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Abstract. We explain the usage of MEX files to call Fortran routines from
Matlab in a “quick and dirty” but simple and efficient way. Our main examples are
interfaces to the ODE solver SODEX and the PDE solver PDETWO. We apply the
SODEX interface to the van der Pol oscillator and Chua’s circuit, illustrating a
significant speedup compared to Matlab integrators, and use the PDETWO
interface to integrate a reaction diffusion system, the porous medium equation, a
wave equation, some shallow water equations, and some more examples.
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1 Introduction

Matlab is a powerful mathematical software that originated as an “easy input — easy
output” interface to numerical subroutines/libraries such as BLAS and LAPACK,
written in Fortran. Today it is widely used in academia and industry and has a
huge number of built in functions and features. However, even though via so called
MEX files Matlab offers a convenient way to interface additional Fortran routines or
libraries, at least in academic teaching this option does not seem to be much used.
Therefore, here we review some basics of this. There are two possible advantages to
using external library routines in Matlab:

a) A Matlab routine is not available for the specific task, but a library routine is.

b) Even if there is a Matlab routine, some library routine may still be faster (some-
times by orders of magnitude, see the ODE examples below).

We assume that the reader is familiar with the basic usage of Matlab, and otherwise
refer to the extensive documentation and tutorials everywhere on the internet (and
within Matlab). We restrict to Fortran source code and thus only assume that the
reader can read and write some elementary Fortran. However, even if the reader has
never used Fortran before, this should be no problem: with the templates provided,
anyone who has a very basic understanding of Matlab (or, e.g., C, Java, ...) can
write the elementary fortran codes needed !.

After some introductory toy problem we focus on the ODE (ordinary differ-
ential equation) solver SODEX and the PDE (partial differential equation) solver
PDETWO. For this we assume some familiarity with PDEs and ODEs and their nu-
merical solutions, on a very basic level. The number of references we give is rather
short, since for most of the following much excellent information can be found on the
internet; in particular we again recommend the Matlab documentation and, for in-
troductory purposes, the Wikipedia articles on, e.g., ordinary and partial differential
equations, numerical solutions, stiff ODEs, etc 2. Of the large variety of books on
ODE and PDE we recommend [Str94] for ODEs, [Str92, Eva98, Rob01] for PDEs and
modeling, and [HNW93, HW96, C0098] for numerical aspects. See also [Uec09] and
the references therein.

All Matlab, MEX and library routines (in source code) used here can be down-
loaded from [Uecll], as well as possible updates and extensions. The folder contains
a file README, which describes the folder contents and includes setup remarks. The
folder only contains “free software”, but concerning copyright and license details we
refer to the source codes of the libraries, and, e.g., concerning PDETWO to the ACM
license agreement®. The routines should run on any computer with Matlab and a
Fortran compiler (supported by Matlab). We tested them on a linux system with
Matlab R2006b and gfortran.

Ladditionally, there are many Fortran tutorials on the web
2as is natural for software issues, we also give a number of urls for documentation and references
Shttp://www.acm.org/publications/policies/softwarecrnotice/
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1 Introduction

Remark 1.1 A free and almost compatible alternative to Matlab is octave*. Like
Matlab, octave has the option of interfacing libraries and producing executable so
called “octfiles” from C and Fortran source files. Here we focus on Matlab MEX files,
but in fact our setup of a MEX gateway to PDETWO was motivated by a similar
(but more elaborate) octave gateway [Wea06]. |

1.1 The baby MEX : timesa

The way to call Fortran subroutines from matlab is via MEX (MatlabEXecutable)
files. As already said, on this there is extensive help, documentation and tutorials °,
and thus here we only briefly explain the basic steps, with a small twist, which does
not seem to be widely used. More sophisticated library routines sub like e.g. ODE or
PDE solvers typically call user supplied subroutines subsub, where the interface to
subsub is fixed. Then, if either the interface to sub or from sub to subsub does not
allow the user to pass all parameters needed, the way to do this is via COMMON blocks.
This is (naturally) the situation we encounter with virtually all library ODE or PDE
solvers, and thus here we want to explain a solution in conjunction with Matlab using
an otherwise standard baby MEX file, namely the multiplication of a vector x with a
scalar a.

MEX (source) files® are Fortran files, and thus (contrary to Matlab) require some
formatting” and moreover in principle need declaration of variables. However, we often
use the declaration | IMPLICIT DOUBLE PRECISION (A-H,0-Z) |which gives variables
with names starting with A—H or O-Z automatically the type double, and all other
variables the type integer. This is handy, but also dangerous!

Here is our first MEX file, condensed to what is necessary, called timesa.F:

#include "fintrf.h"
subroutine mexFunction(nlhs, plhs, nrhs, prhs)
! Gateway routine to multiply input vector x by scalar a
! compile as mex timesa.F, call as [y]=timesa(x,nx,a)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
parameter (nmax=10) ! maximal length for x
mwpointer mxCreateDoubleMatrix,mxGetPr ,mxCreateNumericMatrix
double precision mxGetScalar
mwpointer prhs(*),plhs(*),x_pr, a_pr, y_pr
dimension x(nmax)
common /para/ a

4
5

www.gnu.org/software/octave/
a starting point is www.mathworks.com/help/techdoc/matlabexternal/f7667dfil.html

6in the following, by MEX file we mainly mean the respective (Fortran) source codes (*.F files),
while strictly speaking the MEX file is the compiled file with ending *.mexglx (linux) or *.mexw32
(windows 32-bit) or similar, which can be called from Matlab

"we just mention that commands must start in column 7 or later, that any character in column
6 indicates a continuation of the previous line, that everything after column 72 will be ignored, and
that comments are behind a C or !. Historically, Fortran programs are UPPER CASE. However,
since no compiler seems to actually require this (they are case-insensitive), and since programming
is always a matter of copy-paste, here for convenience we freely mix UPPER and lower case letters

3
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Matlab, Fortran, SODEX and PDETWO (Uecker)

x_pr=mxGetPr(prhs (1)) ;nx=mxGetScalar (prhs(2));

call mxCopyPtrToReal8(x_pr,x,nx); I input x
a=mxGetScalar (prhs(3)); ! input a

call timesa(x,nx) ! call the calculation routine
plhs(1)=mxCreateDoubleMatrix(1,nx,0) | prepare return

y_pr=mxGetPr(plhs(1)); call mxCopyReal8ToPtr(x,y_pr,nx);
return; end

subroutine timesa(x,nx) ! ‘‘calculational’’ subroutine
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

dimension x(nx)

character(200) mstring ! for printing info
common /para/ a

lwrite(mstring,*) ’a=’,a; k=mexPrintf (mstring);

do k=1, nx; x(k)=a*x(k); enddo

return; end

Any (Fortran) MEX file is named *.F, with * the desired name of the routine, and
starts with the preprocessor macro on line 1, followed by the Gateway Routine, always
declared as subroutine mexFunction(nlhs, plhs, nrhs, prhs). The arguments
are abstract in the sense that the data contained must be extracted in a rather explicit
way. First we remark that the main use of nlhs and nrhs is to check the correct
number of input and output arguments. This we clip in our condensed file, see again
footnote 5.

In Line 6 we define the maximal length of vectors to be processed; instead of this
we could use dynamic memory allocation, but for simplicity we also clip this. For
this, see also Remarks 2.1 and Remarks 3.1 below.

Lines 7 to 9 contain the necessary MEX constructions: everything passed to or
from a MEX routine should be dealt with as a pointer. Line 10 provides the actual
vector to pass to the computational subroutine, and Line 11 defines the common block
/para/, which will be available to all subroutines in the MEX file.

Lines 12 to 14 process the input, which is then passed to timesa. In subroutine
timesa we commented out line 25 which gives an example of output to the Matlab
command window; this may be useful for debugging. On return from timesa (to
line 16), the result is copied to the output pointer y_pr, and then control returns to
matlab.

Now typing mex timesa.F in Matlab and, e.g., x=[1 2 3]; nx=3; a=2;
y=timesa(x,nx,a) produces y = 2 4 6, as expected.

As already said, this was a rather stripped (for instance, no error checking) version
of a MEX file for a completely trivial task; again see footnote 5 for many more expla-
nations concerning structs like x_pr=mxGetPr(prhs(1)) and many more examples.
The only thing we want to point out is the use of the common block /para/. Again,
this construction is rather useless here, but it will be handy when we need to pass
parameters to subroutines, for which we have no control of the shape of the interface,
as will be the case in the next sections.
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2 An ODE solver: SODEX

Many processes are described by ordinary differential equations (ODE), which are
equations of the form
u'(t) = f(t,u(t)) (1)

for an unknown function u € C(I,RP), where I C R is an interval, f : [ x RP — RP is
called the vector field, and C!(I,RP) denotes the space of continuously differentiable
functions from the interval I to R?. An initial value problem consists of (1) together
with an initial condition (IC) ug € RP at some time ty, i.e., u|t=¢, = ug. For p > 2,
(1) is sometimes also called a system of ODEs.

Often, solutions to (1) cannot be found analytically and thus we need to retreat to
numerical approximations. The simplest method would be the explicit Euler method:
since f(t,u(t)) = v'(t) = +(u(t + h) — u(t)) for small h, given u(t) and a stepsize h
we approxiate u(t + h) =~ u(t) + hf(t,u(t)). However, in particular for so called stiff
ODEs this has severe problems and often does not work at all, see, e.g. [HW96] or the
Matlab documentation, or [Uec09] and the references therein for further discussion.
Therefore, we want something better.

Matlab has a number of built in ODE solvers. The most popular are ode45 for
non stiff problems and ode15s for stiff problems. Additionally, a multitude of library
routines are available in C and Fortran. In this section we use model problems to
illustrate a MEX gateway to the ODE solver SODEX, available at [Haill], where a
large number of other ODE integrators and other software is available 8 . Comparing
SODEX to builtin Matlab routines we shall see that for instance for the standard
problem of the (stiff) Van der Pol oscillator, SODEX yields a

“speedup by a factor of about 320”

compared to the best Matlab solvers for this problem?.

2.1 The solver

SODEX is designed to solve stiff ODEs My’ = f(z,y) where the independent variable

t is now called x and M € RP*P is a so called mass matrix. This includes so called

differential algebraic equations (DAEs) where M may be singular. See [HW96, §IV.9].
The Fortran interface is

SUBROUTINE SODEX(N,FCN,IFCN,X,Y,XEND,H, RTOL,ATOL,ITOL,
& JAC ,IJAC,MLJAC,MUJAC,DFX,IDFX,MAS,IMAS,MLMAS,MUMAS,
&  SOLOUT,IOUT,WORK,LWORK,IWORK,LIWORK,IDID)

We only discuss a few of the parameters of SODEX; all details can be found in
sodex.f. On input,
N (= p in our notation) is the dimension of the ODE,

8we chose SODEX for no particular reason, and other solvers may well outperform SODEX, which

in fact is listed as an “oldie” under [Haill]
9this statement will be put into perspective below



a oA W N e

Matlab, Fortran, SODEX and PDETWO (Uecker)

X is the current time (value of the independent variable) ,
Y is the current solution, and
FCN describes the right hand side f of the ODE. This FCN must read

SUBROUTINE FCN(N,X,Y,F)
REAL*8 X,Y(N),F(N)
F(1)=... ETC.

RETURN

END

Thus there is no option to pass parameters to FCN. Here the COMMON construction
as in §1 becomes ueseful. Additionally, the user must supply subroutines JAC and
SOLOUT, which however in the simplest setting can be empty and thus shall not be
discussed here. On successful return from SODEX, amongst other things, X and Y are
overwritten by X=XEND and Y= y(z), respectively.

We now explain by two examples a MEX interface to SODEX which is called in
the form

[ynew tnew| = fcnsodex(y, t,dt, para,npara, n)

where fcn stands for some particular ODE, [y t] are the current values on input,
dt,para,npara,n are the length of the time interval, the parameters, the number
of parameters, and the number of ODEs, respectively, and ynew is the numerically
calculated value of y(thew =t + dt).

Remark 2.1 Thus, what we really aim at and provide here is a “quick and dirty”
gateway to SODEX in the following sense: we do not pass a function handle to
a user provided Matlab function FCN. Instead, FCN is coded (in Fortran) within
the MEX file. Therefore, for each ODE we need a separate MEX file which must
be compiled. Moreover, there will be no dynamic memory management. This is
not elegant, but the MEX files are easy to understand. Moreover, coding FCN
in Fortran and compiling may be expected to be faster than a Matlab FCN. See
http://www-m3.ma.tum.de/Software/0DEHome for more elegant (but also much more
elaborate) MEX interfaces (in C) to ODE solvers, which pass all relevant parameters
and also function pointers. See also Remark 3.1. |

2.2 Two examples
2.2.1 Van der Pol oscillator

The van der Pol oscillator 4" — (1 — y?)y’ +y = 0 with x4 > 0 a parameter models
some electric circuit. Rewritten as a first order system for u = (y,y’) we have

/
ul - u2,
/ 2 (2)
uy = p(l —ui)ug — us,
which is of the form (1). We are mainly interested in p large. Near u; = 0 the
Jacobian of the right hand side has eigenvalues ~ 4,/u, i.e., eigenvalues of strongly
different real parts. This characterizes a so called stiff system.

6
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2 An ODE solver: SODEX

Here is a MEX gateway to SODEX. The stripped!® version of the MEX file
vdpsodex.F reads

#include "fintrf.h"

c vdpsodex.F, MEX interface to sodex for van der Pol
c compile: mex vdpsodex.F sodex.o decsol.o
c call: [y tl=vdpsodex(x,t,h,p,npara,n)
subroutine vdp(n,t,x,y) ! the actual rhs to integrate, here vdp

implicit real*8 (a-h,o0-z)

dimension x(n),y(n), dp(100)

common /para/ dp

dmu=dp(1); y(1)=x(2); y(2)=dmu*(1-x(1)**2)*x(2)-x(1);
return; end

subroutine mexFunction(nlhs, plhs, nrhs, prhs) ! Interface
IMPLICIT REAL*8 (A-H,0-Z)
parameter (nd=100,nparm=100) ! maximal number of ODES/parameters
dimension x(nd),y(nd),p(nparm)
common /para/ p
. usual data extraction .
call sostep(x,t,h,n) ! call the computation
. usual procession of result to pass back to matlab
return; end

subroutine sostep(x,t,h,n) ! "helper interface"
. define variables/switches needed by SODEX, see vdpsodex.F and sodex.f
CALL SODEX(N,vdp,IFCN,t,x,t+h,hi,RTOL,ATOL,ITOL,
& jaco,IJAC,MLJAC,MUJAC, jaco,IDFX, jaco,IMAS,MLMAS,MUMAS,
& SOLOUT,IO0UT,WORK,LWORK,IWORK,LIWORK,IDID)
return; end

c auxiliary routines (may be dummy)
SUBROUTINE SOLOUT(NR,XOLD,X,Y,N,IRTRN) ! useful for intermed. output
return; end
SUBROUTINE jaco(N,X,Y,DFY,LDFY)
return; end

Naturally, subroutine vdp(n,t,x,y) is the right hand side f from (2). We put
it first since in most cases this is the only subroutine which the user must edit when
changing the ODE. Moreover, typically the user only needs to edit one or two lines,
here line 9.

The gateway routine starts in line 12. In line 14 we hardwire the maximal number
of ODEs and parameters'!. Then we have a few lines of extracting the data from prhs,
in particular fill the parameter common /para/. We then call the “helper interface”
sostep, which deals with setting values to the (large number of) parameters used to

10here and in the following we usually shorten the original files a bit; we use “... *** _.” to indicate
omissions which can be looked up in vpdsodex.F if desired
Hagain, this is not elegant, but practical
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control (and needed to call) SODEX. Upon return from sostep we process the result
to pass it back to Matlab. In lines 29 resp. 33 there are two additional subroutines
required by SODEX. With our parameter settings in sostep they are however never
called. Thus they are only required by the compiler and may be dummy.

Altogether, vdpsodex.F is 50 lines of code. To compile it, in matlab we type
mex vdpsodex.F sodex.o decsol.o This assumes that sodex.o and decsol.o are
available for linking, i.e. that we already compiled sodex.f and decsol.f (the latter
contains linear algebra routines required by SODEX). This can be done for instance
by calling gfortran -c sodex.f decsol.f from a shell, or typing mex -c sodex.f
decsol.f at the Matlab promptlz.

A basic Matlab script (see vdptest.m) which calls vdpsodex reads 13

% comparison of sodex-mex with built in solvers
global mu; mu=500; tend=10000; x=[2;0];
tic; [tvl,yvl]=odelb5s(@vdprhs, [0 tend],x);sl=toc
tic; [tv2,yv2]=o0de23s(@vdprhs, [0 tend],x);s2=toc
npara=1;para=mu;nsteps=100;t=0;tend=10000;n=2;
x=[2; 0]; dt=tend/nsteps; sol=zeros(2,nsteps); tv=zeros(l,nsteps);
tic;
for k=1:nsteps
[x t]l=vdpsodex(x,t,dt,para,npara,n); sol(:,k)=x;tv(k)=t;
end
s3=toc, plot(tvl,yvi(:,1),’-’,tv,s0l(1,:),’+’);

We set 1 = 500 and in lines 2-4 for later comparison first solve (2) with the built in
Matlab solvers ode15s and ode23s.'* For these we obviously need the right hand side
of (2) as a Matlab function as well, which needs the parameter p, which is therefore
declared as global in line 1. See vdprhs.m.

Lines 5-7 prepare the call to vdpsodex which is done in the loop in lines 8-10. The
remainder of the file plots the results, and compares run times. Figure 1 illustrates
that the solution shows so called relaxation oscillations, with intervals where u changes
rapidly, as is typical for stiff problems.

For the execution times, on a notebook with an Intel Core 2 Duo SU7300 ULV
processor, we have, approximately, in seconds,

sl=odelbs s2=o0de23s s3=vdpsodex
5.5 5.1 0.0016

Thus, vdpsodex beats the two Matlab solvers by a factor of about 320. However, a
few comments are in order:

2where additional compiler flags may be helpful; for instance, use gfortran -c -03 sodex.f
decsol.f for code optimization

13the original Matlab scripts in most cases contain some more comments; moreover, they usually
use cell mode and hence should be conveniently stepped through using the Matlab editor.

14311 other Matlab solvers fail for this problem or at least give executions larger by orders of
magnitude
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3 ode15s

+  sodex

3 . . . .
o 2000 A000 G000 [O00 10000
time t

Figure 1: Output of vdptest.m

Remark 2.2 a) si, 59,53 are “typical times” in the sense that repeated calls may
slightly differ due to other system loads.

b) The behaviour of the Matlab solvers can be tweaked in many ways by setting a
number of parameters. Here we just used the defaults, for instance RelTol = .001
and AbsTol = .000001. Of course, we run SODEX with the same values.

c) The Matlab solvers produce output t = to,t1,...,tn, ¥y = y(to),...,y(tny) in a
controlled form “suitable for plotting”, i.e. intermediate output is created whenever
the solution y varies on a certain scale. This is convenient but (of course) consumes
time. However, calling odel5s in the form

nsteps=100;t=0;tend=10000; x=[2; 0];tend=10000;dt=tend/100;tv=0:dt:tend;
tic; [tv3,yv3]=0delbs(@vdprhs,tv,x) ;sl=toc

which produces no intermediate output, again gives s; ~ 5, thus no gain in speed.
Similarly, calling odel15s in a for loop like vdpsodex gives s; ~ 6.

d) On the other hand, vdpsodex produces no intermediate output, it just returns the
solution at the end of the desired time interval. That is why we need the loop in lines
8-10 to produce intermediate output by hand, controlled by nsteps; increasing nsteps
to have denser output increases sz, but only slightly. On the other hand, calling, e.g.,
[x t]=vdpsodex(x,0,tend,para,npara,n) we get s3 ~ 0.001.

e) Given these caveats, it is clear that even for the specific problem (including ma-
chine, Matlab release, compiler) we cannot strictly claim that “SODEX is 320 times
faster than ode15s”. However, we can say that for the above problem SODEX in the
given setting is significantly, i.e., by orders of magnitude faster than ode15s. |

Alltogether, the comparison of different algorithms for some (class of) task(s) is a
difficult problem!®, and the above comparison is in no way meant to be rigorous.
Rather we invite the reader to make his or her own comparisons for his or her specific
problem at hand.

At least equally important as speed is accuracy. Here we only take Fig. 1 as proof
that both ode15s and SODEX produce the same (and hence “accurate”) results. In
general we may say that the Matlab solvers as well as library solvers have sophisticated

15 “There is no algorithm you can’t fool, unless you don’t understand it” (folklore)
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error control such that for “generic” systems accuracy is not a problem and the
solutions can be trusted. Nevertheless one should be aware that this is not quite true
for “chaotic” problems. An example will be given now.

2.2.2 Chua’s circuit

Chua’s circuit is another model from electrical circuit theory, namely
uy] = a(ug —uy —g(ur)), us=ui —us+us, usz=—bus, (3)

with parameters a,b,c,d € R and g(u) = cu+ 2(d — ¢)(Ju+ 1| — Ju — 1|). For certain
parameters it has so called chaotic orbits.

To integrate (3) with SODEX, copy vdpsodex.F to chuasodex.F and then change
lines 5-11 to

subroutine chua(n,t,x,y) | Chua’s circuit

implicit real*8 (a-h,o0-z)

dimension x(n),y(n), dp(100)

common /para/ dp

a=dp(1); b=dp(2); c=dp(3); d=dp(4);
g=c*x(1)+0.5%(d-c)*(dabs(x(1)+1)-dabs(x(1)-1))
y(D)=a*x(x(2)-x(1)-g); y(2)=x(1)-x(2)+x(3); y(3)=-b*x(2)
return; end

That’s all. In Matlab, type “mex chuasodex.F sodex.o decsol.o” and then run
(see chuatest.m)

global a b ¢ d; a=15; b=25.58; c=-5/7; d=-8/7; x=[2; 0; 0]; tend=100;
tic; [tvl,yvl]=odelb5s(@chua, [0 tend],x);sl=toc
tic; [tv2,yv2]=ode45(Qchua, [0 tend],x);s2=toc
npara=4;para=[a b c d]; sol=zeros(3,nsteps); tv=zeros(l,nsteps);
nsteps=1000; t=0; tend=100; n=3; x=[2; 0; O0]; dt=tend/nsteps; tic;
for k=1:nsteps

[x t]l=chuasodex(x,t,dt,para,npara,n); sol(:,k)=x;tv(k)=t;
end
s3=toc, plot(tvi,yvi(:,1),’+’,tv2,yv2(:,1),tv,s0l(1,:),’-x’);

This integrates (3) using odelbs, ode45 and SODEX, with parameters (taken
from [Lyn04, §13.4]) (a,b,c,d) = (15,25.58,—5/7,—8/7), and produces the output in
Fig.2. The runtimes are

(s1(odel1bs), so(0de4b), s3(SODEX)) ~ (1.45,0.33,0.03).

Thus, here SODEX can be considered about 12 times faster than ode45, and about
44 times faster than odel5s.

We start by remarking that (3) with the above parameters is not a stiff ODE.
Therefore, oded5 is faster than odelbs, and similarly, (3) is not particularly in the

10
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class for which SODEX was designed!®. Nevertheless, SODEX is still by far faster
than the Matlab solvers, which must be attributed to the speed advantage of Fortran.

Looking at Fig. 2, this example also illustrates the issue of accuracy; (3) is a chaotic
ODE, which roughly means that arbitrary small changes in initial data may lead to
completely different (bounded) behavior after some time. Numerical error leads to
such changes in initial data (for the next step) and thus no numerical solution can
be accurate after some time. Here ode15s and SODEX agree somewhat longer with
each other than with ode45, probably because ode15s and SODEX are in the same
class of (implicit) integrators, but we must accept that we don’t know the solution
with any accuracy after some time ¢1, with here, say, t; = 10.

In conjunction with the so called Lorenz system this is often compared to weather
forecast. For weather forecast the time ¢; is generally accepted to be about 15 days.

0 5 10 15 20

Figure 2: Output of chuatest.m. Left: time—series u;(t). Right: 3D illustration
of the chaotic attractor.

For didactic reasons we suggest the following exercise, —and provide “solutions” in
[Uecl1]. However, at this point the reader may as well set up his or her own ODEs.

Exercise 2.3 Set up the following ODEs for SODEX.

a) Consider the Fitz-Hugh—Nagumo system v = f(u) — v, v = e(u — yv), with
f(u) = u(l —u)(u—a) and ,7 > 0 and a € R some parameters, see, e.g., [Kee88,
chapter 12]. Set, e.g., (a,7y) = (0.25,1) and let £ \ 0.

b) Consider the Lorenz system z’ = o(y — x), ¢y = px —y — xz, 2/ = =z + xy, with
parameters o, 3, p. Fix o = 10, § = 8/3 and set, e.g., p = 0.5, p = 2, p = 10 and
p=2T. |

165ee also http://wwwl.uni-hamburg.de/W.Wiedl/Skripte/Matlab/0DE/RUBY/ (in german) for an
enlightening discussion how to dynamically detect stiffness and choosing the best integrator
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3 PDETWO

We now consider some time dependent problems described by partial differential equa-
tions (PDE), which are equations of the form

G(t,x,u, Oy, Oy, u, Og,u, . ..) = 0. (4)

Here u : [tg,t1] x © — RP is an unknown function of time ¢ € [tg,¢1] and space
r € Q C RY and (4) expresses a relation between u and its partial derivatives
Oru, Oz, u and so on. If p =1 then (4) is also called a scalar PDE, while for p > 2 it
is called a system of PDE.

PDE are everywhere; probably the easiest and best known examples are

e the transport equation Oyu(t,z) — cOyu(t,z) =0 (d =1, p=1), where c € R is
a speed;

e the heat equation or diffusion equation dyu(t, r) — DO2u(t,z) =0 (d=1,p = 1),
where D > 0 is called diffusion coefficient;

e the wave equation 0?u(t,z) — c20%u(t,z) =0 (d = 1, p = 1); where ¢ > 0 is the
wave speed;

e the Poisson problem Au = f (d = 2, p = 1), where Au = (87, + 02 )u is the
Laplace operator and f : 2 — R is some given function.

Other important PDE include Reaction—Diffusion systems, Navier—Stokes equations,
Euler equations, the Schrodinger equation, Maxwell’s equations, Einstein’s equations,
and many more. Since PDE are everywhere and analytical solution techniques are
rare, we are interested in the numerical solution of PDE.

It is sometimes said that every (class of) PDE is different (*), in the sense that
additionally to its specific analytical difficulties every PDE requires its own special nu-
merics. Nevertheless, we now present the general solver PDETWO [MS81b, MS81al,
written in Fortran, and applicable to a rather large class of systems of PDE in two
space dimensions, and give a Matlab interface together with a few examples. The
idea is that even while the above statement (*) is basically true, for quick inspection
of a given PDE it is useful to have a general solver, even if it cannot resolve some
fine properties of solutions. Moreover, results of the general solver can be used for
comparison in the developing and testing of more specific solvers: it is always good
to have a second tool for some task.

3.1 The class of problems

The general form (4) is of course rather useless, and we need to be more specific.
PDETWO deals with initial boundary value problems for systems of p PDEs defined
over rectangular domains

R={(z,y):a1 <x <bj,a1 <z <b}.

12
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The {** PDE, [ = 1,...,p, has the form

owu; = fi (t,x,y,ul, coy Up, Oy, ., Oy, Oy, . .., Oy,

833(D;flaxu1), . ,8$(D{fp8mup), Oy (D} 10yu1), .. . ,(%(Dﬁpﬁyup)) (5)

The diffusion coefficients Dl’fj (horizontal) and Dy i (vertical) can be functions of
t,x,y,u.

On the boundaries R of R we need boundary conditions; on the horizontal bound-
aries a1 < x < ag, y = by or y = by, these are assumed to be of the form

alhul—l—b?ayul = 1=1,...,p (6)
and on the vertical boundaries by < y < by, x = a1 or £ = as we have
aju; + by 0wy =c¢;, l=1,...,p. (7)

Here alh, b{b, clh, a/,b; and ¢ can be functions of ¢, x,y, and also of u if b; # 0.

Thus, PDETWO can deal with the first two examples above, respectively with
their 2D (d = 2) generalizations, and also with the wave equation by rewriting it as
a first order system. Moreover, it can deal with such systems of arbitrary dimensions
p > 2, all sorts of time—and space dependent coefficients and boundary conditions,
and allmost all sorts of nonlinearities!'”.

All the user of PDETWO has to do is provide a (not necessarily uniform) mesh
(i Yj)i=1,....nz, j=1,...ny for R, some initial conditions, the functions f;, the diffusion
coefficients D', and DY, , and the boundary functions al', b, ¢, a?, bV, ¢v. PDETWO
takes care of converting (5) into a (huge) system of ODEs by approximating the
spatial derivatives by finite differences taking into account the boundary conditions
and subsequently calls a GEAR (implicit) method or Adams (explicit) method for
time integration. Such an approach is usually called method of lines. Probably the
biggest restrictions are the rectangular domain, the absence of mixed derivatives like
0,0,u, and the lack of support for stationary (i.e. time independent) problems. We
now set up a MEX interface to PDETWO and illustrate some of the power and
versatibility of PDETWO by some examples.

3.2 The gateway

With NPDE:=p, finite differences based on a spatial mesh (x;,¥;)i=1,....nz, j=1,... ny Of
R convert the NPDE PDEs (5) into NODE=NPDE*NX*NY coupled ODEs. The user of
PDETWO calls the driver routine

DRIVEP (NODE,TO,H,U,TOUT,EPS,MF, INDEX,WORK, IWORK,X,Y), where

7thus, PDETWO can be considered as a 2D version of the built in Matlab solver pdepe

13
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X,Y are the vectors z;, i =1,...,nz, y;, 7 =1,...,ny,
U is the array U(NPDE,NX,NY) of u—values at the meshpoints
TO, TOUT are initial and (desired) final time,

H,EPS are the initial stepsize and the local error,

MF is a switch for the integration method (see below),
INDEX is used as startup and error indicator,

WORK is real workspace, and

IWORK is integer workspace also used to pass arguments like NPDE,NX,NY.

Additionally, the user must provide subroutines BNDRYV, BNDRYH, DIFFH, DIFFV, F
which as explained above specify the boundary conditions, the diffusion-fluxes, and
f from (5). On exit, if integration was successful U contains the solution at TOUT.

Our goal is to call DRIVEP from Matlab, where we want to pass t0, tout, h,
epsi, mf, index, x, y, u, and parameters for F, BNDRYV, etc. On return we
are naturally interested in U=U(TOUT), but for reasons explained below we also return
INDEX and H (the last stepsize used). Thus the call of the MEX routine driving
DRIVEP shall read

[u,index,h]=*step(t0,tout,h,epsi,mf,index,x,y,u,para,npara)

where * will be replaced by a suitable name for the PDE we want to integrate.

Remark 3.1 Remark 2.1 also applies here. Since we do not pass function handles
to user provided Matlab functions F, BNDRH, BNDRV, DIFFH, DIFFV, for each
PDE we need an individual MEX file which must be compiled. Therefore we also
refrain from passing workspace (or at least dimensions NPDE, NX, NY) to *step. See
[Wea06] for a nice octave implementation of a gateway to PDETWO (and also to
the related routine PDEONE) which does it better. |

3.3 Four examples
3.3.1 A Reaction—Diffusion system
Reaction—Diffusion (RD) systems are PDE of the form

ou = D(u)Au + f(u), u=u(t,z) eRP,z € QCR%t>0, (8)

where D(u) € RP*P is a positive definite matrix called diffusion matrix. Naturally,
(8) must be completed with an initial condition (IC) u|(—g = ug and with boundary
conditions (BC). Reaction—Diffusion systems appear throughout Chemistry [MK98,
EE95], Biology [Mur89] and many other branches of science, and (thus) also play a
major role in PDE theory [Smo94]. For {2 = R a rectangle and typical forms of BCs

14
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3 PDETWO

we may use PDETWO to numerically approximate solutions, and in fact we regard
solving RD systems as one of the main applications of PDETWO.
A typical example is the Schnakenberg model [Sch79]

2
Oruy = Auy — ug + ujusg,

2 (9)
Orug = dAug + b — ujue,

where 11, us denote the concentrations of two chemical species, and b,d > 0 are pa-
rameters. This is a prototype for a reaction diffusion system with a Turing instability,
which means that for some parameter regions (9) develops some (roughly) spatially
periodic patterns. Often, animal coat patterns are related to Turing instabilities.

For simplicity, as boundary conditions for (9) we choose Neumann in both com-
ponents, i.e.

Opu1 = 0 and 9,,us = 0 on all four boundaries of R, (10)

where n denotes the outer normal to R. Note that much more general BC would be
allowed by PDETWO.
The stripped MEX file for (9),(10) reads (see schnakstep.F)

#include "fintrf.h"

subroutine mexFunction(nlhs, plhs, nrhs, prhs) ! Gateway to DRIVEP
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
parameter (nx=100, ny=100, npde=2, nwork=20000000)
dimension X(nx),Y(ny),U(npde,nx,ny), WORK(nwork), para(100)
integer IWORK(100000)

. more declarations and preprocessing of data
CALL DRIVEP(NODE,TO,H,U,TOUT,EPS,MF,INDEX,WORK,IWORK,X,Y)

. postprocessing
return; end

SUBROUTINE BNDRYH (T,X,Y,U,AH,BH,CH,NPDE) ! HORIZONTAL BC
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION U(NPDE),AH(NPDE) ,BH(NPDE) ,CH(NPDE)

AH(1)=0.0; BH(1)=1.0; CH(1)=0; AH(2)=0.0; BH(2)=1.0; CH(2)=0
RETURN; END

SUBROUTINE BNDRYV (T,X,Y,U,AV,BV,CV,NPDE) ! VERTICAL BC
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION U(NPDE) ,AV(NPDE) ,BV(NPDE) ,CV(NPDE)

AV(1)=0.0; BV(1)=1.0; CV(1)=0; AV(2)=0.0; BV(2)=1.0; CV(2)=0
RETURN; END

SUBROUTINE DIFFH (T,X,Y,U,DH,NPDE) ! HORIZONTAL DIFFUSION COEFFICIENTS
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION U(NPDE) ,DH(NPDE,NPDE)

DH(1,1)=1; DH(1,2)=0; DH(2,1)=0.0; DH(2,2)=1.0;

RETURN; END
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SUBROUTINE DIFFV(T,X,Y,U,DV,NPDE) ! VERTICAL DIFFUSION COEFFICIENTS
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION U(NPDE),DV(NPDE,NPDE)

DV(1,1)=1; DV(1,2)=0; DV(2,1)=0.0; DV(2,2)=1.0;

RETURN; END

SUBROUTINE F(T,X,Y,Uv,UX,UY,DUXX,DUYY,DUDT,NPDE) !PDE
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION Uv(NPDE) ,UX(NPDE),UY(NPDE) ,DUXX(NPDE,NPDE),
* DUYY (NPDE,NPDE) ,DUDT (NPDE), para(100)

common /hupara/ para

d=para(1); b=para(2); u=uv(l);v=uv(2);
dlapu=DUXX(1,1)+DUYY(1,1); dlapv=DUXX(2,2)+DUYY(2,2);
DUDT (1) =dlapu-u+u**2*v; DUDT(2)=d*dlapv+b-u**2*v;
RETURN; END

In line 4 we first define parameters nx=100, ny=100, npde=2, with obvious mean-
ings. These must have the same values as the fields x,y,u used to call schnakstep(...).
Next we also define the parameter nwork describing the size of real workspace for
PDETWO. At least for MF=22 (see below for the meaning of this parameter), PDETWO
needs quite a lot of workspace (on the order of NODE*NX, see pde2d.f for de-
tails), thus we are rather generous here. Line 5 then dimensionalizes the inputs
and workspace, and similarly in line 6 we prepare necessary integer workspace for
PDETWO. The remainder of the gateway routine consist of extracting and prepro-
cessing (including an error check this time) the data from prhs, calling DRIVEP
and postprocessing, see schnakstep.F for details. Lines 12 to 44 contain the routines
BNDRYH, BNDRYV, DIFFH, DIFFV and F describing (9),(10) in PDETWO syntax.

A very basic Matlab file (see schnakdr.m for a more elaborate version) calling
schnakstep is

npde=2; nx=100; ny=100; u=zeros(npde,nx,ny); 1x=50; ly=1x; t=0;
x=linspace(-1x,1x,nx) ;y=linspace(-1ly,ly,ny); [X,Y]=meshgrid(x,y);
X=X’; Y=Y’; Y, transpose, since u=u(nx,ny)
bp=3; dp=60;
u(2,:,:)=1/bp+0*X; ypl=-0.4x*ly; yp2=-0.6%1ly; pl1=0.01; p2=0.02;
u(l,:,:)=bp+0.1x((((X+0.5%1x) . 2+(Y-0.4%1y) ."2)<30)...

+(((X-0.5%1x) .7 2+(Y-0.4*1ly) ."2)<30) +(Y>yp2+p2*X.~2 & Y<ypl+pl*X.~2));
para=zeros(1,100); para(1:2)=[dp, bpl; npara=2; J parameters
t0=0; t1=50; epsi=0.00000001; h=0.00001; mf=22; index=1;
tic; [u, index, h]=schnakstep(tO,tl,h,epsi,mf,index,x,y,u,para,npara); toc,h
ul=squeeze(u(l,:,:)); u2=squeeze(u(2,:,:));
figure(1) ;pcolor(X,Y,ul) ;figure(2) ;pcolor(X,Y,u2);
dt=t1-t0;dt=asknu(’dt (O for end)’,dt); isteps=10; 7% start integration loop
while(dt>0);

ic=0; isteps=asknu(’isteps (0 for end)’,isteps); ’% user control

while(ic<isteps)

t0=t1; t1=tO0+dt; ic=ic+1l;
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18 tic; [u, index, h]l=schnakstep(tO,tl,h,epsi,mf,index,x,y,u,para,npara); toc
19 ul=squeeze(u(l,:,:)); figure(l);clf;pcolor(X,Y,ul);

20 u2=squeeze(u(2,:,:)); figure(2);clf;pcolor(X,Y,u2);

21 end;

22 dt=asknu(’dt (0 for end)’,dt);

23  end

Lines 1 and 2 are obvious (grid) preparations. The reason for line 3 is that X,Y
produced by [X,Y]=meshgrid(x,y) have dimensions ny xnx, which corresponds to the
mathematical notion of a ny x nx matrix, while PDETWO expects U to be dimen-
sionalized as U(npde,nx,ny) (and therefore u=zeros(npde,nx,ny) in line 1). Thus
before filling u with initial data using the (convenient) meshgrid X,Y we need to
first transpose X and Y. Note that we use a rather coarse uniform grid, in fact
Tit1—T1 = Yj+1—Yy; = 1.01; this is justified since from some theoretical consider-
ations it is easy to know in advance that the patterns which emerge must have a
wavelength of about 4.

Line 4 sets the PDE parameters, and lines 5 to 7 fill the initial conditions. We
choose v = 1/b while for u we do something more interesting — can you guess from
the code? Starting in line 8 we prepare the call to schnakstep, and in lines 10 to 13
we call schnakstep and plot the result.

Lines 14 to 23 contain the (in our view) typical application of PDETWO. We
repeatedly call schnakstep, as long as we please, with control returning to the user
after each isteps many steps'®. There the user can inspect the solution and for instance
produce figures, or even interrupt the execution to e.g., change parameters etc. In the
repeated calls of schnakstep the returning of index and h becomes useful: On input,
PDETWO (i.e. DRIVEP) uses index to indicate if this is a first call (index=1) or a
successive call (index=0). Successive calls need less preprocessing and are therefore
faster. Similarly, on input, h is the initial stepsize; choosing the final stepsize h
from the last step usually reduces the costs of startup. Additionally, the size of h is
interesting for the user since it gives an indication about how fast (h small) or slow
(h large, at least for implicit integration MF=22) the dynamics are . Here we also
finally want to comment on parameter MF in line 12.

Remark 3.2 Essentially, there are two options for MF in PDETWO:

a) MF=10 means an explicit time integration. For parabolic PDE (e.g. Reaction
Diffusion systems) this has the disadvantage that due to stiffness it requires very small
time steps (h on the order of 52, where ¢ is the meshsize of the spatial discretization).
On the other hand, explicit time stepping for each step only requires few function
evaluations, only simple algebraic operations, and little workspace.

b) MF=22 means an implicit time integration. For this, in principle there is

no restriction on the size of h, but in each step a linear system must be solved.
Therefore, PDETWO requires workspace of order NODE*NX=NX*NX*NY. This

I8asknu is a helper routine asking the user for input, see asknu.m

9of course similar remarks apply to SODEX
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may be prohibitive for large NX,NY. In particular, if possible, the PDE should be set
up in such a way that NX<NY.
For parabolic problems, if possible (concerning workspace) MF=22 is expected to

be faster; if the dimensions (npde, nx, ny) are too large, try MF=10. In any case one
should make a quick check of speeds with both MF=10 and MF=22. |

Remark 3.3 All implicit solvers (also ode1bs, SODEX, etc) can be considerably
sped up by providing an analytical Jacobian of f. In PDETWO, use MF=21. At least
for PDE, however, this usually requires a major programming effort, and is therefore
contrary to the spirit of PDETWO (and easy use of software in general). |

Remark 3.4 One can of course also pass other information back to Matlab, for
instance number of function calls etc; see line 1527 in pde2d.f. For simplicity we
restrict to index and h. |

Figure 3 shows the initial condition for u, and the solution at times as noted,
indicating the emergence of stripes pattern and convergence to a stationary solution.
The execution times/stepsize for integration intervals of size dt=100 with MF=22 are

time inverval | 0-100 100-200 ... 400-500 ... 900-1000 ... 1900-2000
runtime (s) 122 34 o 10 . 5 . 4
last stepsize 1 2 . 3 . 9 . 25

With time the stepsize increases as the solution becomes (quasi)stationary, and thus
runtime decreases. On the other hand, for the explicit scheme (MF=10) we obtain

time inverval | 0-100  100-200 200-300 300-400  400-500
runtime (s) 380 370 340 340 335
last stepsize | 0.0024  0.0016 0.0117 0.0081 0.0102

and this continues until £ = 2000, i.e., the convergence to a stationary solution does
not help speed up the calculations.

Remark 3.5 Problem (9),(10) can also efficiently solved using a semi—implicit pseudo—
spectral method, see [Uec09]. For this, here we have to replace the basis functions
2 2
ekl = €xp <i (k:L—Wa: +1 L—Wy>) from [Uec09] suitable for periodic boundary condi-
x Y

W2

2
tions by ey; = cos 7 (x — L) + lL—W(y — Ly)), suitable for Neumann BC, i.e.,
y

X
instead of FFT we have to use a discrete cosine transform dct2 in Matlab. This can

be combined with error and stepsize control, and then we may expect competitive
execution times with PDETWO.

However, this is only possible since we know the eigenfunctions e; of the Laplacian
under Neumann (or Dirichlet, or periodic) boundary conditions, i.e., in particular due
to the constant coefficients. For non—constant coefficient principal part, or for more
complicated boundary conditions, spectral methods are not available or become much
more complicated, while these variations are no problem for PDETWO. |
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u, t= 10 v, t= 10

0 0
N
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0

50 0 % 50

u, t= 2000

Figure 3: Output of schnakdr.m

3.3.2 Nonlinear diffusion: a porous medium equation

So called porous media are described by equations of the form
1
ou=—AWm), uw=u(t,x,y) >0, (11)
m

where m > 2 is a parameter. Additional to the obvious differences between (9) and
(11) we want to point out the (mathematically) important fact that (11) is quasilinear
which means that the highest derivatives (here Au) appear in a nonlinear way, cf. also
(15). Here we use the porous medium equation (11) to illustrate that on the one hand,
PDETWO can efficiently integrate such quasilinear equations. On the other hand,
using a known exact solution, and by monitoring mass conservation, we illustrate
some difficulties of the finite difference method. This shows that while PDETWO can
be used to quickly obtain the basic behaviour, some fine properties of solutions can
only be recovered using specialized numerics.

The d—dimensional generalization of (11),

1
ou=—AWm), z€QcR? (12)
m

has a familiy of self-similar fundamental solutions, called Barenblatt solutions. Let
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me = (d —2)/d, m > m., m # 1. Then, for arbitrary D > 0, T > 0,

)M, R(t) = (T+t)T—me)  (13)
|

m—1
2d(m—m.)

Upr(t,x) = R(t)™? <D—

R(t)

is an exact solution of (12), where uy (z) := max(0,u(z)) denotes the positive part.
Since U is not differentiable at the interface I'(¢) from U(t,-) = 0 to U(¢,-) > 0, these
are in fact only so called weak solutions.

For instance, for d = 2 and D =T = 1 we have the exact solution

1/(m—1)

221+ t>1/m) , (14)

+

m—1

Ult,z) = (14t)~ Y™ (1 —

m

which we shall use to validate the results of PDETWO. Therefore, we use U(0,x) as
IC for (11) on R = [—L,, L,] x [-Ly, L], with Dirichlet BC u|gr = 0. Note that
under these BC, the mass M (t) = [ p udz is always conserved, i.e., by Gauss theorem,

1
oM = —A(u™)dx = V(@™) - -ndl' =0.
m OR

Whenever such a conserved quantity is known, it should be monitored to evaluate the
performance of a numerical scheme.
To put (11) into PDETWO we note that it is equivalent to

Ou = u™ P Au+ (m — D)u" 2| Vaul® =t f(U, Ug, Uy, Uz, Uyy; M), (15)

Now consider pmstep.F. In the gateway routine we only replace parameter (nx=100,
ny=100, npde=2) by parameter (nx=50,ny=50,npde=1) since these are the (n,;,n,)
values we want to use for this problem. Next, put AV(1)=1.0;BV(1)=0.0;CV(1)=0
resp. AH(1)=1.0;BH(1)=0.0;CH(1)=0 into BNDRYV, BNDRYH to encode Dirichlet
boundary conditions, and DH(1,1)=1.0; resp DH(1,1)=1.0; into DIFFV, DIFFH.
To encode f from (15) we finally let

SUBROUTINE F(T,X,Y,U,UX,UY,DUXX,DUYY,DUDT,NPDE) !PDE
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION U(NPDE) ,UX(NPDE) ,UY(NPDE) ,DUXX (NPDE,NPDE),
* DUYY (NPDE,NPDE) ,DUDT (NPDE) , para(100)

common /hupara/ para

dm=para(1); ulap=DUXX(1,1)+DUyy(1,1);

DUDT (1)=u(1)**(dm-1)*ulap

1 +(dm-1)*u(1)**(dm-2)* (ux (1) **2+uy (1) **2)

RETURN; END

That’s all. A simple Matlab driver is pmdr.m, which is an obvious modification
of schnakdr.m. Execution speed is non—critical here, everything is very fast. Some
simulation results are shown in Fig.4. The top row shows the initial condition and

20



3 PDETWO

the solution at time ¢ = 10. The error plot (unum(10,-) — U(10,-) with U from (14))
on the bottom left shows that the numerical solution u decays somewhat too quickly,
in particular at the interface from u = 0 to u > 0. Of course, this interface, where u is
not smooth, must be expected to cause problems for any method which does not deal
with it in a special way. In particular, the error at the interface does not decrease if
we increase, e.g., nx,ny. Finally, related to this is that the mass ( = [Lu pu(t,z)dx
is not well conserved (bottom right), in particular not 1n1t1ally.

u, t=0 u, t=10

Figure 4: Output of pmdr.m

3.3.3 A wave equation

The wave equation
Pw+aAw =0, w=wtz)eR, teR, 2 € R=[-Ly L] x [-L,,L,], (16)

a > 0 a parameter, and its variants are examples of a so called hyperbolic PDE. Here
we briefly show how to solve (16) with PDETWO, taking the example of an (z,y)
dependent a, namely R = [—10,10] x [—10, 10] and

a(z) = 1 zeR\Q (17)
ap x€Q=10,1] x [-3,3].
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Moreover, we again take Neumann boundary conditions, i.e., O, w|sr = 0 where n is
the outer normal to R. This may be used as a model to study the scattering of waves
at the obstacle ().

To have the form required by PDETWO we rewrite (16) as a first order system
for u = (u1,uz) = (w, dw), namely

U U
Oy H = ? ., Opu; = 0 and O,us = 0 on OR. (18)
Us a(z)Auq

As initial conditions we want to use (u,ut)|=0 = (0,0) except for a small pulse in u
located left of the obstacle.

Now copy schnakstep.F' to wavestep.F. In the gateway routine we only replace
parameter (nx=100, ny=100, ...) by parameter (nx=200, ny=200, ...) since
these are the values we want to use for this problem. Next, the routines BNDRY'V,

BNDRYH (since again we use Neumann BC) and DIFFV, DIFFH may stay as before,
we only need to replace lines 41 to 50 by

SUBROUTINE F(T,X,Y,U,UX,UY,DUXX,DUYY,DUDT,NPDE) !PDE

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION U(NPDE) ,UX(NPDE),UY(NPDE) ,DUXX (NPDE,NPDE),
* DUYY (NPDE,NPDE) ,DUDT (NPDE), para(100)

common /hupara/ para

a=1;if((x.gt.0) .and.(x.1t.1) .and.(y.gt.-3).and. (y.1t.3)) a=para(l);
DUDT(1)=u(2); DUDT(2)=a*(DUXX(1,1)+DUYY(1,1))

RETURN; END

Line 6 encodes the obstacle €2, where aq is passed to F via the common hupara.
After calling mex wavestep.F pde2d.o, a simple matlab driver looks very much like
schnakdr.m, see wavedr.m. Figure 5 shows the output. Here we use MF=10. In
fact, with nwork=2000000 in wavestep.F we cannot use MF=22 since then we need
nwork>97122838. However, for hyperbolic problems explicit schemes are typically
superior to implicit schemes. Execution speed, anyway, is not an issue: we need
about 0.5s for a dt=1 step.

At this point the reader should start setting up his or her favorite PDE; however,
for the following exercises we again provide solutions at [Uec11]. Below, the interested
reader can also find one more example.

Exercise 3.6 Set up the following PDE for PDETWO.
a) Gray—Scott, namely

o = dy0*u — uv? + f(1 —u),

19
Ov = dzagv + uv? — (f +k)v, (19)

(x,y) € R=(—Lgy,Ly) x (Ly, Ly),0pu = Opv = 0 on OR, with typically 0<d2<d; in
applications, parameters f, k, and (z,y) € (—Lg, Ly) % (Ly, L,). Study self replicating
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[ 70.04

[ 7o.02

-0.02

-0.04

-0.06

Figure 5: Output of wavedr.m

patterns for (di,d2)=(1,0.5), (f, k)=(0.038,0.06). Compare to [Uec09, Exercise 3.18].
b) The 2D Nonlinear Schrodinger equation (NLS) [SS99] for a complexr amplitude u
reads

du = i(Au + alul?u), (20)

where a = +1 is called the focussing and o = —1 is called the defocussing case. Set
u = uq + iug, rewrite (20) as a real system for (u1,us), and simulate with “pulse-like
initial conditions” and Dirichlet or Neumann boundary conditions.

¢) A three component RD system describing traveling interface modulations is [RLK'11]

ou=u—u>—v-— d(u — us)q2 + dy,Au+ dygAq + noyu, (21a)
Ov =e(u+ f —v) + dpyAv + 10,0, (21Db)
0rq = (1-q)(q—a)(g+1) +v(1 = ¢*)(u — us) + dugAu+ Ag +1dzq,  (21c)

with diffusion constants, d,, dyg, d, > 0, parameters 3,v,0,1 € R, ¢ > 0 and —1<a<1.
For the IC consider wedges in g,

-1 z<x9—mlyl|
qo(xay) = )
1 z>z0—mly|

where =m € R are the slopes of the sides and xy € R is the position of the tip. For
(u,v) choose (ug,vo) = (us,vs) where ug = —3/3, vy = uy + 3. For the BCs choose

(u,v)|oa = (us,vs) and ¢ = x1lon x = £L, q(z,£L) = qf(z — 21),
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where ¢;(z) = tanh(z/v/2). As a starting point, choose domain size L = 157 and
parameters

dy = 0.09,dy = 0.01,dg = 1,dyg = 0.1,3=0.2,6 = 0.5, = 0.03,
v =-0.05,a=—0.1,n = —0.15,29 = L/4,m = 1,21 = —3L /4.

Fig. 6 shows some plots you should get. Examine, e.g., the role of ~. |

u, t= 50 u, t= 500 q, t= 500

-
40
20 :
0
-20
-40
40 20 0 20 40x

Figure 6: Traveling interface excitations in (21)

40 -20 0 20 40X

3.3.4 Some shallow water equations

Our final example is somewhat more elaborate. We study a shallow water system
(with a viscous regularization), which describes flows with a free surface in situations
where the horizontal dimensions of the flow are much larger than the vertical dimen-
sion. Roughly, we consider water in a channel (z,y) € R = [—L,, Ly] X [-Ly, L]
with bottom topography described by a function b(x,y). The unknowns are the fluid
depth A and some averaged flows u, v, and our shallow water equations are

Oth = =0, (hu) — 0y (hv) + v1Ah, (22a)
0w = —udyu — vOyu — (Oxh + 0;b) + v2Au, (22Db)
0yv = —u0yzv — vOyV — (Oyh + 0yb) + Vo Aw. (22¢)

For v1,5 = 0 these are the standard shallow water equations, but we added some
small dissipation to the right hand side to avoid so called shocks, which need special
numerical treatment. In particular the term 14 Ah in (22a) is rather unphysical; see,
e.g., [BDMOT7], for more physical so called viscous shallow water equation.

However, our goal here is to illustrate once more that it is easy and fun to simulate
(22) with PDETWO, and thus to obtain some interesting first insight into (22) also
with V1,V = 0.

We consider water flowing mainly in z—direction. If the bottom is flat, then (22)
under suitable boundary conditions has stationary solutions of the form

<h7 Uu, U) = (hsausao)a
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where hg,us are a reference water depth and “streamwise” flow. We now want to
consider the situation where such a flow is influenced by some obstacles at the bottom
(“stones in the river bed”). Therefore, as boundary conditions we choose

h = hg and u = ug at in—and outflow, i.e. at x = £,
Oph = 0 and 0, u = 0 at the lateral walls, i.e. at y = £L,, (23)

On,v = 0 at in—and outflow, and v = 0 at the lateral walls.

A simple obstacle in an otherwise flat bottom might for instance be of the form

(z —2p)% + (y — yp)*
5 . (24)
D
This describes a “spike” in the river bed, with parameters py, zp, yp, Pw, corresponding
to spike height, x—position, y—position, and width. Of course we might also consider
“holes” of the form b(z,y) = min(0, —p(z,y)), or several of such spikes, or combi-
nations with holes, or whatever the problem requires or our imagination comes up
with.
Finally, as initial conditions we choose

bz, y) = max(0, p(z, y)), where p(z,y) = pi (1 -

h’t:o - hs - b($7y)> u‘tZO = Us, U‘t:() = O’ (25)

which as pointed out above is a stationary solution if b(z,y) = 0. Physically, for
b(z,y) #const, this might be thought of as the obstacles from (24) appearing at t = 0
instantaneously (without displacing the surface) in a laminar stationary flow.

We now simulate (22)—(24) using PDETWO, where for the code, allthough it is
again not long, we refer to swdr.m and swstep.F. We use

Ly ="5,L,=3,hs=1,u; = 1,11 = 0.005, v, = 0.05,

grid resolutions nx=250, ny=100, and first put one spike in the middle of the domain
with height and width equal to 0.5 (p, = 0,p, = 0,pr, = 0.5,p,, = 0.5 in (24)).
Execution times are a few seconds for time steps dt=1 (MF=10), and the results are
shown in Fig. 7. The top row shows the bottom contour and the free surface positions
b(z,y) + h(t,z,y), while the bottom row shows the streamwise flow u. Initially, a
so called hydraulic jump develops locally over the spike: in particular, h strongly
decreases on the lee side while u strongly increases. With time, this hydraulic jump
spreads first over the full channel width y € [-L,, L, ], and then also in z, creating a
so called undular bore also upstream.

Just for fun, in Fig.8 we put a spike near a wall ((pg, py, Pr,Pw) = (—1,—3,0.5,0.5))
and a “hole” at (x,y) = (1,1) (with (pn,pw) = (0.4,0.4)). We finally remark, that
the flow fields (u,v) can be conveniently plotted using quiver in Matlab. For de-
tails we again refer to swdr.m and swstep.F. Finally we remark that (22)-(23) again
has a conserved quantity, namely the mass [, h(t,z,y)d(z,y), which is rather well
conserved numerically by PDETWO.

Exercise 3.7 See what happens if you set 17 or v or both to zero. Also toy around
with us, hs, and of course examine different bottom topographies. |
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bottom topgraphy and free surface, t=1 bottom topgraphy and free surface, t=10
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Figure 7: Flow over one spike; only part of the domain is shown, and only every
fourth grid point is used for plotting.

4 Summary

There are plenty of numerical libraries around. Additional to the above examples
and the collection at [Haill]?", we like to mention the free packages ODEPACK?!,
the GSL (GNU Scientific Library), and the packages at Netlib®2. Numerical Recipes
(F, C, C++) is available at most universities, and often also the commercial libraries
IMSL, NAG as well. This list is by no means meant to be exhaustive.

As Matlab offers a convenient way to interface such libraries, using them may
save a lot of both programming and execution time. Finally, we believe that it is
not necessary to write too elaborate MEX files, unless one wants to contribute a
“standalone Matlab routine”, which hides all MEXing from the user. Here we rather

20with some (C) MEX files at www-m3.ma.tum.de/Software/0DEHome
2lnttps://computation.llnl.gov/casc/software.html
22http://netlib.sandia.gov/master/index.html
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bottom topgraphy and free surface, t=10

flow field (u,v), t=10
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Figure 8: Flow over a spike and a hole; only part of the domain is shown, and
only every fourth grid point is used for plotting. For the vectorfield plot, the v
component is 5 times magnified.

opted for easy gateways from the programming point of view (and which should be
faster concerning runtime), where the user does some editing of the MEX source code,
cf. Remarks 2.1 and 3.1.
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