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Abstract

We show the local existence and uniqueness of solutions of the most advanced model
for the description of electro-convection in nematic liquid crystals, namely the weak
electrolyte model (WEM), which is a mixture of quasilinear parabolic equations and
balance laws. We do this by bringing the WEM in a form where a standard iteration
scheme can be applied.
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1 Introduction

Electro-convection in nematic liquid crystals is a paradigm for pattern formation in non–
isotropic media. Experimentally, a thin layer of such a material is contained in between two
spatially extended electrode plates. When an alternating current is applied to the electrodes an
electro-hydrodynamic instability occurs if the voltage is above a certain threshold. The triv-
ial spatially homogeneous solution becomes unstable and bifurcates into non-trivial pattern
[Cha77, PB98].

There are essentially two models for the mathematical description of electro-convection in
nematic liquid crystals. These are the standard model ([ZK85] and the references therein) and
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the weak electrolyte model (WEM). The latter has been introduced by Kramer and Treiber in
[Tre96, TK98] to overcome a number of insufficiencies of the standard model. In particular,
the WEM has a number of pattern forming instabilities which agree well with experimental
results [Tre96], see also [SU07].

The local existence and uniqueness of solutions of the WEM is a nontrivial task since the
governing equations are a relatively complicated mixture of quasilinear parabolic equations
and balance laws. Therefore, in [SU07] a regularized semilinear parabolic WEM was con-
sidered. Here, we solve the problem for the original WEM by combining optimal regularity
theory for quasilinear parabolic systems and Kato’s method for quasilinear hyperbolic sys-
tems. As a consequence, the justification results for the approximation of a regularized WEM
by Ginzburg–Landau equations from [SU07] also hold for the original WEM.

The following presentation and non-dimensionalization of the WEM follows [DO04,
SU07]. We consider a layer of nematic liquid crystals in between two infinitely extended
horizontal plates of height π, i.e. in the following (x, y, z) ∈ Ω = R2 × (0, π). In the WEM
the average molecular axis of the nematic liquid crystals is described locally by a director
field n of unit vectors. The Leslie-Erickson equations for n and the generalized Navier-
Stokes equations for the fluid velocity v and the pressure p in the presence of an electric field
E are given by

(∂t + v · ∇)n = ω × n+ δ⊥(λAn− h) , (1)

P2(∂t + v · ∇)v = −∇p−∇ · (T visc + Π) + π2ρE , (2)

∇ · v = 0 , (3)

for (x, y, z) ∈ Ω. These equations turn out to be a quasilinear parabolic system. The meaning
of the quantities is as follows. The vorticity is

ω =
1

2
(∇× v), (4)

and the molecular field h is given by

h = 2

(
∂f

∂n
−∇ · ∂f

∂∇n

)
− εaπ2(n · E)E (5)

where
2f = (∇ · n)2 +K2[n× (∇× n)]2 +K3[n · (∇× n)]2 , (6)

is the elastic energy density describing splay, twist (K2), and bend (K3) deformations, and
where (

∂f

∂∇n

)
ij

:=
∂f

∂ni,j
with ni,j = ∂xjni.

We refer to [DO04] for a physical interpretation of the constants P2, λ, K2, K3, and εa. The
electric field E = E(x, y, z, t) ∈ R3 is considered to be quasistationary, i.e. rot E = 0. It is
then split into an external forcing and some potential part, i.e.

E = Ep(t)(0, 0, 1)T −∇φ , (7)
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where usually in the experiments

Ep(t) = E0 cosω0t (8)

with an E0 > 0 and ω0 > 0.
The tensors A, and T visc are, respectively, the shear flow tensor

Aij =
1

2
(∂ivj + ∂jvi), (9)

and the viscous stress tensor

−T viscij =
3∑

k=1

(
α1ninjnk

( 3∑
l=1

nlAkl

)
+ α5njnkAki + α6ninkAkj

)
(10)

+α2njmi + α3nimj + α4Aij

where
m = δ⊥(λAn− h) (11)

and with constant coefficients α1, . . . , α6. The tensor Π with

Πij =
3∑

k=1

∂f

∂nk,j
nk,i (12)

is called the nonlinear Ericksen stress tensor. The projection tensor

δ⊥ij = δij − ninj (13)

in (1) guarantees that |n| = 1 as long as the solution exists. This follows from writing
∂tn = (−v · ∇)n+ω× n+ δ⊥f with f = λAn− h. The transport terms (−v · ∇)n+ω× n
conserve lengths, and for ∂tn = δ⊥f we obtain, for any f ,

1

2
∂t|n|2 = n · ∂tn = n · δ⊥f = n · f − n · (n · f)n = 0

using n · n = n2
1 + n2

2 + n2
3 = 1.

The second part of the WEM comes from the quasi-static Maxwell equations. In the
WEM [Tre96, TK98] there are two species of oppositely charged mobile ions. Under the
assumption of a linear recombination and zero diffusivity, the WEM consists of (1)-(3) and
two balance equations for the charge density ρ and the deviation σ of the local conductivity
from 1, namely

P1(∂t + v · ∇)ρ = −∇ · (µEσ) , (14)

(∂t + v · ∇)σ = −α2π2∇ · (µEρ)− r

2
(2σ + σ2 − P1π

2αρ2) . (15)
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Finally the system is closed by Poisson’s law

ρ = ∇ · (εE) . (16)

The dielectric tensor ε and the conductivity tensor µ are given by

εij = δij + εaninj and µij = δij + σaninj.

Similar to P2, the parameter P1 is a Prandtl–type time scale ratio. For a physical interpretation
of the constants P1, σa, α, and r we again refer to [DO04]. The WEM will be considered
with the boundary conditions

∂zn2 = n3 = ∂zv1 = ∂zv2 = v3 = φ = 0 (17)

at z = 0, π.
Using Poisson’s lawE, resp. φ, can be expressed in terms of (n, ρ) and so (1)-(3) and (14)-

(15) can be rewritten as a system of dynamical equations for V = (n2, n3, v1, v2, v3, ρ, σ).
Thus, (1)-(3), (14), (15) is abbreviated as

∂tV = M(t)V + Ñ(t, V ) (18)

where M(t)V stands for the linear and Ñ(t, V ) for the nonlinear terms with respect to V .
The WEM equations are invariant under arbitrary translations in x and y and under the

reflections

S1 : (x, n2, n3, v1) → −(x, n2, n3, v1), (19)

S2 : (y, n2, v2) → −(y, n2, v2), (20)

S3 : (z, n3, v3, φ) → −(z, n3, v3, φ). (21)

The local existence and uniqueness of solutions is nontrivial due to the relatively compli-
cated mixture of quasilinear parabolic equations and balance laws. To our knowledge no local
existence and uniqueness result is documented so far in the literature. Thus, here we make a
first step and prove the local existence and uniqueness for initial conditions in a neighborhood
of the trivial solution V = 0. We do this by bringing the WEM in a form where a standard
iteration scheme can be applied. In order to do so the regularity of the components of V has
to be chosen properly, for instance n has to be chosen one time more regular than v.
Notation. The Sobolev spaceHm(Ω) is the space ofm-times weakly differentiable functions
Ω→ R equipped with the norm

‖u‖Hm(Ω) =
m∑
|j|=0

‖∂jxu‖L2(Ω) with ‖u‖2
L2(Ω) =

∫
Ω

|u(x)|2dx.

4



We shall also need fractional order Sobolev spaces and interpolation spaces. The symmetry
S3 allows to extend the WEM periodically into the bounded direction and to expand the
variables in Fourier series with respect to z, i.e we write for instance

n2(x, y, z) =

∫ ∫ ∑
k3∈Z

n̂2(k1, k2, k3)eik1x+ik2y+ik3zdk1dk2, (22)

and similarly for n3, . . . , σ, and consider even in z extensions for n2, v1, v2, σ, ρ and odd in z
extensions for n3, v3, φ. For s ∈ R we now define

‖û‖2
l2(s) =

∫ ∫ ∑
k3∈Z

|û(k1, k2, k3)|2(1 + |k1|2 + |k2|2 + |k3|2)sdk1dk2.

Due to Parseval’s identity there is a one to one relation and norm equivalence between phys-
ical and Fourier space, i.e., for all m ∈ N there is a constant C > 0 such that

C−1‖û‖l2(m) ≤ ‖u‖Hm ≤ C‖û‖l2(m). (23)

In the following we use Hm as abbreviation for Hm(R2 × [0, 2π]) with periodic boundary
conditions in the third variable.

Using (23) we also define Hs for every s ≥ 0 as the space of functions in L2 whose
Fourier transform is in l2(s), equipped with the norm

‖u‖Hs = ‖û‖l2(s).

Finally we note that as a consequence of the periodic boundary conditions interpolation
spaces ([LM72]) are easily characterized. For instance for ∆ : Hs+2 → Hs we have

[Hs, Hs+2]θ = {u : (1 + (−∆)θ)u ∈ Hs} = {u : (1 + |k|2θ)û ∈ l2(s)}
= {u : û ∈ l2(s+ 2θ)} = Hs+2θ.

We may now state our main theorem.

Theorem 1.1. Let θ ∈ (0, 1) and m ∈ N. There exists a C1 > 0 such that for all initial
conditions

V0 = (n2, n3, v1, v2, v3, σ, %)|t=0 ∈ [Hm+3+2θ]2 × [Hm+2+2θ]3 × [Hm+2]2

with ∇ · v = 0 and ‖V0‖[Hm+3+2θ]2×[Hm+2+2θ]3×[Hm+2]2 ≤ C1 there exists a T0 > 0 such that
(18) has a unique mild solution

V ∈ C([0, T0], [Hm+3]2 × [Hm+2]3 × [Hm+2]2) ∩ C1([0, T0], [Hm+1]2 × [Hm]3 × [Hm+1]2)

with V |t=0 = V0.
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The additional regularity for (n2, n3)|t=0 and v|t=0 described by θ is needed to fulfill some
compatibility conditions at t = 0 to apply maximal regularity to the quasilinear parabolic
subsystem for (n2, n3) and v. As a consequence, (n2, n3) and v enjoy further regularity
properties, e.g., they are Hölder continuous in time with values in [Hm+3]2× [Hm+2]3, while
further regularity for the charge density ρ and the local conductivity σ are unclear, and we
restrict to the simple formulation of Theorem 1.1.

The chosen L2 framework excludes spatially extended solutions, like periodic, quasi-
periodic, or front solutions. Hence, w.r.t. the above mentioned Ginzburg-Landau approx-
imation it would be desirable to generalize the L2 framework to a L2

l,u framework which
would include these solutions, cf. [Schn94]. Difficulties in R2 × (0, π) come from the non-
smoothness of the symbol of the inverse Stokes operator or of the projection operator Q (cf.
Lemma 2.3) onto the divergence free vector fields, cf. [SU07, Remark 4.6]. In spatial do-
mains R × (0, π) this problem can be avoided, but we are not aware of any literature which
handle quasilinear hyperbolic systems in L2

l,u spaces.
The plan of the proof is as follows. In §2.1 we explain that the WEM is an evolutionary

system for the variables collected in V , i.e. we eliminate the pressure term ∇p and express
E in terms of V . In §2.2–§2.3 we extract the leading terms in the (n, v)-part and rewrite the
balance laws as symmetric quasilinear hyperbolic systems in the sense of [Kat75], and show
local existence for each of these subsystems. Then in §3 we formulate an iteration scheme
for the full system and prove the convergence of the sequence constructed by the iteration
scheme.

2 The structure of the WEM

2.1 The WEM as a dynamical system

To write the WEM as an evolutionary system in V = (n2, n3, v1, v2, v3, ρ, σ) we proceed as in
[SU07], where also the three Lemmas below are proved (Lemmas A.2, A.3, A.4 in [SU07]).
Essentially the proofs follow by explicit calculation from Fourier representation as (22) and
(23). First we need to express E in terms of V . Therefore we have to solve

ρ =
3∑

k=1

∂k(εkmEm) =
3∑

k=1

3∑
m=1

∂k
[
(δkm + εanknm)(E0 cos(ω0t)δm3 − ∂mφ)

]
with respect to φ under the boundary conditions φ|z=0,π = 0. We find

(M +G)φ = F (n, ρ, E0)
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where

F (n, ρ, E0) = −ρ+ cos(ω0t)
3∑

k=1

3∑
m=1

∂k((δkm + εanknm)E0δm3) ,

Mφ = ∆φ+ εa∂
2
1φ, Gφ = εa

3∑
k=1

3∑
m=1

∂k(nknm∂mφ)− εa∂2
1φ .

Lemma 2.1. The operator M−1 is bounded from Hs into {φ ∈ Hs+2 : φ = 0 at z = 0, π } .

Hence the electric potential φ satisfies (1 + GM−1)Mφ = F (n, ρ, E0), where GM−1 is
small for ñ = n− (1, 0, 0)T small. By using Neumann’s series we formally obtain

φ = M−1(1 +GM−1)−1F (n, ρ, E0). (24)

Lemma 2.2. For s ≥ 2 and ‖V ‖Hs sufficiently small the operator M−1(1 + GM−1)−1 is
bounded from Hs into Hs+2.

Next we focus on the hydrodynamic part of (18) and define the projection Q onto the
divergence free vector fields by w = Qf , where w solves

w −∇p = f, ∇ · w = 0, ∂zw1 = ∂zw2 = w3 = 0 at z = 0, π. (25)

Lemma 2.3. The projection Q is continuous from [Hm]3 into {v ∈ [Hm]3 : ∇ · v = 0}.

Since n2
1 + n2

2 + n2
3 = 1 for our purposes it is sufficient to consider n2 and n3. Hence we

finally consider

∂tn2 = 〈e2,−(v · ∇)n+ ω × n+ δ⊥(λAn− h)〉 , (26)

∂tn3 = 〈e3,−(v · ∇)n+ ω × n+ δ⊥(λAn− h)〉 , (27)

∂tv = P−1
2 Q(−(v · ∇)v −∇ · (T visc + Π) + π2ρE) , (28)

∂tρ = −v · ∇ρ− P−1
1 ∇ · (µEσ), (29)

∂tσ = −v · ∇σ − α2π2∇ · (µEρ)− r

2
(2σ + σ2 − P1π

2αρ2), (30)

under the boundary conditions (17), i.e., ∂zn2 = n3 = ∂zv1 = ∂zv2 = v3 = φ = 0 at
z = 0, π.

2.2 The quasilinear parabolic part

We start with the computation of the highest order derivative terms in the (n, v)–part of the
system. Here and in the following ? stands for terms with less derivatives or terms in which
the highest derivative occurs nonlinearly.

We introduce the derivation ñ of the director from the planar alignment by

n = (1 + ñ1, ñ2, ñ3)T .
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From (1 + ñ1)2 + ñ2
2 + ñ2

3 = 1 we find ñ1 = O(ñ2
2 + ñ2

3). Therefore

(∇ · n)2 = (∂x2ñ2 + ∂x3ñ3)2 + ?, ∇× n = (∂x2ñ3 − ∂x3ñ2, −∂x1ñ3, ∂x1ñ2)T + ? ,

n · (∇× n) = (∂x2ñ3 − ∂x3ñ2) + ? and n× (∇× n) = (0, −∂x1ñ2, −∂x1ñ3)T + ? .

Thus

2f = (∂x2ñ2 + ∂x3ñ3)2 +K2((∂x1ñ2)2 + (∂x1ñ3)2) + K3(∂x2ñ3 − ∂x3ñ2)2 + ? .

Moreover

δ⊥ =


0 0 0

0 1 0

0 0 1

+ ?,

and therefore to calculate h in (5) we only need to calculate rows 2 and 3 of ∂f
∂(∇n)

, i.e.,

2
∂f

∂(∇n)
=


? ? ?

2K2∂x1n2 2(∂x2n2 + ∂x3n3) −2K3(∂x2n3 − ∂x3n2)

2K2∂x1n3 2K3(∂x2n3 − ∂x3n2) 2(∂x2n2 + ∂x3n3)

 + ? .

Thus,

2∇ · ∂f

∂(∇n)
=


?

2K2∂
2
x1
ñ2 + 2∂2

x2
ñ2 + 2∂x3∂x2ñ3 + 2K3∂

2
x3
ñ2 − 2K3∂x2∂x3ñ3

2K2∂
2
x1
ñ3 + 2K3∂

2
x2
ñ3 − 2K3∂x2∂x3ñ2 + 2∂x2∂x3ñ2 + 2∂2

x3
ñ3

 + ?.

Using this expansion and 〈ej, ω × n+ δ⊥(λAn)〉 = ? we find for the equations for ∂tñ2 and
∂tñ3 in Fourier space that

∂t

(̂
ñ2

ñ3

)
= −2

(
K2k

2
1 + k2

2 +K3k
2
3 k2k3 −K3k2k3

k2k3 −K3k2k3 K2k
2
1 +K3k

2
2 + k2

3

)(̂
ñ2

ñ3

)
+ ? .

This matrix turns out to be negative definite if K2 > 0 and K3 > 0.
Next we come to the equation for v. We proceed as above and compute the terms with

highest derivatives which are linear. Since in the ∂tn-equation no v terms played any role
we have some lower triangular block structure and so in the ∂tv equation it is sufficient to
consider the linear terms with highest derivative of v. All the rest will be denoted as above
with ?. Hence, it is sufficient to analyse T visc and in T visc the Ak` terms. We find

−T viscij = (α1 + α5 + α6)δi1δj1Aij + α4Aij + ?
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so that

∇ · T visc = α4∆v + (α1 + α5 + α6)


∂2

1v1

0

0

+ ?

where we used∇ · v = 0. Therefore the (n, v)–part is of the form

∂t

(
ñ2

ñ3

)
= Ln

(
ñ2

ñ3

)
+Gn ,

∂tv = Lvv +Gv ,

where Ln is defined by its symbol in Fourier space

−L̂n = 2

(
K2k

2
1 + k2

2 +K3k
2
3 k2k3 −K3k2k3

k2k3 −K3k2k3 K2k
2
1 +K3k

2
2 + k2

3

)
,

and

Lvv = P−1
2 Q

[
α4∆v + (α1 + α5 + α6)


∂2

1v1

0

0

] , (31)

and whereGn andGv stand for the remaining terms. Ln and Lv generate analytic semigroups
which later allow to control Gn and Gv by optimal regularity results.

Lemma 2.4. Let θ ≥ 0 and m ∈ N. a) The operator Ln : [Hm+2]2 → [Hm]2 defines an
analytic semigroup etLn in [Hm]2 satisfying

‖etLnu‖[Hm+2θ]2 ≤ C(1 + t−θ)‖u‖[Hm]2 .

b) The operatorLv : Q[[Hm+2]3]→ Q[[Hm]3] defines an analytic semigroup etLv inQ[[Hm]3]

satisfying
‖eLvtu‖[Hm+2θ]3 ≤ C(1 + t−θ)‖u‖[Hm]3 .

Proof. The result follows from the fact that under the chosen boundary conditions the
problem can be extended periodically into the bounded z-direction such that the estimate
is a consequence of the representations of Ln and Lv in Fourier space and (23). Since
‖etL̂n‖R2×2 ≤ e−C̃t|k|

2 for a C̃ ≥ 0, we have that

‖etLnu‖[Hm+2θ]2 ≤ C‖etL̂nû‖[l2(m+2θ)]2 ≤ C‖e−C̃t|k|2 |û|‖l2(m+2θ)

≤ C sup
k
|e−C̃t|k|2(1+k2)θ| ‖û‖(l2(m))2 ≤ C(1+t−θ)‖û‖(l2(m))2 ≤ C(1+t−θ)‖u‖(Hm)2 .

Similarly the estimate for etLv follows.
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In order to apply an iteration scheme to solve the quasilinear problem for (n2, n3) and
v coupled to the hyperbolic problem for (ρ, σ) we shall need maximal regularity results.
Therefore we first study the linear inhomogeneous problems

∂t(n2, n3) = Ln(n2, n3) + fn (32)

and
∂tv = Lvv + fv. (33)

Given, e.g., fv ∈ C0,θ([0, T0], X) with 0 < θ < 1, where X is some Banach space,
maximal regularity means that ∂tv and Lvv enjoy the same regularity as fv. Additional to
the natural assumption that v0 = vt=0 ∈ D(Lv), the crucial point to obtain such maximal
regularity results are compatibility conditions at t = 0, namely

Lvv0 + fv(0) ∈ DLv(θ,∞). (34)

Here the real interpolation space DLv(θ,∞) is the set of all v ∈ X such that t1−θ‖LvetLvv‖X
is bounded as t → 0, see, e.g., [Lun95]. From Lemma 2.4 we see that for, e.g., X = [Hm]3

and v ∈ [Hm+2θ]3 we have

‖LvetLvv‖X ≤ C‖etLvv‖[Hm+2]3 ≤ C(1 + t−(1−θ))‖v‖[Hm+2θ]3 ,

and since clearly these estimates are sharp we thus have DLv(θ,∞) = [Hm+2θ]3. The prob-
lem for ∂t(n2, n3) can be analyzed in the same manner, and for later reference we note the
following lemma.

Lemma 2.5. For all θ ∈ (0, 1), m ≥ 0 and T0 > 0 there exists a C2 > 0 such that the
following holds.

a) If fn ∈ C0,θ([0, T0], [Hm+1]2) and Ln(n2, n3)|t=0 +fn(0) ∈ [Hm+1+2θ]2, then there ex-
ists a unique solution (n1, n2) ∈ C0,θ([0, T0], [Hm+3]2)∩C1,θ([0, T0], [Hm+1]2) of (32) which
is bounded in this space by C2(‖Ln(n2, n3)|t=0 + fn(0)‖[Hm+1+2θ]2 + ‖fn‖C0,θ([0,T0],[Hm+1]2) +

‖(n2, n3)|t=0‖[Hm+3+2θ]2).
b) If fv ∈ C0,θ([0, T0], Q[[Hm]3]) and Lvv|t=0 + fv(0) ∈ [Hm+2θ]3, then there exists a

unique solution v ∈ C0,θ([0, T0], Q[[Hm+2]3]) ∩ C1,θ([0, T0], Q[[Hm]3]) of (33) with norm
bounded in this space byC2(‖Lvv|t=0+fv(0)‖[Hm+2θ]3+‖fv‖C0,θ([0,T0],[Hm]3)+‖v|t=0‖[Hm+2+2θ]3).

Proof. These are consequences of Lemma 2.4 and optimal regularity theory. See, e.g.,
[Lun95, Theorem 4.3.1] or [Sin85].

2.3 The balance laws

The equations (29), (30) for ∂tρ and ∂tσ are of different type than (26)–(28). They are balance
laws, hence quasilinear hyperbolic and not quasilinear parabolic. Nevertheless there is some
damping in the (ρ, σ)-part due to the −2σ term in the σ equation.
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Again we concentrate on the terms with highest derivatives, i.e.

∂tρ = −vj∂jρ− P−1
1 ∂j(ajσ) , (35)

∂tσ = −vj∂jσ − α2π2∂j(ajρ) +Gσ , (36)

where we used Einstein’s sum convention (aibi =
∑
i

aibi) and the abbreviation

a = µE,

and where Gσ stands for the remaining terms, which are semilinear. We shall assume that
the coefficients vj and aj and hence also the n–dependent coefficients in Gσ are sufficiently
smooth and later relate this to the smoothness of V . Setting

u =

(
ρ

σ

)
, A0 =

(
1 0

0 1

)
, Aj =

(
vj P−1

1 aj

α2π2aj vj

)
for j = 1, 2, 3,

and

f(t, x, u) =

(
0

Gσ

)
−

(
P−1

1 (∇ · a)σ

α2π2(∇ · a)ρ

)
,

(35),(36) becomes

A0∂tu+
3∑
j=1

Aj∂xju = f(t, x, u), u|t=0 = u0, (37)

which is almost of the form (Q) in [Kat75], where however the matrices Aj ∈ R2×2 are not
yet symmetric. Clearly, the system can be symmetrized, e.g., by setting ũ = (s1ρ, s2σ) and
choosing s1, s2 to fulfill s1/s2 =

√
α2π2P1, but we omit this obvious step. To apply [Kat75,

Theorem IV and Remark 5.1b] to (37) resp. its symmetrized version it is sufficient to ensure
that Aj ∈ C([0, T0], Hs(Ω,R2×2)) and f0 ∈ L∞([0, T0], Hs(Ω,R2)) ∩ C([0, T0], L2(Ω,R2)),
where f0(t, x) = f(t, x, u∗(x)) for some fixed u∗ ∈ Hs(Ω,R2), which is chosen sufficiently
close to the initial condition u0. This gives conditions on (ρ, σ)|t=0, v and a. For simplicity
we continue to consider Gσ as inhomogeneity and obtain

Lemma 2.6. Let s > 5/2 and T0 > 0. Then for all C1 > 0 there exists a C2 > 0 such that
the following holds. Let (ρ, σ)|t=0 ∈ [Hs]2, v ∈ C([0, T0], Q[[Hs]3]), a ∈ C([0, T0], [Hs+1]3)

and Gσ ∈ C([0, T0], Hs), with norms bounded in these spaces by C1. Then there exists a
unique solution

(ρ, σ) ∈ C([0, T0], [Hs]2) ∩ C1([0, T0], [Hs−1]2)

of (35) and (36) with norm bounded in this space by C2‖(ρ, σ)|t=0‖[Hs]2 .
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Remark 2.7. The results in [Kat75] are essentially based on a priori estimates and an iteration
scheme. It is instructive to review these a priori estimates for (35), (36), which are the basis
for any iteration scheme. For s ≥ 0 and with

∫
· =

∫
· dx we find

1

2
∂t

∫
(∂skρ)2 =−

∫
(∂skρ)∂sk(vj∂jρ)−

∫
(∂skρ)P−1

1 ∂sk∂j(ajσ)

=−
∫

1

2
∂j((∂

s
kρ)2)vj + s.t.−

∫
P−1

1 aj(∂
s
kρ)(∂sk∂jσ) + s.t.

= +

∫
1

2
(∂skρ)2(∂jvj) + s.t.−

∫
P−1

1 aj(∂
s
kρ)(∂sk∂jσ) + s.t.

=−
∫
P−1

1 aj(∂
s
kρ)(∂sk∂jσ) + s.t. ,

with multiindex k and where s.t. stands here and in the following for semilinear terms, i.e.
for terms with s or less derivatives acting on ρ, σ. Similarly, we find

1

2
∂t

∫
(∂skσ)2 = −

∫
(∂skσ)∂sk(vj∂jσ)−

∫
(∂skσ)∂sk(α

2π2∂j(ajρ)) +

∫
(∂skσ)(∂skGσ)

= −
∫
α2π2aj(∂

s
kσ)(∂sk∂jρ) + s.t. =

∫
α2π2aj(∂

s
k∂jσ)(∂skρ) + s.t. .

Thus we have
1

2
∂t

[
α2π2

∫
(∂skρ)2 + P−1

1

∫
(∂skσ)2

]
= s.t. , (38)

which shows that the energy contained in the highest derivatives is conserved up to lower
order semilinear terms, and this also shows the essential symmetry of (35),(36).

3 The full system and the iteration scheme

To prove Theorem 1.1 we now combine the optimal regularity theory of [Sin85, Lun95] for
quasilinear parabolic equations and the existence theory of [Kat75] for quasilinear hyperbolic
systems. In combining the two methods one has to be careful since in contrast to solutions of
quasilinear parabolic systems, solutions of quasilinear hyperbolic systems in general are not
Hölder–continuous in time, see [Kat75, Sec.5.3] for some counter–examples.

The idea is to find solutions by the iteration scheme

∂t(n2, n3)i+1 = Ln(n2, n3)i+1 +Gn(Vi),

∂tvi+1 = Lvvi+1 +Gv(Vi),

∂tρi+1 = −
3∑
j=1

(vj)i∂jρi+1 − P−1
1

3∑
j=1

∂j((aj)iσi+1)

∂tσi+1 = −
3∑
j=1

(vj)i∂jσi+1 − α2π2

3∑
j=1

∂j((aj)iρi+1) +Gσ(Vi) .

(39)
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Thus it remains to choose the space for V in such a way that for given Vi we have that
Gn(Vi), Gv(Vi) fulfill the assumptions of Lemma 2.5 and that vi, ai and Gσ(Vi) fulfill the
assumptions of Lemma 2.6. Therefore we note the following Lemma, where we add the
parameter θ to deal with the compatibility conditions in Lemma 2.5.

Lemma 3.1. For m ≥ 1 and θ ∈ [0, 1) the nonlinearity G = (Gn, Gv, 0, Gσ) is locally
Lipschitz continuous from [Hm+3+2θ]2×[Hm+2+2θ]3×[Hm+2]2 into [Hm+1+2θ]2×[Hm+2θ]3×
[Hm+2]2.

Proof. We have ω ∈ Hm+1+2θ by (4), f ∈ Hm+2+2θ by (6), E ∈ Hm+3 by (7) and Lemma
2.2, h ∈ Hm+1+2θ by (5), δ⊥ij − δij ∈ Hm+3+2θ by (13), A ∈ Hm+1+2θ by (9), m ∈ Hm+1+2θ

by (11), T visc ∈ Hm+1+2θ by (10), and Π ∈ Hm+2+2θ by (12). Therefore the right hand side
Gn of (1) is in Hm+1+2θ and the right hand side Gv of (2) is in Hm+2θ. We have εij − δij ∈
Hm+3+2θ and µij − δij ∈ Hm+3+2θ. From ρ ∈ Hm+2 we immediately find that the terms
collected in Gσ are in Hm+2.

Proof of Theorem 1.1. To use the iteration scheme (39) we need to satisfy, in each step
i 7→ i+ 1,

a) the regularity of the initial data, and the compatibility conditions

Ln(n2, n3)|t=0 + fn(0) ∈ [Hm+1+2θ]2 and Lvv|t=0 + fv(0) ∈ [Hm+2θ]3.

b) the conditions on v, a and Gσ in Lemma 2.6, with s = m+ 2;

c) the conditionsGn ∈ C0,θ([0, T0], [Hm+1]2) andGv ∈ C0,θ([0, T0], Q[[Hm]3]) in Lemma 2.5.

Since the initial data are always the same, a) follows from Lemma 3.1 with θ > 0 chosen in
Theorem 1.1.

It is clear that Lemma 3.1 also holds for functions continuous resp. Hölder continuous in
time with values in the respective Sobolev spaces. Thus, Gσ ∈ C([0, T0], Hm+2), and with
v ∈ C([0, T0], Hm+2) and a = µE ∈ C([0, T0], Hm+3) we immediately have b).

Finally we need to check that the lack of Hölder continuity in time of the solutions (ρi, σi)

does not cause problems forGn(Vi), Gv(Vi). The idea is to trade some spatial differentiability
of (ρ, σ) for Lipschitz continuity in time. In detail, from (35) we find that

‖ρ(t+ δ)− ρ(t)‖Hm =

∥∥∥∥∫ t+δ

t

∂tρ dτ

∥∥∥∥
Hm

=

∥∥∥∥∥
∫ t+δ

t

−
3∑
j=1

vj∂jρ− P−1
1

3∑
j=1

∂j(ajσ) dτ

∥∥∥∥∥
Hm

≤ Cδ

(
‖v‖C([0,T0],[Hm]3)‖ρ‖C([0,T0],Hm+1)

+ (‖ρ‖C([0,T0],Hm+1) + ‖n‖C([0,T0],[Hm+2]2))‖σ‖C([0,T0],Hm+1)

)

13



and similarly for σ. Hence

V ∈ C0,θ([0, T0], [Hm+3]2)× C0,θ([0, T0], [Hm+2]3)× C([0, T0], [Hm+2]2)

implies σ, ρ ∈ C0,1([0, T0], Hm), whereC0,1([0, T0], X) ⊂ C0,β([0, T0], X) denotes Lipschitz
continuity in time with values in X . Thus we obtain c).

For small C1 from Theorem 1.1 we obtain a small Lipschitz constant in Lemma 3.1 which
by using Lemma 2.5 and Lemma 2.6 with small T0 > 0 implies the convergence of the
iteration scheme. Therefore, we are done.
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