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Abstract. Despite the steady increase in computing power many nonlinear partial
differential equations still cannot be solved by brute-force numerical methods in ac-
ceptable time. However, often the method of multiple scales resulting in so-called
amplitude equations can be used to first reduce the complexity of the problem. The
amplitude equations give valuable mathematical insight and, moreover, can be treated
numerically by orders of magnitude faster and hence be used to approximate phys-
ically or technologically interesting solutions with high accuracy. We explain this
method using some simple examples, starting with ODEs and progressing to some
pattern-forming systems and nonlinear wave equations.
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1 Introduction

Despite the ever increasing computing power and improved algorithms, for many
models it is useful or even necessary to first reduce the problem, or, in other words,
approximate a complicated system by a reduced system. Here, reduced system in
particular means that it lives on longer spatio-temporal scales. Then

a) the reduced model (together with the process of reduction) allows a much better
and comprehensive analytical understanding of the problem, sometimes even
some closed-form analytical solution;

b) the reduced model often falls into some well-known class of equations, for which
a great deal is already known;

¢) the reduced model usually reduces computational costs by (several) orders of
magnitude compared to the original system.

It is the purpose of this lecture to explain a) — ¢) using some simple examples rang-
ing from ordinary differential equations (ODE) to nonlinear partial differential equa-
tions (PDEs), describing, e.g., some nonlinear oscillations, pattern-forming systems,
nonlinear optics, and some simple fluid mechanics. Thus, concerning computational
methods this is rather a lecture about possible analytical steps before one starts ac-
tual numerics. Nevertheless, as already said in c), these steps often allow to speed
up numerical simulations by orders of magnitude. Another message is: besides its
intrinsic value, analysis also helps a lot to set up the “right” numerics for a given
problem.

The problems we have in mind concern so-called multi-scale problems, where there
is a separation between different temporal and spatial scales, e.g., a fast time-scale
and a slow time-scale. Multiscale analysis is also called amplitude or modulation
formalism, and in a broad sense both are sometimes also refered to as averaging or
homogenization, although in a narrower sense there are substantial differences between
all four methods. Moreover, all these methods sometimes are subsumed under the
name of asymptotic expansion.

Additionally to a) — c¢) above, there is a point

d) validity of the reduction of the original to the reduced system: does the formal-
ism produce good approximations on the relevant time-scale?

As we shall see in the very first example below (Example 1.2), naive asymptotic
expansions may well fail, and answering d) is often not easy. In this lecture, the
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validation will only be in the sense that (numerical) solutions of the reduced problem
will be compared with (numerical) solutions of the original system. This obviously
very much contradicts the spirit of the reduction, and there are methods to define
and prove validity without having to solve the original system. These, however, are
mathematically somewhat involved and therefore will not be discussed in this lecture,
although we will give some hints to the literature.

We also want to stress that even if d) holds that does not mean that all solutions
of the original system can be approximated via the reduced system. In the reduction
process we usually restrict to specific classes of solutions, and the best one can in
general hope for is that the original system has solutions in this class. This may fail,
and even if it holds there may still be other solutions of the original system not at all
described by the reduced system.

In the remainder of this introduction we start with multiscale analysis using some
ODE examples. In Sec. 2 we consider some toy problems for pattern formation which
can be reduced to Ginzburg—Landau equations, while Sec. 3 treats some nonlin-
ear wave equations from Nonlinear Optics which can be reduced to the Nonlinear
Schrédinger equation. In Sec. 4 we consider flow in porous media as one of the sim-
plest possible systems from fluid dynamics.

As prerequisite for this lecture we only assume some understanding of ODE, as
taught in most undergraduate science curricula. Some basic understanding of PDEs
and numerical methods for ODEs and PDEs is helpful but not strictly necessary.

There is a vast and somewhat scattered literature on the amplitude formalism.
The methods of center manifold reduction, averaging, and bifurcation for nonlinear
ODE:s are treated, for instance, in [GH83,Wig88, Ver96]. For the amplitude formalism
for PDEs see for instance [Man92, CH93, Deb05], and [PS08] for problems including
stochastical effects. A highly recommended textbook containing multi-scale analysis
and much more from an applied point of view is [Kee88]. All these books go way
beyond the scope of this lecture. As already said, here the purpose is to give some
introductory examples to nonspecialists (from mathematics or computational or ap-
plied science in general) which we hope will help the reader to get some understanding
of multiple scales and, for instance, will motivate him or her to investigate whether
there might be multiple scales at work in a given problem, instead of immediately
setting up some brute-force “discretizing everthing in sight” numerical method.

1.1 ODE examples

First we recall some basic formulas for linear (scalar) ODEs with constant coeffients.
Consider

O2u + a10:u + agu = g(t), u=u(t) € R, (1)

with initial conditions u(0) = wug, d;u(0) = uy, where a1,a9 € R and g € C(R,R) is
an inhomogeneity. Here and in the following, the symbols 0, denotes the derivatives
of a function with respect to the variable x. If u depends only on one variable, i.e.,
u = u(t), then we may as well write dyu(t) = u'(t). However, later we shall consider
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PDEs where u = u(t,z). Then d;u denotes the partial derivative with respect to t,
and to unify notation we use the symbol d, throughout.
To solve (1) we first consider the homogeneous system

O2u + a1 0pu + agu = 0. (2)
The ansatz u(t) = e yields the characteristic equation
P(\) ==X+ a1\ +ag =0. (3)

In the case that we have two distinct roots A; # Ag the general solution of (2) is given
by
up(t) = c1eM? + cpe?t where c1,2 € C are arbitrary constants. (4)

Here and henceforth we make extensive use of complex calculus. However, since (1)
is a real equation, i.e., aj,as,ug,u; € R and we look for u € C?(R,R), we have a
number of symmetries: the roots A; 5 are either both real, or they are a complex
conjugate pair A\; = A1, +iA1; and Ay = A\ = Ay, —iAy,, where i = /—1. If A2 €R,
then ¢1,co in (4) are also real, while for ImA; # 0 we have ca = ¢. Equivalently, uy,
may then also be written as

Uh(t) = 516)\1Tt COS()\lit) + 62e)‘“t Sin()\ut) where 5172 € R. (5)

The general solution of (1) is given as u(t) = up(t) + us(t) where ug is an arbitrary
special solution of 2u + a10;u + agu = g(t), and where uy, is then chosen such that
u fulfills the initial conditions.

To find us one may use the variation of constant formula. However, very often
g is of the form g(t) = e#* for some p € C, or a sum of such terms, where we shall
exploit linearity of (2) and again complex notation. In this case there are explicit
formulas for us. For instance, cos(t) = %(eit + e7i) and if ug is a special solution
for g1(t) = e and us2 a special solution for go(t) = Fe™', then uy = us + us is a
special solution for g(t) = g1 (t) + g=(t). The formulas for g(t) = e#* now read:

(i) If p is not a resonance value, i.e., if y is not a root of (3), then u,(t) = e**/P(u).
In particular, if Repy = 0, then the solution stays bounded for all times.

(ii) If P(n) =0, i.e., pw = Ay or pr = Ao, then we have so-called secular growth, i.e.,
there exists a special solution of (1) of the form us(t) = ate!t.

Similar formulas exist for constant coefficient linear ODEs of arbitrary order, see any
textbook dealing with ODEs or applied mathematics.

Example 1.1 Consider an oscillator with eigenfrequency wy = 1 driven with fre-
quency w, i.e.,

O2u +u = 2cos(wt) = et + e« 4(0) = du(0) = 0. (6)
P(A\) = A2 +1 =0 yields A = +i (eigenfrequency 1), hence

up(t) = cre' + coe™ = & cos(t) + & sin(t).
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Thus, if w # 1, then P(u) # 0, where g = iw, hence

1., 1 2
us(?) P(iw)e + P(—iw)e 1—w? cos(wt),

and the solution of the initial value problem (6) is given by u(t) = 125 (cos(wt) —
cos(t)). Thus, for w close to (but not equal to) 1 the solution becomes large but

remains (quasi)periodic (and hence bounded for all t), see Fig.1 for w = 0,w = /1/2
and w = v/0.9. However, if w = 1, then u4(t) = tsint, which is also the solution of
(6), and which grows without bounds. |

' T2-2*cos(x) T——
4*cos(x/sqrt(2))-4*cos(x) -------
20*cos(sqrt(0.9)*x)-20*cos(x) ---------
100 x*sin(x) A

Figure 1: Resonance catastrophe for (6) as w 1.

In applications, ODEs often involve some small parameter. We consider two simple
examples to motivate, introduce and illustrate the method of multiple scales which
will be transfered to PDEs below.

Example 1.2 Consider the weakly damped oscillator
OPu+20u+u=0, ut)eR, u0)=acR, u(0)=0 0<e<l. (7)

Using the above calculus, the explicit exact solution is
€
u(t) = e “(acos(wt) + « sin(wt)), where w = /1 —&2.
w

However, we might also try an expansion in e, i.e., u(t) = ug(t) + cuy(t) + O(&?).
Plugging this ansatz into (7) and sorting with respect to powers in ¢ yields

O@E%) . ug(0) +up =0, wup(0)=a, up(0) =0 = up(t) = acost,

O(h) . uf +uy =2asint, u1(0) =0, u})(0)=0 = uy(t) = —atcost + asint,
and hence uapp, (t) = acost — etacost + asint + O(e?). Comparing with u shows

that the expansion only makes sense for t = O(¢~!), and becomes completely useless
after that, and this shows that formal expansions may well fail on natural time scales.
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With some physical (or mathematical) insight, we may however directly see from
(7) that 2e0;u corresponds to a weak or slow damping, and hence suspect that there
are two time-scales involved in (7). Thus we may try a multi-scale ansatz of the form

u(t) = A(et)e™’ + cc + euy (1), (8)

with w € R an a priori unknown (fast) frequency, and where A = A(7) € C is a slowly
varying (complex valued) amplitude. The symbol cc stands for “complex conjugate”,
i.e., A(et)e*t 4+ cc = A(et)el“t + A(et)e™“!. Then, e.g, dyu = (iw + €0, ) At + cc +
edyuy, and plugging into (7) we obtain

O0EY): —w?+1=0, A0)=a/2 =w=1,
O(eY) s uf +up = —2i(0, A+ A)el’ + cc, 9)

together with appropriate initial conditions for u;. Now, since A varies on the long
time scale, 9. A+ A should be considered to be constant in (9). Thus, to avoid secular
growth of u; we obtain the so-called solvability condition 0; A + A = 0, from which
we obtain A(7) = e~ TA(0). In principle we could now solve for w;, which however is
often omitted: all we want to know is that there exists a bounded solution u, provided
that 0,A + A = 0. We thus obtain

Uapp, (t) = A(T)e! + cc + O(e) = ae™ " cos(t) + O(e),

which at least is a much better approximation of the true solution than uapyp,, see
Fig. 2. In fact, solving for u; and subsequently for higher-order terms we can make
the approximation arbitrary good, uniformly for arbitrary large times.

The equation 0,A = —A is called the amplitude equation, and here can be solved
explicitly, like the original system. However, already in simple nonlinear ODEs in
general neither the original equation nor the amplitude equation can be solved ex-
plicitly. We also like to stress that although the amplitude equation is usually a bit
“simpler”, this is not the essential characteristic. The main points are that the ampli-
tude equation often falls into some universality class and that it describes the system
on long scales. Thus, if one has to use numerical methods, then the numerical costs
are greatly reduced. For instance, in the present example we would then have reduced
the numerical costs by a factor 1/e, e.g., by factor 10 if e = 0.1. (Much) more drastic
cost reductions occur for PDEs, see Secs. 2 — 4. |

Remark 1.3 For the mathematically inclined reader we remark that the name “solv-
ability condition” in (9) is due to the Fredholm alternative theorem, see, e.g. [Kee88],
of which we only state the following matrix version: For L € R"™*" the equation
Lu = g has a solution u € R™ if and only if we have the solvability condition (g,v) =0
for every v in the null space ker(L*) := {v € R" : L*v = 0} of the adjoint of L.

The name “alternative” comes from the following reformulation: either Lu = g
has a unique solution, or there there exists a v € ker(L*) with (g, v) # 0. In the latter
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Figure 2: Exact solution and the two approximations for (7); e = 0.1, a = 1.

case, there may be no solution of Lu = g (if, e.g., L* = L and g € ker(L)) or infinitely
many solutions (if, e.g., L* = L,g = 0 and ker(L) # 0).

This generalizes immediately to bounded linear operators L in Hilbert spaces, and
with some more effort also to unbounded (Fredholm) operators.

Now, for simplicity, consider (9) as an equation in the Hilbert space H of 27—
periodic functions equipped, e.g., with the scalar product (u,v) = fo% u(t)o(t) dt.
The left hand side Luy := u{ 4+ uy in (9) then is a linear operator in H, and
from integration by parts we have L = L*, i.e., L is selfadjoint. Since ker(L) =
span{e®*}, the solvability condition {g,v) = 0 from the Fredholm alternative be-
comes (—2i(0:A + A)e' + cc,e*) = 0 which yields 0,4 + A = 0. ]

Example 1.4 The van der Pol equation is given by
OPu+e(u? —a)ou+u=0, u(t)eR, (10)

where a > 0 and 0 < ¢ <« 1 are some parameters, and as initial conditions we
take u(0) = a and «'(0) = 0. This describes some oscillator with small amplitude-
dependent damping. It is known (and might be expected from the form of the equa-
tion), that for every fixed @ > 0 and small & > 0 there is a unique periodic solution,
a so-called limit-cycle, which however cannot be given in closed form. For ¢ = 0 we
have solutions u(t) = Ae'* + cc with A € C arbitrary, and thus for £ > 0 we try a
two-scale ansatz of the form

u(t) = A(et)e™ + cc + euy (t). (11)
Using u? = A%ew! 4+ 2|A|% + A2t 4 O(£?) this yields
OE": —w’+1=0, =2>w=1,
O@EY) : uf +up =i(—20,A+ aA — A|AP)e' —iA3e3 + cc, (12)

and thus the solvability condition

0-A= Ao~ |AP) (13)
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which is often called Landau equation, and which has the following phase symmetry:
setting A(T) = p(7)el?(") we obtain A’ = (p' +i¢/p)e'® = Lp(a — p?)e'?, and for p # 0
this is equivalent to p’ = $p(a — p?), ¢’ = 0. From this, or directly from (13) we
can see that |A| converges to /&, which predicts that u approaches the circle with
radius 24/« up to O(e) terms. Incidentically, although nonlinear, (13) can again be
explicitly solved. For r = p? we find 7 = r(a — r), with solution (substitute v = 1/r
to obtain v/ = —av + 1) r(t) = arg/(rg + (& — r9)e”™"), and hence

«
(o = pgle=>7 + pj

1/2
o) = ( )0 =m=a2 s =s=0 ()
Figure 3 compares some numerical solutions to (10) with approximations via (11) and
illustrates the distortion of the limit cycles of (10) from the circles described by (11)
as € becomes larger. |

-3,

Figure 3: Left: numerical solution of (10) and approximation via (11), o = 1,
€ = 0.2. Right: Distortion of circle p = 2y/a by higher-order terms.

Additionally to slow time scales in the examples above, in applications often also
small amplitudes play a role, but we skip this here. Already for ODE, amplitude equa-
tions are an extremely important tool, in particular for their analytical understanding,
for instance to study bifurcations. They can be rigorously justified in a number of
cases, usually associated with the so-called center manifold theorem. Apart from nu-
merical comparisons, here we do not justify the approximations, i.e., we do not prove
estimates for the error ||u(t) — (A(et)e!’ + cc)|| between the true (unknown) solution
and the approximation. For this, see the literature cited above. Instead, in the next
section we consider a simple PDE situation where the computational advantages of
amplitude equations become even more striking.

Exercise 1.5 Consider the ordinary differential equation §j = —(14¢)y for y(t) € R,
with y(0) = 1, ¥(0) = 0 and small € > 0. Discuss the ansatz y(t) = yo(t) + O(e) to
approximate solutions.
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Exercise 1.6 Derive the Landau equation for the weakly damped oscillator
02u+e(0u)® +u =0,

and discuss the obtained prediction for its behaviour as t — oo. |

2 Pattern forming systems

2.1 The Swift-Hohenberg equation
The Swift-Hohenberg (SH) equation [SH77]

ou=—1+0) u+au—u® t>0, z€R, u=utz)cR, (15)

is a phenomenological model for the onset of thermal convection in Bénard’s problem,
which concerns heat conduction in and the motion of a layer of fluid confined between
two parallel plates and heated from below, see [Man92, Chap. 8]. Here a € R is called
the stress parameter and is related to the temperature difference between the bottom
and the top of the fluid. We split (15) into a linear part

Ou = Au = —(1 4+ 02)*u+ au = —(1 — a)u — 20%u — dtu,

and the nonlinear part —u3. The linear part is best understood by a Fourier transform.
The ansatz u(x,t) = exp(A(k)t + ikx), where k € R is called the wavenumber, yields

ME)=—-(1-k*?+a, (16)

such that for o < 0 all modes are exponentially damped. However, for a > 0 we have
a band of unstable modes around k = 41, i.e., modes which grow exponentially in
time, see Fig. 4; k. = 1 is then called the critical wavenumber. However, we expect
this growth to be saturated by the nonlinearity —u?.

0 0.5 ‘
Fa=-0. ra=0.2
-05 0
_1 L ‘05 [ 7
-1.5 -1
2l e 15 L -
-15-1-050 05 1 15 -15-1-050 05 1 15

Figure 4: Eigenvalue curve A(k) for (15)
The SH equation is (one of) the simplest PDE examples where multiple scale

analysis, which is here also called Ginzburg-Landau formalism, can be used to describe
the slowly varying amplitude of the unstable modes. Let av = €2 > 0. Since the bands
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of unstable wavenumbers k have width O(e) and the instability is O(g?) (A(1) = €2)
we expect that the solution can be described by the ansatz

u(z,t) = epa(z,t) == cAX,T)e” +cc, X =ex, T =%t (17)
Plugging this into (15) yields
Oyu =e3(Are; + cc) = —0u — 202u — u + 2u — u®
=c [(—(1+¢e0x)* —2(i+e0x)* — (1 —€%))A] e1 +cc
—&%(Aey + Ae_1)?
=¢ [—(1 — 4iedx — 6e20% + 4ic®9% + 0% )A] e1 + cc
+e[-2(—1+2iedx +e°0%)A — (1 —£*)A] €1 + cc
-t (A363 + 3|A]*Aey + 3|A[* Ae_; + 323673) )

where e;, = e'**. Comparing coefficients in front of e7e;, gives

gey : 0=—-A+2A- A, ie. 0=0
eZe; : 0 =4i0x A — 4i0x A, ie. 0=0,
gley : Ar = (6 —2)0% A+ A — 3]A|*A, equation for A, as)
eles : 0= A3, a residual that shall later be removed,
ete; : 0= —40% A, more residual,
6561 :
This means that the so-called residual is minimized if A(X,T) fulfills
OrA =40% A+ A —3|A|A, (19)

where the residual
Res(u) = —0u — (1 + 02)*u + au — u®

contains the terms which do not cancel after inserting an ansatz into the equation. If
Res(u) = 0, then w is an exact solution.

Equation (19) is an example for a so-called complex Ginzburg—Landau (¢cGL) equa-
tion, which in most general form can be written as

up = (14 i) uge + Ru — (14 ip)|u*u, v,pu, R,z € R. (20)

The ¢GL can be derived in a great variety of problems, ranging from fluid dynamics
and various other physical systems to reaction diffusion systems from chemistry and
mathematical biology. It is also important as a model to study various phenomena
ranging from stability and instability to turbulence and chaos in the context of PDEs,
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see, e.g., [CHI93,L.0O96, Mie02, AK02]. The particular ¢cGL (19) is actually called real
Ginzburg—Landau equation since it has real coefficients.

Mathematically, the next step would be to show the validity of the approximation
of solutions u of (15) by solutions of (19) via (17), i.e., to estimate the error of the
approximation on a suitable time-scale. Suitable here means of at least order 1/¢2
in ¢ since otherwise there are no interesting dynamics in (19). It turns out that such
error estimates can be proved, see, e.g., [Sch94,MS96], but here we content ourselves
with one numerical simulation, see Fig. 5. For the numerical solution of (15) and (19)
we recommend spectral methods, see, e.g., [Uec09].

Figure 5: Comparison of the true (numerical) solution of the SH equation with
€=0.5 and initial condition wug(z)=Ao(ex) cos(z), Ao(X) = 1/cosh(X), with the
(numerical) solution A (dashed line), which is real, of the GL with IC Ay(X).
Clearly, ¥a(z,t) = cA(ex,e%t) cos(z) gives an approximation up to higher-order
terms for all times considered. Numerically, solving (19) instead of (15) reduces
costs by factors of at least e(for space)xe?(for time)= &* (in total). For ¢ = 1/2
this is a factor 1/8, but for, e.g., ¢ = 1/10 this is already a factor 1/1000. This factor
is actually rather conservative since for reasonable (implicit) numerical methods for
parabolic equations the complexity is of order at least O(nlogn), where n ~ 1/¢ is
the number of spatial discretization points.

Remark 2.1 In the introduction we pointed out that in the reduction we restrict
to some specific class of solutions, i.e., here described by the ansatz (17), and that
a given system may well have many other solutions, not described by the ansatz. In
fact, for the Swift—-Hohenberg equation and similar dissipative systems the situation

11



Amplitude equations (Uecker)

is somewhat better: One can prove [Eck93, MS96] that all small solutions, i.e. of
amplitude &, can be described by (19), in a suitable sense. |

Remark 2.2 (19) can again be understood as a solvability condition as follows: sup-
pose that we make the ansatz

u(z,t) = epa(x,t) + Suz(x, T), (21)

where we stipulate that similar to ¢4 the higher-order terms depend on ¢ only via T =
€%t, and where we used that the lowest order terms generated by cubic nonlinearity
of the Swift-Hohenberg equation are of order €2. Then the equation for us reads

Luz := (1 +02)%uz = (—0p A + 40% A+ A — 3|A]*A)e™® — A33” 1 cc 4+ O(e). (22)

Now L can be treated as a selfadjoint linear operator in the Hilbert space L?(R), and
at least formally we have e® € kerL. Thus, by the Fredholm alternative, we need
—OrA+40% A+ A — 3|A|?A=0 to solve (22) for ug. Here, although equivalent, this
point of view is somewhat more involved than simply trying to minimize the residual as
outlined above. However, for systems of PDEs the formalism of solvalibility conditions
is usually needed to derive amplitude equations, see Sec. 4. |

Remark 2.3 After choosing 0rA = 40% A + A — 3|AJ?A, the lowest order residual
in (18) is A% at e3e3. Here we briefly outline how this and in principle also all
other higher-order terms can be removed. To remove £3A3e3 we refine our ansatz to
u(x,t) = cA(X,T)er + e3A(X, T)es + cc. This gives
€3AT€1 + 658TA363 + cc
=c [(—(i+edx)" —2(i+e0x)* — (1 —&*))A] e1 +cc
+ & [(—(3i+edx)" —2(3i +e0x)® — (1 — %)) As] e3 + cc
—&3(Aey + Ae_y + €% Ases + 2 Aze_3)?
=e®(40% A+ A —3|A]PA)ey +*(—81+2-9 — 1) Azez — e A3es + O(e*) + cc,

and hence the residual is O(g?) if we choose A3 = —6%A3. Similarly, more corrections
can be added in order to have an arbitrarily small residual. |

2.2 Quadratic nonlinearity

The above derivation heavily relies on the fact that the nonlinearity in the Swift—
Hohenberg equation is cubic. As a consequence, the ansatz (17) directly yields the
cGL at O(e%e) since the cubic interaction of modes eq,e_1 couples back to e1,e_;.
If the nonlinearity is quadratic, or, more generally, if the nonlinearity contains
quadratic terms, then we need to modify our ansatz since the quadratic interaction
of e1,e_1 only couples to e_o, eg, es.
As an example we consider the Kuramoto-Sivashinsky type of equation

O = L(0y)u+ f(u,ug), t>0, z€R, u=u(tz)€cR, (23)

12



3 Nonlinear optics

where again
Lu = [—(1+ 02)? + ape?]u,

with ap € R, 0 < €2 < 1, and f(u,u,) = fiu® + fouu, with fi, f» € R. We make the
ansatz

2
u(z,t) = ep(z,t) ==eA1(X,T)e; + %AO(X, T) +e*A5(X,T)ey + cc, (24)

X =ex, T =%, e; = €% and derive equations for Ap, for Ay, and finally for A;
such that Res(ev)) := —9:(e)) + L(0,)u + f(u,u,) becomes small. Indeed, inserting
(24) into (23) and equating coefficients in front of e/e; we obtain the closed system
of equations

5260 : 0=—-Ay+ 2f1|A|2

e2eq : 0=—9A4y + (f1 +ifs)A?
edep:  Ap =40% A+ apA+ (2f1 +ifa)(AgA + AZA).

Eliminating Ag and As we obtain

Ar = 40% A + apA + c3| A2A with c3 = (2f1 +if2) (2f1 + (f1 +if2)/9).

3 Nonlinear optics

The transport of information through glass fibers by light is a key technology. Infor-
mation is encoded digitally by ones and zeroes, i.e., by sending a light pulse through
the optical fiber or not. Physically such a light pulse is a complicated structure. It
consists of an underlying electromagnetic carrier wave moving with phase velocity ¢,
and of a pulse-like envelope moving with group velocity ¢4, see Fig. 6.

Figure 6: 0’s and 1’s are encoded physically by sending a light pulse or not; thus,
for instance, the above electromagnetic wave encodes the sequence 101101.

The analysis of the evolution of such a light pulse is a nontrivial task. The system
shows dispersion and (weak) dissipation, i.e., harmonic waves with different wavenum-
bers travel at different speeds and energy is lost in a wavenumber-dependent way.
Moreover, there is a nonlinear response by the optical fiber. Thus, at a first glance
it looks like a typical example for the application of numerical methods. However, a
direct simulation of Maxwell’s equations which describe these electromagnetic waves
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is beyond any present possibilities. This can be seen as follows: The wavelength of the
carrier wave is around 10~7 m. Resolving this structure in a fiber of 10 km =10* m
gives in uniform one-dimensional spatial discretization 10! points, not to speak about
the transverse directions and the temporal discretization. Therefore, before making
any numerical investigations, the system has to be analyzed and simpler, numerically
more suitable, models have to be derived. In particular we shall see that a great deal
can be learned about optical pulses (and related systems) using only paper and pen,
by deriving a Nonlinear Schrodinger (NLS) equation as the amplitude equation for
wavepackets in nonlinear dispersive media.

3.1 Physical background

Light pulses are electromagnetic waves and described by Maxwell’s equations, namely

V-B=0 , VXxE+8B=0
V-D=p , VxH-8D=

with D = egE + P and H = B/uy — M. Here E = E(Z,t) is the electric field,
¥ = (x,9,2) € R3 t € R is the time, gy the permittivity of vacuum, P the mate-
rial polarization, B the magnetic flux, pg the magnetic permeability of vacuum, M
the material magnetization, p the charge density and J the electric current. These
equations have to be closed with constitutive laws P = P(E, H) and M = M(E, H)
describing the behavior of the medium. Depending on this choice there are linear and
nonlinear, instantaneous and history-dependent, dispersive and dissipative models.

In typical optical fibers there is no magnetization M , no charge density p, and
no electric current J, and therefore, using V x VE = AE — V(V - E), Maxwell’s
equations for light in nonlinear optical material are given by

AE —V(V-E)—92E = 0P, (25)

where we scaled the speed of light in vacuum and the dielectric constant to 1.

The constitutive law for the polarization P = ]31 + ]5;]1 splits into a linear and a
nonlinear part, which in general both depend on the history of the electric field. In
centrosymmetric isotropic bulk material, the constitutive law for the linear response
P, is given by an instantaneous part P (%, E(Z,t)) and a history-dependent term

oo
Br@, 1) = (1 % B)(@, ) = / it — 1B 7) dr, (26)
— 0o
where x; in (26) is a scalar function, independent of &, with y1(¢) = 0 for ¢ < 0 due
to causality, and similar for the nonlinear polarization. In the case of optical fibers 1
does also depend on the transverse directions y, z, and in the case of photonic crystals
also on the longitudinal direction =x.
In the simplest case E is linearly polarized and only depends on z, i.e.,

— ~ A~ ~

E(Zt) =u(z, )k with ||k|gs =1, (1,0,0)-k=0. (27)

14



3 Nonlinear optics

Then, (25) simplifies to
O2u(x,t) = Ou(x,t) — OFpi(x,t) — OFpu(,t), (28)

with u(z,t), py(x,t), pui(z,t) € R such that B (t,7) = pi(z, )k, Pu(t,Z) = pu(z, t)k.
The symmetry (y, z) — —(y, z), which is present in most optical materials, prevents
the occurrence of even terms in p with respect to u. Thus, in general p, starts with
cubic terms.

Due to the fact that we are mainly interested in the underlying mathematical
structures, throughout the rest of the paper we choose

02p(x,t) = u(x,t) — u(x,t)
as constitutive law, thus the toy problem for this paper is
OPu = 02u — u +ud. (29)

This choice is rather unphysical; however, it delivers a system with all properties in
which we are interested, namely dispersive and nonlinear behavior. We refer to [SU03]
for a mathematical discussion of a physically more realistic choice which includes
dissipation and history dependence additionally to dispersion and nonlinearity.

3.2 Derivation of the NLS equation

3.2.1 Linearization, modes, and dispersion

The description of light pulses, i.e., here of localized solutions of (29), is based on
the derivation of a Nonlinear Schrédinger (NLS) equation by formal perturbation
analysis. A priori there are no separate scales in (29). However, even if this may
appear somewhat artificial, we can simply introduce a small perturbation parameter

I<exl1

which will relate the amplitude with the spatial and temporal scales. We start with
the linear problem

02 = 0%u—u (30)

and seek solutions of the form u(z,t) = e!**~“*) with wavenumber k € R and (tem-
poral) frequency w. Plugging this ansatz into (30) yields the so called dispersion
relation

W=kt lew=+V1+Ek2 (31)
From this the phase speed ¢, is calculated as

ka — wt = const "29 0 & o = x(t) = %t =: ¢p(k)t.
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(30) is called dispersive since the phase speed ¢, is not constant, i.e., the speed of
harmonic waves depends on their “color” k. However, for the transport of informa-
tion (or energy) the group speed ¢, is the relevant quantity, which we explain now.
Consider the sum of two harmonics

u(m,t) — ei(kow—wot) + A2ei[(ko+s)x—w(k0+5)t] (32)

with small wavenumber difference € (and arbitrary A; € C. Since (30) is linear, (32)
is an exact solution of (32), but the problem is that this does not tell us much. The
solution is to Taylor expand w(kg + €), i.e., to write

’LL(CE,t) — ei(kgw—wot) +A2€i((k0+a)z—w(ko+a)t) +cc

:ei(kgmfwot) (1_|_Agei(e(kosz'(kg)t)f%w”(ko)EQtJrh.o.t))_i_cc’

= A(X,T)

where X = e(kor — w'(ko)t) and T = £2¢t. This shows that in lowest order (32) is
a long wave modulation of the basic harmonic e*0® which is constant in the frame
comoving with group speed w’ (ko). In music this is called a “Schwebung”; the listener
perceives a pulsation of the tone of basic frequency wy, see also Fig. 7. In second order
we obtain the linear Schrodinger equation

i

8TA = iw”(ko)(??(A, (33)

which describes the evolution of (32) on long spatio-temporal scales.

Figure 7: A “Schwebung” as a pseudo wavepacket.

3.2.2 The weakly nonlinear problem

Following the above heuristics we now seek O(e)-amplitude solutions of the nonlinear
problem (29), which are slow spatial and temporal modulations of an underlying wave
train e'(For=wo!)  Thus we make an ansatz

ua(z,t) = e(A(X, T)elkor=w0t) 4 ce) + O(£?), (34)
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3 Nonlinear optics

where X = e(x — ¢4t), T = €*t, and hence A(X,T) is a complex-valued amplitude on
a long spatial scale in a frame comoving with the group speed ¢, to be determined,
and on a very long time scale. Substituting (34) into (29) and sorting the coefficients
of ellkor—wot) with respect to powers of ¢, at order O(e) we recover the dispersion
relation, i.e.,

O : —wiA=—(k+1)A, =wi=k +1,
while at O(g?) we obtain the equation for the so-called group speed ¢, namely
0(62) : 2ngu)0AX:2ik‘oAX = Cg = ko/w():w/(ko).

The frequency w depends nonlinearly on the wavenumber w. As a consequence, the
group speed ¢g(k) = w'(k) is not constant but depends nontrivially on k. Thus,
wavepackets with different wavenumbers, i.e. colors, travel at different speed, and
precisely this effect is called dispersion.

At O(e3eiFor=w0t)) we find that A should satisfy the NLS equation

2iwgdr A+ (1 — 2)0X A+ 3|APA =0,
which after regrouping is often written as

1—02 3

C3 = —.
2(4)0 ’ 2w0

OrA =i(c20% A+ cs|APA), ¢y = (35)

Note that ca = %w” (ko) in agreement with the linear calculations above.

As usual, there will be more terms in the residual, for instance g3 A3¢3i(kor—wot)
but it again turns out that these can be made arbitrarily small be refining the ap-
proximation similar to Remark 2.3. We skip the details, and likewise only refer to the

literature for the mathematical justification of the approximation of solutions of (29)
via (35), e.g. [KSM92,SU07b].

Remark 3.1 (35) is an equation with complex coefficients and for a complex field.
This could be rewritten a real 2D system, but on the face of it (35) is in no obvious
way “simpler” than the original system (29). Again, conceptually the main point is
that (35) lives on long scales.

Additionally, (35) is universal: similar to the ¢cGL (20) for nonlinear dissipative
systems in Sec. 2, the NLS is the fundamental amplitude equation for wavepackets
in nonlinear dispersive systems: additionally to (29) (or the basic Maxwell equations
of which (29) is a toy model), it can be derived for wide a variety of problems,
for instance: water waves, plasma waves, elastic waves, lasers, molecular dynamics,
see [Gib90, CH93,SS99].

Moreover, the NLS has a lot of special structure, which is well understood partly

due to the ubiquity of the NLS. We are now going to exploit some very basic results
about the NLS. |
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The NLS is a so-called integrable system, and in particular there are quite a
number of explicit solutions known. For nonlinear optics, the most important special
solutions are the so-called solitons. Equation (35) has a four-dimensional family of
solutions of the form

A(X,T) = A(X —vT — X)X 0TH¢0) 5 = (wov) /(1 — ¢2),

v,%0, @0, Xo € R, in which the real-valued function A satisfies the second-order ordi-
nary differential equation

0% A =1 A — by A%, (36)
where 5 3
b= - T2 b=
1-— cg 1-— Cq

Since c; < 1, we always have by > 0, and for b; > 0 there exist two explicit homoclinic
solutions of (36), namely

Apuise(X) = + ,/Q—blsech Vb1 X). (37)

O™ 1)

Figure 8: A modulating pulse for (29) described by the NLS equation.

Example 3.2 Recalling the purpose of this lecture we give a numerical example
illustrating the NLS formalism to calculate the propagation of a light pulse through
a medium described by (29). For simplicity we consider the propagation of a single
pulse of NLS form, with e =0.1,kg = 1,7 = 1,2 =0,¢9 = 0 and Xy = 5, and hence
Ao(X) = 2e+/2b; /basech (/b1 (X — 5)) and compare it to the prediction by the NLS.
Thus, as initial conditions for (29) we take

2b;
up(x) = 2e4/ Ty cos(z)sech (v/bye(z—50)) (38)

ur(x) = 252cg\ f % cos(x) tanh(e(x—50)) + 2¢4/ 2b—b21w0 sin(z)sech (v/bye(z—50)))

(39)
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4 Convection in porous media

The NLS predicts the solution

w(x,t) = 26/2b; /boRe [ei(m*t*”)sech (\/aa(x — 50 — ct))} , (40)

which fits rather well with the numerical solution, see Fig. 9.

However, in general, given some initial condition A(0, X') the NLS has to be solved
numerically. But even then, similar to Fig. 5, the speed-up in numerics is of the
order e(for space)xe?(for time)= £3(in total). See [CBCSUOS] for some numerical
illustrations including some higher-order approximation of the dynamics of (29) by

(extensions of) the NLS equation. |
0.3
uO
0.2 —— u(t=300) ]
0.1f ﬂ N - - - NLS, t=300 i
Al A
0 AT
-0.1- 1
-0.2F 1
0 50 100 150 200 300

Figure 9: Comparison of the NLS prediction with the numerical solution of 29,
see text.

The reduction in computational costs becomes even more dramatic in real life
problems. A real fiber is a three-dimensional object, and hence three spatial dimen-
sions have to be discretized. Typically, the transverse dimensions are rather small,
but for instance the small number of 20 discretization points in each transverse di-
rection yields an additional factor of 400 for Maxwell simulations, while the NLS
discretization remains unchanged; see, e.g. [Agr01] for the derivation of the NLS from
a realistic 3D fiber model.

Exercise 3.3 Some so-called x2 materials have a quadratic law for their polar-
izations. As a toy problem, derive the amplitude equation for the propagation of
wavepackets in the nonlinear wave equation with a quadratic nonlinearity, i.e.,

Ofu=02u—u+u?, u=u(z,t) €R, wu(z,0)=uy(r), du(r,0)=ui(z). (41)
Hint: Make an ansatz u(x,t) = A1 (X, T)e; + %AO(X, T)+e?As(X,T)eg +cc. |

4 Convection in porous media

In this final section we turn to a vector valued problem in two space dimensions,
where in particular we can explain the role of transverse directions and the Fredholm
alternative in the derivation of amplitude equations in more detail.
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A classical hydrodynamical stability problem is the so-called Rayleigh—Bénard
problem which concerns a layer of fluid heated from below, for instance, a fluid be-
tween two horizontal plates. In Sec. 2.1 we considered the Swift—-Hohenberg equation
as a toy problem for this. First-principle models couple the Navier—Stokes equations
for the fluid motion with an equation for the temperature in the fluid, where in the
so-called Boussinesq approximation the only place where the temperature affects the
motion of the fluid is in the buoyancy. There is a trivial solution, a purely conducting
state with an affine temperature profile and no motion of the fluid. This state is
stable if the temperature difference between the lower and the upper plate is suffi-
ciently small but if the temperature difference becomes large then it loses stability and
convection rolls appear. For even larger temperature differences the motion becomes
more complicated and eventually turbulent. This can be studied in your kitchen.

Convection also plays a big role in geophysics. The movement of the tectonic
plates on earth is induced by convection in the mantle of the earth, i.e., in between
the core and the surface of the earth. Convection also plays a role in the description
of hot springs and geysers, and of so-called black smokers on the ocean floor. The
rock between the air or the sea at the top and of the magma chambers at the bottom
is highly fractured and thus modeled as a so-called porous medium. Compared to
classical hydrodynamical stability problems the associated system of partial differen-
tial equations for convection in porous media is easier since in this case the velocity
field of the fluid is determined by a constitutive law, namely Darcy’s law, and has not
to be computed as a solution of the Navier—Stokes equations.

As a model problem we are interested in the velocity field v = (u1,us2) and the
temperature field T of a fluid in a strip R x [0, 1] of porous media, heated from below.
If we denote the coordinates in the strip with (z,y) € R x [0, 1], we have to solve

V.u=0, (42)
u=—Vp+ RTey, (43)
T +u-VT = AT, (44)

with the boundary conditions T'=1, ug =0 at y=0and T =0, ug =0 at y = 1.
Here, V = (9,,0,)T, A = 82 + 33, es = (0,1)7, p denotes a pressure field, and the
so-called Rayleigh number R is a dimensionless parameter, proportional for instance
to the (physical) distance of the plates and the (physical) temperature difference.

For a detailed derivation of (42)-(44) see for instance [Fow97, Section 14]. Con-
servation of mass for an incompressible fluid is described by (42), while (43) is the
balance of forces based on the Boussinesq approximation and Darcy’s law. The heat
equation (44) is derived from an energy balance.

The purely conducting state of (42)-(44) is given by

R

Since (42)-(44) is supposed to be a model for convection we expect that for large R,
e.g., for large temperature difference 67" between the upper and lower plate, convection
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4 Convection in porous media

sets in, resulting in some pattern of convection rolls. In the following we explain that
this is indeed the case, and that it can conveniently be described using a Ginzburg—
Landau equation as the amplitude equations for the convection rolls.

4.1 Linearized stability

The first step is to find the dispersion relation for the linearized system; in a certain
sense, this will turn out to be very similar to that of the Swift-Hohenberg equation,
cf. (16). We eliminate the pressure p by introducing the stream function v such that

ur =0y and wup = —0y0
and introduce the deviation 6 from the linear temperature profile by T'=1 — y + 6.
This yields
AY = —R0,0, 0,0+ 0,9 + (0y90,0 — 0,90,0) = AG. (46)
The linearized system is
Ay = —R0,0, 00 + 0,9 = A6,

with the boundary conditions § = ¢ = 0 at y = 0, 1. Due to the boundary conditions
we make the ansatz

Y = fsin(nmy)e ke, 6 = gsin(nmy)e ik

with n € N, k € R, and complex-valued coefficients f and g. This gives the system of
linear equations

—(m*n? + k) f = —ikRg,  —(7*n® +k*)g=ikf + \g. (47)
We find 22, 2 o
_nrt 4+ _ 2,2 2
9= g A= i T R,

i.e., we have a family of curves k — A, (k) € R of eigenvalues withn € Nand k € R. It
is easy to see that Ap41(k) < A, (k) € R for each fixed k € R. Moreover, A, (k) — —o0
for k — oo or n — o0, or both.

Hence 6 = ¢ = 0 is stable if A;(k) < 0 for all k¥ € R. Instability occurs when the
curve A1 touches the axis A = 0 at a wavenumber k& = k. € R for a parameter value
R = R.. This leads to the conditions

RE? B 9
)\1—77r2+k2—(7r +k*) =0
and R RE? 2R
T
k2 A1 2+ k2 (72 + k2)2 (72 + k2)2
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or ]

301

-60 : : ‘ ‘ : 1 AfK)
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Figure 10: The curve of eigenvalues k +— A, (k) for n =1, 2.

From this we find 7R'/2 = 72 + k? and A = R — 27 R'/2, and this shows that A = 0
for R = R. = 472 ~ 39.48 at the critical wavenumber k = k. = , see Fig. 10.
Thus, for R > R., say R = R, + €2 with 0 < £2 < 1, the linearized problem has
modes
271

1

™% sin 7y + cc

with k ~ 7, which grow exponentially in time with rate R — R. = £2. If the model
makes sense physically, then we expect some nonlinear saturation at some small am-
plitude ¢ and thus expect stationary convection roll solutions of the form

0 U1 0 472 cos Ty sin kx

0 telux | ~ 0 + ¢ | —4nksinmy cos kx + O(e?).

1—y 0 1—y sin Ty

We now derive an amplitude equation for these rolls.

4.2 Weakly nonlinear analysis

The idea is that the dynamics of (42)—(44) is dominated by the unstable modes since
all other modes are linearly exponentially damped and hence “slaved” to the critical
modes. Thus, in the near critical regime we set

R =R+ se?, (48)

where s € R and 0 < € < 1 is a small parameter. The use of s and 2 instead of, say
—1 <« € <« 1 is for convenience. We make the ansatz

(0
(z,y,1) = ea(z,y,1)
211 )
=cA(&,T) i ™ sin y + cc + €2 V2 (z,y,t) +&° ¥s (z,y,t) (49)
1 02 03

22



4 Convection in porous media

where £ = ex andr = %t are the long spatial and very long temporal scale. This
describes small amplitude long spatial and temporal modulations of the convection
pattern

21

1

e'™ siny + cc,

see Fig. 11.

X bottom (hot)

Figure 11: Long wave modulation of convection rolls.
Again the goal is to make the residual

Res(ewa) = A + RO.0 (50)
T\ 00+ 00+ (9,60.60 — 0,40,0) — A8

small in £, in an appropriate sense. Thus we plug (49) into (46) and sort with respect
to €. Here we use the following notation: applying

A RO, " a
L= to v = A(ex)e™ sin(nmy) ,
-0, A
we obtain
. . N —k? —n?r? ikR
Lv = L(k,n)v+ O(e), with L(k,n)= ; (51)
—ik —k% — n%n?

and where the O(¢) terms contain the J¢ derivatives of A.
The O(e) terms in (50) vanish by construction of ¥4. At O(?) we obtain, by
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calculus, and since R, = 472,

I (2> _ 0
92 wlyelz - ¢1291y
—4m® + R, 0
=— (—dr ) Ox A+ |A]? sin 27y
(—2mi + 27i) 473
2 2z . 0
+ A%e*'* cos(my) sin(my) +cc
—2m + 27
2 O .
= |A] sin(2my). (52)
473
Hence
R 0 0
) S lapioot | ) <A
0 4r? —7 sin 27y
At O(e?)el™ sin(my) we obtain
Lim1) 3 _ —insA — 2mi0% A (53)
"\, OrA+ At |AlPA — 9% A

Since L(m,1)(27i,1) = 0 we need a solvability condition for (53). By the Fredholm
alternative we obtain

—imsA — 2mid% A
Y*(m,n), =0, (54)
OrA + drt|APA — 8% A

where ¢*(m,n) is the null-eigenvector of the adjoint

. —272 s . . )
L*(m, 1) = _ , | te P* =
—4im® =27 27

The solvability condition (54) thus yields

OrA=0%A+ %A — 4 APA. (55)
In (53) we have additional terms on the right hand side, i.e., additionally O(g®) in
Res(e14), but these are uncritical since they do not lie in the kernel of L. Also note

that we do not actually solve for (i3,63) but only use (53) to derive the solvability
condition.
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4 Convection in porous media

An immediate observation from the GL equation (55) is again that for s = 1 it
has stable spatially constant steady solutions

Ae?, ¢ e0,2n], |Al=1/(2V2r?).

For ¢ = 0 this (formally) yields the steady convection rolls

0 U1 0 4727 cos Ty sin kx
€
0 +elu | = 0 + W —4rksinmycoskx | + O(?).  (56)
1—y 0 1—y sin Ty

Remark 4.1 a) Details of the analogous calculations for the full Navier—Stokes prob-
lem can be found in [Man92].

b) The formal calculations above do not guarantee that (56) is an O(e) approximation
of steady convection rolls for (42) — (44), nor that such steady rolls exist at all. How-
ever, this does hold, as can, for instance, be shown by Lyapunov-Schmidt reduction,
see again [Fow97, Section 14].

c¢) Thus, the next step should be the mathematical justification of (55) by proving
error estimates between a solution of (42) — (44) and approximations via (49) and
(55). Again we refer to the literature, for instance [Sch94].

d) A numerical validation of, e.g., (56) is left as an exercise to the (ambitious) reader.
e) As already said, many more (and much more complicated) problems than the
simple examples considered in this lecture can be analyzed using the amplitude for-
malism. For a classical enzyclopedic review we again refer to [CH93]. Additionally
to the literature already cited we refer to [Uec03, BSTU06,SU07a, Uec07, DU0Y] for a
selection of recent analysis and applications of the amplitude formalism. |

Solutions to some exercises

Solution to Exercise 1.5. We obtain the ordinary differential equation

o = —Yo

as first approximation. A comparison of the two solutions y(t) = cos(v/1 + et) and
Yo(t) = cos(t) immediately shows that for t = O(e~!) the difference y(t) — yo(t) is of
order O(1) and hence yo provides no longer a good approximation of y for ¢ > O(1/¢).

Solution to Exercise 1.6. Since (9;u)? in 9?u + £(dyu)? +u = 0 has the same sign
as Oyu, this again describes an oscillator with small nonlinear damping. The ansatz
u(t) = LA(et)e™ + cc + euq (t) yields, at O(ee'®), 10, A + 23i|A[?A = 0. This yields

2A
A(r) = — =0 e, A(T) ~ 1/y/T as T — oo. For u we obtain

vV 3AOT + 4

1
u(t) ~ NG cos(t + ¢o) + O(e). (.1)
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This prediction is somewhat unsatisfying since we expect that (u,u’) — 0 as t — oo.
For this consider the energy E(t) = % (u'(t)? + u(t)?). Then £ E(t) = —eu/()? and
using the ODE this implies E(t) — 0 as t — oo. In fact, solving for u; we find
that the O(e) terms in (.1) again decay. However, next there will be O(g?) terms,
and so on. Although with a bit more theory (center manifolds) this can be treated
systematically, this example also shows that so far the behaviour of some system as

t — oo usually cannot be studied using only amplitude equations.

Solution to Exercise 3.3. The linear dispersion relation for
Ofu = %u — u + u? (:2)

is as in (29). Thus, let ¢; = el(Fo®=wot) with w2 = /1 + k2. Since the quadratic
interaction of e; yields modes at e_s, eg, e2 we need to take these into account in our
ansatz. Thus, let

2
u(z,t) = eA1 (X, T)ey + %AO(X, T) + e2As(X, T)es + cc, (.3)

where as before X = e(x — cgt), T = €2t, ¢g = wo/ko. Plugging into (41) we obtain
new O(e?) terms, i.e.,

0(5260) 0= —Ao + 2|A1‘2 = AO = 2|A1‘2,

1
0(5262) : —(2w0)2A2 = —((2]{70)2+1)A2 + A? = Ay = (4]@8-}-1—4&}8)_114? = —§A%

Plugging this into the O(e%e;) equation c20% A1 — 2iwodr Ay = 95 A+24,Ag+2424,
we obtain the NLS for A; in the form

10
2iwgdr Ay + (1 — ¢)0% A+ g\AFA =0. (.4)
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