
Y
≤ ‖G(t)‖Y →Y

∥∥∥R̃(0)
∥∥∥

Y

+

∫ t

0

‖G(t− s)‖Y →Y ε
2
(
Ĉ
∥∥∥R̃(s)

∥∥∥
Y

+ ε−11/2ρ̃(s)
)

ds

≤ CA + ε2

(∫ t

0

Ĉ
∥∥∥R̃(s)

∥∥∥
Y

ds+ tCRes

)

for 0 < ε ≤ ε0, 0 ≤ ε2t ≤ τ0 and
∥∥∥R̃
∥∥∥

Y
≤ D. Gronwall’s inequality now yields

∥∥∥R̃(t)
∥∥∥

Y
≤ (2d+ ε2tCρ)e

ε2tĈ ≤ (2d+ τ0Cρ)e
τ0Ĉ =: D (3.16)

for ε2t ≤ τ0, ε ≤ ε0. By choice of ε0 we may fulfill (3.14), and this implies that
(3.16) holds for all t ∈ [0, τ0/ε

2], which proves (3.5), i.e. Lemma 3.3.
Proof of Theorem 3.5. The idea is to rewrite the approximation (2.11) as

Zj(t) = Ξj(t) + ε3Υj(t) + ε4Λj(t),

with the following grouping of the macroscopic functions:

Ξj(t) = XA(t, j) +XB(t, j) = εAEA + ε3A3E
3
A + εBEB + ε3B3E

3
B + cc

ε3Υj(t) = ε3YAEA + ε3YBEB + cc + ε3M,

ε4Λj(t) = ε4A4,3E
3
A + ε5A5,3E

3
A + ε5A5,5E

5
A

+ ε4B4,3E
3
B + ε5B5,3E

3
B + ε5B5,5E

5
B + cc.

Obviously we have ε3Υj(t) = O(ε3) and ε4Λj(t) = O(ε4). From (3.3), (3.4), and the
triangle inequality we have

‖U(t) − Ξ(t)‖∞ ≤ ‖U(t) − Z(t)‖∞ +
∥∥ε3Υ(t) + ε4Λ(t)

∥∥
∞

≤ CNorm

∥∥∥Ũ(t) − Z̃(t)
∥∥∥

Y
+ C̃1ε

3 ≤ (CNormCA + C̃1)ε
3.

Thus if the conditions of Lemma 3.3 hold, then we obtain (3.7), which is the state-
ment of the Theorem 3.5.

It remains to show that the assumptions of Lemma 3.3 follow from those of
Theorem 3.5. At time t = 0 we have

‖Ũ(0) − Z̃(0)‖Y ≤
∥∥∥Ũ(0) − Ξ̃(0)

∥∥∥
Y

+
∥∥ε3Υj(0)

∥∥
Y

+
∥∥ε4Λj(t)

∥∥
Y

≤ C1ε
7/2 +

∥∥ε3(YA(0, j) + YB(0, j) + cc +M(0, j))
∥∥

Y
+ C̃2ε

4

≤ CAε
7/2

(3.17)

with a constant CA, because by Lemma 2.3 we can choose YA(0) ≡ YB(0) ≡ 0, and
the mixed terms may be estimated as follows: Each term in ε3M with the order
O(ε3) has the form

ε3T = ε3αAκ
1Ā

λ
1B

µ
1 B̄

ν
1E

κ−λ
A E

µ−ν
B , (3.18)
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where κ − λ 6= 0 and µ − ν 6= 0. Since the two pulses are separated in the be-
ginning, the product in equation (3.18) is exponentially small. Therefore we have
‖ε3M(0, j)‖Y ≤ C̃3ε

7/2 for a suitable constant C3. Thus, from (3.17) and (3.6) we

have
∥∥∥Ũ(0) − Z̃(0)

∥∥∥
Y
≤ C1ε

7/2, and Lemma 3.3 gives the desired result.
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