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In Theorem 3.3 of [1] we gave an incomplete characterization of the spaces Dk/2 associated

with the operators Ak/2, k ∈ N, and, as a consequence, we missed compatibility conditions

in the subsequent Theorem 4.5 and Corollary 4.6. In this erratum we give corrected versions

of these results.

We start with an additional lemma which improves the regularity result (2.9b) in [1] and

provides an estimate needed in the subsequent theorem.

Notation. Henceforth, equation numbers of the form (a.b) refer to [1].

Lemma 1 Let G ⊂ Rd, d ≥ 3 be a bounded domain with Ck+2-boundary ∂G and f ∈ Hk(G),

k ∈ N0. Let, furthermore, u ∈ H0 be a weak solution of problem (2.1). Then u ∈ Hk+2(G)

and we have the bound

‖u‖Hk+2(G) ≤ C‖f‖Hk(G) = C‖∆u‖Hk(G) (1)

with a constant C depending on G, k, and d.

Proof: The case k = 0 is already implied by the interior regularity result (2.9a). In fact,

u ∈ H2
loc(R

d) means (see [2], p. 309)

‖u‖H2(G) ≤ Ĉ
(
‖f̂‖L2(K) + ‖u‖L2(K)

)
, (2)

where f̂ denotes the trivial extension of f onto Rd and K some bounded domain such that

G ⋐ K. Combining (2.6) with the boundedness of the Green operator G̃ we obtain

‖u‖L2(K) ≤ CK‖u‖H ≤ CKCG‖f‖L2(G) , (3)

and thus (2) takes the form

‖u‖H2(G) ≤ C‖f‖L2(G) . (4)

No boundary regularity is required for this result.

The case k > 0 needs separate considerations of tangential and normal derivatives at ∂G.

We refer in the following to the situation, where ∂G has already been flattened as explained

in the paragraph before Lemma 2.1 in [1] and we use the notation introduced there. So, given

g ∈ L2(W−) we assume v ∈ H1(W ) to be a (weak) solution of

d∑

i,j=1

∫

W
aij∂yj

v ∂yi
w dy =

∫

W−

g w dy (5)

for any w ∈ H1
0 (W ). Let ĝ be again the trivial extension of g onto W . Now we assume

higher tangential regularity of g, i.e. Dαg ∈ L2(W−) for |α| ≤ k, αd = 0, which implies
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Dαĝ ∈ L2(W ). From interior regularity for weak solutions it follows that Dβv ∈ L2(V ) for

|β| ≤ k + 2, βd ≤ 2 and any V ⋐ W , together with the estimate

∑

|β|≤k+2
βd≤2

∫

V −

|Dβv|2 dy ≤ C

( ∑

|α|≤k
αd=0

∫

W−

|Dαg|2 dy + ‖v‖2
L2(W )

)
. (6)

As to normal derivatives note that higher interior regularity implies

−Dα
d∑

i,j=1

∂yi
(aij∂yj

v) = Dαg (7)

to hold a.e. in W−. Writing (7) with α = (0, . . . , 0, 1) in the form

aydyd
∂3

yd
v = −

d∑

i,j=1
i+j<2d

∂yd
∂yi

(aij ∂yj
v) − 2 ∂yd

aydyd
∂2

yd
v − ∂2

yd
aydyd

∂yd
v − ∂yd

g , (8)

we find by uniform ellipticity ∂3
yd

v to be bounded in W− by the right-hand side in (8), which

is at most of second order in ∂yd
v. So, (6) may be applied and we arrive at

∫

V −

|∂3
yd

v|2 dy ≤ C̃

( ∑

|α|≤k
αd=0

∫

W−

|Dαg|2 dy + ‖v‖2
L2(W )

)
. (9)

The case of arbitrary higher derivatives is now easily proved by induction. So, we find, finally,

that (6) holds without restriction on αd and βd, respectively.

To complete the proof one has, as usual, to cancel the change of variables, to cover G by

local patches, to sum up the corresponding local estimates, and to use once more (3). 2

Theorem 2 (Corrected version of Theorem 3.3 in [1]) Let G ⊂ Rd, d ≥ 3 be a bounded

domain with C∞-boundary ∂G and {vn : n ∈ N} be the complete orthonormal system defined

by the eigenvalue problem (3.1). Let, furthermore, A and Dα be as defined in Definition 3.2,

and G be the Green operator associated to the Poisson problem (2.1). Then,

D0 = H0(G) = L2(G),

D1/2 = {v|G : v ∈ H0 and v| bG
is harmonic} = H1(G), (10)

i.e., in particular, any v ∈ D1/2 has a unique harmonic extension ṽ ∈ H0, and

D1 = G(L2(G)) = {v ∈ H2(G) : ṽ ∈ H2
loc(R

d)}. (11)

Higher order spaces are characterized by

Dk/2 =
{

v ∈ Hk(G) : ∆̃i−1v ∈ H2
loc(R

d) for i = 1, . . . , [k/2]
}

, k ∈ N \ {1} , (12)

where w̃ ∈ H0 denotes again the harmonic extension of a function w ∈ D1/2 = H1(G) and

[r] := max{j ∈ N : j ≤ r} is the integer part of r. On Dk/2 we have the equivalence of norms:

‖ · ‖k/2 ∼ ‖ · ‖Hk , k ∈ N0 . (13)
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Proof: (Concerning notation observe that the symbols L2 and Hk without specified domains

always mean L2(G) and Hk(G), respectively.) The case k = 0 is trivial and the case k = 1,

i.e. eqs. (10) and (13)k=1, is proved as in Theorem 3.3 in [1]. As to k = 2 the proof of the

first equality in (11) remains likewise untouched. The proof of the second equality in (11)

(and all the rest of the proof), however, now differs from the proof in [1]:

The inclusion G(L2(G)) ⊂ {v ∈ H2(G) : ṽ ∈ H2
loc(R

d)} is an immediate consequence of

the H2-regularity of weak solutions. To prove the opposite inclusion let w ∈ H2(G) with

harmonic extension w̃ ∈ H0 ∩ H2
loc(R

d). Defining f := −∆w ∈ L2 the Poisson problem (2.1)

yields a solution ũ ∈ H0 ∩ H2
loc(R

d). So, we have pointwise a.e. ∆(w̃ − ũ) = 0 in Rd for

w̃ − ũ ∈ H0 ∩ H2
loc(R

d), which means w̃ − ũ is harmonic in Rd (by Weyl’s lemma), and,

moreover, w̃− ũ = 0 (by Liouville’s theorem). Thus, w̃ = ũ and, in particular, w = u = G(f).

To estimate the 1-norm of v ∈ D(A) observe that ṽ ∈ H0 ∩ H2
loc(R

d) for its harmonic

extension, and vn ∈ C1(Rd) for the eigenfunctions. So, by (3.3) we can calculate

−(λnvn, v)L2(G) = −

∫

Rd

∇ṽn · ∇ṽ dx =

∫

Rd

ṽn ∆ṽ dx = (vn, ∆v)L2(G) (14)

and obtain therefore

‖v‖2
1 = ‖Av‖2

L2 =
∞∑

n=1

λ2
n|(vn, v)L2 |2 =

∞∑

n=1

|(vn, ∆v)L2 |2 = ‖∆v‖2
L2 , (15)

which implies ‖v‖1 ≤ C‖v‖H2(G) with a constant C depending only on d. To prove the

opposite inequality we combine (15) with (1)k=0:

‖v‖1 = ‖∆v‖ ≥
1

C
‖v‖H2(G).

This proves (13)k=2.

The case k > 2 is proved by induction. Let v ∈ Dk/2+1, k ∈ N, i.e. Av ∈ Dk/2. By

assumption we have Av ∈ Hk(G) and

∆̃i−1Av ∈ H2
loc(R

d) for i = 1, . . . , [k/2] . (16)

(Note that for v ∈ D3/2 condition (16) does not yet make sense and can be omitted.) By

(15) the condition Av ∈ Hk(G) means ∆v ∈ Hk(G), and Lemma 1 implies v ∈ Hk+2(G).

Moreover, we have ṽ ∈ H2
loc(R

d), which complements condition (16). So, we conclude

v ∈
{

v ∈ Hk+2(G) : ∆̃i−1v ∈ H2
loc(R

d) for i = 1, . . . , [k/2] + 1
}

. (17)

To prove the opposite inclusion let v as in (17). We set w := ∆v and have by assumption

w ∈
{

v ∈ Hk(G) : ∆̃i−1v ∈ H2
loc(R

d) for i = 1, . . . , [k/2]
}

= Dk/2 .

Computing the k/2 + 1-norm of v we find with (14)

‖v‖2
k/2+1 =

∞∑

n=1

λk
n|λn(vn, v)L2 |2 =

∞∑

n=1

λk
n|(vn, w)L2 |2 = ‖w‖2

k/2 < ∞ , (18)

and thus, v ∈ Dk/2+1. This completes the proof of (12).

As to the equivalence (13) we proceed likewise by induction. Assuming v ∈ Dk/2+1, k ∈ N

we find by (18) and by assumption

‖v‖k/2+1 = ‖∆v‖k/2 ≤ C‖∆v‖Hk ≤ C̃‖v‖Hk+2 ,
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whereas the opposite inequality follows by (1):

‖v‖Hk+2 ≤ C‖∆v‖Hk
≤ C̃‖∆v‖k/2 = C̃‖v‖k/2+1.

This completes the proof. 2

Remark 3 Iterating (14) one finds on Dα for integer values α the following alternative

formulation of the α-norm:

‖v‖k = ‖∆kv‖L2(G) , v ∈ Dk , k ∈ N ,

and for half-integer values:

‖v‖k+1/2 = ‖∇∆kv‖L2(G) , v ∈ Dk , k ∈ N .

In view of Theorem 2 we must in the following discriminate between Hk and Dk/2. So, a

corrected version of Theorem 4.5 in [1] on higher regularity reads now:

Theorem 4 (Corrected version of Theorem 4.5 in [1]) Let T > 0, k ∈ N \ {1}, and

a, b, c ∈ Ck
1 (G × [0, T ]). Let, furthermore, v0 ∈ D(k+1)/2, −a(·, 0)Av0 + B|t=0v0 + f(0) ∈

D(k−1)/2, and f ∈ C1([0, T ], Hk(G)). Then the weak solution v of problem (4.2) in [1] fulfills

v ∈ L2((0, T ), Dk/2 + 1) , v̇ ∈ L2((0, T ), Dk/2) , v̈ ∈ L2((0, T ), Dk/2− 1) .

Theorem 4 differs from Theorem 4.5 in [1] (besides that f ∈ C1([0, T ], Dk/2) has been replaced

by f ∈ C1([0, T ], Hk(G))) by the additional condition −a(·, 0)Av0+B|t=0v0+f(0) ∈ D(k−1)/2,

which is now not longer implied by the conditions on v0 and the coefficients, and must,

therefore, explicitly be stated. The condition is needed in the proof of v̈ ∈ L2((0, T ), Dk/2−1).

In fact, differentiating eq. (4.4)1 with respect to t yields an equation of type (4.17) and

applying Ak/2−1 results in an evolution equation for Ak/2−1v̇ =: ω. Together with the initial

value ω0 := Ak/2−1(−a(·, 0)Av0+B|t=0v0+f(0)) ∈ D1/2 we have then an initial-value problem

to which Theorem 4.3 in [1] applies with the result (among others) ω̇ ∈ L2((0, T ), L2(G)) and

hence v̈ ∈ L2((0, T ), Dk/2−1). Otherwise the proof of Theorem 4.5 in [1] remains unchanged.

Of course, higher temporal regularity would require further compatibility conditions. For

classical solutions, however, the regularity stated in Theorem 4 is enough

As to Corrollary 4.6 in [1] observe that u ∈ C2(G) and ũ ∈ C1(Rd) imply ũ ∈ H2
loc(R

d).

Thus, the corollary now takes the following supplemented form, where again we aim at

sufficient (and not necessarily sharp) conditions in terms of classical derivatives for existence

of classical solutions.

Corollary 5 (Corrected version of Corollary 4.6 in [1]) Let G ⊂ Rd, d ≥ 3 be a bounded

domain with Ck+3/2-boundary, k > 1 + d/2, u0 ∈ Ck+1(G), and a, b, c ∈ Ck
1 (G × [0, T ]),

u∞ ∈ C2([0, T ]) for any T > 0. Let, furthermore, u0 − u∞(0), ∆iu0, and ∆i−1(a0∆u0 +

b0 · ∇u0 + c0u0 − u̇∞(0)), i = 1, . . . , [(k − 1)/2], where a0 = a(·, 0) etc., all C1-match

to their harmonic extensions. Then problem (1.1) has a unique classical solution u, i.e.

u ∈ C2
1 (G × R+) ∩ C2(Ĝ × R+) satisfies pointwise eqs. (1.1).

Remark 6 In d = 3 we may choose k = 3 and the compatibility conditions amount to

˜u0 − u∞(0) , ∆̃u0 ∈ C1(R3) (19)
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and

(a0∆u0 + b0 · ∇u0 + c0u0 − u̇∞(0))˜ ∈ C1(R3) . (20)

So, in the case u∞ = 0 admissible initial values u0 are for instance C4(G)-functions with

∂i
nu0

∣∣
∂G

= 0, i = 0, . . . , 3, where ∂n denotes the normal derivative at ∂G. In the case

u0 = u∞ = const > 0, which was interesting in applications [3], condition (20) requires the

coefficient c0 to have a C1-smooth harmonic extension.

Remark 7 Appendix E in [1], which provides simpler proofs in the case of a time-indepen-

dent principal coefficient, now looses some of its significance. The idea was to absorb the

principal coefficient a into the definition of the operator A =: Aa. In that case the sequence

(w(n)) of Galerkin approximations can be shown to converge in C([0, T ], D1/2) to some limit

function w, and ẇ ∈ C1([0, T ], D−1/2) follows then by the evolution equation (E 2)1 since

w(n) ∈ C([0, T ], D1/2) implies −Aaw
(n) + Q(n)(Bw(n) + f) ∈ C([0, T ], D−1/2). This last

conclusion, however, does no longer work if D1/2 is replaced by Dk/2 and D−1/2 by Dk/2−1,

respectively, with k > 3, since the lower-order terms do not preserve the boundary behaviour

which is now required for elements of Dk/2, k > 1. So, Theorem E.2 now holds only in the case

of vanishing lower-order coefficients, i.e. b = c = 0, while a compatibility condition involving

the principal coefficient a arises from the condition w0 ∈ D(k+1)/2 as Aa corresponds to −a∆

on H2-functions.

We take the opportunity to correct another blunder in the proof of Theorem E.2: Of

course, Q(n) − Q(m) is always a projection operator with norm 1 as long as n > m. Never-

theless, with f =
∑∞

n=1 cnwn ∈ C([0, T ], L2(G)) the norm

max
[0,T ]

‖(Q(n) − Q(m))f‖L2
a

= max
[0,T ]

( n∑

ν=m+1

|cν(t)|
2
)1/2

clearly vanishes in the limit n, m → ∞. The same argument applies to the projected initial

value (Q(n) − Q(m))w0, whereas the lower-order term Q(n)Bw(n) − Q(m)Bw(m) is no longer

present.
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