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Abstract

The Integral Boundary Layer system (IBL) with spatially periodic coefficients arises as a
long wave approximation for the flow of a viscous incompressible fluid down a wavy inclined
plane. The Nusselt-like stationary solution of the IBL is linearly at best marginally stable,
i.e., it has essential spectrum at least up to the imaginary axis. Nevertheless, in this stable
case we show that localized perturbations of the ground state decay in a self-similar way. The
proof uses the renormalization group method in Bloch variables and the fact that in the stable
case the Burgers equation is the amplitude equation for long waves of small amplitude in the
IBL. It is the first time that such a proof is given for a quasilinear PDE with spatially periodic
coefficients.
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1 Introduction

The gravity driven free surface flow of a viscous incompressible fluid down an inclined plate plays
an important role in heat exchanging devices, and numerous applications can for instance also
be found in coating processes ranging from the production of compact discs to photographic
industries. For a flat bottom, the inclined film problem is extensively studied experimentally,
numerically, and analytically, see [CD02] for a review. In particular, it is well known that for
a given film height the underlying Navier-Stokes equations possess a stationary solution with
a parabolic velocity profile and a flat surface. Denoting the inclination angle by α, this so-
called Nusselt solution is spectrally stable if the Reynolds number R is below the critical value
Rcrit = 5/6 cotα, and unstable to long waves for R > Rcrit, cf. [Ben57, Yih63]. Nonlinear diffusive
stability in the sense of the present paper in the spectrally stable case was shown in [Uec07], while
for R > Rcrit surface waves are generated, which pass through a number of secondary instabilities
until turbulence occurs at high Reynolds numbers, see [CC95], for instance.

However, in many applications the bottom is not perfectly flat but rather has a wavy profile.
This may be due to natural irregularities or by design, for example in cooling processes. Thus,
it is of interest to study the impact of an undulated bottom on the film flow. However, to
study the stability of stationary solutions, the Navier-Stokes equations in combination with the
free surface are hard to handle and thus there has been much effort to derive simpler model
equations. Starting from the 2D Navier-Stokes equations in curvilinear coordinates, in [HU09] we
derived a 2-dimensional system with periodic coefficients for the film thickness F = F (t, x) ∈ R

and the local flow rate Q = Q(t, x) :=
∫ F (t,x)
0 U(t, x, z) dz, where U is the velocity in direction

parallel to the bottom. In [HU09] this system is called weighted residual integral boundary layer
system, here IBL in short, and may be written as

∂tF = − 1

1 + κF
∂xQ, (1.1)

∂tQ =
5

2R

(

sin(α−θ)
sinα

F − Q

F 2
− cos(α−θ)

sinα
∂xF F − 3

8

sin(α−θ)
sinα

∂xθF
2

)

+
5

6
W(∂3

xF − ∂xκ)F − 17

7

Q

F
∂xQ+

9

7

Q2

F 2
∂xF−

1

210
R(∂xQ)2Q

+
1

R

(

9

2
∂2

xQ+
45

16
κ
Q

F
+4

Q

F 2
(∂xF )2−6

Q

F
∂2

xF−
9

2

1

F
∂xQ∂xF

)

. (1.2)

Here t ≥ 0 denotes time, x ∈ R corresponds to arclength along the bottom, and we simplified
notation of the IBL used in [HU09, (31),(32)] by redefining the spatial variable X, the temporal
variable T , and the curvature K used in [HU09, (31),(32)] via

x :=
1

δ
X, t :=

1

δ
T, κ := δζK, (1.3)

where δ > 0 is a dimensionless wave number, ζ ≥ 0 describes the bottom waviness, and κ = κ(x)
is the curvature of the bottom which is periodic with period γ > 0. For the surface tension effects
here we replaced the inverse Bond number Bi from [HU09] by the Weber number W, defined by
W := 3δ−2BiR

−1. Finally, α > 0 is the mean inclination angle such that α − θ, with θ = θ(x)
is the γ-periodic local inclination angle, and R is the Reynolds number which measures the ratio
between inertia and viscous forces.

Remark 1.1 a) From the non-dimensionalization and derivation in [HU09] we have that F ≈ 1
and 1 + κF ≈ 1 and thus the denominators in (1.1),(1.2) are bounded from below by, e.g., 1/2.
b) In [HU09] we also considered a regularized version (rIBL) of (1.1),(1.2), mainly to correct
some unphysical behaviour of (1.1),(1.2) for R ≫ Rcrit. Here we are interested in R ≤ Rcrit where
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the difference between (1.1),(1.2) and the rIBL is very small. In particular, the two versions
only differ by terms which for R < Rcrit are asymptotically irrelevant. Therefore we stick to the
slightly simpler version (1.1),(1.2), but nevertheless (1.1),(1.2) is a quasilinear parabolic system
with spatially periodic coefficients.

Numerical simulations for (1.1),(1.2) showed very good agreement with data available from ex-
periment and full Navier-Stokes simulations. In particular, (1.1),(1.2) can be used to approximate
stationary solutions of the original Navier-Stokes systems, even with eddies, see [HU09]. More-
over, from linear stability analysis one can again find a critical Reynolds number Rcrit beyond
which the free surface of stationary solutions undergoes a long wave instability [WLA05], and
again the numerical stability results from [HU09] for the IBL agree very well with [WLA05].

Thus, here we use the IBL as a model problem to study nonlinear stability of Nusselt-like
stationary γ-periodic solutions (fs, qs) in the spectrally stable case. For stationary solutions
qs is constant, and it turns out that we always have families of stationary solutions which can
be parametrized by qs. Therefore, the stability of any spectrally stable (fs, qs) is nontrivial
since linearizations around such (fs, qs) always have essential spectrum up to the imaginary axis.
Thus, we cannot conclude stability from the linearization alone but have to take into account the
nonlinearity.

If we restrict to spatially localized perturbations, dissipative systems often show dynamics
which are similar to those of linear diffusion equations. To be more precise, denoting the solution
by v(t, x), the rescaled solution

√
tv(t,

√
tx) converges towards a Gaussian limit. In this case,

the nonlinearity is called asymptotically irrelevant. However, if the nonlinearity has an advection
term ∂x(v2), then it becomes relevant and the resulting non-Gaussian limit of the rescaled solution
is determined by the Burgers equation, see [BKL94], for instance.

Here we show a similar result for the IBL, namely that localized perturbations of spectrally
stable stationary solutions (fs, qs)

⊤ decay in a universal manner, which is determined by the
Burgers equation. The proof relies on renormalization group (RG) methods [BKL94] for nonlinear
parabolic PDEs, which have been used for systems like the Ginzburg-Landau equation, see [BK92,
CEE92, BK94, GM98], or pattern forming systems, see [Sch96, Sch98, Uec99, GSU04, SU03]. Also
for film flow over flat inclines RG methods were used to show nonlinear stability of spectrally
stable stationary solutions, namely in [Uec04] for an IBL and in [Uec07] for the full Navier-Stokes
system.

Mathematically, (1.1),(1.2) can be classified as a quasilinear second order parabolic system.
Besides the quasilinearity, which makes the local existence theory difficult, we have the following
issues. First, in contrast to the Nusselt solution over flat bottoms, over wavy bottoms the sta-
tionary solutions are not known in closed form. Second, Fourier analysis, which is an essential
tool in the stability proofs for flat inclines, has to be replaced by Bloch wave analysis. This was
used in [UW07] to prove nonlinear stability for a semilinear model problem, namely a spatially
periodic Kuramoto-Shivashinsky equation.
Notation. For m, r ∈ R the weighted Sobolev spaces Hr(m) are defined as

Hr(m) := {v : R → C | ‖v‖Hr(m) = ‖̺mv‖Hr <∞} with ̺(x) = (1 + x2)1/2. (1.4)

Fourier transform F is defined by

Fv(k) =
1

2π

∫

R

v(x)e−ikxdx, v(x) = F−1v̂(x) =

∫

R

v̂(k)eikxdk, (1.5)

and is an isomorphism between Hr(m) and Hm(r).
Our main result now reads as follows, where for notational convenience we take initial con-

ditions for (1.1), (1.2) at t = 1, and where the spectral stability assumptions will be discussed
below in Assumption 2.3.
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Theorem 1.2 Let p ∈ (0, 1/2), 3 < r < 4, and let (fs, qs)
⊤ be a spectrally stable stationary

solution of the IBL (1.1), (1.2), cf. Assumption 2.3 below. Then there exist constants C1, C2 > 0
such that the following holds. If ‖f0‖Hr(2) + ‖q0‖Hr−1(2) ≤ C1, then there exists a unique global

solution (F,Q)⊤ = (fs, qs)
⊤ + (f, q)⊤ of the IBL (1.1), (1.2) with (f, q)⊤

∣

∣

t=1
= (f0, q0)

⊤ and

sup
x∈R

∣

∣

∣
(f, q)⊤ − t−1/2fz0(t

−1/2(x+ c1t))Φ
1(0, x)

∣

∣

∣
≤ C2t

−1+p/2 (1.6)

for t ∈ [1,∞). Here, Φ1(0, ·) = (dfs/dqs, 1)⊤ is the critical eigenfunction of the linearization of
(1.1), (1.2) around (fs, qs)

⊤, and

fz0(y) =

√
c2
d

z0 erf ′(y/(2
√
c2))

4 + 2z0
(

1 + erf(y/(2
√
c2))

) , (1.7)

denotes the non-Gaussian profile determined by the Burgers equation, where c1 < 0, c2 > 0 and
d < 0 are likewise determined by the linearization around (fs, qs)

⊤, while z0 > −1 can be given
explicitly in terms of the excess mass

∫

R
f0 dx, see (4.32).

The behaviour of the function vz(t, x) := t−1/2fz(t
−1/2x) is shown in Fig. 1. Figure 2 displays

numerical simulations of (1.1), (1.2), and is also intended to relate (1.1), (1.2) to the underlying
physics.

Figure 1: Sketch of self-similar decay of the amplitude in a comoving frame in (1.6).

The plan of the paper is as follows. First we make precise the assumptions on spectral stability
of (fs, qs)

⊤, review basics of the RG method and of Bloch transform, and formally derive the
Burgers equation from (1.1), (1.2). Then, using maximal regularity results we first prove local
existence for (1.1), (1.2) and then use the RG method to prove Theorem 1.2. The RG method is
worked out here for the first time for a realistic quasilinear fluid dynamical system with spatially
periodic coefficients in which the renormalized solution converges to a non-Gaussian limit. We
expect that the analysis is useful for a number of similar problems, for instance the full Navier-
Stokes film flow problem over wavy bottom, and other parabolic systems with spatially periodic
coefficients and a nonlinearity with lowest order terms of convective type.
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(a) decay of the film thickness F ; (b) decay of the flow rate;
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Figure 2: Numerical simulations of (1.1), (1.2) in the stable case (a)-(c) and the unstable case (d),

with periodic boundary conditions. In (a)-(c) we used a sinusoidal bottom with amplitude a = 0.4mm

and wavelength λ=10mm (bottom profile b̂(x̂) = a cos( 2π
λ x̂)). The mean film thickness is h≈0.06mm,

inclination angle α = 60◦, and the fluid parameters correspond to water, which yields δ ≈ 0.037, ζ = 0.25,

Bi ≈ 3.25 and R = 0.6. The initial condition is F = fs + 2/ cosh((x − 50)/5), Q = qs ≡ 1. Although

R is larger than the critical Reynolds number over flat bottom, which is Rcrit ≈ 0.48, the stationary

solution is stable and the perturbation decays in the self-similar way predicted by (1.6). (a) shows F

at times as indicated, while (b) shows the evolution of Q. In the latter we directly see the envelope

t−1/2fz0
(t−1/2(x+ c1t)) since Φ1

2
(0, ·) ≡ 1, while Φ1

1
(0, x) = dfs

dqs

(x) is γ-periodic. To illustrate the physical

situation, panel (c) shows the bottom contour and the free surface at initial time t = 1 in dimensional

(mm) cartesian coordinates, between the 4th and 6th bottom wave. Finally, panel (d) shows Q (for large

time) after we increased α to 90◦. Here (fs, qs)
⊤ has become unstable: the perturbation does not decay to

0, but instead evolves into a long pulse. We expect that this situation can be described by a generalized

KS equation, see, e.g., [CD02, PSU07] for the situation over flat bottoms, and [UW07] for a model problem

for wavy bottoms.

2 Background and result

2.1 Stationary solutions

For γ-periodic stationary solutions (F,Q)⊤ = (fs, qs)
⊤ we immediately obtain from (1.1) that

∂xqs ≡ 0. Plugging ∂tqs = ∂xqs = 0 into (1.2) and multiplying it by f2
s , we get

0 =
5

2R

(

sin(α−θ)
sinα

f3
s − qs −

cos(α−θ)
sinα

∂xfs f
3
s − 3

8

sin(α−θ)
sinα

∂xθ f
4
s

)

+
5

6
W(∂3

xfs − ∂xκ)f
3
s +

9

7
q2s ∂xfs +

1

R

(

45

16
κqsfs+4qs(∂xfs)

2−6qs ∂
2
xfs fs

)

. (2.1)

If the bottom waviness ζ is zero, the coefficients κ and θ vanish and we have the well known

Nusselt solution fs = fN with constant film thickness fN = q
1/3
s . Thus, one possibility to obtain
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solutions of (2.1) is to continue (fN , qs) for ζ > 0 using the implicit function theorem. Since x
is measured in curvilinear coordinates, the periodicity γ of x depends on the bottom waviness ζ,
and in order to apply the implicit function theorem in a function space with fixed periodicity we
temporarily replace x by k0x, where we set k0 = 2π/γ. This yields

0 =
5

2R

(

sin(α−θ)
sinα

f3
s − qs −

cos(α−θ)
sinα

k0∂xfs f
3
s − 3

8

sin(α−θ)
sinα

k0∂xθ f
4
s

)

+
5

6
W(k3

0∂
3
xfs − k0∂xκ)f

3
s +

9

7
k0q

2
s ∂xfs

+
1

R

(

45

16
κqsfs+4k2

0qs(∂xfs)
2−6k2

0qs ∂
2
xfs fs

)

. (2.2)

To solve (2.2) we fix the parameters α, δ,R,W and the flow rate qs. For ζ ≥ 0, we write (2.2)
as S(fs, ζ) = 0. Assuming that the bottom contour is in Hs

per(0, 2π) with s ≥ 3, we obtain

∂xκ ∈ Hs−3
per (0, 2π), and thus, S ∈ C1

(

Hs
per(0, 2π) × U,Hs−3

per (0, 2π)
)

with U ⊂ R
+
0 . For A0 :=

∂fS(fN , 0), Hs
per(0, 2π) → Hs−3

per (0, 2π) we have

A0 =
15

2R
q2/3
s +

(

9

7
q2s − 5

2R
cot(α)qs

)

k0∂x − 6

R
k2

0q
4/3
s ∂2

x +
5

6
k3

0Wqs∂
3
x,

and the eigenfunctions of this constant coefficient linear differential operator are eikx, k ∈ Z. The
real part of the eigenvalue ωk is given by

Reωk =
15

2R
q2/3
s +

6

R
k2

0q
4/3
s k2,

i.e., the spectrum is bounded away from zero. Therefore, A0 is an isomorphism betweenHs
per(0, 2π)

and Hs−3
per (0, 2π), and the implicit function theorem yields that for each ζ small enough the equa-

tion S(fs, ζ) = 0 has a unique solution fs(ζ) ∈ Hs
per(0, 2π) which depends continuously on ζ.

Altogether, for each constant flow rate qs > 0 and for small bottom waviness ζ there exists a
unique stationary solution of the IBL (1.1), (1.2).

Remark 2.1 The implicit function theorem yields the existence of fs for small values of ζ. This
can be extended until a bifurcation occurs, but it is not clear for which parameters the stationary
solution fs for fixed qs is unique. However, numerically this was the case in our simulations
in [HU09] up to moderate R much larger than the critical Reynolds number, beyond which the
branch of Nusselt-like solutions becomes unstable. Thus, it is mainly this branch that we have in
mind here. However, we shall prove a general nonlinear stability result for all spectrally stable
(fs, qs). Thus, instead of discussing the existence and spectral properties of stationary solutions
in more detail, we simply postulate the pertinent properties in Assumptions 2.2 and 2.3.

Assumption 2.2 For fixed α,R,W > 0 and κ ∈ Hs−3
per (0, γ), s ≥ 3, the IBL (1.1), (1.2) has a

family of γ-periodic stationary solutions (fs, qs)
⊤ with

fs ∈ Hs
per

(0, γ), qs = const., (2.3)

which can be parametrized by the flow rate qs ∈ (qs,min, qs,max), where qs,min,max may depend on
the branch considered.

2.2 Perturbation of stationary solutions

Let (fs, qs)
⊤ be a fixed stationary solution of the IBL (1.1), (1.2). Then the perturbation (f, q)⊤ :=

(F − fs, Q− qs)
⊤ satisfies

∂tf = − 1

1 + κ(fs + f)
∂xq (2.4)

6



and

∂tq =
5

2R

(

sin(α−θ)
sinα

f +
−f2

s q+2fsqsf+qsf
2

f2
s (fs+f)2

− cos(α−θ)
sinα

(∂xfs f+fs ∂xf+∂xf f)

−3

8

sin(α−θ)
sinα

∂xθ(2fsf + f2)

)

+
5

6
Wfs ∂

3
xf +

5

6
W(∂3

xfs + ∂3
xf − ∂xκ)f

− 17

7

qs + q

fs + f
∂xq +

9

7

(qs + q)2

(fs + f)2
∂xf +

9

7

2f2
s qsq − 2fsq

2
sf + f2

s q
2 − q2sf

2

f2
s (fs + f)2

∂xfs

+
1

R

(

9

2
∂2

xq +
45

16
κ
fsq − qsf

(fs + f)fs
+ 4

qs + q

(fs + f)2
(2∂xfs ∂xf + (∂xf)2)

+ 4
f2

s q − 2fsqsf − qsf
2

f2
s (fs + f)2

(∂xfs)
2 − 6

qs + q

fs + f
∂2

xf − 6
fsq − qsf

(fs + f)fs
∂2

xfs

−9

2

∂xq(∂xfs + ∂xf)

fs + f

)

− 1

210
R(∂xq)

2(qs + q). (2.5)

The denominators in (2.5) are bounded from below since F is of order 1, cf. Remark 1.1. The
linearization of (2.4), (2.5) around (f, q)⊤ = 0 reads

∂t

(

f
q

)

=

(

0 − 1
1+κfs

∂x

ã10 + ã11∂x + ã12∂
2
x + ã13∂

3
x a20 + a21∂x + a22∂

2
x

)(

f
q

)

, (2.6)

with the γ-periodic coefficients

ã10 =
5

2R

(

sin(α− θ)

sinα
+ 2

qs
f3

s

− cos(α− θ)

sinα
∂xfs −

3

4

sin(α− θ)

sinα
∂xθ fs

)

+
5

6
W(∂3

xfs − ∂xκ) −
18

7

∂xfs q
2
s

f3
s

− 45

16R
κ
qs
f2

s

− 8
1

R

(∂xfs)
2qs

f3
s

+ 6
1

R

∂2
xfs qs
f2

s

, (2.7)

ã11 = − 5

2

1

R

cos(α− θ)

sinα
fs +

9

7

q2s
f2

s

+ 8
1

R

∂xfs qs
f2

s

, ã12 = −6
1

R

qs
fs
, ã13 =

5

6
Wfs, (2.8)

a20 = − 5

2R

1

f2
s

+
18

7

∂xfs qs
f2

s

+
45

16R
κ

1

fs
+ 4

1

R

(∂xfs)
2

f2
s

− 6
1

R

∂2
xfs

fs
, (2.9)

a21 = − 17

7

qs
fs

− 9

2R

∂xfs

fs
, a22 =

9

2R
. (2.10)

By the transformation

H := F +
1

2
κF 2 (2.11)

the nonlinear equation (1.1) becomes linear, namely ∂tH = −∂xQ. The transformation (2.11) is
one-to-one if the film thickness F is of order 1, and we can express F by H as

F =
−1 +

√
1 + 2κH

κ
= H − 1

2
κH2 + O(H3). (2.12)

The family of stationary solutions (fs, qs)
⊤ from Assumption 2.2 is transformed into (hs, qs)

⊤,
where hs = fs + 1

2κf
2
s . Setting h := H − hs we get

f = F − fs =
−1 +

√
1 + 2κH

κ
− −1 +

√
1 + 2κhs

κ
=

1

κ

(

√

1 + 2κ(hs + h) −
√

1 + 2κhs

)

=
1

(1 + 2κhs)1/2
h− κ

2(1 + 2κhs)3/2
h2 + O(h3) =

1

1 + κfs
h− κ

2(1 + κfs)3
h2 + O(h3), (2.13)
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while the inverse transformation is given by

h = (1 + κfs)f +
1

2
κf2. (2.14)

For the time derivative of the perturbation’s total mass

M =

∫

R

∫ fs+f

fs

(1 + κz) dz dx =

∫

R

f(1 + κ(fs + f/2)) dx (2.15)

we obtain

∂tM =

∫

R

∂tf(1 + κ(fs + f)) dx = −
∫

R

∂xq dx = 0. (2.16)

Thus, the total mass of perturbations is conserved. This now simply reads d
dt

∫

R
hdx = 0, and

the IBL (2.4), (2.5) is equivalent to solving ∂th = −∂xq together with (2.5), where f must be
replaced everywhere according to (2.13). For the linear terms we write in short

A(∂x)

(

h
q

)

:=

(

0 −∂x

a10 + a11∂x + a12∂
2
x + a13∂

3
x a20 + a21∂x + a22∂

2
x

)(

h
q

)

, (2.17)

where a10 = ã10β + ã11∂xβ + ã12∂
2
xβ + ã13∂

3
xβ, a11 = ã11β + 2ã12∂xβ + 3ã13∂

2
xβ, a12 = ã12β +

3ã13∂xβ, a13 = ã13β, with β(x) := 1
1+κ(x)fs(x) . Since all fractions in (2.5) are finite for small

perturbations with ‖f‖L∞ < ‖fs‖L∞/2, they can be expanded in powers of f , and thus, in
powers of h. Hence we can write the transformed IBL as

∂t

(

h
q

)

= A(∂x)

(

h
q

)

+N(h, q), (2.18)

where N contains the nonlinear terms. The first component of N vanishes, since the equation
for ∂th is linear. We look for a solution (h, q)⊤ of (2.18) with (h(t), q(t))⊤ ∈ Hr(2)×Hr−1(2) for
fixed t and r ≥ 3 in order to avoid Sobolev spaces with negative orders. Due to the weight we
will achieve C1-regularity with respect to the wave number ℓ in Bloch space, which is necessary
to expand the critical mode in terms of ℓ in Section 4.3.

2.3 Bloch transform

Considering a bottom with fixed wavelength γ and setting k0 := 2π/γ, we define for v ∈ Hr(m)
the Bloch transform J v as

J v(ℓ, x) = ṽ(ℓ, x) :=
∑

j∈Z

eijk0xv̂(k0j + ℓ). (2.19)

From (2.19) we have that J v(ℓ, x+ γ) = J v(ℓ, x), and that Bloch transform is an isomorphism
between the weighted Sobolev space Hr(m) and the Bloch space B(m, r) defined by

B(m, r) = Hm((−k0/2, k0/2), Hr
per(0, γ)), ‖ṽ‖B(m,r) :=





∑

j≤m

∫

Ik0

‖∂j
ℓ ṽ(ℓ, ·)‖2

Hr(Iγ) dℓ





1
2

,

(2.20)

where Iδ := (−δ/2, δ/2). The inverse Bloch transform is given by

v(x) =

∫

Ik0

eiℓxJ v(ℓ, x) dℓ. (2.21)
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We collect some useful properties of Bloch transform. For a real-valued function v, we have

J v(−ℓ, x) = J v(ℓ, x). (2.22)

If a : R → R is γ-periodic, then

J (av)(ℓ, x) = a(x)J v(ℓ, x). (2.23)

Thus, Bloch transform is invariant under multiplication with γ-periodic coefficients. So far,
functions in Bloch space are only defined for ℓ ∈ (−k0/2, k0/2]. In order to transform products
uv with u, v ∈ Hr(m) we extend the domain of ṽ ∈ B(r,m) corresponding to (2.19), i.e.,

ṽ(ℓ+ k0, x) =
∑

j∈Z

eijk0xv̂(k0j + ℓ+ k0) = e−ik0x
∑

j∈Z

eijk0xv̂(k0j + ℓ) = e−ik0xṽ(ℓ, x).

Then, multiplication in x-space corresponds to convolution in Bloch space, i.e.,

J (uv)(ℓ, x) =

∫ k0/2

−k0/2
J u(l − k, x)J v(k, x) dk =: (J u ∗1 J v)(ℓ, x). (2.24)

Therefore we adapt the definition of B(m, r) in (2.20) to

B(m, r) :=
{

ṽ | ṽ
∣

∣

ℓ∈Ik0

∈ Hm(Ik0 , H
r
per(0, γ)) and ṽ(ℓ+ k0, x) = e−ik0xṽ(ℓ, x)

}

. (2.25)

The notation ∗1 in (2.24) becomes clear in (4.24), where we define a more general convolution
operator. If there is no ambiguity we omit the subscript in the following and write J u ∗J v. Due
to the extension in (2.25) convolution becomes commutative. From (2.21) we obtain

∂xv(x) =

∫ k0/2

−k0/2
eiℓx(∂x + iℓ)J v(ℓ, x) dℓ,

i.e., ∂x in x-space corresponds to the operator (∂x + iℓ) in Bloch space. Thus, setting h̃ := J h
and q̃ := J q the IBL (2.18) is equivalent to

∂t

(

h̃
q̃

)

= A(∂x + iℓ)

(

h̃
q̃

)

+ Ñ(h̃, q̃) (2.26)

in Bloch space, where

Ñ(h̃, q̃) := JN(J −1h̃,J −1q̃). (2.27)

Since Bloch transform is an isomorphism between Hr(2) and B(2, r), we look for a solution (h̃, q̃)⊤

of (2.26) with (h̃(t), q̃(t))⊤ ∈ B(2, r) ×B(2, r − 1) for fixed t and r ≥ 3.

2.4 Spectral situation and mode filters

Spectral situation. By (2.11) the family of stationary solutions (fs, qs)
⊤ from Assumption 2.2

is transformed into a family of stationary solutions (hs, qs)
⊤ of the IBL for (H,Q)⊤, which we

write in short as

∂t

(

H
Q

)

= G(H,Q) =

(

G1(H,Q)
G2(H,Q)

)

. (2.28)

Since the γ-periodic stationary solutions are parametrized by the x-independent flow rates qs, we
have

G(hs(qs), qs) = 0 for all qs ∈ (qs,min, qs,max), (2.29)
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and differentiating with respect to qs gives

0 =
d

dqs
G(hs(qs), qs) =

(

∂G1
∂H (hs(qs), qs)

∂G1
∂Q (hs(qs), qs)

∂G2
∂H (hs(qs), qs)

∂G2
∂Q (hs(qs), qs)

)

(dhs
dqs

(qs)

1

)

. (2.30)

The linear differential operator on the right-hand side of (2.30) also occurs in the linearization of
the IBL (2.28) around a stationary solution: Choosing in the following qs fixed, the perturbation
(h, q)⊤ = (H − hs, Q− qs)

⊤ satisfies ∂t(h, q)
⊤ = G(hs + h, qs + q). Thus, the linearization around

(h, q)⊤ = 0 reads

∂t

(

h
q

)

=
∂G

∂(H,Q)
(hs, qs)

(

h
q

)

, (2.31)

which we have already expressed in (2.17) with the help of the differential operator A(∂x). There-
fore, combining (2.30) and (2.31) gives

A(∂x)

(dhs
dqs

(qs)

1

)

= 0 for all qs ∈ (0, qs,max). (2.32)

Transferring the IBL to Bloch space, we know from (2.26) that the linear operator in the evolution
equation for (h̃, q̃)⊤ is given by A(∂x + iℓ). Corresponding to (2.32), (dhs/dqs, 1)⊤ ∈ Hs

per(0, γ)×
Hs−1

per (0, γ) is an eigenfunction of A(∂x + iℓ) to the eigenvalue λ1(0) = 0 for ℓ = 0. Thus, in Bloch
space the linearization of the IBL around a stationary solution has always a zero eigenvalue.
This property corresponds to the free surface in the underlying physical problem. Furthermore,
for fixed ℓ ∈ (−k0/2, k0/2) the differential operator A(∂x + iℓ) : Hs

per(0, γ) × Hs−1
per (0, γ) →

Hs−2
per (0, γ) × Hs−3

per (0, γ) is elliptic, and thus we obtain countable many curves of eigenvalues
λn with Reλn(ℓ) → −∞ for n→ ∞. Like for the stationary solutions, instead of calculating the
spectrum of A(∂x + iℓ), we state an assumption based on the properties derived above. A typical
spectrum is then sketched in Figure 3.

Assumption 2.3 (Spectral stability) Let s be the bottom regularity from Assumption 2.2.
We assume that A(∂x + i·) with A(∂x + iℓ) : Hs

per
(0, γ) ×Hs−1

per
(0, γ) → Hs−2

per
(0, γ) ×Hs−3

per
(0, γ)

has countable many curves of eigenvalues λn : (−k0/2, k0/2) → C, n ∈ N, with eigenfunctions
ℓ 7→ φn(ℓ, ·) ∈ Hs

per
(0, γ) ×Hs−1

per
(0, γ) and

(i) λ1(ℓ) = c1iℓ− c2ℓ
2 + O(ℓ3) with c1 ∈ R, Re c2 > 0,

(ii) Reλ1(ℓ) < −c̃2ℓ2 for |ℓ| ≤ 4rχ and a c̃2 < c2,

(iii) Reλ1(ℓ) < −σ0 < 0 for |ℓ| > 4rχ and Reλ1(ℓ) > −σ0 for |ℓ| < 4rχ,

(iv) Reλn(ℓ) < −σ0 for all n ≥ 2, ℓ ∈ (−k0/2, k0/2).

Eigenfunctions. The relation between the eigenvalues and eigenvectors of the two versions of
the IBL, namely system (2.4), (2.5) for (f, q)⊤ and system (2.18) for (h, q)⊤, is as follows. Let us
denote the linearized (f, q)-system (2.6) by ∂t(f, q)

⊤ = Â(∂x)(f, q)⊤. Since h = 1
β f + O(f2), see

(2.17), we have

A(∂x)

(

h
q

)

=

(

1/β 0
0 1

)

Â(∂x)

(

βh
q

)

,

where β(x) = 1/(1 + κ(x)fs(x)), see (2.17). Thus, for each eigenvalue λn of A(∂x + iℓ) we obtain

λnφ
n = A(∂x + iℓ)φn =

(

1/β 0
0 1

)

Â(∂x + iℓ)

(

βφn
1

φn
2

)

, i.e. λn

(

βφn
1

φn
2

)

= Â(∂x + iℓ)

(

βφn
1

φn
2

)

.
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Figure 3: Sketch of the spectral situation and the cut-off function χ.

Therefore, in Bloch space the two systems for (f, q)⊤ and (h, q)⊤ have exactly the same eigenval-
ues, where the eigenvectors of the (f, q)-system are given by

Φn :=

(

β 0
0 1

)

φn. (2.33)

In particular, the critical eigenfunctions read

φ1(ℓ, ·) =

(

dfs

dqs

1

)

+ O(ℓ), Φ1(ℓ, ·) =

( 1
1+κfs

dhs
dqs

1

)

=

(

dfs

dqs

1

)

+ O(ℓ). (2.34)

This property is used in the proof of Theorem 1.2, where the universal decay behavior for the
(h, q)-system is transferred back to the original (f, q)-system.

Since the IBL (2.26) in Bloch space has a zero eigenvalue, we have to split (h̃, q̃)⊤ into its
stable part and into a multiple of the critical eigenvector φ1. On the linear level, the critical curve
λ1(ℓ) = c1iℓ− c2ℓ2 +O(ℓ3) for the mode φ1(ℓ, ·) corresponds to ∂tv = (c1∂x + c2∂

2
x)v, which is the

linear diffusion equation in the comoving frame y = x + c1t. However, going into this comoving
frame in (2.18) leads to a time dependent differential operator, which would make the subsequent
analysis more complicated. Therefore, we introduce the rotated variable w̃ by

w̃(t, ℓ, x) =

(

w̃1

w̃2

)

(t, ℓ, x) := e−c1iℓt

(

h̃
q̃

)

(t, ℓ, x), (2.35)

which satisfies

∂tw̃(t, ℓ, x) = Ã(ℓ)w̃(t, ℓ, x) + Ñ(w̃)(t, ℓ, x) (2.36)

with

Ã(ℓ) := −c1iℓ+A(∂x + iℓ)

=

(

−c1iℓ −(∂x+iℓ)
a10+a11(∂x+iℓ)+a12(∂x+iℓ)2+a13(∂x+iℓ)3 (a20−c1iℓ)+a21(∂x+iℓ)+a22(∂x+iℓ)2

)

. (2.37)

The nonlinearity Ñ is exactly the same as for the (h̃, q̃)-system in (2.26) since (ṽi ∗ ṽj)(ℓ) =
∫ k0/2
−k0/2 w̃i(ℓ−k)ec1i(ℓ−k)tw̃j(k)e

c1ikt dk = ec1iℓt(w̃i ∗ w̃j)(ℓ) for ṽ := ec1iℓtw̃ and i, j ∈ {1, 2}. Clearly,

Ã has the same eigenfunctions φn as A(∂x+iℓ) with eigenvalues µn(ℓ) = λn(ℓ)−c1iℓ. In particular,
for the critical eigenvalue we obtain

µ1(ℓ) = −c2ℓ2 + O(ℓ3). (2.38)
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Mode filters. We introduce mode filters to extract the critical mode φ1. Let χ : R → [0, 1] be
a smooth cut-off function with χ(ℓ) = 1 for |ℓ| ≤ rχ and χ(ℓ) = 0 for |ℓ| ≥ 2rχ, see Figure 3. Due
to Assumption 2.3 the curve of critical eigenvalues µ1 is isolated from the rest of the spectrum
for |ℓ| < 4rχ. Thus, denoting the scalar product in L2(0, γ) by 〈·, ·〉, i.e.,

〈u, v〉 :=

∫ γ

0
u · v̄ dx,

where the “·” stands for the standard scalar product in R
2, we can define the critical mode filter

Ẽc by

(Ẽcw̃)(ℓ, x) := χ(ℓ)
〈

w̃(ℓ, ·), ψ1(ℓ, ·)
〉

φ1(ℓ, x). (2.39)

Here ψ1(ℓ, ·) is an eigenfunction of the L2(0, γ)-adjoint operator Ã∗(ℓ) to the eigenvalue µ̄1(ℓ). The
L2(0, γ)-adjoint operator of a differential operator L = a(x)(∂x+iℓ) with a γ-periodic coefficient a
is given by L∗v = −(∂x+iℓ)(āv). Thus, for the critical eigenfunction we obtain ψ1(0, x) = (c0, 0)⊤,
i.e.,

ψ1(ℓ, x) = c0

(

1
0

)

+ O(ℓ), (2.40)

and we choose ψ1 such that 〈φ1(ℓ, ·), ψ1(ℓ, ·)〉 = 1 for all ℓ ∈ (−4rχ, 4rχ). Additionally to Ẽc, we
define the scalar mode filter Ẽ∗

c and the stable mode filter Ẽs by

(Ẽ∗
c w̃)(ℓ) := χ(ℓ)〈w̃(ℓ, ·), ψ1(ℓ, ·)〉, Ẽs := Id−Ẽc. (2.41)

Moreover, we define auxiliary mode filters

(Ẽh
c w̃)(ℓ, x) := χ(ℓ/2)〈w̃(ℓ, ·), ψ1(ℓ, ·)〉φ1(ℓ, x), Ẽh

s := Id−Ẽh
c (2.42)

such that Ẽh
c Ẽc = Ẽc and Ẽh

s Ẽs = Ẽs, which is used to substitute for missing projection properties
of Ẽc and Ẽs. Setting α̃(t, ℓ) := (Ẽ∗

c w̃(t))(ℓ), w̃s(t, ℓ, x) := (Ẽsw̃(t))(ℓ, x), we obtain the splitting

w̃(t, ℓ, x) = α̃(t, ℓ)φ1(ℓ, x) + w̃s(t, ℓ, x) (2.43)

into the critical mode α̃φ1 and the stable component w̃s.

Remark 2.4 The idea of this splitting is that due to the spectral properties of Ẽh
s Ã(ℓ), ws is

linearly exponentially damped. Thus, we expect the dynamics of (2.36) to be governed by the
dynamics of the critical mode α̃φ1.

Altogether, after applying mode filters, the IBL in Bloch space reads

∂tα̃(t, ℓ) = µ1(ℓ)α̃(t, ℓ) + B̃c(α̃(t))(ℓ) + H̃c(α̃(t), w̃s(t))(ℓ), (2.44)

∂tw̃s(t, ℓ, x) = Ãs(ℓ)w̃s(t, ℓ, x) + H̃s(α̃(t), w̃s(t))(ℓ, x), (2.45)

where

B̃c(α̃)(ℓ) := idℓχ(ℓ)(α̃∗2)(ℓ), H̃c(α̃, w̃s)(ℓ) := Ẽ∗
c

(

Ñ(α̃φ1 + w̃s)
)

(ℓ) − idℓχ(ℓ)α̃∗2(ℓ), (2.46)

Ãs(ℓ) := Ẽh
s Ã(ℓ), H̃s(α̃, w̃s)(ℓ, x) := Ẽs

(

Ñ(α̃φ1 + w̃s)
)

(ℓ, x), (2.47)

with d specified subsequently in (2.62). Below we will see that cubic terms as well as those
involving w̃s are asymptotically irrelevant. Thus, the only dangerous terms are the quadratic
ones in Ñ(α̃φ1), which are not damped by the decay of w̃s. In the formal derivation in §2.6 we
will see that these terms have the “derivative-like” structure idℓχ(ℓ)α̃∗2 with d ∈ R, which leads
to a Burgers-like decay. There also occur terms of the order of O(ℓ2)α̃∗2, but as they turn out
to be irrelevant due to the additional factor ℓ, we put them into H̃c and denote by B̃c the term
idℓχ(ℓ)α̃∗2, which is the only relevant one.
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Function spaces. It remains to choose appropriate function spaces for α̃ and w̃s. For fixed t
we have (h, q)⊤ ∈ Hr(2) × Hr−1(2) if and only if w̃ ∈ B(2, r) × B(2, r − 1), i.e., both α̃φ1 and
w̃s ∈ B(2, r) ×B(2, r − 1).

Thus, in a first step we assume that α̃φ1 ∈ B(2, r)×B(2, r−1). In the following let the bottom
profile be at least in Hr

per(0, γ), such that due to Assumption 2.3 we have φ1(ℓ) ∈ Hr
per(0, γ) ×

Hr−1
per (0, γ) for fixed ℓ. Since the critical eigenvalue µ1(ℓ) is isolated from the rest of the spectrum

for |ℓ| < 4rχ, the eigenfunction φ1 is smooth with respect to ℓ in this interval. In particular,
we have φ1 ∈ H2((−2rχ, 2rχ), Hr

per(0, γ) × Hr−1
per (0, γ)). Since the same is true for the adjoint

eigenfunction ψ1, the definition of the critical mode filter in (2.41) leads to

α̃ ∈ H2(R), supp α̃ ∈ [−2rχ, 2rχ]. (2.48)

Next, we conversely assume that α̃ ∈ H2(R) with supp α̃ ∈ [−2rχ, 2rχ], and w̃s ∈ B(2, r) ×
B(2, r − 1). It immediately follows that α̃φ1 is in H2(Ik0 , H

r
per(0, γ) × Hr−1

per (0, γ)), but not in
B(2, r) × B(2, r − 1) since the extension property from (2.25) is missing, which is required to
calculate convolutions. However, since α̃ has compact support, this is not needed. On the one
hand, in convolutions like

∫ k0/2

−k0/2
α̃(ℓ− k)φ1(ℓ− k)ṽ(k) dk =

∫ k0/2

−k0/2
α̃(k)φ1(k)ṽ(ℓ− k) dk,

with ṽ ∈ B(2, r) × B(2, r − 1), we can use the extension property of ṽ such that α̃φ1 must only
be evaluated for ℓ ∈ Ik0 . On the other hand, for convolutions

∫ k0/2

−k0/2
α̃(ℓ− k)φ1(ℓ− k)α̃(k)φ1(k) dk =

∫ 2rχ

−2rχ

α̃(ℓ− k)φ1(ℓ− k)α̃(k)φ1(k) dk

we have to extend α̃φ1 to |ℓ| ≤ k0/2 + 2rχ by (α̃φ1)(ℓ + k0) = e−ik0x(α̃φ1)(ℓ). Thus, α̃φ1 is
extended with values of (α̃φ1)(ℓ), ℓ ∈ (−1/2,−1/2 + 2rχ] ∪ (1/2 − 2rχ, 1/2], where α̃ and hence
α̃φ1 is zero. Thus, there is no difference if we extend α̃φ1 according to the extension rule in (2.25)
or if we use α̃ ∈ H2(R) with compact support. If necessary, we must replace rχ in Assumption
2.3 by a smaller value depending on the final degree of the nonlinearity since each convolution
enlarges the support of (α̃φ1)∗j . Altogether, we obtain the equivalence

w̃ ∈ B(2, r)×B(2, r − 1) ⇔ α̃ ∈ H2(R), supp α̃ ∈ [−2rχ, 2rχ], and w̃s ∈ B(2, r)×B(2, r − 1).
(2.49)

Moreover, since α̃ is independent of x we get

‖α̃‖2
B(2,r) =

∑

j≤2

∫ k0/2

−k0/2
‖∂j

ℓ α̃(ℓ)‖2
Hr(Iγ) dℓ =

∑

j≤2

∫ k0/2

−k0/2
γ2|∂j

ℓ α̃(ℓ)|2 dℓ = γ2‖α̃‖2
H2(Ik0

)

for all r ≥ 0. Therefore, and since it does not matter how α̃ is extended to |ℓ| > k0/2, α̃ ∈ H2(R)
in (2.49) can be substituted by α̃ ∈ B(2, r). Thus, we look for a solution (α̃, w̃s) of (2.44), (2.45)
with α̃(t) ∈ B(2, r) and w̃(t) ∈ B(2, r) ×B(2, r − 1) for fixed t and r ≥ 3.

2.5 Self-similar decay in the viscous Burgers equation

The idea behind the splitting of w̃ into α̃ and w̃s is that α̃ will fulfill a perturbed Burgers equation
while w̃ is linearly exponentially damped. Here we collect some basic facts about the dynamics
of the Burgers equation, mainly from [BKL94], see also [Uec04, Uec07] for more details.

By the Cole-Hopf transformation η(t, ξ) = exp
(

d
c2

∫

√
c2ξ

−∞ v(t, x)dx
)

, the viscous Burgers equa-

tion
∂tv = c2∂

2
xv + d∂x(v2), x ∈ R, t ≥ 0 (2.50)
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is transformed into the linear diffusion equation ∂tη = ∂2
ξη. The inverse transformation is given

by

v(t, x) =

√
c2
d

∂ξη(t, x/
√
c2)

η(t, x/
√
c2)

.

By construction, we have limξ→−∞ η(t, ξ) = 1 for all t ≥ 0. Setting limξ→∞ η(0, ξ) = 1+ z for the
initial condition, it is well known that

η(t, ξ) = 1 +
z

2

(

1 + erf

(

ξ

2
√
t

))

with erf(x) =
2√
π

∫ x

0
e−y2

dy

is an exact solution of the linear diffusion equation. Thus, for every z > −1 there exists a
self-similar solution of the Burgers equation (2.50) given by

vz(t, x) := t−1/2fz(t
−1/2x) with fz(y) =

√
c2
d

z erf ′(y/(2
√
c2))

4 + 2z
(

1 + erf(y/(2
√
c2))

) , (2.51)

where ln(z + 1) = d
c2

∫

R
vz(t, x)dx.

Moreover, if we consider an arbitrary initial condition η
∣

∣

t=0
= η0 ∈ L∞ with the boundary

conditions limξ→−∞ η0(ξ) = 1 and limξ→∞ η0(ξ) = 1 + z, the solution can be written as

η(t, ξ) =
1√
4πt

∫

R

e−(ξ−y)2/(4t)η0(y)dy.

If we assume that η0 decays sufficiently fast to 1 for ξ → ±∞, we have ϕ0 := ∂ξη0 ∈ L1, and
ϕ := ∂ξη satisfies the linear diffusion equation with the localized initial condition ϕ(0, ξ) = ϕ0(ξ).

Then supξ∈R |ϕ(t, ξ)−
√

π/t ϕ̂0(0)e−ξ2/(4t)| ≤ Ct−1, which, by integration with respect to ξ, yields

sup
ξ∈R

∣

∣

∣

∣

η(t, ξ) − 1 − z

2

(

1 + erf

(

ξ

2
√
t

))∣

∣

∣

∣

≤ Ct−1/2.

Therefore, the renormalized solution of the Burgers equation (2.50) with initial condition v
∣

∣

t=0
=

v0 ∈ L1 satisfies
sup
x∈R

|t1/2v(t, t1/2x) − fz(x)| ≤ Ct−1/2, (2.52)

where ln(z + 1) = d
c2

∫

R
v0(x)dx. Thus, solutions of the Burgers equation to localized initial

conditions converge to a non-Gaussian profile, see Fig. 1. This behaviour is stable under suitable
perturbations of the Burgers equation, cf., e.g., [Uec07, Theorem 1.5].

Lemma 2.5 Let p ∈ (0, 1/2) and h(v, ∂xv, ∂
2
xv) = vq1(∂xv)

q2(∂2
xv)

q3 with dh = q1 +2q2 +3q3 > 3,
qj ∈ N0, and q3 ≤ 1. Then there exist C1, C2 > 0 such that the following holds. If ‖v0‖H2(2) ≤ C1,
then the perturbed Burgers equation

∂tv = c2∂
2
xv + d∂x(v2) + h(v, ∂xv, ∂

2
xv)

with c2 > 0, d 6= 0 has a unique solution v with v
∣

∣

t=1
= v0. For a z > −1 it satisfies

‖
√
tv(t,

√
tx) − fz(x)‖H2(2) ≤ C2t

−1/2+p (2.53)

for all t ≥ 1, where fz is the non–Gaussian profile from (2.51).

In particular, nonlinearities h with degree dh > 3, or more general nonlinearities (not necessarily
monomials) such that (2.53) holds, are called asymptotically irrelevant.
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2.6 Derivation of the Burgers equation

Splitting of the nonlinearity. To distinguish relevant from asymptotically irrelevant terms
we split the nonlinearity N from (2.18) into N = B +G, where the second component of B(h, q)
contains all quadratic terms without a factor ∂xq. The terms in B turn out to have a “derivative-
like” structure and hence lead to a Burgers-like decay, see Remark 2.6 below. For all other terms,
which we collect in G(h, q), we later show that they are irrelevant. By construction,

B(h, q) =

(

0
B2(h, q)

)

=

(

0
b00h

2+b01h∂xh+b02h∂
2
xh+b03h∂

3
xh+b11(∂xh)

2+b1hq+b2∂xhq+b3∂
2
xhq+b4q

2

)

, (2.54)

where again all coefficients are γ-periodic in x and depend on the stationary solution (hs, qs).
Since the equation for ∂th is linear, also in G(h, q) the first component vanishes. The terms

in the second component of G can be characterized as follows:

(i) Terms in B2(h, q), multiplied by hj , j ≥ 1.

(ii) (∂xq)
2, hj ∂xq q, h

j+1 ∂xq, h
j ∂xh∂xq with j ≥ 0.

(iii) (∂xq)
2q, hj ∂xhq

2, hj(∂xh)
2q with j ≥ 0.

The terms in (i) are due to the expansions 1/(fs + f) =
∑

j≥0 cjf
j and f =

∑

j≥1 c̃jh
j . They are

at least cubic and contain the quasilinear terms hj ∂3
xh, j ≥ 2. The terms in (ii) are the quadratic

ones in (2.5) which contain a factor ∂xq. Except of the first one, they also occur multiplied by
powers of h due to the denominator 1/(fs +f). Finally, the terms in (iii) originate from the terms
in (2.5) having a cubic numerator. Altogether, we can write the IBL (2.18) for (h, q)⊤ as

∂t

(

h
q

)

= A(∂x)

(

h
q

)

+B(h, q) +G(h, q). (2.55)

Setting B̃(h̃, q̃) = JB(J −1h̃,J −1q̃) and G̃(h̃, q̃) = JG(J −1h̃,J −1q̃), this corresponds to

∂tw̃(t, ℓ, x) = Ã(ℓ)w̃(t, ℓ, x) + B̃(w̃)(t, ℓ, x) + G̃(w̃)(t, ℓ, x) (2.56)

in Bloch space, cf. (2.36).

Remark 2.6 Heuristically, the reason for splitting the nonlinearity into B and G is the following.
To project the nonlinearity Ñ onto the critical eigenfunction we take the scalar product of Ñ(ℓ, ·)
with the eigenvector of the adjoint linear operator Ã∗(ℓ, ·), which, by (2.40), reads ψ1(ℓ) =
(c0, 0)⊤+O(ℓ). Thus, since the equation for ∂th is linear, the critical component of the nonlinearity
obtains an additional factor ℓ in Bloch space, which increases its degree by 1. This is the reason
why terms like h2 turn out to have the same degree as the nonlinearity ∂x(v2) in the Burgers
equation. As the IBL has non-constant coefficients, a ∂x in x-space, which corresponds to (∂x+iℓ)
in Bloch space, does not automatically increase the degree. Therefore, also terms like h∂3

xh, which
at first view appear to be irrelevant, make an contribution to the relevant terms. On the other
hand, since the q-component of the critical eigenvector φ1 is independent of x at wave number
ℓ = 0, a factor ∂xq leads to a further factor ℓ after projecting it onto the critical eigenvector, and
thus to an asymptotically irrelevant term. That is why quadratic terms with a factor ∂xq are
assigned to G. These considerations are made rigorous in §4.
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Formal derivation of the Burgers equation. Following Remarks 2.4 and 2.6 we formally
derive the Burgers equation for α̃ by ignoring w̃s as well as the nonlinearity G̃. Thus, setting
w̃ = (w̃1, w̃2)

⊤ = α̃φ1, (2.44) becomes

∂tα̃(t, ℓ) = µ1(ℓ)α̃(t, ℓ) + Ẽ∗
c (B̃(α̃(t)φ1))(ℓ). (2.57)

Since the equation for ∂th is linear, the nonlinearity reads

Ẽ∗
c (B̃(α̃φ1))(ℓ) = χ(ℓ)

∫ γ

0
B̃2(α̃φ

1)(ℓ, x) ψ̄1
2(ℓ, x) dx,

where (2.54) yields

B̃2(w̃) = b00w̃
∗2
1 + b01w̃1 ∗ [(∂x + iℓ)w̃1] + b02w̃1 ∗ [(∂x + iℓ)2w̃1]

+ b03w̃1 ∗ [(∂x + iℓ)3w̃1] + b11[(∂x + iℓ)w̃1]
∗2 + b1w̃1 ∗ w̃2

+ b2[(∂x + iℓ)w̃1] ∗ w̃2 + b3[(∂x + iℓ)2w̃1] ∗ w̃2 + b4w̃
∗2
2 . (2.58)

We study in detail only the first term of B̃2(w̃) and show afterwards that all other terms can be
treated the same way. We have

∫ γ

0
b00(x)w̃

∗2
1 (ℓ, x)ψ̄1

2(ℓ, x) dx =

∫ γ

0
b00(x)

∫ k0/2

−k0/2
α̃(ℓ− k)φ1

1(ℓ− k, x)α̃(k)φ1
1(k, x) dk ψ̄1

2(ℓ, x) dx

=

∫ k0/2

−k0/2
α̃(ℓ− k)α̃(k)

∫ γ

0
b00(x)φ

1
1(ℓ− k, x)φ1

1(k, x)ψ̄
1
2(ℓ, x) dxdk

=:

∫ k0/2

−k0/2
α̃(ℓ− k)α̃(k)K(ℓ, ℓ− k, k) dk. (2.59)

Before we expand the kernel K(ℓ, ℓ− k, k) in terms of ℓ, we state the following useful properties.

Lemma 2.7 The adjoint eigenfunction ψ1 satisfies ψ1
2(0, x) = 0 and ∂ℓψ

1
2(0, x) ∈ iR.

Proof The first property immediately follows from (2.40). Differentiating the eigenvalue equation
Ã∗(ℓ)ψ1(ℓ, x) = µ̄1(ℓ)ψ

1(ℓ, x) with respect to ℓ gives

∂ℓÃ
∗(ℓ)ψ1(ℓ, x) + Ã∗(ℓ)∂ℓψ

1(ℓ, x) = ∂ℓµ̄1(ℓ)ψ
1(ℓ, x) + µ̄1(ℓ)∂ℓψ

1(ℓ, x),

i.e., from the locally parabolic shape of µ̄1(ℓ) = −c2ℓ2 + O(ℓ3) it follows that

∂ℓÃ
∗(0)ψ1(0, x) + Ã∗(0)∂ℓψ

1(0, x) = 0.

Since ∂ℓÃ
∗(0)ψ1(0, x) = (ic0c1, ic0)

⊤, cf. (2.37), we obtain Ã∗(0)∂ℓψ
1(0, x) ∈ iR2. As all co-

efficients of Ã∗(0) are real, we get ∂ℓψ
1(0, x) ∈ iR2 + ker Ã∗(0) = iR2 + Cψ1(0, x) and thus

∂ℓψ
1
2(0, x) ∈ iR. �

Returning to (2.59) we can write the integral kernel as

K(ℓ, ℓ− k, k) = ∂1K(0)ℓ+ ∂2K(0)(ℓ− k) + ∂3K(0)k + O(|ℓ|2 + |ℓ− k|2 + |k|2),

since K(0) = 0 due to ψ1
2(0, x) = 0. For the same reason we get ∂2K(0) = ∂3K(0) = 0, while

the first term reads

∂1K(0)ℓ =

∫ γ

0
b00(x)φ

1
1(0, x)φ

1
1(0, x)∂ℓψ̄

1
2(0, x) dx ℓ =: iK1ℓ ∈ iR, (2.60)

16



since φ1(0, x) ∈ R
2, see (2.34). Altogether, we have

K(ℓ, ℓ− k, k) = iK1ℓ+ O(|ℓ|2 + |ℓ− k|2 + |k|2). (2.61)

Therefore

∫ γ

0
b00(x)w̃

∗2
1 (ℓ, x)ψ̄1

2(ℓ, x) dx =

∫ k0/2

−k0/2
α̃(ℓ− k)α̃(k)

(

iK1ℓ+ O(|ℓ|2 + |ℓ− k|2 + |k|2)
)

dk

= iK1ℓα̃
∗2(ℓ) + O(ℓ2)α̃∗2(ℓ).

For the remaining terms in B̃2(w̃) the same considerations lead to

∫ γ

0
B̃2(α̃φ

1)(ℓ, x)ψ̄1
2(ℓ, x) dx =

∫ k0/2

−k0/2
α̃(ℓ− k)α̃(k)K(ℓ, ℓ− k, k) dk,

where the integral kernel K is given as sum of terms of the type

∫ γ

0
bij(x)φ

1
j1(ℓ− k, x)(ik)n1∂n2

x φ1
j2(k, x)ψ̄

1
2(ℓ, x) dx.

Thus, there exists a d ∈ R such that we can write

K(ℓ, ℓ− k, k) = idℓ+ O(|ℓ|2 + |ℓ− k|2 + |k|2), (2.62)

which yields
Ẽ∗

c (B̃(α̃φ1))(ℓ) = idℓχ(ℓ)α̃∗2(ℓ) + O(ℓ2)α̃∗2(ℓ). (2.63)

Altogether (2.57) leads to

∂tα̃(t, ℓ) = −c2ℓ2α̃(t, ℓ) + idℓχ(ℓ)α̃∗2(t, ℓ) + O(ℓ3)α̃(t, ℓ) + O(ℓ2)α̃∗2(t, ℓ). (2.64)

Since ∂x in x-space corresponds to iℓ in Fourier space and since a derivative increases the degree
of irrelevance by one, this reminds us strongly of an asymptotically irrelevant perturbation of the
Fourier transformed Burgers equation ∂tv̂ = −c2k2v̂ + idkv̂∗2. This formally explains why in the
main Theorem 1.2 the comoving non-Gaussian profile t−1/2fz0(t

−1/2(x+c1t))Φ
1(0, x) governs the

asymptotics of the IBL at lowest order.

2.7 The result

§2.5 about the Burgers equation and the formal calculations in §2.6 motivate the formulation of
the following theorem about nonlinear stability of stationary solutions of the IBL.

Theorem 2.8 Let p ∈ (0, 1/2), 3 < r < 4, and let (fs, qs)
⊤ be a spectrally stable stationary

solution of the IBL (1.1), (1.2), i.e., Assumption 2.3 is fulfilled. Then there exist constants
C1, C2 > 0 such that the following holds. If ‖h0‖Hr(2) + ‖q0‖Hr−1(2) ≤ C1, then there exists a

unique global solution (h, q) of the transformed IBL (2.18) with (h, q)
∣

∣

t=1
= (h0, q0) and

sup
x∈R

∣

∣

∣
(h, q)⊤ − t−1/2fz0(t

−1/2(x+ c1t))φ
1(0, x)

∣

∣

∣
≤ C2t

−1+p/2 (2.65)

for t ∈ [1,∞). Here, z0 > −1, fz0 denotes the non-Gaussian profile from (2.51), and φ1(0, ·) =
(dhs/dqs, 1)⊤ is an eigenfunction to the critical eigenvalue λ1(ℓ) = c1iℓ − c2ℓ

2 + O(ℓ3) from
Assumption 2.3.
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Theorem 2.8 follows from the subsequent Theorem 4.2 about nonlinear stability in rescaled Bloch
spaces. To transfer Theorem 2.8 to the original (F,Q)-system (1.1), (1.2) we note that (2.65)
yields supx∈R h

2 ≤ Ct−1. Since due to (2.13) the transformation for the film thickness reads
f = βh+ O(h2), we can write

|(f, q)⊤ − t−1/2fz0(t
−1/2(x+ c1t))Φ

1(0, x)|

=

∣

∣

∣

∣

(

β 0
0 1

)

(

(h, q)⊤ − t−1/2fz0(t
−1/2(x+ c1t))φ

1(0, x)
)

∣

∣

∣

∣

+ O(h2),

where Φ1 is the eigenvector corresponding to the critical eigenvalue λ1 in the (f, q)-system, see
(2.33). This yields Theorem 1.2.

3 Local existence

For the proof of Theorem 2.8 we use the RG method [BKL94] for (2.44),(2.45). The main steps
consist in a proof of local existence using maximal regularity methods, and in a careful estimate
of the nonlinear terms. The local existence and uniqueness of solutions is carried out via resolvent
estimates in x-space, while the RG method is set up in Bloch space.

3.1 Function spaces depending on time and space

In the following, we always assume that X is a Hilbert space and t0, t1 ∈ R ∪ {−∞,∞}. If not
stated otherwise, Hr stands for Hr(R).

Definition 3.1 L2((t0, t1), X) denotes the space of (strongly) measurable functions u with values

in X such that the norm ‖u‖L2((t0,t1),X) :=

(∫ t1

t0

‖u(t)‖2
X dt

)
1
2

is finite. For m ∈ N we write

Hm((t0, t1), X) := {u | ∂j
t u ∈ L2((t0, t1), X) for 0 ≤ j ≤ m},

‖u‖Hm((t0,t1),X) :=





m
∑

j=0

‖∂j
t u‖2

L2((t0,t1),X)





1
2

.

In the special case (t0, t1) = R and X = Hr(R), r ∈ R
+ we find the equivalent norm

‖u‖Hm(R,Hr) ∼
(∫

R

∫

R

(1 + τ2)m(1 + k2)r|Ftxu(τ, k)|2 dτ dk

) 1
2

, (3.1)

where Ftxu denotes the Fourier transform of u w.r.t. time and space. Obviously, this definition
can be extended to all m ∈ R

+.

Lemma 3.2 Let s ≥ 0. Then, we have

(i) u ∈ Hs(R, X) ⇔ (1 + τ2)
s
2Ftu ∈ L2(R, X).

(ii) Hs((t0, t1), X) coincides with the space of restrictions to (t0, t1) of the elements in Hs(R, X).
Extension and restriction are both continuous operators.

For a proof see [LM72a, p. 58 and Theorem 9.1]. By (i) we see that (3.1) is an equivalent norm in
Hm(R, Hr) also for non-integer values of m. The next lemma shows that the regularity of space
and time derivatives is the same as in the scalar valued case. Here we denote by [s] the integer
part of s.
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Lemma 3.3 Let u ∈ Hs((t0, t1), H
r), j ≤ [s], l ≤ [r]. Then ∂l

x∂
j
t u ∈ Hs−j((t0, t1), H

r−l).

Proof We assume (t0, t1) = R. Then by (3.1) we have

‖∂l
x∂

j
t u‖2

Hs−j(R,Hr−l) ≤ C

∫

R

∫

R

(1 + τ2)s−j(1 + k2)r−l|Ftx[∂l
x∂

j
t u](τ, k)|2 dτ dk

= C

∫

R

∫

R

(1 + τ2)s−j(1 + k2)r−l|k|2l|τ |2j |Ftxu(τ, k)|2 dτ dk

≤ C‖u‖Hs(R,Hr). �

As we will see in Lemma 3.11 below, for u ∈ Hs((t0,∞), L2), s > 1/2, there exist traces
∂j

t u(t0, ·) ∈ L2(R) for all j ∈ N0 with j < s− 1/2. Thus, we can define the following subspace of
Hs((t0,∞), Hr).

Definition 3.4 Hs
0((t0,∞), Hr) := {u ∈ Hs((t0,∞), Hr) | ‖∂j

t u(t0, ·)‖L2=0 for j < s−1

2
, j∈N0}.

By the following lemma these functions can be extended by zero for t ≤ 0.

Lemma 3.5 Let s ≥ 0 be not a half integer, t0 ∈ R, u ∈ Hs
0((t0,∞), Hr), and

u0(t, ·) :=

{

u(t, ·) for t > t0,
0 for t ≤ t0.

Then u 7→ u0 is a continuous mapping from Hs
0((t0,∞), Hr) into Hs(R, Hr), i.e., there exist

C1, C2 > 0 such that C1‖u‖Hs((t0,∞),Hr) ≤ ‖u0‖Hs(R,Hr) ≤ C2‖u‖Hs((t0,∞),Hr).

For a proof see [LM72a], in particular Theorem 11.4. Next we characterize functions u in
Hs

0((0,∞), Hr). Since they can be extended by zero for t ≤ 0 we can apply Fourier trans-
form in time. The problem is that without making further demands on the regularity of Ftu we
can not guarantee that the inverse Fourier transform is again in Hs

0 . The following two lemmas
show conditions based upon the Paley-Wiener Theorem which ensure that the inverse Fourier
transform maps back to functions vanishing on the negative time axis. As u is only defined for
t > 0 and Ftu must be treated as function on τ ∈ C it is common to replace Fourier transform
in time by Laplace transform:

Lu(τ) :=
1

2π

∫ ∞

0
u(t)e−tτ dt. (3.2)

The relation to Fourier transform is

Lu(τ1 + iτ2, x) =
1

2π

∫

R

u0(t, x)e
−tτ1e−itτ2 dt = Ft[e

−·τ1u0(·, x)](τ2).

Lemma 3.6 Let s ≥ 0 be not a half integer, r ≥ 0. If u ∈ Hs
0((0,∞), Hr), then the Laplace

transform Lu satisfies

(i) τ 7→ Lu(τ, x) is holomorphic in the half-plane Re τ > 0 for almost every x ∈ R.

(ii) sup
τ1>0

∫

R

|Lu(τ1 + iτ2, x)|2 dτ2 <∞ for almost every x ∈ R.

(iii) ‖u‖Hs((0,∞),Hr) ∼
(∫

R

(1 + τ2
2 )s‖Lu(iτ2, ·)‖2

Hr dτ2

) 1
2

.
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Proof Since u ∈ Hs
0((0,∞), Hr) we have u ∈ L2((0,∞), L2). Thus

∫

R

∫ ∞

0
|u(t, x)|2 dt dx =

∫ ∞

0

∫

R

|u(t, x)|2 dxdt <∞

which yields
∫∞
0 |u(t, x)|2 dt < ∞ for almost every x ∈ R. Applying the Paley-Wiener Theorem,

see [Yos71] for instance, gives the first property. Now let τ1 > 0. Parseval’s identity implies

∫

R

|Lu(τ1 + iτ2, x)|2 dτ2 =

∫

R

|Ft[e
−·τ1u0(·, x)](τ2)|2 dτ2

≤ C

∫

R

|e−tτ1u0(t, x)|2 dt ≤ C

∫ ∞

0
|u(t, x)|2 dt <∞ for almost every x ∈ R

independently of τ1. This shows the second property. The third property follows with the help
of Lemma 3.5 and Lemma 3.2, i.e.,

∫

R

(1 + τ2
2 )s‖Lu(iτ2, ·)‖2

Hr dτ2 =

∫

R

(1 + τ2
2 )s‖Ftu0(τ2, ·)‖2

Hr dτ2

∼ ‖u0‖2
Hs(R,Hr) ∼ ‖u‖2

Hs((0,∞),Hr). �

The following lemma shows that regularity in x is preserved under Laplace transform.

Lemma 3.7 Let r ≥ 0. If u ∈ L2((0,∞), Hr), then

sup
τ1≥0

∫

R

‖Lu(τ1 + iτ2, ·)‖2
Hr dτ2 ≤ C‖u‖2

L2((0,∞),Hr).

In particular, Lu(τ, ·) ∈ Hr for almost every τ with Re τ ≥ 0.

Proof Let τ1 ≥ 0. Then
∫

R

‖Lu(τ1 + iτ2, ·)‖2
Hr dτ2 =

∫

R

‖Ft[e
−tτ1u0(t, ·)](τ2)‖2

Hr dτ2

≤ C

∫

R

‖e−tτ1u0(t, ·)‖2
Hr dt = C

∫ ∞

0
e−2tτ1‖u(t, ·)‖2

Hr dt ≤ C‖u‖2
L2((0,∞),Hr)

independently of τ1. �

Lemma 3.6 has the following inverse.

Lemma 3.8 Let s ≥ 0 be not a half integer, r ≥ 0, and assume f : C × R → C fulfills the
following conditions.

(i) f(τ, x) is holomorphic in the half-plane Re τ > 0 for almost every x ∈ R.

(ii) sup
τ1>0

∫

R

|f(τ1 + iτ2, x)|2 dτ2 <∞ for almost every x ∈ R.

(iii)

∫

R

(1 + τ2
2 )s‖f(iτ2, ·)‖2

Hr dτ2 <∞.

Then the inverse Fourier transform g(t, x) =
∫

R
f(iτ2, x)e

itτ2 dτ2 satisfies

(iv) g
∣

∣

R+×R
∈ Hs

0((0,∞), Hr) and Lg = f .
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Proof Due to (i) and (ii), for almost every x ∈ R we can apply the Paley-Wiener Theorem and
obtain g(t, x) = 0 for t < 0,Lg(τ, x) = f(τ, x), see [Yos71], for instance. It remains to prove that
g
∣

∣

R+×R
∈ Hs

0((0,∞), Hr). Due to Lemma 3.2 we have

‖g‖2
Hs(R,Hr) ≤ C

∫

R

‖(1 + τ2
2 )

s
2Ftg(τ2, ·)‖2

Hr dτ2 = C

∫

R

(1 + τ2
2 )s‖Lg(iτ2, ·)‖2

Hr dτ2

= C

∫

R

(1 + τ2
2 )s‖f(iτ2, ·)‖2

Hr dτ2 <∞,

thus g ∈ Hs(R, Hr). Let j ∈ N such that s− j > 1/2. Lemma 3.3 gives ∂j
t g ∈ Hs−j(R, Hr), and

due to standard Sobolev embedding we have ∂j
t g ∈ C(R, Hr). Since g(t, x) = 0 for t < 0 and

almost every x ∈ R we achieve ‖∂j
t g(0, ·)‖L2 = 0. This shows the first property. �

To prove local existence for the IBL (2.18) we use the following Sobolev spaces.

Definition 3.9 Let Hr,s((t0, t1)) := L2((t0, t1), H
r(R)) ∩Hs((t0, t1), L

2(R)), with norm

‖u‖Hr,s((t0,t1)) :=

(∫ t1

t0

‖u(t, ·)‖2
Hr dt+ ‖u‖2

Hs((t0,t1),L2)

)
1
2

.

Applying (3.1) we can state an equivalent norm for the case (t0, t1) = R, namely

‖u‖Hr,s(R) ∼
(∫

R

∫

R

(

(1 + τ2)
s
2 + (1 + k2)

r
2

)2
|Ftxu(τ, k)|2 dτ dk

) 1
2

. (3.3)

Functions in Hr,s(R) also belong to “intermediate spaces” with intermediate regularities in time
and space.

Lemma 3.10 Let r, s ≥ 0, ϑ ∈ (0, 1). Then Hr,s(R) is continuously embedded into Hϑs(R, H(1−ϑ)r).

Proof For u ∈ Hr,s(R), Lemma 3.2 yields

‖u‖2
Hϑs(R,H(1−ϑ)r)

≤ C

∫

R

∫

R

(1 + τ2)ϑs(1 + k2)(1−ϑ)r|Ftxu(τ, k)|2 dτ dk.

By Young’s inequality (1 + τ2)ϑs(1 + k2)(1−ϑ)r ≤ ϑ(1 + τ2)s + (1 − ϑ)(1 + k2)r we obtain
‖u‖2

Hϑs(R,H(1−ϑ)r)
≤ C‖u‖2

Hr,s(R). �

Later we need estimates of the H
r
s
(s−1/2)-norm for fixed times. Lemma 3.10 particularly

yields that Hr,s(R) is continuously embedded into H1/2(R, H
r
s
(s−1/2)), but by standard Sobolev

embedding theory this does not allow any conclusion for fixed t. However, by interpolation theory
the following trace theorem can be shown.

Lemma 3.11 Let u ∈ Hr,s((t0, t1)), r ≥ 0, s > 1/2. Then for all integers j < s− 1
2 there exists

the trace

∂j
t u(t0, ·) ∈ Hpj (R), pj =

r

s

(

s− j − 1

2

)

.

The mappings Hr,s((t0, t1)) → Hpj (R) : u 7→ ∂j
t u are continuous. Furthermore, the mapping

u 7→ (∂j
t u(t0, ·))0≤j<s− 1

2
from Hr,s((t0, t1)) into

∏

0≤j<s− 1
2
Hpj is surjective.

A proof can be found in [LM72b, Theorem 4.2.1]. For the surjectivity of the trace operator see
[LM72a, Theorem 4.4.2] with X = Hr, Y = L2. Since the trace operator is continuous, we have
the following corollary, see [LM72a, Theorem 1.3.1] and the proof of [LM72a, Theorem 1.4.2].
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Corollary 3.12 Let u ∈ Hr,s((t0, t1)), r ≥ 0, s > 1/2. Then there exists a C > 0 such that

sup
t∈[t0,t1]

‖u(t, ·)‖Hr−1 < C‖u‖Hr,s((t0,t1)).

It turns out, that the IBL is a second-order parabolic evolution sytem, and therefore the spaces
Hr,s always occur with s = r/2 and usually consist of functions defined only for t ≥ 0. Hence we
set

Definition 3.13 Kr((t0, t1)) := Hr, r
2 ((t0, t1)), and

Kr
0((t0, t1)) := {u ∈ Kr((t0, t1)) | ‖∂j

t u(t0, ·)‖L2 = 0 for j ∈ N0 with 2j < r − 1}.

Thus we have Kr
0((0,∞)) = H

r
2
0 ((0,∞), L2) ∩ L2((0,∞), Hr) and with the help of Lemma 3.6

and Lemma 3.8 we can characterize Kr
0((0,∞)) in Fourier space.

Theorem 3.14 Let r ≥ 0, (r + 1)/2 /∈ N. Then u ∈ Kr
0((0,∞)) if and only if the Laplace

transform Lu fulfills

(i) Lu(τ, x) is holomorphic in the half-plane Re τ > 0 for almost every x ∈ R.

(ii) sup
τ1>0

∫

R

|Lu(τ1 + iτ2, x)|2 dτ2 <∞ for almost every x ∈ R.

(iii)

(∫

R

(‖Lu(iτ, ·)‖2
Hr + |τ |r‖Lu(iτ, ·)‖2

L2) dτ

) 1
2

<∞.

The left-hand side in (iii) defines a norm equivalent to ‖ · ‖Kr((0,∞)).

Proof Due to Lemma 3.6 and Lemma 3.8 it remains to show the equivalence of norms. Since
r/2 is not a half integer we have

‖u‖2
Kr((0,∞)) ∼

∫

R

‖Lu(iτ, ·)‖2
Hr dτ +

∫

R

(1 + τ2)
r
2 ‖Lu(iτ, ·)‖2

L2 dτ.

Now using (1 + τ2)
r
2 ∼ 1 + |τ |r yields the result. �

Next, we collect some useful properties of the Kr-spaces, concerning derivatives and nonlinear
interaction.

Lemma 3.15 Let r>0 and l, j∈N with l+2j ≤ r. If u∈Kr((t0, t1)) then ∂l
x∂

j
t u ∈ Kr−l−2j((t0, t1)).

Proof Applying Lemma 3.10 with ϑ = 1 − l
r and ϑ = 2j

r , respectively, we obtain u ∈
H

r−l
2 ((t0, t1), H

l)∩Hj((t0, t1), H
r−2j). By Lemma 3.3 it follows that ∂l

x∂
j
t u ∈ H

r−l
2

−j((t0, t1), L
2)∩

L2((t0, t1), H
r−l−2j). �

Lemma 3.16 Let r > 3/2, r ≥ s ≥ 0. If u ∈ Kr((t0, t1)) and v ∈ Ks((t0, t1)), then uv ∈
Ks((t0, t1)) and there exists a C > 0 such that

‖uv‖Ks((t0,t1)) ≤ C‖u‖Kr((t0,t1))‖v‖Ks((t0,t1)). (3.4)

If u ∈ Kr
0 or v ∈ Ks

0, then uv ∈ Ks
0.

A proof of (3.4) can be found in [Bea84, Lemma 5.1] while the second statement is obvious.
We need function spaces with weights in the spatial variable, namely Hs((t0, t1), H

r(n)) where
Hr(n) is the weighted Sobolev space introduced in (1.4), i.e., ‖u‖Hr(n) = ‖̺nu‖Hr with ̺(x) :=

(1 + x2)
1
2 . A natural description equivalent to Definition 3.1 is given by the following obvious

lemma.
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Lemma 3.17 Let s, r ≥ 0, n ∈ N. Then u ∈ Hs((t0, t1), H
r(n)) ⇔ ̺nu ∈ Hs((t0, t1), H

r).

Definition 3.18 For r, s, n ≥ 0 let Hr,s((t0, t1), n) := L2((t0, t1), H
r(n)) ∩ Hs((t0, t1), L

2(n)),
Kr((t0, t1), n) := Hr, r

2 ((t0, t1), n).

Remark 3.19 Due to Lemma 3.17, Theorem 3.14 also holds for u ∈ Kr
0((0,∞), n) if we replace

Hr by Hr(n) and L2 by L2(n) in property (iii). The same is true for Lemmas 3.5, 3.7, 3.11,
3.15, 3.16 if we replace the respective Sobolev spaces by weighted ones.

3.2 Local existence

Taking into account that the space regularity of h should be taken higher than that of q, we
introduce the vector-valued function spaces

Hr(m) := Hr(m) ×Hr−1(m), Kr+1((t0, t1),m) := Kr+1((t0, t1),m) ×Kr((t0, t1),m). (3.5)

To prove that spectrally stable stationary solutions of the IBL are nonlinearly stable we first need
local existence in a given time interval (t0, t1).

Theorem 3.20 (Local existence) Let 3 < r < 4 and fix some t0 < t1. Then there exist
C1, C2 > 0 such that the following holds. If (h0, q0)

⊤ ∈ Hr(2) = Hr(2) ×Hr−1(2) satisfies

ρ := ‖(h0, q0)
⊤‖Hr(2) ≤ C1,

then there exists a unique local solution (h, q)⊤ ∈ Kr+1((t0, t1), 2) = Kr+1((t0, t1), 2)×Kr((t0, t1), 2)
of the IBL (2.18) with

‖(h, q)⊤‖Kr+1((t0,t1),2) ≤ C2ρ (3.6)

and (h, q)⊤|t=t0 = (h0, q0)
⊤. Moreover, for t0 < t̃0 < t1and any m ∈ N we have (h, q)⊤ ∈

Kr+m((t̃0, t1), 2), and there exists C3 = C3(t̃0,m) such that

‖(h, q)⊤‖Kr+m((t̃0,t1),2) ≤ C3ρ. (3.7)

To prove Theorem 3.20 we need to apply maximal regularity results based on Laplace transform.
First we solve the linearized problem with inhomogeneous right-hand side and zero initial condi-
tion. This requires resolvent estimates for the linear operator A. Due to the periodic coefficients,
these cannot be shown by applying Fourier transform in space. Instead, we have to test in x-
space with appropriate test functions. This is carried out in detail in §3.3. The higher regularity
in the time interval [t̃0, t1] then follows from a bootstrapping argument in §3.4, i.e., since (3.6)
yields (h(t̃), q(t̃))⊤ ∈ Hr+1 for almost every t̃ ∈ (t0, t1), we can start again at t = t̃. This gives
(h, q)⊤ ∈ Kr+2, and iterating this argument shows (3.7).

3.3 Resolvent estimates

The resolvent equation is obtained by Laplace transform w.r.t. time of the linear inhomogeneous
equation (∂t − A(∂x))u = g and reads (λ − A(∂x))u = g with g ∈ Hr−1 × Hr−2 and the linear
operator A from (2.17), i.e.,

λ

(

h
q

)

−
(

0 −∂x

a10 + a11∂x + a12∂
2
x + a13∂

3
x a20 + a21∂x + a22∂

2
x

)(

h
q

)

=

(

g1
g2

)

. (3.8)
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Theorem 3.21 Let r ≥ 2. Then there exist C, a > 0 such that for all g = (g1, g2)
⊤ ∈ Hr−1 ×

Hr−2 and all λ with Reλ ≥ a the resolvent equation (λ−A(∂x))(h, q)⊤ = g has a unique solution,
which moreover satisfies

‖h‖Hr+1 + |λ|(r+1)/2‖h‖L2 + ‖q‖Hr + |λ|r/2‖q‖L2

≤ C
(

‖g1‖Hr−1 + |λ|(r−1)/2‖g1‖L2 + ‖g2‖Hr−2 + |λ|(r−2)/2‖g2‖L2

)

. (3.9)

For the proof we separately give estimates for q and h, and moreover first restrict to r = 2.

Estimates for q. From the first equation in (3.8) we obtain

h =
−∂xq + g1

λ
, (3.10)

and plugging this into the second equation yields

(λ+ a0)q + a1∂xq + a2∂
2
xq + a3∂

3
xq + a4∂

4
xq = g2 +

1

λ
(a10 + a11∂x + a12∂

2
x + a13∂

3
x)g1. (3.11)

The γ-periodic coefficients are given by

a0 = −a20, a1 = −a21 +
a10

λ
, a2 = −a22 +

a11

λ
, a3 =

a12

λ
, a4 =

a13

λ
. (3.12)

In order to solve (3.11) we define on H2 ×H2 the bilinear form

b(q, ϕ) :=

∫

R

(

(λ+ a0)qϕ̄+ a1∂xq ϕ̄+ a2∂
2
xq ϕ̄− ∂xa3 ∂

2
xq ϕ̄− a3∂

2
xq ∂xϕ̄

+∂2
xa4 ∂

2
xq ϕ̄+ 2∂xa4 ∂

2
xq ∂xϕ̄+ a4∂

2
xq ∂

2
xϕ̄
)

dx.

Using integration by parts, q ∈ H2 is a weak solution of (3.11) if and only if

b(q, ϕ) =

∫

R

(

g2 +
1

λ
(a10 + a11∂x + a12∂

2
x + a13∂

3
x)g1

)

ϕ̄ dx (3.13)

for all ϕ ∈ H2. To prove the existence of a unique weak solution we apply the Lemma of Lax-
Milgram. Therefore, we have to show that the bilinear form b is continuous and elliptic. Since
all coefficients of b are in L∞, the continuity is obvious. In order to verify the ellipticity of b we
have to estimate b(q, q), which reads

b(q, q) =

∫

R

(λ+ a0)|q|2 dx+

∫

R

a1∂xq q̄ dx−
∫

R

a2|∂xq|2 dx−
∫

R

∂xa2 ∂xq q̄ dx

−
∫

R

∂xa3 ∂
2
xq q̄ dx−

∫

R

a3∂
2
xq ∂xq̄ dx+

∫

R

∂2
xa4 ∂

2
xq q̄ dx

+ 2

∫

R

∂xa4 ∂
2
xq ∂xq̄ dx+

∫

R

a4|∂2
xq|2 dx

=

∫

R

(λ+ a0)|q|2 dx−
∫

R

a2|∂xq|2 dx+

∫

R

a4|∂2
xq|2 dx (3.14)

+

∫

R

(a1−∂xa2) ∂xq q̄ dx+

∫

R

(

∂2
xa4−∂xa3

)

∂2
xq q̄ dx+

∫

R

(2∂xa4−a3) ∂
2
xq ∂xq̄ dx.

We begin with estimating the real part of the first three integrals on the right-hand side of (3.14),
related to the H2-norm of q, and which for Reλ large enough also absorb the mixed terms. For
Reλ ≥ ‖a20‖L∞ we have

Re

∫

R

(λ+ a0)|q|2 dx ≥ (Reλ− ‖a20‖L∞)‖q‖2
L2 . (3.15)
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Since Re(1/λ) = Reλ/|λ|2 we obtain from (2.8) −Re a2 ≥ 9
2R − Re λ

|λ|2 ‖a11‖L∞ . For Reλ ≥
(4R/9)‖a11‖L∞ the second integral in (3.14) can be estimated by

−Re

∫

R

a2|∂xq|2 dx ≥ 9

4R
‖∂xq‖2

L2 . (3.16)

By (2.8) we get a4 = a13
λ = 5W

6λ
fs

1+κfs
, and since κ is small we have C1 := minx∈[0,γ] a13(x) > 0,

and therefore Re a4 ≥ C1 Reλ/|λ|2. Thus,

Re

∫

R

a4|∂2
xq|2 dx ≥ C1

Reλ

|λ|2 ‖∂2
xq‖2

L2 . (3.17)

Next, we estimate the mixed terms in (3.14) by applying Young’s inequality ab ≤ ǫ
2a

2 + 1
2ǫb

2 for
ǫ > 0. Looking at (3.15)-(3.17) we find that in case |λ| → ∞ the inequalities for ‖q‖2

L2 , ‖∂xq‖2
L2 ,

and ‖∂2
xq‖2

L2 get worse the more derivatives we have. Thus, we have to choose ǫ with care such
that the mixed terms can be absorbed by (3.15)-(3.17) without losing the positive coefficients.
Therefore, we start with the integral containing the highest derivatives, i.e.,

∣

∣

∣

∣

∫

R

(2∂xa4 − a3) ∂
2
xq ∂xq̄ dx

∣

∣

∣

∣

≤ 1

2ǫ

∫

R

|2∂xa4 − a3|2|∂2
xq|2 dx+

ǫ

2

∫

R

|∂xq|2 dx.

Choosing ǫ = 9/(8R), we obtain

1

2ǫ
|2∂xa4 − a3|2 ≤ 1

|λ|2
4R

9
‖2∂xa13 − a12‖2

L∞ =: C2
1

|λ|2 ,

and thus,
∣

∣

∣

∣

∫

R

(2∂xa4 − a3) ∂
2
xq ∂xq̄ dx

∣

∣

∣

∣

≤ C2
1

|λ|2 ‖∂
2
xq‖2

L2 +
9

16R
‖∂xq‖2

L2 ≤ C1
Reλ

4|λ|2 ‖∂
2
xq‖2

L2 +
9

16R
‖∂xq‖2

L2

(3.18)

for Reλ ≥ 4C2/C1. Analogously, for Reλ ≥ ‖∂2
xa13 − ∂xa12‖2

L∞/(C1‖a20‖L∞) =: C3/C1 we get
∣

∣

∣

∣

∫

R

(

∂2
xa4 − ∂xa3

)

∂2
xq q̄ dx

∣

∣

∣

∣

≤ C1
Reλ

4|λ|2 ‖∂
2
xq‖2

L2 + ‖a20‖L∞‖q‖2
L2 . (3.19)

Finally, for the fourth integral in (3.14) we use the inequality

‖a1 − ∂xa2‖L∞ ≤ ‖ − a21 + ∂xa22‖L∞ +
1

|λ|‖a10 − ∂xa11‖L∞

≤ ‖ − a21 + ∂xa22‖L∞ +
1

‖a20‖L∞

‖a10 − ∂xa11‖L∞ =:

√

9

4R
C4

for Reλ ≥ ‖a20‖L∞ . Using again ǫ = 9/(8R) in Young’s inequality, we get
∣

∣

∣

∣

∫

R

(a1−∂xa2) ∂xq q̄ dx

∣

∣

∣

∣

≤ 1

2ǫ
‖a1−∂xa2‖2

L∞‖q‖2
L2 +

ǫ

2
‖∂xq‖2

L2 ≤ C4‖q‖2
L2 +

9

16R
‖∂xq‖2

L2 . (3.20)

Altogether, we have

Re b(q, q) ≥ (Reλ− 2‖a20‖L∞ − C4)‖q‖2
L2 +

9

8R
‖∂xq‖2

L2 +
C1 Reλ

2|λ|2 ‖∂2
xq‖2

L2 (3.21)

for all λ with

Reλ ≥ max

{

2‖a20‖L∞ + C4,
4R

9
‖a11‖L∞ ,

4C2

C1
,
C3

C1

}

.
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This shows the ellipticity of b, i.e., there exist a,C > 0 such that for all λ with Reλ ≥ a we have

C Re b(q, q) ≥ (Reλ− a/2)‖q‖2
L2 + ‖∂xq‖2

L2 +
Reλ

|λ|2 ‖∂2
xq‖2

L2 .

Thus, by the Lax-Milgram Lemma, there exists a unique weak solution q ∈ H2 of (3.11) if
Reλ ≥ a. Furthermore, from the weak formulation (3.13) we obtain the estimate

(Reλ− a/2)‖q‖2
L2 + ‖∂xq‖2

L2 +
Reλ

|λ|2 ‖∂2
xq‖2

L2 ≤ C‖g2‖L2‖q‖L2 + C
Reλ

|λ|2 ‖g1‖H1‖q‖H2 .

In order to estimate the H2-norm of q, we can use Reλ−a/2 ≥ a/2. Thus, the coefficient in front
of ‖q‖2

L2 can be estimated from below independently of λ. However, the coefficient of ‖∂2
xq‖2

L2

converges to zero for |λ| → ∞. Therefore, it is necessary to test the resolvent equation (3.11) not
only with q itself, but also with ∂2

xq. However, since g1 is only in H1, on the right-hand side of
the weak formulation (3.13) there occurs the integral

∫

R
∂xg1 ∂

4
xq̄ dx, for instance. This can only

be estimated with the help of ‖q‖H4 , which is not helpful for estimating ‖q‖H2 . Therefore, we
split q into q = q0 + q̃, where the two components are supposed to fulfill

(λ+a0)q0 + (a1∂x+a2∂
2
x+a3∂

3
x+a4∂

4
x)q0 =

1

λ
(a10+a11∂x+a12∂

2
x+a13∂

3
x)g1, (3.22)

(λ+a0)q̃ + (a1∂x+a2∂
2
x+a3∂

3
x+a4∂

4
x)q̃ = g2. (3.23)

Since the right-hand side of (3.22) has a leading factor 1/λ, it is sufficient to test with q0. In
(3.23), the right-hand side is in L2, thus it can be tested with ∂2

xq̃, which leads to an estimate of
‖q̃‖H2 independent of λ.

We begin with estimating q0. By the considerations above we find a unique weak solution q0
of (3.22) with

(Reλ− a/2)‖q0‖2
L2 + ‖∂xq0‖2

L2 +
Reλ

|λ|2 ‖∂2
xq0‖2

L2 ≤ C
Reλ

|λ|2 ‖g1‖H1‖q0‖H2

for Reλ ≥ a. Since (Reλ− a/2)/Reλ ≥ 1/2 and since |λ|2/Reλ ≥ |λ|, we obtain

|λ|2‖q0‖2
L2 + |λ|‖∂xq0‖2

L2 + ‖∂2
xq0‖2

L2 ≤ C‖g1‖H1‖q0‖H2 . (3.24)

As |λ| ≥ a is bounded from below, it follows that

‖q0‖H2 ≤ C‖g1‖H1 . (3.25)

In particular, together with (3.24) this leads to |λ|2‖q0‖2
L2 ≤ C‖g1‖H1‖q0‖H2 ≤ C‖g1‖2

H1 , i.e.,

|λ|‖q0‖L2 ≤ C‖g1‖H1 . (3.26)

Next, we look for the corresponding estimates for q̃. Exactly as for q0, by testing (3.23) with q̃
and taking the real part we obtain

(Reλ− a/2)‖q̃‖2
L2 + ‖∂xq̃‖2

L2 +
Reλ

|λ|2 ‖∂2
xq̃‖2

L2 ≤ C‖g2‖L2‖q̃‖L2 (3.27)

for Reλ ≥ a. Testing (3.23) with ∂2
xq̃, i.e., b(q̃, ∂2

xq̃) =
∫

R
g2 ∂

2
x
¯̃q dx, and integration by parts leads

to

−b(q̃, ∂2
xq̃) =

∫

R

(λ+ a0)|∂xq̃|2 dx+

∫

R

(−a2+∂xa3−∂2
xa4)|∂2

xq̃|2 dx+

∫

R

a4|∂3
xq̃|2 dx

+

∫

R

∂xa0 q̃ ∂x
¯̃q dx−

∫

R

a1∂xq̃ ∂
2
x
¯̃q dx+

∫

R

(a3 − ∂xa4)∂
2
xq̃ ∂

3
x
¯̃q dx. (3.28)
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Since both a3 and a4 have a leading 1/λ and since −a2 > 0 is bounded from below, (3.28) can
be estimated similarly to (3.14) by applying Young’s inequality. An exception is the integral
∫

R
∂xa0 q̃ ∂x

¯̃q dx, which cannot be absorbed by the first three integrals, and therefore

(Reλ− a/2)‖∂xq̃‖2
L2 + ‖∂2

xq̃‖2
L2 +

Reλ

|λ|2 ‖∂3
xq̃‖2

L2

≤ C‖g2‖L2‖∂2
xq̃‖L2 + C

∫

R

(|q̃|2 + |∂xq̃|2) dx ≤ C‖g2‖L2‖∂2
xq̃‖L2 + C‖g2‖L2‖q̃‖L2 . (3.29)

Here, we used (3.27) in the second estimate. Combining (3.27) and (3.29) yields the resolvent
estimate

‖q̃‖H2 ≤ C‖g2‖L2 (3.30)

for Reλ ≥ a.

Remark 3.22 In order to test (3.23) with ∂2
xq̃ we actually have to test with smooth functions

which are dense in H2 and then extend the resulting resolvent estimates continuously to the
respective Sobolev spaces.

Finally, in order to estimate |λ|‖q̃‖L2 , we also have to estimate the imaginary part of b(q̃, q̃).
Using Im(1/λ) = − Imλ/|λ|2 we obtain from (3.14) and (3.23)

∣

∣

∣

∣

∫

R

g2 ¯̃q dx

∣

∣

∣

∣

≥ Im b(q̃, q̃)

≥ (Imλ− ‖a20‖L∞)‖q̃‖2
L2 +

Imλ

|λ|2
∫

R

a11|∂xq̃|2 dx− Imλ

|λ|2
∫

R

a13|∂2
xq̃|2 dx

+ Im

∫

R

(a1 − ∂xa2) ∂xq̃ ¯̃q dx+ Im

∫

R

1

λ

(

∂2
xa13 − ∂xa12

)

∂2
xq̃ ¯̃q dx

+ Im

∫

R

1

λ
(2∂xa13 − a12) ∂

2
xq̃ ∂x

¯̃q dx. (3.31)

This estimate is less powerful than the one for the real part, since a11 and a13 have an undefined
or even the wrong sign. However, since the coefficients a11, a12, and a13 have a leading Im(1/λ),
it allows for Imλ ≥ a the inequality

(Imλ− a/2)‖q̃‖2
L2

≤ C
1

|λ|(‖∂xq̃‖2
L2 + ‖∂2

xq̃‖2
L2) + ‖a1 − ∂xa2‖L∞

∫

R

|∂xq̃||q̃|dx+

∣

∣

∣

∣

∫

R

g2 ¯̃q dx

∣

∣

∣

∣

≤ C
1

|λ|(‖∂xq̃‖2
L2 + ‖∂2

xq̃‖2
L2) +

Imλ

8

∫

R

|q̃|2 dx+
2

Imλ
‖a1 − ∂xa2‖2

L∞

∫

R

|∂xq̃|2 dx

+
Imλ

8

∫

R

|q̃|2 dx+
2

Imλ

∫

R

|g2|2 dx

≤ C
1

Imλ
(‖∂xq̃‖2

L2 + ‖∂2
xq̃‖2

L2) +
Imλ

4
‖q̃‖2

L2 +
2

Imλ
‖g2‖2

L2 ,

where we used Young’s inequality twice. Thus,
(

3

4
Imλ− a/2

)

‖q̃‖2
L2 ≤ C

1

Imλ
(‖∂xq̃‖2

L2 + ‖∂2
xq̃‖2

L2) +
2

Imλ
‖g2‖2

L2 .

Since (3/4) Imλ = ((3/4) Imλ − a/2) + a/2 ≤ ((3/4) Imλ − a/2) + Imλ/2, we have Imλ ≤
4((3/4) Imλ− a/2), and as we have already estimated ‖q̃‖H2 in (3.30), we get

Imλ ‖q̃‖2
L2 ≤ C

1

Imλ
(‖∂xq̃‖2

L2 + ‖∂2
xq̃‖2

L2 + ‖g2‖2
L2) ≤ C

1

Imλ
‖g2‖2

L2 .
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Considering − Im b(q̃, q̃) in (3.31) gives the same estimate for − Imλ instead of Imλ. Thus, for
| Imλ| > a we have

| Imλ| ‖q̃‖L2 ≤ C‖g2‖L2 .

By (3.27), the same estimate is true if we replace | Imλ| by Reλ, since Reλ ≤ (Reλ−a/2)+Reλ/2,
which implies Reλ ≤ 2(Reλ− a/2). Altogether, for Reλ > a we obtain

|λ|‖q̃‖L2 ≤ C‖g2‖L2 . (3.32)

Combining (3.25), (3.26), (3.30), and (3.32) yields for q = q0 + q̃ the resolvent estimate

|λ|‖q‖L2 + ‖q‖H2 ≤ C (‖g1‖H1 + ‖g2‖L2) . (3.33)

Estimates for h. It remains to estimate the L2- and the H3-norm of h. Identity (3.10) leads
to

‖h‖L2 ≤ 1

|λ| (‖∂xq‖L2 + ‖g1‖L2) , ‖∂xh‖L2 ≤ 1

|λ|
(

‖∂2
xq‖L2 + ‖∂xg1‖L2

)

, (3.34)

thus, by applying (3.33) we get

‖h‖L2 + ‖∂xh‖L2 ≤ C (‖g1‖H1 + ‖g2‖L2) . (3.35)

From the second equation in the resolvent equation (3.8) we obtain

a12∂
2
xh+ a13∂

3
xh

= −g2 + (λ−a20)q − a21∂xq − a22∂
2
xq − a10h− a11∂xh

= −g2 + (λ−a20)q − a21∂xq − a22∂
2
xq +

1

λ
a10(∂xq − g1) +

1

λ
a11(∂

2
xq − ∂xg1). (3.36)

Since all coefficients aij are real, testing (3.36) with (−∂2
xh+ ∂3

xh) yields for the left-hand side

Re

∫

R

(a12∂
2
xh+ a13∂

3
xh)(−∂2

xh̄+ ∂3
xh̄) dx

= −
∫

R

a12|∂2
xh|2 dx+

∫

R

a13|∂3
xh|2 dx+ Re

∫

R

a12∂
2
xh∂

3
xh̄ dx− Re

∫

R

a13∂
3
xh∂

2
xh̄dx

= −
∫

R

a12|∂2
xh|2 dx+

∫

R

a13|∂3
xh|2 dx+ Re

∫

R

(a12 − a13)∂
2
xh∂

3
xh̄ dx. (3.37)

Integration by parts leads to

∫

R

(a12 − a13)∂
2
xh∂

3
xh̄dx = −

∫

R

(∂xa12 − ∂xa13)|∂2
xh|2 dx−

∫

R

(a12 − a13)∂
3
xh∂

2
xh̄ dx,

and thus,

Re

∫

R

(a12 − a13)∂
2
xh∂

3
xh̄ dx = −1

2

∫

R

(∂xa12 − ∂xa13)|∂2
xh|2 dx.

Due to the definitions of a12, a13 in (2.17), there exist positive constants C1, C̃1 with minx∈[0,γ] a13 =

C1, minx∈[0,γ](−a12) = 2C̃1. Hence, (3.37) can be estimated by

Re

∫

R

(a12∂
2
xh+ a13∂

3
xh)(−∂2

xh̄+ ∂3
xh̄) dx

≥ 2C̃1‖∂2
xh‖2

L2 + C1‖∂3
xh‖2

L2 −
1

2
(‖∂xa12‖L∞ + ‖∂xa13‖L∞) ‖∂2

xh‖2
L2 . (3.38)
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On closer inspection of (2.17) we find that due to the additional x-derivative, the coefficients
∂xa12, ∂xa13 are of the order of O(ε), where ε is proportional to the bottom waviness. Hence,
without loss of generality we may assume that 1

2 (‖∂xa12‖L∞ + ‖∂xa13‖L∞) < C̃1. Then (3.38)
reads

Re

∫

R

(a12∂
2
xh+ a13∂

3
xh)(−∂2

xh̄+ ∂3
xh̄) dx ≥ C̃1‖∂2

xh‖2
L2 + C1‖∂3

xh‖2
L2 . (3.39)

Thus, testing (3.36) with (−∂2
xh+ ∂3

xh) yields

C̃1‖∂2
xh‖2

L2 + C1‖∂3
xh‖2

L2

≤
∣

∣

∣

∫

R

(

−g2−
1

λ
a10g1−

1

λ
a11∂xg1+(λ−a20)q+

(

1

λ
a10−a21

)

∂xq+

(

1

λ
a11−a22

)

∂2
xq

)

×

× (−∂2
xh̄+ ∂3

xh̄) dx
∣

∣

∣

≤ C (‖g2‖L2 + ‖g1‖H1 + |λ|‖q‖L2 + ‖q‖H2)
(

‖∂2
xh‖L2 + ‖∂3

xh‖L2

)

,

and together with (3.33) we obtain ‖∂2
xh‖L2 +‖∂3

xh‖L2 ≤ C (‖g1‖H1 + ‖g2‖L2) . Combination with
(3.35) yields

‖h‖H3 ≤ C (‖g1‖H1 + ‖g2‖L2) , (3.40)

and (3.34) finally implies

|λ|3/2‖h‖L2 ≤ C|λ|1/2(‖∂xq‖L2 + ‖g1‖L2). (3.41)

Since integration by parts gives |λ|‖∂xq‖2
L2 = −|λ|

∫

R
q ∂2

xq̄ dx ≤ 1
2 |λ|2‖q‖2

L2 + 1
2‖∂2

xq‖2
L2 , we have

|λ|1/2‖∂xq‖L2 ≤ C(|λ|‖q‖L2 + ‖∂2
xq‖L2), and (3.41) reads

|λ|3/2‖h‖L2 ≤ C
(

|λ|1/2‖g1‖L2 + ‖g1‖H1 + ‖g2‖L2

)

. (3.42)

This proves Theorem 3.21 for r = 2. For r ≥ 3, r ∈ N, the proof works the same way as above by
testing with the respective derivatives of h, q. For non-integer values of r, the resolvent estimate
follows by interpolation theory, see [LM72a], for instance. �.

Analytic semigroup. With few additional expenses the proof of Theorem 3.21 allows to show
that the linear operator A is sectorial, i.e., there exists a ϑ ∈ (0, π/2) such that a slightly modified
resolvent estimate can be extended to the sector Sa,ϑ := {λ | 0 ≤ | arg(a−λ)| ≤ ϑ+π/2} covering
the half-plane Reλ ≥ a. Setting X := H1 = H1×L2, the domain of A is D(A) = H3 = H3×H2 ⊂
X. Moreover, let g ∈ D(A) and Reλ′ ≥ a. By Theorem 3.21 there exists a unique solution of the
resolvent equation (λ′ −A)u = g, and from (3.33), (3.34) it follows the estimate

‖(λ′ −A)−1g‖X ≤ M

|λ′|‖g‖X (3.43)

for a M > 0 independent of λ′ and g. It remains to extend this estimate to the sector Sa,ϑ by
a perturbation argument, which we recall for completeness in the following. Let λ ∈ Sa,ϑ with
Reλ < a, where ϑ is specified later. Setting λ′ := a+ i(Imλ) yields

λ−A = λ′ −A+ λ− λ′ = (λ′ −A)
(

Id+(λ′ −A)−1(λ− λ′)
)

. (3.44)

Choosing ϑ ∈ (0, π/2) small enough we can always ensure that

|λ− λ′|
|λ′| ≤ |λ− λ′|

| Imλ| ≤ tanϑ <
1

M
.
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Hence,

‖(λ′ −A)−1(λ− λ′)‖L (X,X) ≤
M

|λ′| |λ− λ′| < 1,

and the Neumann series
(

Id+(λ′ −A)−1(λ− λ′)
)−1

=
∑∞

j=0

(

−(λ′ −A)−1(λ− λ′)
)j

converges
in L (X,X). By (3.44), there exists the inverse

(λ−A)−1 =
(

Id+(λ′ −A)−1(λ− λ′)
)−1

(λ′ −A)−1 (3.45)

with

‖(λ−A)−1g‖X ≤ C‖(λ′ −A)−1g‖X ≤ C
M

|λ′|‖g‖X ≤ C
M

|λ|‖g‖X . (3.46)

Lemma 3.23 Let X = H1 ×L2. Then the operator A : D(A) → X from (2.17) is sectorial, i.e.,
there exist M,a > 0 and ϑ ∈ (0, π/2) such that the sector Sa,ϑ = {λ | 0 ≤ | arg(a−λ)| ≤ ϑ+π/2}
is part of the resolvent set and

‖(λ−A)−1g‖X ≤ M

|λ|‖g‖X

for all λ ∈ Sa,ϑ and g ∈ X.

Thus, the linear operator A generates an analytic semigroup, see [Hen81], for instance.

Weighted Sobolev spaces. Since we will need some decay rate in x, which corresponds to
some regularity with respect to the wave number in Bloch space, we transfer the result of Theorem
3.21 to the case of weighted Sobolev spaces.

Theorem 3.24 (Resolvent estimate in weighted Sobolev spaces) Theorem 3.21 also holds
for the weighted spaces Hr(2), i.e., (3.9) becomes

‖h‖Hr+1(2) + |λ|(r+1)/2‖h‖L2(2) + ‖q‖Hr(2) + |λ|r/2‖q‖L2(2)

≤ C
(

‖g1‖Hr−1(2) + |λ|(r−1)/2‖g1‖L2(2) + ‖g2‖Hr−2(2) + |λ|(r−2)/2‖g2‖L2(2)

)

.

Proof In contrast to the proof of (3.9), we have to multiply the test functions by ̺(x) = (1+x2)1/2

before testing. Differentiating the weight leads to additional terms in the estimates of the weak
formulation. However, since derivatives of ̺ are of lower order, the additional mixed terms can
be controlled by the terms in which ̺ occurs without a derivative if we choose a and C larger
than in Theorem 3.21. Details for a related problem can be found in [Uec07, Appendix A.2], for
instance. �

3.4 Maximal regularity

With the resolvent estimate from Theorem 3.24 we are now able to prove Theorem 3.20 concerning
local existence. For this purpose we fix some times t0 < t1 and denote again by A the linear
operator from (2.17). Furthermore, let r > 2 be not an integer such that both (r + 1)/2 and r/2
are not half integers in order to apply Theorem 3.14 and use Laplace transform in time.

The linear inhomogeneous problem. We begin with the linear inhomogeneous equation

Mu := (∂t −A)u = g, u
∣

∣

t=t0
= 0, (3.47)
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where g ∈ Kr−1
0 ((t0, t1), 2) := Kr−1

0 ((t0, t1), 2) × Kr−2
0 ((t0, t1), 2). Due to Lemma 3.2 we can

identify g with its extension to [t0,∞). Thus, without loss of generality, we can write g ∈
Kr−1

0 ((t0,∞), 2). For a σ1 > 0 chosen below we set

U(t, x) := e−σ1tu(t+ t0, x), G(t, x) := e−σ1tg(t+ t0, x). (3.48)

Then G ∈ Kr−1
0 ((0,∞), 2), and (3.47) is equivalent to solving

(∂t + σ1 −A)U = G, U
∣

∣

t=0
= 0. (3.49)

Since U
∣

∣

t=0
= 0, the Laplace transform of U satisfies

L(∂tv)(τ) =
1

2π

∫ ∞

0
∂tv(t)e

−tτ dt = τLv(τ),

and (3.49) becomes
(τ + σ1 −A)LU(τ, x) = LG(τ, x). (3.50)

From Lemma 3.7 and Remark 3.19 it follows that LG ∈ Hr−1(2) × Hr−2(2) for almost every
τ with Re τ ≥ 0. Thus, according to Theorem 3.24, for almost every τ with Re τ + σ1 ≥ a
there exists a unique solution of the resolvent equation (3.50). Choosing σ1 ≥ a and setting
U = (U1, U2)

⊤, G = (G1, G2)
⊤, we achieve the estimate

‖LU1‖Hr+1(2) + |τ |(r+1)/2‖LU1‖L2(2) + ‖LU2‖Hr(2) + |τ |r/2‖LU2‖L2(2)

≤ C
(

‖LG1‖Hr−1(2) + |τ |(r−1)/2‖LG1‖L2(2) + ‖LG2‖Hr−2(2) + |τ |(r−2)/2‖LG2‖L2(2)

)

(3.51)

for almost every τ with Re τ ≥ 0. In order to apply Theorem 3.14, which yields U ∈ Kr+1
0 ((0,∞), 2),

we additionally have to show for j ∈ {1, 2} that

(i) τ 7→ LUj(τ, x) is holomorphic in the half-plane Re τ > 0 for almost every x ∈ R,

(ii) sup
τ1>0

∫

R

|LUj(τ1 + iτ2, x)|2 dτ2 <∞ for almost every x ∈ R.

Property (ii) immediately follows from the corresponding estimate for LG, i.e.,

sup
τ1>0

∫

R

(

|LU1(τ1 + iτ2, x)|2 + |LU2(τ1 + iτ2, x)|2
)

dτ2

≤ C sup
τ1>0

∫

R

(

‖LU1(τ1 + iτ2, ·)‖2
H2(2) + ‖LU2(τ1 + iτ2, ·)‖2

H2(2)

)

dτ2

≤ C sup
τ1>0

∫

R

(

‖LG1(τ1 + iτ2, ·)‖2
L2(2) + ‖LG2(τ1 + iτ2, ·)‖2

L2(2)

)

dτ2 <∞

due to Lemma 3.7. In order to show that LU is holomorphic, we set τ = τr+iτi and LU = Ur+iUi,
thus the resolvent equation (3.50) reads

(τr + σ1 + iτi −A)(Ur + iUi) = LG.

Differentiating with respect to τr and τi and using on the right-hand side that LG is holomorphic,
we obtain

(τr + σ1 + iτi −A) [∂τrUr − ∂τiUi + i (∂τrUi + ∂τiUr)] = 0 (3.52)

for τr > 0. Due to Theorem 3.24, there exists a unique solution of (3.52), given by

∂τrUr − ∂τiUi + i (∂τrUi + ∂τiUr) = 0. (3.53)

Thus, LU fulfills the Cauchy-Riemann differential equations for Re τ > 0. Transferring the results
back to u, g proves the following lemma.
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Lemma 3.25 Let r > 2 be not an integer, and fix some t1 > t0. Then there exists a C > 0 such
that for g ∈ Kr−1

0 ((t0, t1), 2) there exists a unique solution u ∈ Kr+1
0 ((t0, t1), 2) of

Mu = (∂t −A)u = g, u
∣

∣

t=t0
= 0

with ‖u‖Kr+1
0 ((t0,t1),2) ≤ C‖g‖Kr−1

0 ((t0,t1),2).

The nonlinear problem. In order to prove Theorem 3.20 we look for a solution u = (h, q)⊤ ∈
Kr+1((t0, t1), 2) of the nonlinear problem (2.18), i.e.,

∂t

(

h
q

)

= A

(

h
q

)

+N(h, q). (3.54)

As initial condition we take

u
∣

∣

t=t0
= u0 = (h0, q0)

⊤ ∈ Hr(2) = Hr(2) ×Hr−1(2). (3.55)

Since the nonlinearity N contains a third derivative of h, we restrict our calculations to the case
r ≥ 3. According to Lemma 3.11 there exists a function v ∈ Kr+1((t0, t1), 2) with v

∣

∣

t=t0
= u0.

Setting u = v+w the initial value problem (3.54), (3.55) is equivalent to ∂tv+ ∂tw = Av+Aw+
N(v + w) satisfied by w ∈ Kr+1((t0, t1), 2) with homogeneous initial condition, i.e.,

Mw = N(v + w) −Mv, w
∣

∣

t=t0
= 0. (3.56)

In the next step we assume that w ∈ Kr+1
0 ((t0, t1), 2). To invert the operator M on the left-

hand side of (3.56), we have to show that N(v + w) −Mv ∈ Kr−1
0 ((t0, t1), 2). As Lemma 3.25

does not work for integers, we take r > 3 in the following. The highest derivatives occurring in
the nonlinearity N(v + w) are ∂3

xh and ∂xq. Since v, w ∈ Kr+1((t0, t1), 2) = Kr+1((t0, t1), 2) ×
Kr((t0, t1), 2), Lemma 3.15 yields ∂3

xh ∈ Kr−2((t0, t1), 2) and ∂xq ∈ Kr−1((t0, t1), 2). Thus, we
can apply Lemma 3.16 which gives N(v+w) ∈ Kr−1((t0, t1), 2). Due to Lemma 3.15 the same is
true for Mv, hence

N(v + w) −Mv ∈ Kr−1((t0, t1), 2). (3.57)

According to Definition 3.13 it remains to show that

∂j
t (N(v + w) −Mv))

∣

∣

t=t0
= 0 for all j < (r − 2)/2. (3.58)

Restricting the regularity to 3 < r < 4, we have to check (3.58) only for j = 0. Since v ∈
Kr+1((t0, t1), 2) ×Kr((t0, t1), 2), Lemma 3.11 additionally allows to choose ∂j

t v
∣

∣

t=t0
for j < (r −

1)/2 arbitrarily. Hence we set ∂tv
∣

∣

t=t0
= Au0 + N(u0), which yields (N(v + w) −Mv)

∣

∣

t=t0
=

N(u0) − ∂tv
∣

∣

t=t0
+ Au0 = 0, thus, N(v + w) −Mv ∈ Kr−1

0 ((t0, t1), 2) if w ∈ Kr+1
0 ((t0, t1), 2).

Therefore, we can apply Lemma 3.25 and write (3.56) as fixed point equation, namely

w = M−1
0 (N(v + w) −Mv) , (3.59)

where we denote the solution operator of Lemma 3.25 by M−1
0 . The choice of v is not unique, but

by applying a cut-off function in time we can always ensure that ‖v‖Kr+1((t0,t1),2) < C‖u0‖Hr(2)

for a fixed C > 0. Setting ‖u0‖Hr(2) = ǫ2 < 1 and assuming ‖w‖Kr+1((t0,t1),2) ≤ ǫ we obtain

‖M−1
0 (N(v + w) −Mv) ‖Kr+1((t0,t1),2) ≤ C‖N(v + w) −Mv‖Kr−1((t0,t1),2)

≤ C
(

‖w‖2
Kr+1((t0,t1),2) + ‖v‖Kr+1((t0,t1),2)

)

≤ Cǫ2 = C‖u0‖Hr(2) < ǫ (3.60)
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for ǫ > 0 small enough. Therefore, the right-hand side of (3.59) maps a small ball in Kr+1
0 ((t0, t1), 2)

into itself if the initial condition u0 is small enough. For w1 and w2 in this ball, we additionally
have

‖M−1
0 (N(v + w1) −Mv) −M−1

0 (N(v + w2) −Mv) ‖Kr+1((t0,t1),2)

≤ C‖N(v + w1) −N(v + w2)‖Kr−1((t0,t1),2) ≤
1

2
‖w1 − w2‖Kr+1((t0,t1),2), (3.61)

since N is at least quadratic and pure v-terms drop out. Thus, for a sufficiently small initial
condition the right-hand side of (3.59) defines a contraction in Kr+1

0 ((t0, t1), 2), and the contrac-
tion mapping theorem yields the existence of a w ∈ Kr+1

0 ((t0, t1), 2) satisfying (3.56). Since from
(3.60) we get ‖w‖Kr+1((t0,t1),2) ≤ C‖u0‖Hr(2), there exists a solution u = v + w of (3.54), (3.55)
with

‖u‖Kr+1((t0,t1),2) ≤ C‖u0‖Hr(2).

Uniqueness. To show uniqueness of u suppose there are two solutions u1, u2. Then the differ-
ence u1 − u2 fulfills

M(u1 − u2) = N(u1) −N(u2), (u1 − u2)
∣

∣

t=t0
= 0. (3.62)

Since N(u1)
∣

∣

t=t0
= N(u2)

∣

∣

t=t0
, we have N(u1) − N(u2) ∈ Kr−1

0 ((t0, t1), 2). Thus, we can write

u1 − u2 = M−1
0 (N(u1) −N(u2)), and similarly to (3.61) we obtain

‖u1 − u2‖Kr+1((t0,t1),2) ≤ C‖N(u1) −N(u2)‖Kr−1((t0,t1),2) ≤
1

2
‖u1 − u2‖Kr+1((t0,t1),2),

if the initial condition u0 is small enough. Thus, u1 = u2.

Higher regularity. The higher regularity in the time interval t ∈ [t̃0, t1] for t0 < t̃0 < t1 follows
from a bootstrapping argument, which we sketch next. As u ∈ L2((t0, t1),Hr+1(2)), there exists

a t̃ ∈
[

t0+t̃0
2 , t̃0

]

with

‖u(t̃, ·)‖Hr+1(2) ≤
2

t̃0 − t0
‖u‖L2((t0,t̃0),Hr+1(2)),

since otherwise we had

∫ t̃0

t0+t̃0
2

‖u(t̃, ·)‖2
Hr+1(2) dt̃ > ‖u‖2

L2((t0,t̃0),Hr+1(2))
.

Starting again at t = t̃ yields u ∈ Kr+2((t̃, t1), 2) with

‖u‖Kr+2((t̃,t1),2) ≤ C‖u(t̃, ·)‖Hr+1(2) ≤ C‖u‖Kr+1((t0,t1),2) ≤ C‖u0‖Hr(2).

In particular, we have
‖u‖Kr+2((t̃0,t1),2) ≤ C‖u0‖Hr(2). (3.63)

Iterating this procedure for m ∈ N yields ‖u‖Kr+m((t̃0,t1),2) ≤ C‖u0‖Hr(2), and hence the second
assertion in Theorem 3.20.

Remark 3.26 In (3.58) we had to choose r < 4 in order to achieve (N(v + w) − Mv) ∈
Kr−1

0 ((t0, t1), 2), hence it is not obvious why the bootstrapping argument can be applied to initial
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conditions with higher regularity. However, considering the two components of N(v + w) −Mv
separately, condition (3.58) can be substituted by

∂j1
t (∂tv1 + ∂xv2)

∣

∣

t=t0
= 0 for all j1 < (r − 2)/2, (3.64)

∂j2
t (N2(v + w) − ∂tv2 +A2v)

∣

∣

t=t0
= 0 for all j2 < (r − 3)/2, (3.65)

where A2v denotes the second component of Av. According to Lemma 3.11, we can choose the
time derivatives

∂j1
t v1

∣

∣

t=t0
, ∂j2

t v2
∣

∣

t=t0

arbitrarily for all j1 < r/2 and j2 < (r − 1)/2. The essential property is that the regularities
of v ∈ Kr+1 and N(v + w) −Mv ∈ Kr−1 differ by two, such that there is always one degree
of freedom left in the choice of v

∣

∣

t=t0
to fulfill (3.64), (3.65). For instance, if 5 < r < 6, we

additionally have to fulfill (3.64) for j1 = 1 and (3.65) for j2 = 1, which is no problem since we
can arbitrarily choose ∂2

t v1 and ∂2
t v2 at t = t0. Thus, the restriction to r < 4 above is only for

notational convenience.

4 Renormalization

To make the formal calculations in §2.6 rigorous and hence prove Theorem 2.8 we establish a
renormalization process as in [BKL94, UW07]. Additional to iterating the application of the
local existence and uniqueness theorem, the key issue is to extract the leading order behavior
formally described by the Burgers equation (2.64). Therefore we now consider the IBL in Bloch
space which is split in (2.44) for the linearly diffusive mode α̃φ1 and in (2.45) for the linearly
exponentially damped remainder. Here rescaled Bloch spaces with different weights in ℓ turn out
to be useful.

4.1 Basic setup

For m ∈ N0, r, b ≥ 0, and L > 0 we set

BL(m, r, b) := Hm(ILk0 , H
r
per(Iγ)), ‖ṽ‖BL(m,r,b) :=





∑

j≤m

∫

ILk0

(1+ℓ2)b‖∂j
ℓ ṽ(ℓ, ·)‖2

Hr(Iγ) dℓ





1
2

,

(4.1)

where again Iδ = (−δ/2, δ/2). Note that the spaces adhere to the fixed choice of periodicity
γ = 2π/k0. Let B(m, r, b) := B1(m, r, b). Regarding the original Bloch spaces from §2.3 we have
B(m, r) = B(m, r, 0). At first view, the introduction of weights in the ℓ-variable seems dispensable
since all norms ‖ · ‖BL(m,r,b1) and ‖ · ‖BL(m,r,b2) are equivalent due to the compact support in ℓ.
But as constants depend on L this step is crucial in §4.2 to control nonlinear interaction without
losing powers of L−1. For L > 0 we define the renormalization operator R1/L by

R1/L : B(m, r, b) → BL(m, r, b), R1/Lṽ(ℓ, x) := ṽ(ℓ/L, x). (4.2)

Note that only ℓ is rescaled, and thus there is no matching rescaling in x-space. For L ≥ 1 we
have

L
1−2m

2 ‖ṽ‖B(m,r,b) ≤ ‖R1/Lṽ‖BL(m,r,b) ≤ L
1+2b

2 ‖ṽ‖B(m,r,b) ≤ CL
1+2b

2 ‖ṽ‖B(m,r,0). (4.3)

We will mainly need the second inequality for b = 2, which yields an additional factor L5/2 in the
estimates.

34



For a fixed p ∈ (0, 1/2) we introduce the renormalized variables

αn(t, ℓ) := RL−nα̃(L2nt, ℓ), wn(t, ℓ, x) := L(1−p)nRL−nw̃s(L
2nt, ℓ, x). (4.4)

Since we suppose the stable component to decay like t−1 and since time is scaled by L2n, we blow
up wn by multiplying it with L(1−p)n. The factor Lpn is needed later to control some constants.
From the IBL (2.44), (2.45) in Bloch space we obtain

∂tαn(t, ℓ) = L2nµ1(L
−nℓ)αn(t, ℓ)

+ L2nBc
n(αn(t))(ℓ) + L2nHc

n(αn(t), L−(1−p)nwn(t))(ℓ), (4.5)

∂twn(t, ℓ, x) = L2nÃs(L
−nℓ)wn(t, ℓ, x) + L(3−p)nHs

n(αn(t), L−(1−p)nwn(t))(ℓ, x), (4.6)

where

Bc
n(αn) := RL−nB̃c (RLnαn) , Hc

n(αn, wn) := RL−nH̃c (RLnαn,RLnwn) , (4.7)

Hs
n(αn, wn) := RL−nH̃s (RLnαn,RLnwn) .

Thus, solving (2.44), (2.45) with the initial condition (α̃, w̃s)
∣

∣

t=1
= (α0, w0) is equivalent to

iterating the following renormalization process:

For n ∈ N solve (4.5), (4.6) for t ∈ [1/L2, 1] with the initial condition

αn(1/L2, ℓ) = αn−1(1, ℓ/L), wn(1/L2, ℓ, x) = L1−pwn−1(1, ℓ/L, x). (4.8)

We take (αn, wn) ∈ XLn(2, r, b), where

XLn(m, r, b) := BLn(m, r, b)×BLn(m, r, b), BLn(m, r, b) := BLn(m, r, b)×BLn(m, r−1, b), (4.9)

with r ≥ 3 and b > 0 to be chosen later. Note that the value of r does not play any role in the
critical component α̃ since α̃ is independent of x. We introduce

K̃r
L((t0, t1),m, b) := Hr/2((t0, t1), BL(m, 0, b)) ∩ L2((t0, t1), BL(m, r, b)). (4.10)

Finally, let

K̃r+1
L ((t0, t1),m, b) := K̃r+1

L ((t0, t1),m, b) × K̃r
L((t0, t1),m, b), (4.11)

X r+1
L ((1/L2, 1), 2, 2) := K̃r+1

L ((1/L2, 1), 2, 2) × K̃r+1
L ((1/L2, 1), 2, 2). (4.12)

Then, due to Theorem 3.20 concerning local existence in the original system, we expect local
solutions of (4.5), (4.6) in the space X r+1

Ln ((1/L2, 1), 2, 2).

Theorem 4.1 (Local existence in the renormalized system) Let 3 < r < 4. There exist
L0 > 1 and C1, C2 > 0 such that for all L > L0 the following holds. Let

ρn−1 := ‖(αn−1(1), wn−1(1))‖XLn−1 (2,r,2) ≤ C1L
−5/2.

Then there exists a unique local solution (αn, wn) ∈ X r+1
Ln ((1/L2, 1), 2, 2) of (4.5), (4.6) with

‖(αn, wn)‖X r+1
Ln ((1/L2,1),2,2) ≤ C2L

5/2ρn−1. (4.13)

Moreover, for any m ∈ N we have (αn, wn) ∈ X r+m
Ln ((1/2, 1), 2, 2) and there exists a C3 > 0 such

that
‖(αn, wn)‖X r+m

Ln ((1/2,1),2,2) ≤ C3L
5/2ρn−1. (4.14)
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Proof The proof can be adapted from Theorem 3.20. The crucial point is to have C2, C3

independent of n, which depends on suitable resolvent estimates of the linear parts L2nµ1(L
−nℓ)

and L2nÃs(L
−nℓ), and on estimates for the nonlinearities. The latter is worked out in detail in

§4.2 in a slightly different form suitable to obtain more detailed asymptotics. Thus, here we only
sketch the main ideas. First, we consider the linear inhomogeneous system

∂tαn − L2nµ1(L
−nℓ)αn = gn,1, (4.15)

∂twn − L2nÃs(L
−nℓ)wn = gn,2. (4.16)

Since (4.15) is independent of x no smoothing properties are needed, and hence, as well as (4.5),
it can be solved by the variation-of-constants formula. For (4.16) we find resolvent estimates for
λ− L2nÃs(L

−nℓ) which correspond to Theorem 3.24 transferred to Bloch space. Since we are in
the stable part, we can choose a = 0 independently of n, which yields

‖(αn, wn)‖X r+1
Ln ((1/L2,1),2,2) ≤ C2‖(gn,1, gn,2)‖X r−1

Ln ((1/L2,1),2,2) (4.17)

with C2 independent of n. Note that (4.17) could be improved by choosing a = −L2nσ0/2, but to
show the local existence result (4.13), a = 0 is sufficient here. The estimates for the nonlinearities,
see §4.2, together with Banach’s fixed point theorem and (4.3) then yield the first result, while
the higher regularity follows as in Theorem 3.20 by a bootstrapping argument. �

The local existence Theorem 4.1 turns out to be a fundamental step in the proof of the
following nonlinear stability result.

Theorem 4.2 Let p ∈ (0, 1/2) and 3 < r < 4. In the spectrally stable case, cf. Assumption
2.3, there exist C1, C2 > 0 such that the following holds. If ‖α0‖B(2,r,2) + ‖w0‖B(2,r,2) ≤ C1, then
there exists a unique global solution w̃ = α̃φ1 + w̃s of the IBL (2.44), (2.45) in Bloch space with
(α̃, w̃s)

∣

∣

t=1
= (α0, w0). Moreover, we have

∥

∥

∥(ℓ, x) 7→
(

w̃(t, t−1/2ℓ, x) − χ(t−1/2ℓ)f̂z0(ℓ)φ
1(0, x)

)∥

∥

∥

B√
t(2,r,1)

≤ C2t
−(1−p)/2, (4.18)

where f̂z0 is the Fourier transformed profile from (2.51), φ1 is the eigenvector to the critical
eigenvalue λ1, see (2.34), and ln(z0 + 1) = 2π d

c2
α0(0) with d from (2.62).

Theorem 4.2 is proved in §4.2 and §4.3 by an iteration scheme for the renormalized system. Here,
we translate (4.18) back to x-space in order to show Theorem 2.8.

Proof of Theorem 2.8. We have

(h, q)⊤(t, x) =

∫ 1/2k0

−1/2k0

eiℓx(h̃, q̃)⊤(t, ℓ, x) dℓ =

∫ 1/2k0

−1/2k0

eiℓ(x+c1t)w̃(t, ℓ, x) dℓ

= t−1/2

∫ 1/2k0

√
t

−1/2k0

√
t
eiℓt−1/2(x+c1t)w̃(t, t−1/2ℓ, x) dℓ.

With the inverse Fourier transform fz0(t
−1/2(x+ c1t)) =

∫

R
eiℓt−1/2(x+c1t)f̂z0(ℓ) dℓ we get

(h, q)⊤(t, x) − t−1/2fz0(t
−1/2(x+ c1t))φ

1(0, x)

= t−1/2

∫ 1/2k0

√
t

−1/2k0

√
t
eiℓt−1/2(x+c1t)

(

w̃(t, t−1/2ℓ, x) − χ(t−1/2ℓ)f̂z0(ℓ)φ
1(0, x)

)

dℓ

− t−1/2

∫

R

eiℓt−1/2(x+c1t)f̂z0(ℓ)
(

1 − χ(t−1/2ℓ)
)

dℓ φ1(0, x). (4.19)
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The first integral on the right-hand side of (4.19) can be estimated by

t−1/2 sup
x∈R

∣

∣

∣

∣

∣

∫ 1/2k0

√
t

−1/2k0

√
t
eiℓt−1/2(x+c1t)

(

w̃(t, t−1/2ℓ, x) − χ(t−1/2ℓ)f̂z0(ℓ)φ
1(0, x)

)

dℓ

∣

∣

∣

∣

∣

≤ t−1/2

∫ 1/2k0

√
t

−1/2k0

√
t

sup
x∈[0,γ]

|w̃(t, t−1/2ℓ, x) − χ(t−1/2ℓ)f̂z0(ℓ)φ
1(0, x)|dℓ

≤ Ct−1+p/2.

Since fz0 is analytic, the Fourier transform f̂z0 is exponentially decaying. Thus, the second
integral in (4.19) can be estimated as

t−1/2 sup
x∈R

∣

∣

∣

∣

∫

R

eiℓt−1/2(x+c1t)f̂z0(ℓ)
(

1 − χ(t−1/2ℓ)
)

dℓ φ1(0, x)

∣

∣

∣

∣

≤ Ct−1.

Altogether, this proves Theorem 2.8. Thus, it remains to prove Theorem 4.2.

4.2 Estimates

We write the solution of the renormalized IBL (4.5), (4.6) in Bloch space with the help of the
variation-of-constants formula, i.e.,

αn(t, ℓ) = e(t−L−2)L2nµ1(L−nℓ)αn−1(1, L
−1ℓ)

+ L2n

∫ t

L−2

e(t−s)L2nµ1(L−nℓ)
(

Bc
n(αn(s))(ℓ) +Hc

n(αn(s), L−(1−p)nwn(s))(ℓ)
)

ds, (4.20)

wn(t, ℓ, x) = L1−pe(t−L−2)L2nÃs(L−nℓ)wn−1(1, L
−1ℓ, x)

+ L(3−p)n

∫ t

L−2

e(t−s)L2nÃs(L−nℓ)Hs
n(αn(s), L−(1−p)nwn(s))(ℓ, x) ds, (4.21)

where etL2nÃs(L−nℓ) stands for the analytic semigroup generated by L2nÃs(L
−nℓ), cf. Lemma

3.23, which clearly transfers from Ãs(ℓ) to L2nÃs(L
−nℓ). To prove existence of a solution for

t ∈ [1/L2, 1] we need estimates of the linear semigroups and the nonlinearities. These are shown
in Lemma 4.3, Lemma 4.8, and Lemma 4.9, respectively.

Lemma 4.3 For 0 ≤ b1 ≤ b2, 0 ≤ j ≤ 2 there exists a C > 0 such that for α ∈ BLn(2, r, b1)
independent of x we have

‖etL2nµ1(L−n·)α‖BLn (2,r,b2) ≤ Cmax{1, t−(b2−b1)/2}‖α‖BLn (2,r,b1) (4.22)

in the critical part. The stable part is linearly exponentially damped, i.e., there exists a σ1 > 0
such that for u ∈ BLn(2, r − j, b) ×BLn(2, r − 1 − j, b) we have

‖etL2nÃs(L−n·)u‖BLn (2,r,b)×BLn(2,r−1,b)

≤ Ce−σ1tL2n
max{1, (L2nt)−j/2}‖u‖BLn (2,r−j,b)×BLn(2,r−1−j,b). (4.23)

Proof Estimate (4.22) follows from the locally parabolic shape of L2nµ1(L
−nℓ) = −c2ℓ2 +

O(L−nℓ3) around ℓ = 0, see Assumption 2.3. Since Reµn(ℓ) = Reλn(ℓ) < −σ0 for all n ≥ 2 and
ℓ ∈ (−k0/2, k0/2) and since Reµ1(ℓ) < −σ0 for all |ℓ| > 4rχ, the real part of the spectrum of Ãs

is bounded from above by −σ0. Thus, we have inequality (4.23) for a σ1 < σ0, which avoids the
treatment of Jordan blocks. �

In order to control the integral in (4.21) we use
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Lemma 4.4 There exists a C > 0 such that for t0 ∈ [1/L2, 1] and 0 ≤ j ≤ 1 we have
∫ 1
t0

e−σ1(1−s)L2n
(1−s)−j/2ds≤CL−(2−j)n. For 0 ≤ j ≤ 2 we get

∫ 1/2
1/L2 e−σ1(1−s)L2n

(1−s)−j/2ds≤CL−2n.

The next lemma exploits the role of leading ℓ’s in the critical part of the nonlinearity, cf. [Sch96,
Lemma 14]. Remember again that k0 := 2π/γ, where γ denotes the bottom periodicity.

Lemma 4.5 Let β ∈ C2([−k0/2, k0/2), C2((0, γ),C)) with ‖β(ℓ, ·)‖C2((0,γ),C) ≤ Cℓb2−b1 for a
b1 ∈ [0, b2]. Then there exists a C > 0 such that for all L > 1 we have

‖(R1/Lβ)u‖BL(2,r,b1) ≤ CL−(b2−b1)‖β‖C2([−k0/2,k0/2),C2((0,γ),C))‖u‖BL(2,r,b2).

The idea of the lemma is as follows. If the nonlinearity in (4.5) exhibits, e.g., a leading
(ℓ/Ln)j , j > 0, we can extract the factor ℓb2−b1/L(b2−b1)n, b2 − b1 ≤ j. While in (4.20) the factor
ℓb2−b1 can be balanced by the linear semigroup in Lemma 4.3, the factor L−(b2−b1)n increases the
degree of irrelevance. However, according to the term t−(b2−b1)/2 in (4.22) this is only possible as
long as b2 − b1 is bounded from above by, e.g., 2 − p.

As products in x-space correspond to convolutions in Bloch space, the nonlinearities in (4.7)
produce terms of the type RL−1(RLu ∗ RLv). Thus, we define an adapted convolution operator
∗L for u, v ∈ BL(m, r, b) as follows:

u ∗L v :=

∫ Lk0/2

−Lk0/2
u(ℓ−m)v(m)dm = LRL−1 ((RLu) ∗ (RLv)) . (4.24)

To estimate convolutions we use the following lemma, based on standard Sobolev embeddings.

Lemma 4.6 Let b2 > 1/2, b2 ≥ b1 ≥ 0. There exists a C > 0 such that, for all L ≥ 1,

‖u ∗L v‖BL(2,r,b1) ≤ C‖u‖BL(2,r,b1)‖v‖BL(2,r,b2).

Remark 4.7 Before estimating the nonlinearities in detail we want to summarize the different
effects in a descriptive way. By combining (4.24) and Lemma 4.6, each convolution produces a
factor L−n. Due to the rescaling in (4.4), each factor wn gives a further L−(1−p)n. In the critical
component, a factor RL−n(ℓb2−b1) in the renormalized nonlinearity leads to an additional factor
L−(b2−b1)n as long as b2 − b1 ≤ 2 − p.

Lemma 4.8 Let r ≥ 3. For p ∈ (0, 1/2) there exists a C > 0 such that for all (αn, wn) ∈
XLn(2, r, 2) = BLn(2, r, 2) × BLn(2, r, 2) with (αn, wn)XLn (2,r,2) ≤ 1 we have

L2nHc
n(αn, L

−(1−p)nwn) = s1 + s2 + s3

with

‖s1‖BLn(2,r,p) ≤ CL−(1−p)n‖αn‖2
BLn(2,r,2), (4.25)

‖s2‖BLn (2,r,1) ≤ CL−(1−p)n‖αn‖BLn(2,r,2)‖wn‖BLn (2,r,2), (4.26)

‖s3‖BLn (2,r,1) ≤ CL−2(1−p)n‖wn‖2
BLn (2,r,2). (4.27)

Proof By construction we have

Hc
n(αn, L

−(1−p)nwn) = RL−nH̃c(RLnαn, L
−(1−p)nRLnwn)

= RL−nẼ∗
c

(

B̃((RLnαn)φ1 + L−(1−p)nRLnwn)
)

−RL−n

(

B̃c(RLnαn)
)

+ RL−nẼ∗
c

(

G̃((RLnαn)φ1 + L−(1−p)nRLnwn)
)

,
(4.28)
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see (2.44) and (2.56). We start with the estimates of the first two terms on the right-hand side
of (4.28). Since they are quadratic, we split them according to the multiplicities of αn and wn.

1. Terms quadratic in αn. In the formal derivation of the Burgers equation in §2.6 we obtained

Ẽ∗
c

(

B̃((RLnαn)φ1)
)

(ℓ) − B̃c(RLnαn)(ℓ) = β(ℓ)(RLnαn)∗2(ℓ)

with β(ℓ) = O(ℓ2), cf. (2.63). Therefore, we have to estimate

RL−n(β(RLnαn)∗2) = (RL−nβ)RL−n((RLnαn)∗2).

Applying (4.24), Lemma 4.5, and Lemma 4.6 we obtain

‖RL−n(β(RLnαn)∗2)‖BLn (2,r,p) = L−n‖(RL−nβ)(αn ∗Ln αn)‖BLn (2,r,p)

≤ CL−(3−p)n‖αn‖2
BLn (2,r,2).

Thus, the terms considered in this part can be assigned to s1. Note that here we only used
β(ℓ) = O(ℓ2−p) instead of β(ℓ) = O(ℓ2), since otherwise the missing weight in ℓ could not be
balanced by the linear semigroup in (4.22).

2. Mixed terms in αn, wn. The terms in

Ẽ∗
c

(

B̃(α̃φ1 + w̃s)
)

(ℓ) = χ(ℓ)

∫ γ

0
B2(α̃(ℓ)φ1(ℓ) + w̃s(ℓ))(x)ψ̄

1
2(ℓ, x)dx

which contain both α̃ and w̃s are all of the type

N(α̃, w̃s)(ℓ) = χ(ℓ)

∫ γ

0

[

(α̃(·)(∂x+i·)kcφ1
i (·, x)) ∗ ((∂x+i·)ksw̃s,j(·, x))

]

(ℓ)ψ̄1
2(ℓ, x)dx

with kc, ks ∈ {1, 2, 3} and i, j ∈ {1, 2}. Applying (4.24) yields

RL−nN(RLnαn, L
−(1−p)nRLnwn)

= L−(1−p)nRL−n

(

χ

∫ γ

0

[

((RLnαn)(∂x+i·)kcφ1
i ) ∗ ((∂x+i·)ks(RLnwn,j))

]

ψ̄1
2dx

)

= L−(1−p)nRL−n

(

χ

∫ γ

0

[

RLn

(

αn(∂x+i
·
Ln

)kcRL−nφ1
i

)

∗ RLn

(

(∂x+i
·
Ln

)kswn,j

)]

ψ̄1
2dx

)

= L−(2−p)n

∫ γ

0

[(

αn(∂x+i
·
Ln

)kcRL−nφ1
i

)

∗Ln

(

(∂x+i
·
Ln

)kswn,j

)]

RL−n(χψ̄1
2)dx,

where χ(ℓ)ψ̄1
2(ℓ) = O(ℓ), cf. (2.40). If u ∈ BLn(2, r, 1) is independent of x, we have ‖u‖BLn (2,r,1) =

‖u‖BLn (2,0,1). Thus, we obtain

‖RL−nN(RLnαn, L
−(1−p)nRLnwn)‖BLn (2,r,1)

≤ L−(2−p)n

∫ γ

0

∥

∥

∥

((

αn(∂x+i
·
Ln

)kcRL−nφ1
i

)

∗Ln

(

(∂x+i
·
Ln

)kswn,j

))∥

∥

∥

BLn (2,0,1)
dx

≤ CL−(3−p)n‖αn(∂x+i
·
Ln

)kcRL−nφ1
i ‖BLn (2,0,2)‖(∂x+i

·
Ln

)kswn,j‖BLn (2,0,2)

≤ CL−(3−p)n‖αn‖BLn (2,r,2)‖wn‖BLn (2,r,2).

Therefore, the mixed terms in αn, wn can be assigned to s2.

3. Terms quadratic in wn. The estimates for the terms in Ẽ∗
c

(

B̃(L−(1−p)nRLnwn)
)

are the same

as for the mixed terms, except that we have an additional factor L−(1−p)n due to the scaling of
wn, which yields the estimate for s3 in (4.27).
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It remains to estimate the third term in (4.28). We have

Ẽ∗
c

(

G̃((RLnαn)φ1)
)

(ℓ) = O(ℓ2)(RLnαn)∗2(ℓ) +
∑

j≥3

O(ℓ)(RLnαn)∗j(ℓ), (4.29)

where the O(ℓ2)-terms are due to the quadratic terms in the IBL with a factor ∂xq. Since
(αn, wn)XLn (2,r,2) ≤ 1 we have ‖αn‖j

BLn(2,r,2) ≤ ‖αn‖2
BLn (2,r,2) for j ≥ 3, thus the terms in (4.29)

belong to s1 and can be estimated as stated in (4.25). By the same considerations, all other
terms in Ẽ∗

c

(

G̃((RLnαn)φ1 + L−(1−p)nRLnwn)
)

are absorbed by s2 and s3 and can be estimated
as specified in (4.25) and (4.27). �

To prove estimates for the stable part of the nonlinearity, which in contrast to the critical
part depends on x, we have to split Hs

n according to the different regularities in space. Moreover,
lowering the weight in ℓ is not useful in this case. On the one hand, this is because we do not gain
an additional factor ℓ by applying the mode filter Es. On the other hand, the linear semigroup
in (4.23) could not balance the missing weight without losing powers of L−n.

Lemma 4.9 Let r ≥ 3. For p ∈ (0, 1/2) there exists a C > 0 such that Hs
n(αn, L

−(1−p)nwn) can
be split according to the order of x-derivatives in the form

L(3−p)nHs
n(αn, L

−(1−p)nwn) =
3
∑

j=0

(

0

hs
n,j(αn, L

−(1−p)nwn)

)

,

where

‖hs
n,j(αn, L

−(1−p)nwn)‖BLn (2,r−j,2)

≤ C
(

L(2−p)n‖αn‖2
BLn (2,r,2) + Ln‖αn‖BLn (2,r,2)‖wn‖BLn (2,r,2) + Lpn‖wn‖2

BLn (2,r,2)

)

(4.30)

for all (αn, wn) ∈ XLn(2, r, 2) with (αn, wn)XLn (2,r,2) ≤ 1.

Proof The proof works along similar lines as for the critical part. Again, it is sufficient to
estimate the quadratic terms. The appropriate estimates for higher order terms follow a fortiori
since each convolution yields an additional factor L−n. Moreover, every wn gives a factor L−(1−p)n.
We only have to pay attention to the different regularities in space. Since in (2.18) the highest
derivative ∂3

xh occurs only linearly (i.e., the IBL is quasilinear), the second component of Hs
n

maps to BLn(2, r− j, 2), j ∈ {0, 3} due to Lemma 4.6. Inequality (4.30) then follows by counting
the respective powers of L−n. �

Remark 4.10 At first view, estimate (4.30) for the stable part seems worse than those for the
critical part in Lemma 4.9, since the powers of L in the coefficients do not converge to zero for
n→ ∞. However, applying the linear semigroup in (4.21) yields an additional factor L−2n, which
in §4.3 allows to prove that the stable component decays polynomially for t→ ∞ . Furthermore,
the nonlinearity hs

n,3 only lies in BLn(2, r − 3, 2). But since in the second component the phase
space is BLn(2, r − 1, 2), this can be smoothed out by the linear semigroup.

4.3 Splitting, iteration, and conclusion

The result of the formal calculation in §2.6 was

∂tα̃(t, ℓ) = −c2ℓ2α̃(t, ℓ) + idℓχ(ℓ)α̃∗2(t, ℓ) + h.o.t. (4.31)

Since α̃ is independent of x, (4.31) is reminiscent of the Fourier transform ∂tv̂ = −c2ℓ2v̂+idℓv̂∗2 +
h.o.t. of the Burgers equation. According to §2.5, the higher order perturbations are asymptoti-
cally irrelevant, and the renormalized solution t1/2v(t, t1/2x) converges for t→ ∞ towards fz(x),
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see (2.52). In Fourier space, this corresponds to v̂(t, t−1/2ℓ) → f̂z(ℓ). If we consider the initial
condition v(1, x) = v0(x), the parameter z is given by ln(z + 1) = d

c2

∫

R
v0(x) dx = 2π d

c2
v̂0(0).

Transferring this result to (4.31), we expect the rescaled critical component α̃(t, t−1/2ℓ) to
converge towards f̂z0(ℓ) for t→ ∞, where

ln(z0 + 1) = 2π
d

c2
α̃(1, 0). (4.32)

Thus, for fixed times t = L2n, n ∈ N, the renormalized solution αn(1, ℓ) = α̃(L2n, L−nℓ) is
expected to converge towards f̂z0(ℓ) for n→ ∞.

Splitting. The formal considerations above give reason to split αn into

αn(t, ℓ) = α(z)
n (t, ℓ) + L−(1−p)nγn(t, ℓ)

with the Fourier transformed profile

α(z)
n (t, ℓ) := χ(L−nℓ)v̂z0(t, ℓ) = χ(L−nℓ)f̂z0(t

1/2ℓ).

Then, according to (4.5), the correction term γn satisfies

∂tγn = L2nµ1(L
−n·)γn + L(3−p)n

(

Bc
n(αn) −Bc

n(α(z)
n ) +Hc

n(αn, L
−n(1−p)wn)

)

+ L(1−p)nResn,

(4.33)

where Resn := −∂tα
(z)
n + L2nµ1(L

−n·)α(z)
n + L2nBc

n(α
(z)
n ).

Lemma 4.11 Let |z0| < 1. Then there exists a C > 0 such that

sup
t∈[L−2,1]

‖Resn‖BLn (2,r,2) ≤ CL−n|z0|.

Proof By construction we have L2nBc
n(α

(z)
n )(ℓ) = idℓχ(L−nℓ)(α

(z)
n ∗ α(z)

n )(ℓ), while the renor-
malization of the largest eigenvalue reads L2nµ1(L

−nℓ) = −c2ℓ2 + O(L−nℓ3). As v̂z0 is an exact
solution of ∂tv̂z0(t, ℓ) = −c2ℓ2v̂z0(t, ℓ) + idℓ(v̂z0 ∗ v̂z0)(t, ℓ), we get

Resn(ℓ) = idℓχ(L−nℓ)
(

(α(z)
n ∗ α(z)

n )(ℓ) − (v̂z0 ∗ v̂z0)(ℓ)
)

= idℓχ(L−nℓ)

∫ Ln/2

−Ln/2

(

χ

(

ℓ−m

Ln

)

χ
( m

Ln

)

− 1

)

v̂z0(ℓ−m)v̂z0(m) dm.

This can be estimated in BLn(2, r, 2) by CL−n|z0| since the first factor in the integral is zero for
both ℓ−m and m small, and since v̂z0 is a smooth and exponentially decaying function. �

Next we study the evolution of γn at the fixed wave number ℓ = 0. Due to the definition of
the critical mode filter Ẽ∗

c we obtain α̃(t, 0) = 〈w̃(t, 0, ·), ψ1(0, ·)〉 where w̃ = e−iℓc1t(h̃, q̃)⊤, see
(2.35) and (2.41). Since according to (2.40) we have ψ1(0, x) = (c0, 0)⊤, we get

α̃(t, 0) = c0

∫ γ

0
h̃(t, 0, x) dx = c0

∫ γ

0

∑

j∈Z

eijk0xFh(t, k0j) dx = c0γFh(t, 0) =
1

2π
c0γ

∫

R

h(t, x) dx.

The perturbation’s mass
∫

R
hdx is conserved in the IBL, cf. §2.2. Thus, we have α̃(t, 0) = α̃(1, 0)

for all t ≥ 1, which yields

L−(1−p)nγn(t, 0) = αn(t, 0) − α(z)
n (t, 0) = α̃(L2nt, 0) − f̂z0(0) = α̃(1, 0) − c2

2πd
ln(z0 + 1) = 0
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for all t ∈ [L−2, 1], cf. (4.32). The following lemma shows a contraction property of the rescaled
linear semigroup when acting on the remainder γn with γn(0) = 0, and explains why we require
some regularity in ℓ in the spaces B(m, r, b).

Lemma 4.12 Let g ∈ H2(2) with g(0) = 0. Then ‖e(1−L−2)L2nµ1(L−n·)R1/Lg‖H2(2) ≤ CL−1‖g‖H2(2).

Proof We state here only the estimates for the L2(2)-norm, as the additional factor L−1 coming
from d

dℓ(R1/Lg)(ℓ) = L−1g′(L−1ℓ) leads to easier estimates in case of derivatives. Since g(0) = 0,

we have for a ℓ̃ ∈ [0, L−1ℓ]

|g(L−1ℓ)| = L−1ℓg′(ℓ̃) ≤ L−1ℓ‖g‖C1 ≤ CL−1ℓ‖g‖H2(2)

due to standard Sobolev embedding. Thus, we obtain

‖e(1−L−2)L2nµ1(L−2n·)R1/Lg‖2
L2(2) =

∫

R

e2(1−L−2)L2nµ1(L−nℓ)(g(L−1ℓ))2(1 + ℓ)2 dℓ

≤ CL−2‖g‖2
H2(2)

∫

R

e2(1−L−2)L2nµ1(L−nℓ)ℓ2(1 + ℓ)2 dℓ,

where the integral can be estimated independently of n since L2nµ1(L
−nℓ) = −c2ℓ2 +O(L−nℓ3).

�

Let

gn,c(ℓ) := γn(1, ℓ), ρn,c := ‖gn,c‖BLn(2,r,2),

gn,s(ℓ, x) := wn(1, ℓ, x), ρn,s := ‖gn,s‖BLn (2,r,2),

as well as
ρn := ‖αn(1)‖BLn (2,r,2) + ‖wn(1)‖BLn (2,r,2).

Hence, ρn ≤ L−(1−p)nρn,c + ‖α(z)
n (1)‖H2(2) + ρn,s, and to prove Theorem 4.2 we will show that

both ρn,c and ρn,s are bounded for n→ ∞.
Proof of Theorem 4.2 Taking L0 and C1 from Theorem 4.1, we assume the initial condition

(α0, w0) to be small enough to fulfill

ρ0 ≤ L−m0−1, L−m0 ≤ C1L
−5/2, (4.34)

where L > L0 and m0 ∈ N are specified later. In particular, this yields

|z0| ≤ C‖α(z)
0 (1, ·)‖H2(2) ≤ CL−m0−1. (4.35)

By (4.33) we have

γn(t, ℓ) = e(t−L−2)L2nµ1(L−nℓ)γn(L−2, ℓ)

+ L(3−p)n

∫ t

L−2

e(t−s)L2nµ1(L−nℓ)
(

Bc
n(αn(s))(ℓ) −Bc

n(α(z)
n (s))(ℓ)

)

ds

+ L(3−p)n

∫ t

L−2

e(t−s)L2nµ1(L−nℓ)Hc
n(αn(s), L−(1−p)nwn(s))(ℓ) ds

+ L(1−p)n

∫ t

L−2

e(t−s)L2nµ1(L−nℓ)Resn(s, ℓ) ds, (4.36)

while wn is obtained from (4.21). In order to apply an iteration scheme, we now assume

ρn−1 ≤ L−m0 , ρn−1,c ≤ L−m0 , (4.37)
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which is obviously true for n = 1. Since ρn−1 ≤ C1L
−5/2, Theorem 4.1 implies

‖(αn, wn)‖X r+1
Ln ((1/L2,1),2,2) ≤ CL5/2ρn−1, ‖(αn, wn)‖X r+2

Ln ((1/2,1),2,2) ≤ CL5/2ρn−1 (4.38)

for a C > 0. Due to Corollary 3.12, these estimates yield

sup
t∈[L−2,1]

‖αn‖BLn(2,r,2) ≤ CL5/2ρn−1, (4.39)

sup
t∈[L−2,1]

‖wn‖BLn (2,r,2) ≤ CL5/2ρn−1, sup
t∈[1/2,1]

‖wn‖BLn (2,r+1,2) ≤ CL5/2ρn−1. (4.40)

First, we show an a-priori estimate for supt∈[L−2,1] ‖γn(t, ·)‖BLn(2,r,2) by estimating (4.36). We
start with the first term on the right-hand side of (4.36). The initial condition (4.8) yields

γn(L−2, ℓ) = L(1−p)n
(

αn−1(1, L
−1ℓ) − χ(L−nℓ)f̂z0(L

−1ℓ)
)

= L1−pγn−1(1, L
−1ℓ) + L(1−p)n

(

χ(L−(n−1)ℓ) − χ(L−nℓ)
)

f̂z0(L
−1ℓ).

Since χ(L−(n−1)ℓ) − χ(L−nℓ) = 0 for |ℓ| ≤ Ln−1rχ and since f̂z0 decays exponentially, we get

‖γn(L−2, ·)‖BLn(2,r,2) ≤ CL1−pL5/2‖γn−1(1, ·)‖BLn−1 (2,r,2) + CL−1|z0|
≤ CL7/2−pρn−1,c + CL−1|z0|, (4.41)

where the factor L5/2 comes from the different scalings of γn−1 and γn, see (4.3). Next we estimate
the first integral in (4.36). Due to the definitions of B̃c in (2.46) and of the convolution ∗Ln in
(4.24) we have L2nBc

n(αn)(ℓ) = idℓχ(ℓ)(αn ∗Ln αn)(ℓ), and thus

L(3−p)n
(

Bc
n(αn) −Bc

n(α(z)
n )
)

(ℓ) = L(1−p)nidℓχ(ℓ)
(

L−2(1−p)nγn ∗Ln γn + L−(1−p)nγn ∗Ln α(z)
n

)

(ℓ).

Therefore,

L(3−p)n sup
t∈[L−2,1]

‖Bc
n(αn) −Bc

n(α(z)
n )‖BLn (2,r,1)

≤ CL−(1−p)n sup
t∈[L−2,1]

‖γn(t, ·)‖2
BLn(2,r,2) + C|z0| sup

t∈[L−2,1]

‖γn(t, ·)‖BLn (2,r,2).

The missing weight in ℓ can be balanced by the linear semigroup in Lemma 4.3, which gives

L(3−p)n sup
t∈[L−2,1]

∥

∥

∥

∥

∫ t

L−2

e(t−s)L2nµ1(L−n·)
(

Bc
n(αn(s)) −Bc

n(α(z)
n (s))

)

ds

∥

∥

∥

∥

BLn(2,r,2)

≤ L(3−p)n sup
t∈[L−2,1]

‖Bc
n(αn) −Bc

n(α(z)
n )‖BLn (2,r,1) sup

t∈[L−2,1]

∫ t

L−2

(t− s)−1/2 ds

≤ CL−(1−p)n sup
t∈[L−2,1]

‖γn(t, ·)‖2
BLn (2,r,2) + C|z0| sup

t∈[L−2,1]

‖γn(t, ·)‖BLn (2,r,2). (4.42)

Similarly, we can estimate the second integral in (4.36) by applying Lemma 4.8 and the estimates
for αn, wn in (4.39), (4.40), which gives

L(3−p)n sup
t∈[L−2,1]

‖Hc
n(αn(t), L−(1−p)nwn(t))‖BLn (2,r,p) ≤ C(L5/2ρn−1)

2.
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Using the properties of the linear semigroup in Lemma 4.3 yields

L(3−p)n sup
t∈[L−2,1]

∥

∥

∥

∥

∫ t

L−2

e(t−s)L2nµ1(L−n·)Hc
n(αn(s), L−(1−p)nwn(s)) ds

∥

∥

∥

∥

BLn(2,r,2)

≤ CL5ρ2
n−1.

(4.43)

Finally, by Lemma 4.11 we obtain

L(1−p)n sup
t∈[L−2,1]

∥

∥

∥

∥

∫ t

L−2

e(t−s)L2nµ1(L−nℓ)Resn(s, ℓ) ds

∥

∥

∥

∥

BLn(2,r,2)

≤ CL−pn|z0|. (4.44)

Combining (4.36) and (4.41)-(4.44), we achieve

sup
t∈[L−2,1]

‖γn(t, ·)‖BLn (2,r,2) ≤ CL7/2−pρn−1,c + CL−1|z0| + CL−(1−p)n sup
t∈[L−2,1]

‖γn(t, ·)‖2
BLn (2,r,2)

+ C|z0| sup
t∈[L−2,1]

‖γn(t, ·)‖BLn (2,r,2) + CL5ρ2
n−1 + CL−pn|z0|. (4.45)

By choosing m0 large enough we obtain C|z0| ≤ CL−m0−1 ≤ 1/3, and thus

L−(1−p)n sup
t∈[L−2,1]

‖γn(t, ·)‖BLn(2,r,2) ≤ sup
t∈[L−2,1]

‖αn(t, ·) − α(z)
n (t, ·)‖BLn (2,r,2)

≤ C(L5/2ρn−1 + |z0|) ≤ CL5/2L−m0 + CL−m0−1 ≤ 1/(3C).

Finally, (4.45) yields the a-priori estimate

1/3 sup
t∈[L−2,1]

‖γn(t, ·)‖BLn (2,r,2) ≤ CL7/2−pρn−1,c + CL−1|z0| + CL5ρ2
n−1 + CL−pn|z0|. (4.46)

Iteration. In order to conclude ρn ≤ L−m0 and ρn,c ≤ L−m0 from assumption (4.37), the first
term on the right-hand side of (4.46) is not yet small enough. Thus, we have to use (4.36) once
more for the fixed time t = 1. In this case, as γn−1(t, 0) = 0, we can apply Lemma 4.12. In
contrast to (4.41), we achieve

‖e(1−L−2)L2nµ1(L−n·)γn(L−2, ·)‖BLn(2,r,2)

≤ CL−p‖γn−1(1, ·)‖BLn−1 (2,r,2) + CL(1−p)n−1‖
(

χ(L−(n−2)·) − χ(L−(n−1)·)
)

f̂z0‖H2(2)

≤ CL−pρn−1,c + CL−1‖f̂z0‖H2(2) ≤ CL−pρn−1,c + CL−1|z0|.

Similar to (4.45), we obtain

ρn,c ≤ CL−pρn−1,c + CL−1|z0| + CL−(1−p)n sup
t∈[L−2,1]

‖γn(t, ·)‖2
BLn (2,r,2)

+ C|z0| sup
t∈[L−2,1]

‖γn(t, ·)‖BLn (2,r,2) + CL5ρ2
n−1 + CL−pn|z0|. (4.47)

From (4.46) we get

sup
t∈[L−2,1]

‖γn(t, ·)‖BLn(2,r,2) ≤ C
(

L7/2−pL−m0 + L−1L−m0−1 + L5−2m0 + L−pnL−m0−1
)

≤ CL7/2−p−m0 ,
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and plugging this estimate into (4.47) yields

ρn,c ≤ C
(

L−pL−m0 + L−1L−m0−1 + L−(1−p)nL7−2p−2m0 + L−m0−1L7/2−p−m0

+L5L−2m0 + L−pnL−m0−1
)

.

Choosing now L > L0 such that C ≤ Lp/18, we obtain

ρn,c ≤
1

18

(

L−m0 + L−m0−1 + L7−2m0 + L3/2−2m0 + L5−2m0 + L−m0−1
)

.

Choosing finally m0 > 7 such that L7−m0 ≤ 1 leads to

ρn,c ≤
1

3
L−m0 . (4.48)

Next, we estimate the stable part ρn,s. From (4.21) we obtain

gn,s(ℓ, x) = L1−pe(1−L−2)L2nÃs(L−nℓ)gn−1,s(L
−1ℓ, x)

+ L(3−p)n

∫ 1

L−2

e(1−s)L2nÃs(L−nℓ)Hs
n(αn(s), L−(1−p)nwn(s))(ℓ, x) ds. (4.49)

Applying Lemma 4.3 we can estimate the first term on the right-hand side of (4.49) as

L1−p‖e(1−L−2)L2nÃs(L−n·)RL−1gn−1,s‖BLn (2,r,2) ≤ L1−pe−σ1(1−L−2)L2n‖gn−1,s‖BLn−1 (2,r,2)

≤ CL−1ρn−1,s.

In order to estimate the integral in (4.49) we use Lemma 4.9, which gives

L(3−p)n

∥

∥

∥

∥

∫ 1

L−2

e(1−s)L2nÃs(L−n·)Hs
n(αn(s), L−(1−p)nwn(s)) ds

∥

∥

∥

∥

BLn (2,r,2)

≤
3
∑

j=0

∥

∥

∥

∥

∫ 1

L−2

e(1−s)L2nÃs(L−n·)
(

0

hs
n,j(αn, L

−(1−p)nwn)

)

ds

∥

∥

∥

∥

BLn (2,r,2)

=:
3
∑

j=0

‖Ij‖BLn (2,r,2).

For the integrals I0 and I1, the smoothing properties of the linear semigroup are not required since
BL(m, r, b) := BL(m, r, b) ×BL(m, r − 1, b), i.e., the regularity needed for the second component
is only r − 1. Applying Lemma 4.3 and Lemma 4.4 we achieve

‖Ij‖BLn (2,r,2) ≤ C

∫ 1

L−2

e−σ1(1−s)L2n‖hs
n,j‖BLn (2,r−j,2) ds

≤ CL(2−p)n(L5/2ρn−1)
2

∫ 1

L−2

e−σ1(1−s)L2n
ds ≤ CL−pnL5ρ2

n−1

for j ∈ {0, 1}. For the estimate of I2, the linear semigroup has to smooth out one x-derivative,
which yields

‖I2‖BLn (2,r,2) ≤ C

∫ 1

L−2

e−σ1(1−s)L2n
(1 + L−n(1−s)−1/2)‖hs

n,2(αn(s), L−(1−p)nwn(s))‖BLn (2,r−2,2) ds

≤ CL(2−p)n(L5/2ρn−1)
2

∫ 1

L−2

e−σ1(1−s)L2n
(1 + L−n(1−s)−1/2) ds ≤ CL−pnL5ρ2

n−1.
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Treating I3 the same way would lead to factor (1− s)−1 and therefore to a non-integrable singu-
larity. Thus, we split I3 into

I3 =

∫ 1/2

L−2

. . .ds+

∫ 1

1/2
. . .ds.

While on the first time interval [L−2, 1/2] the singularity does not occur, we can use the higher
regularity of wn on the second time interval as stated in (4.40). Note again that αn is independent
of x, thus the value of r plays no role in the spaces for αn. We obtain

‖I3‖BLn (2,r,2) ≤C
∫ 1/2

L−2

e−σ1(1−s)L2n
(1+L−n(1−s)−1)‖hs

n,3(αn(s), L−(1−p)nwn(s))‖BLn (2,r−3,2) ds

+ C

∫ 1

1/2
e−σ1(1−s)L2n

(1+L−n(1−s)−1/2)‖hs
n,3(αn(s), L−(1−p)nwn(s))‖BLn (2,r−2,2) ds

≤CL−pnL5ρ2
n−1.

Collecting the estimates for Ij gives

ρn,s ≤ CL−1ρn−1 + CL−pnL5ρ2
n−1 ≤ CL−1L−m0 + CL−pL5L−2m0 ≤ 1

3
L−m0 . (4.50)

Combining (4.35), (4.48), and (4.50), we finally obtain

ρn = ‖αn(1)‖BLn (2,r,2) + ‖wn(1)‖BLn (2,r,2) ≤ L−(1−p)nρn,c + C|z0| + ρn,s ≤ L−m0 .

Conclusion. So far we have shown that if ρ0 ≤ L−m0−1, then ρn,c, ρn,s, and ρn stay smaller
than L−m0 for all n ∈ N. In order to prove (4.18), we estimate

(ℓ, x) 7→ w̃(t, t−1/2ℓ, x) − χ(t−1/2ℓ)f̂z0(ℓ)φ
1(0, x)

at the discrete times t = L2n, n ∈ N, i.e.,

w̃(L2n, L−nℓ, x) − χ(L−nℓ)f̂z0(ℓ)φ
1(0, x)

= α̃(L2n, L−nℓ)φ1(L−nℓ, x) + w̃s(L
2n, L−nℓ, x) − χ(L−nℓ)f̂z0(ℓ)φ

1(0, x)

= αn(1, ℓ)φ1(L−nℓ, x) + L−(1−p)nwn(1, ℓ, x) − χ(L−nℓ)f̂z0(ℓ)φ
1(0, x)

=
(

αn(1, ℓ) − χ(L−nℓ)f̂z0(ℓ)
)

φ1(0, x) + αn(1, ℓ)
(

φ1(L−nℓ, x) − φ1(0, x)
)

+ L−(1−p)nwn(1, ℓ, x)

= L−(1−p)nγn(1, ℓ)φ1(0, x) + αn(1, ℓ)
(

φ1(L−nℓ, x) − φ1(0, x)
)

+ L−(1−p)nwn(1, ℓ, x). (4.51)

Taking the B√
t(2, r, 2)-norm at t = L2n, the first term on the right-hand side of (4.51) yields

‖(ℓ, x) 7→ γn(1, ℓ)φ1(0, x)‖BLn (2,r,2) =





2
∑

j=0

∫ 1/2k0Ln

−1/2k0Ln

(1 + ℓ2)2|∂j
ℓγn(1, ℓ)|2‖φ1(0, ·)‖2

Hr(Iγ) dℓ





1/2

≤ C‖γn(1, ·)‖BLn (2,r,2) ≤ CL−m0 .

The second term in (4.51) is estimated as follows. We have

‖(ℓ, x) 7→ αn(1, ℓ)
(

φ1(L−nℓ, x) − φ1(0, x)
)

‖BLn (2,r,1)

=





2
∑

j=0

∫ 1/2k0Ln

−1/2k0Ln

(1 + ℓ2)

∥

∥

∥

∥

dj

dℓj
[

αn(1, ℓ)
(

φ1(L−nℓ, ·) − φ1(0, ·)
)]

∥

∥

∥

∥

2

Hr(Iγ)

dℓ





1/2

. (4.52)
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We now have to distinguish between terms in which the eigenvector φ1 is differentiated with
respect to ℓ and those in which only αn is differentiated. For the first group, we get estimates of
the type

∫ 1/2k0Ln

−1/2k0Ln

(1 + ℓ2)|∂j1
ℓ αn(1, ℓ)|2

∥

∥

∥

∥

dj2

dℓj2
φ1(L−nℓ, ·)

∥

∥

∥

∥

2

Hr(Iγ)

dℓ

≤ L−2n

∫ 1/2k0Ln

−1/2k0Ln

(1 + ℓ2)|∂j1
ℓ αn(1, ℓ)|2

∥

∥

∥

∥

dj2−1

dℓj2−1
(∂ℓφ

1(L−nℓ, ·))
∥

∥

∥

∥

2

Hr(Iγ)

dℓ

≤ CL−2n‖αn(1, ·)‖2
BLn (2,r,2),

where j2 is at least one. For the terms without a derivative of φ1 we can use Taylor expansion,
which leads to

φ1(L−nℓ, x) − φ1(0, x) = L−nℓ∂ℓφ
1(ℓ̃(ℓ), x),

where |ℓ̃(ℓ)| ≤ L−n|ℓ|. Thus, in (4.52) there also occur terms of the type

∫ 1/2k0Ln

−1/2k0Ln

(1 + ℓ2)‖∂j
ℓαn(1, ℓ)L−nℓ∂ℓφ

1(ℓ̃(ℓ), ·)‖2
Hr(Iγ) dℓ

≤ L−2n

∫ 1/2k0Ln

−1/2k0Ln

(1 + ℓ2)2|∂j
ℓαn(1, ℓ)|2‖∂ℓφ

1(ℓ̃(ℓ), ·)‖2
Hr(Iγ) dℓ ≤ CL−2n‖αn(1, ·)‖2

BLn (2,r,2).

Note that the additional factor ℓ in this estimate is the reason why we have to lower the weight
in ℓ from B√

t(2, r, 2) to B√
t(2, r, 1) in Theorem 4.2. Altogether, we obtain

‖(ℓ, x) 7→ αn(1, ℓ)
(

φ1(L−nℓ, x) − φ1(0, x)
)

‖BLn (2,r,1) ≤ CL−n‖αn(1, ·)‖BLn (2,r,2) ≤ CL−m0L−n.

The BLn(2, r, 2)-norm of third term on the right-hand side of (4.51) can be easily estimated by
L−(1−p)nρn,s. Combining all these estimates, we obtain

‖(ℓ, x) 7→ w̃(L2n, L−nℓ, x) − χ(L−nℓ)f̂z0(ℓ)φ
1(0, x)‖BLn (2,r,1) ≤ CL−(1−p)n.

This is (4.18) for t = L2n, and the local existence Theorem 4.1 yields the result for all t ∈
[L2n, L2(n+1)]. �
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