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Abstract

For a Selkov–Schnakenberg model as a prototype reaction-diffusion system on two dimensional
domains we use the continuation and bifurcation software pde2path to numerically calculate
branches of patterns embedded in patterns, for instance hexagons embedded in stripes and
vice versa, with a planar interface between the two patterns. We use the Ginzburg-Landau
reduction to approximate the locations of these branches by Maxwell points for the associated
Ginzburg–Landau system. For our basic model, some but not all of these branches show a
snaking behaviour in parameter space, over the given computational domains. The (numerical)
non–snaking behaviour appears to be related to too narrow bistable ranges with rather small
Ginzburg-Landau energy differences. This claim is illustrated by a suitable generalized model.
Besides the localized patterns with planar interfaces we also give a number of examples of fully
localized patterns over patterns, for instance hexagon patches embedded in radial stripes, and
fully localized hexagon patches over straight stripes.
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1 Introduction

Homoclinic snaking refers to the back and forth oscillation in parameter space of a branch of
stationary localized patterns for some pattern forming partial differential equation (PDE). Two
standard models are the quadratic–cubic Swift–Hohenberg equation (SHe)

∂tu = −(1 + ∆)2u+ λu+ νu2 − u3, u = u(t, x) ∈ R, x ∈ Ω ⊂ Rd, (1)

and the cubic–quintic SHe

∂tu = −(1 + ∆)2u+ λu+ νu3 − u5, u = u(t, x) ∈ R, x ∈ Ω ⊂ Rd, (2)

with suitable boundary conditions if Ω 6= Rd, and where λ ∈ R is the linear instability parameter,
and ν > 0.

In both equations the trivial solution u ≡ 0 is stable for λ < λc := 0, where in the 1D case
d = 1 we have a pitchfork bifurcation of periodic solutions with period near 2π (“stripes”, by trivial
extension to 2D, also called “rolls” due to their connection to Rayleigh–Bénard convection rolls).
For ν > ν0 ≥ 0, with ν0 =

√
27/38 for (1) and ν0 = 0 for (2), the bifurcation is subcritical and the

periodic branch starts with unstable small solutions r− and turns around in a fold at λ = λ0(ν) < 0
to yield O(1) amplitude stable periodic solutions r+. Thus, for λ0 < λ < λc there is a bistable
regime of the trivial solution and O(1) amplitude stripes.
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(b) u at points 20,60,90 and 500 as indicated in (a)

Figure 1: Illustration of homoclinic snaking in (1) over a 1D domain x ∈ (−12π, 12π) with Neumann type

boundary conditions ∂xu|x=±12π = ∂3
xu|x=±12π = 0, ν = 2. Here ‖u‖2 :=

(
1
|Ω|
∫

Ω
|u(x, y)|2d(x, y)

)1/2

. The

branch r of primary roll solutions (blue) bifurcates subcritically at λ = 0 and becomes stable at λ ≈ −0.53.

Bifurcation points on the trivial branch and the roll branch are indicated by ◦, but omitted on the homoclinic

snaking branch (red), which bifurcates from the second bifurcation point on r and reconnects to r just below

the fold.

In the simplest case the localized patterns then consist of 1D stripes over the homogeneous
background u = 0, and in each pair of turns in the snake the localized pattern grows by adding
a stripe on both sides, and this continues for ever over the infinite line. See, e.g., [BK06, BK07,
BKL+09] for seminal results in this setting, and [CK09, DMCK11] for detailed analysis using a
Ginzburg–Landau formalism and beyond all order asymptotics. In finite domains snaking cannot
continue for ever, and instead branches typically connect primary stripe branches, with either the
same wave number or wave numbers near each other, see, e.g., [HK09, BBKM08, Daw09, KAC09]
for detailed results, and Fig. 1 for illustration.
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In 2D, by rotational invariance, depending on the domain and boundary conditions multiple
patterns may bifurcate from u ≡ 0 at λ = 0, for instance straight stripes and so called hexagons.
There are a number of studies of localized patterns for (1) and (2) over two dimensional domains
[LSAC08, ALB+10], often combining analysis and numerics, and in more complicated systems like
fluid convection [LJBK11]. See also [LO13] for recent results on snaking of localized hexagon patches
in a 2-component reaction–diffusion system in 2D. However, all these works essentially consider
patterns over a homogeneous background. Already in [Pom86] it is pointed out that “pinned”
fronts connecting stripes and hexagons may exist in reaction-diffusion systems as a codimension 0
phenomenon in parameter space, i.e., for a whole interval of parameters. Similar ideas were also put
forward in [MNT90] with the 2D quadratic–cubic SHe (2) as an example, see in particular [MNT90,
Appendix C]. Such a pinned front is observed in [HMBD95] for (2) by time integration, but so far
no studies of branches of stationary solutions involving different 2D patterns seem available.

Here we start with a standard model problem for predator (u) prey (v) reaction diffusion
systems, namely

∂tU = D∆U +N(U, λ), N(U, λ) =

(
−u+ u2v
λ− u2v

)
, (3)

with U = (u, v)(t, x, y) ∈ R2, diffusion matrix D =
(

1 0
0 d

)
, d fixed to d = 60, and bifurcation param-

eter λ ∈ R+. The reaction term N of (3) is a special version of N(U, λ) =

(
−u+ u2v + b+ av
λ− u2v − av

)
,

known as the Selkov [Sel68] (a ≥ 0, b = 0) and Schnakenberg [Sch79] (a = 0, b ≥ 0) model. For
simplicity, here we set a = b = 0.

In particular we consider the stationary system

D∆U +N(U, λ) = 0. (4)

The unique spatially homogeneous solution of (4) is w∗ = (λ, 1/λ). We write (4) in the form

∂tw = L(∆)w +G(w), (5)

with w = U−w∗ and L(∆, λ) = J(λ)+D∆, where J is the Jacobian ofN in w∗. For k = (m,n) ∈ R2

we have L(∆, λ)ei(mx+ny) = L̂(k, λ)ei(mx+ny), where L̂(k, λ) = J(λ) − Dk2, k :=
√
m2 + n2, and

thus we also write L̂(k, λ). The eigenvalues of L̂ are given by µ±(k, λ) = µ±(k, λ) = trL̂(k,λ)
2 ±√(

trL̂(k,λ)
2

)2
− detL̂(k, λ). Following [Mur89, Chapter 14] we find that in λc =

√
d
√

3−
√

8 ≈

3.2085 we have µ+(k, λc) = 0 for all vectors k ∈ R2 of length kc =
√√

2− 1 ≈ 0.6436, and all
other µ±(k, λc) < 0, i.e., there is a Turing bifurcation at λc, with critical wave vectors k ∈ R2 in
the circle |k| = kc. The most prominent Turing patterns near bifurcation are stripes and hexagons,
which modulo rotational invariance can be expanded as

U = w∗ + 2

(
A cos(kcx) +B cos

(
kc
2

(
−x+

√
3y
))

+B cos

(
kc
2

(
−x−

√
3y
)))

Φ + h.o.t.

= w∗ + 2

(
A cos(kcx) + 2B cos

(
kc
2
x

)
cos

(
kc
2

√
3y

))
Φ + h.o.t., (6)

where Φ ∈ R2 is the critical eigenvector of L̂(kc, λc), and h.o.t. stands for higher order terms. The
amplitudes 2A, 2B ∈ R (where the factor 2 has been introduced for consistency with §3) of the
corresponding Turing pattern depend on λ, with A = B = 0 at bifurcation. The stripes bifurcate
in a supercritical pitchfork, the hexagons bifurcate trancritically, and the subcritical part of the
hexagons is usually called “cold” branch as here u has a minimum in the center of each hexagon.

In §2 and §4 we present some numerically calculated Turing patterns for (4), including so called
mixed modes, and, moreover, some branches of stationary solutions which involve different patterns,
namely
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(a) planar fronts between stripes and hexagons, and associated localized patterns, e.g., hexagons
localized in one direction on a background of stripes (see Fig.2(a),(b) for an example), and
vice versa;

(b) fully 2D localized patches of hexagons over a homogeneous background, and over radial and
straight stripes (see Fig.2(c),(d),(e) for examples).
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Figure 2: (a), (b) Mixed mode branch (blue) in the RD system (4) which connects stripes and hexagons,

and a branch of hexagons on a background of stripes. Here ‖u‖ = ‖u‖L8 :=
(

1
|Ω|
∫

Ω
|u(x, y)|8d(x, y)

)1/8

was chosen for purely graphical reasons. (In Fig. 1 any Lp norm can be used to illustrate the snaking, but

for (4) the stripes and hexagons have rather similar L2 norms.) This example will be discussed in much

more detail below, and here we mainly want to point out the similarities with Fig. 1. In Fig. 1 the snaking

branch is in the bistable range of (large) amplitude rolls and the homogeneous background, here it is in

the bistable range of stripes and hexagons. In both cases the snaking branch bifurcates from an unstable

branch connecting two different stable branches, and after bifurcation first needs a long transverse to enter

the “snaking region”. Finally, in both cases, the snaking branches consist of stable solutions after every

second fold, indicated here by thicker lines.

(c)-(e) u for fully localized spot patterns over homogeneous background (c), and over radial (d) and straight

(e) stripes. See below for colorbars and spatial scales. (d) and (e) again lie on some snaking branches, see

§4.1 and §4.3, while the branch for (c) numerically does not snake, see §2.4. However, a snaking branch of

patterns as in (c) can be obtained for the modified system (7) below, see §3.3.

Related to the transcritical bifurcation of the hexagons, the patterns in (a) come in two regimes:
one “hot” which is rather far from the primary bifurcation at λc; one “cold”, with λ closer to λc.
Of these, only the “hot” branches show snaking behaviour in our numerical simulations for (4).
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For (1) and (2) it is known (e.g., [KC06], [DMCK11]), that the “snaking width” is exponentially
small in the properly defined subcriticality parameter ε. We expect a similar result here, which
explains why snaking in the cold regimes might be below the numerical resolution. To make this
quantitative we modify (3) to make the system “more subcritical” in the cold regime, and in this
way we can switch on cold snaking, i.e., find it numerically.

First, however, in §3 we relate our numerical results to arguments derived from the Ginzburg–
Landau reduction. One result is the calculation of Ginzburg–Landau Maxwell points, which give
predictions for the λ–ranges of the fronts and localized patterns in the full system (4). In fact, for
a consistent Ginzburg–Landau reduction of (3) in principle one should include the parameters a,b

from N(U, λ) =

(
−u+ u2v + b+ av
λ− u2v − av

)
, to locate a co–dimension 2 point where the quadratic terms

in (5) scale suitably. However, then the algebra for the bifurcation analysis will become even more
involved. Moreover, here we are explicitly interested in phenomena O(1) away from (w, λ)=(0, λc),
and thus rather explore how far the Ginzburg–Landau reduction can take us.

Then, motivated by the Ginzburg–Landau reduction, we modify the system (3) to

∂tU = D∆U +N(u, λ) + σ

(
u− 1

v

)2(
1
−1

)
. (7)

We do not claim any biological meaning for the term multiplied by σ, but the advantage of this
modification is that the homogeneous solution and the linearization around it are unchanged, the
Turing bifurcation is still at λc, and only the nonlinear terms in (5) are affected. Our first goal
is to increase the subcriticality of the cold hexagons to obtain homoclinic snaking for branches
connecting these with w = 0. Similarly, via σ we can increase the bistability range between cold
stripes and cold hexagons and thus we can also switch on snaking in this regime. Finally, while
(4) has no bistability between stripes and w = 0 and thus no homoclinic snaking in 1D can be
expected, in (7) we can also turn the bifurcation of stripes from supercritical to subcritical to obtain
1D homoclinic snaking between stripes and w = 0, see §3.4.

Sections 4 contains additional numerical results about fully localized patterns over patterns,
namely (hexagonal) spots over radial stripes, and fullly localized (hexagonal) spots over straight
stripes, respectively, see also Fig. 2(d),(e). The numerics for such patterns are quite demanding,
and therefore we restrict to some illustrative examples.

Thus, the remainder of this paper is organized in a slightly unconventional way, which is partly
due to our own “experimental mathematics” approach, as newcomers to the field of homoclinic
snaking: First we numerically calculated the Turing bifurcation diagram and spotted the hot
snaking branches and the non-snaking cold localized branches, then we started the Ginzburg–
Landau reduction to a posteriori get some analytical understanding, mainly via Maxwell points.
Then, however, we used the Ginzburg–Landau reduction as a predictive tool to find ranges for the
modified systems where we could switch on the cold snaking, and the 1D snaking via subcritical
bifurcations of stripes. We believe that it is more honest to also present our results in that or-
der, instead of trying to first present as much theory as possible and then use numerics only for
illustration. More importantly, we believe that this makes the paper also more readable.

In §5 we give with a brief discussion. We believe that the results are not specific to the model
system (4) but can be expected in any reaction diffusion system (over sufficiently large domains)
with a bistability between different patterns which allow homo–or heteroclinic connections in the
associated Ginzburg–Landau system. Finally, we close with a short list of Open Problems.
Acknowledgements. We thank Jonathan Dawes for helpful discussions, and two anonymous
referees for a critical reading of the first version of this manuscript and many helpful questions
and remarks, which in particular motivated us to set up the modified system (7), and some of the
numerics in §4.
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2 Numerical Results

2.1 Stripes, hexagons, and beans

We use the bifurcation and continuation software pde2path [UWR13] to numerically calculate
patterns for (4), and their stability. We start with domains of type Ω = (−lx, lx) × (−ly, ly), lx =
2l1π/kc, ly = 2l2π/(

√
3kc), l1, l2 ∈ N, with Neumann boundary conditions, chosen to accomodate

the basic stripe and hexagon patterns.1
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Figure 3: Bifurcation diagram and example solutions of (4) obtained with pde2path over the “2 × 2”–

domain Ω = (−lx, lx)×(−ly, ly) with Neumann boundary conditions, lx=4π/kc, ly=4π/(
√

3kc), kc =√√
2−1≈0.6436. The branch hom are the homogeneous solutions, hs the hot (up) stripes, cs the cold

(down) stripes, hh the hot hexagons, and ch the cold hexagons. For instance hsp30 stands for the 30th point

on the branch hs. hb and cb are mixed mode branches, which we call hot and cold beans, respectively. For

hs, hh, and hb we plot the maximum of u, and the minimum for cs, ch, and cb. Stable and unstable parts

of branches are represented by thick and thin lines, respectively. In particular, except for hhp10, hhp30 all

displayed patterns are unstable. Only a small selection of bifurcation points is indicated by ◦. See [UW13]

for a movie.

In Fig. 3 we use the rather small l1 = l2 = 2, which we call a 2× 2 domain as in both directions
2 hexagons “fit”. The main panel shows a part of the very rich bifurcation diagram. Following
biological terminology we classify the stripes (A 6= 0, B = 0 in (6)) into hot (also called “up”)
stripes (hs, A > 0) and cold (also called “down”) stripes (cs, A < 0), which exhibit a maximum
respectively a minimum at x = 0. We always plot u. If we have a hot pattern for u, then v is
a cold pattern and vice versa. This follows from the predator-prey structure of the reaction term
N of (4). The stripes are 2π/kc-periodic in the horizontal direction, bifurcate in a supercritical
pitchfork, and are stable from λbs ≈ 3.15 to λes ≈ 2.51, where here and henceforth the subscript of
the bifurcation parameter λ denotes the branch and the superscript stands for ending or beginning
of stability. The hexagons (A = B 6= 0) can be classified into hot hexagons (hh, A = B > 0)
and cold hexagons (ch, A = B < 0), which have a maximum resp. a minimum in the center of
every hexagon. They are 4π/kc-periodic in the horizontal and 4π/(

√
3kc)-periodic in the vertical

direction. The hexagon branch bifurcates transcritically from the homogeneous branch at λ = λc.

1In [UWR13, §4.2] we set ly = 2δl2π/(
√
3kc), where the slight “detuning” δ ≈ 1 is used to unfold the multiple

bifurcation at λ = λc since pde2path currently only deals with simple bifurcations. However, by carefully choosing λ
stepsizes for λ near λc the discretization error is enough to do this unfolding and thus we drop δ here, i.e., set δ = 1.
The bifurcation diagram and solution plots for δ = 1 and δ = 0.99 are visually indistinguishable.
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It “starts” in a saddle node or fold bifurcation at λbch ≈ 3.22, and the stability region of the cold
hexagons begins at the fold and ends in λech ≈ 3.03. The hot hexagons are stable from λbhh ≈ 2.73
to λehh ≈ 0.98.

Thus, there is a bistable range of cold stripes and cold hexagons for λ ∈ (λech, λ
b
s), of hot

stripes and hot hexagons for λ ∈ (λes, λ
b
hh), and of cold hexagons and the homogeneous solution

for λ ∈ (λc, λ
b
ch). A branch of “skewed hexagon” or “mixed mode” solutions of the form (6) with

A < B < 0 bifurcates subcritically from the cold hexagon branch ch in λech and terminates on the
cold stripe branch cs in λbs. Following [Yan04] we call this type of solutions cold beans (cb). There
is also a branch hb of hot beans with A > B > 0 which bifurcates subcritically from the hot stripe
branch hs in λes and terminates on the hot hexagon branch hh in λbhh.

Remark 2.1. For all these patterns the discrete symmetry S = S2π/kc given by the shift by 2π/kc
in the horizontal direction yields a solution as well. The stripes are of course invariant under S, but
for the hexagons the shifts generate new branches Shh and Sch. These make the plotting of the
bifurcation diagram a bit complicated graphically. Therefore, in Fig. 4 we repeat the bifurcation
diagram from Fig. 3 in a schematic way, with ordinate u(0, 0), i.e., u in the center of the domain,
and add the branches of shifted hexagons. The bean branches hb and cb then both take part in
a “loop” involving shifted beans and so called rectangles, which again can be expanded as in (6),
now with |A| ≤ |B|, but which are generically unstable. This can be worked out on the level of
amplitude equations, see §3, and it is also recovered by our numerics for the full system. The
behaviour described below like snaking branches bifurcating from hot beans obviously transfers to
branches related by S. In the following we mainly focus on the hb and cb branches, and also mostly
restrict to following just one direction at bifurcation. c

(a) hh
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d
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efg

chS

Shh

(b) (c)

(d) (e)

(f) (g)

Figure 4: (a) Schematic bifurcation diagram with u(0, 0) as ordinate. Additional branches compared to

Fig. 3 are dashed, and S∗ denotes the respective phase shifted pattern, i.e., Shh are the phase shifted hot

hexagons. hb and cb both form part of a loop hs
hb→ hh

r1→ Sch Scb→ cs
cb→ ch

r2→ Shh Shb→ hs, where r1

and r2 are called rectangles. (b)–(d) r1 example solutions for which, in the expansion (6), B > 0 and A

changing from A>0 in (b) via A=0 in (c) to A<0 in (d). (e)–(f) r2 with B < 0 and A changing from A<0

in (e) via A=0 in (f) to A>0 in (g). (b)–(d) correspond to “hot” solutions with a maximum in the middle

of the domain and hence in the middle of the central hexagon, while (e)–(g) illustrate “cold” solutions with

a minimum in the middle of the domain.

Remark 2.2. The main regime of interest to us is λ ∈ [2.5, 3.22], and below λ ≈ 2.5 all branches
plotted except hh are unstable. We plot a somewhat larger bifurcation picture since, e.g., on the
ch branch some interesting patterns occur. c

Remark 2.3. (a) pde2path uses the Matlab FEM pdetoolbox to discretize elliptic PDEs like (4),
including some error estimators and adaptive mesh–refinement, see [UWR13] for details. In Fig. 3
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we used a regular “base mesh” of 20.000 triangles which, e.g., on the beans branch is refined to
about 60.000 triangles on average. Moreover, for all solutions calculated the mesh can be further
refined to yield arbitrary small error estimates without visible changes to the solutions. Calculation
time for the full bifurcation diagram in Fig. 3 on a quad core desktop PC is about 40 Minutes. The
pde2path script to generate Fig. 3 is also included in the software as demo schnakenberg, and a
movie running through the bifurcation diagram of Fig. 3 and some more movies are collected at
www.staff.uni-oldenburg.de/hannes.uecker/pde2path/schnakmov.html.

(b) The rather large numbers of triangles was needed mainly in order to avoid uncontrolled
branch switching, and it is the large number of different branches which makes the continuation and
bifurcation numerics of (4) demanding. For instance, on the 2× 2 domain the first 10 bifurcations
from the homogeneous branch occur between λ = λc ≈ 3.2085 and λ10 ≈ 3.1651. On larger
domains, these bifurcation points collapse to λc. For instance, over the 6 × 2 domain used in
Fig. 10 below we have λ10 ≈ 3.2042. Similarly, on all branches shown in Fig. 3 there are many
bifurcation points, and thus we only plot a small part of the bifurcation diagram. See [UWR13] on
details how pde2path tries to avoid branch jumping.

(c) The branches plotted in Fig. 3 stay the same over all l1×l2 domains with l1, l2 ∈ N, l1, l2 ≥ 2.
However, stability of solutions of course may change. For instance, taking a larger l2, the hot stripes
no longer loose stability at bifurcation of the regular beans, i.e., with fundamental wave-vectors

k1 = kc(1, 0), k2,3 = kc(−1
2 ,±

√
3

2 ) forming an equilateral triangle. Instead, streched beans with

sideband wave vectors k̃2,3 ≈ k2,3, k̃2,3 6= k2,3, bifurcate more early, i.e., for larger λ. See, e.g., §4.3.
In the following we first keep l2 = 2 fixed and consider larger l1, which will give interfaces between
stripes and hexagons parallel to the (vertical) stripes. In §4 we look at some other interface angles
between, e.g., hexagons and stripes. This, however remains only an outlook on the complicated
problem of interface orientation.

(d) To use pde2path for 1D problems like in Fig. 1, see also §3.4, we artificially set up a thin
strip and use Neumann boundary conditions in transverse (here y) direction such that solutions are
constant in y, e.g., Ω = (−12π, 12π)× (ly, ly) with small ly = 0.1 in Fig. 1. To keep computations
cheap but accurate, ly and the initial mesh are chosen in such a way that we have only two
grid points in y direction, and that the triangles are roughly equilateral. The number of “grid
points in y–direction” may then change under mesh-refinement, but the mesh quality is controlled
automatically.

(e) Finally, the current version of pde2path as such only detects and deals with simple bi-
furcations in the sense that a simple eigenvalue goes through zero. Thus, no Hopf bifurcations
are detected. By counting the number of negative eigenvalues we can however check for Hopf
bifurcations a posteriori, see §3.4 for an example. c

2.2 Planar fronts, localized patterns and snaking in the hot bistable range

To reduce computational costs, but also for graphical reasons, in Fig. 3 we used a rather small
domain for the basic bifurcation diagram. We now present simulations on larger domains, where
however we still restrict to intermediate sizes. Again, this is mainly due to graphical reasons, and
we remark that all results can be reproduced on larger domains, at least qualitatively.

Counting from the hs branch, pde2path yields four bifurcation points hbbp1, hbbp2, hbbp3

and hbbp4 on the hot bean branch hb. One bifurcating branch connects hbbp1 and hbbp4, and
another branch connects hbbp2 and hbbp3. By doubling the horizontal length to a 4 × 2 domain,
i.e., setting lx = 8π/kc, we find eight bifurcation points hbbp1,...,hbbp8 on hb, see Fig. 5, where
now as in Fig.2 we use

‖u‖ = ‖u‖L8 :=

(
1

|Ω|

∫
Ω
|u(x, y)|8d(x, y)

)1/8

(8)
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as the main solution measure. This choice is quite arbitrary, but by trial and error we found it
more suitable to display branches snaking between different patterns than the usual L2 norm, which
works well for snaking of patterns over some homogeneous background.

(a) Bifurcations from the bean branch
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(b) hf21, hf81, hf301, hl11 (c) hl111, hl201, m30, m160

Figure 5: Bifurcation diagram and example plots of fronts and localized patterns of (4) obtained with

pde2path over a 4× 2 domain; λm ≈ 2.62 is the so called (Ginzburg–Landau) Maxwell point, see §3. In (b),

for instance hf21 means the 21st point on the “hot front” branch in (a), and similar for hl* and c*. Domain

in all plots as in the first plot in (b), and the colormap is roughly constant. Bifurcation points (in (a) only

shown on the bean and the hl branches) are indicated by ◦, stable and unstable parts of branches by thick

and thin lines, respectively. See [UW13] for a movie.

The branches bifurcating in hbbp1 and hbbp2 are called hf (hot front) and hl (hot localized),
respectively. Some example solutions on hf and hl are also presented, and the so called Ginzburg–
Landau Maxell point λm. The hf branch connects hbbp1 to hbbp8, and contains stationary fronts
Uhet from hot hexagons to hot stripes, while hl connects hbbp2 to hbbp7 and contains homoclinic
solutions Uhom in the form of localized hexagons embedded in stripes. More precisely, the branches
take part in closed loops, e.g., the hf branch is one half of a loop containing hbbp1 and hbbp8, the
other half containing hexagons coming into the domain from the right. Again we generally only
discuss parts of each of these closed loops.

Both branches, hf and hl, show a snaking behaviour in the bifurcation diagram, and we first
discuss the hl branch which indicates the start of so called homoclinic snaking, which becomes
more prominent if we further increase the domain size, cf. Fig.2. On hl, looking from hbbp2 to
hbbp7, during each cycle consisting of two folds, a further hexagon is added on both sides of the
hexagon patch localized in the middle over a background of stripes. The parts of the snake pointing
north–west contain stable solutions, while on the parts pointing north–east there are 2 unstable
eigenvalues. The transitions from unstable to stable parts thus proceed via the folds and additional
bifurcation points, discussed below.

In contrast to theory and also to 1D problems over very large domains, the branch does not
snake around a vertical line but in a slanted manner. This, and the fact that the branch does not
directly bifurcate from the stripes but from the beans, are finite size effects, cf. [BCR08, BBKM08,
HK09, Daw09]. During, e.g., the initial traverse from hbbp2 to the third bifurcation point the “near
stripe bean pattern” at the bifurcation point is reshaped to hexagons in the middle and stripes
at the sides. The analogous reshaping to “near hexagon beans” takes place between hlp201 and
hbbp7.

In 1D models like (1) and (2), in theory, and over sufficiently large domains with periodic
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boundary conditions, bifurcation points near the folds of a homoclinic snake are usually associated
with “rungs” which together with a snake of the same wave number patterns but different parity
(i.e., odd instead of even) form ladders, see in particular [BKL+09]. In our case, due to the Neumann
boundary conditions there is no snake of odd solutions with wave number kc (see however §2.5 for
“odd sideband snakes”). Thus, it is interesting to see the behaviour of branches bifurcating from
the bifurcation points near the folds, which we illustrate in Fig. 6. These points are again pairwise
connected. On, e.g., the first horizontal part of the q branch the solutions try to develop an
odd symmetry around x = π/kc by growing/decreasing hexagons on the right/left. However, this
cannot connect to the missing odd snake, and the branch turns around to a diagonal segment which
would belong to the odd snake. Thus, this behaviour is again very much a finite size and boundary
conditions effect, and similar comments apply to the r branch.

(d) Bifurcations from the hl branch.

2.64 2.65 2.66 2.67 2.68 2.69

3.8

3.85

3.9

3.95

1

100

200
300

1100

200

300

r

q

(e) q1, q100, q200, q300 (f) r1, r100, r200, r300

Figure 6: A magnification of the hl branch from Fig. 5, and the “rung type” branches connecting bifurcation

points on the hl branch, and some show example plots. The diagonal parts of the q and r branches can be

seen as fragments of a π/kcc shifted odd snake with wave number kc, which does not exist over the given

domain with homogeneous Neumann boundary conditions. See text for details, and [UW13] for a movie.

Remark 2.4. For both, the 1D cubic quintic SHe (2) and the quadratic cubic SHe (1), an analogon
of the bean branch is the branch r− of small amplitude unstable stripes that bifurcates subcritically
from (u, λ) = (0, 0) and “connects” to the fold where the stripes become stable, cf. Fig. 1. In
[Daw09] the appearance of bifurcation points on r− is related to modulational instability of the
amplitudes A−(λ) of the unstable stripes in the associated Ginzburg–Landau equation, derived by
using a scaling of the “subcriticality parameter” ν in (2). In particular, this gives a lower bound on
the domain size necessary for these bifurcations, which is linear in 1/ν, i.e., inversely proportional
to the subcriticality. Moreover, it explains why the bifurcations occur in connected pairs like (in
our case) (hbbp1,hbbp8), (hbbp2,hbbp7), and so on. Similarly, using beyond all order matched
asymptotic expansions, a number interesting results for finite size effects on the snaking branches
in the 1D quadratic cubic SHe are obtained in [KAC09], including that larger domains yield smaller
pinning ranges, i.e., more narrow snakes.

At least the relation between subcriticality of the equation and necessary domain size for sec-
ondary bifurcations also holds for our system, see Remark 2.5. We expect that calculations similar
to those in [Daw09] and in [KAC09] can also be done in our case using the system of Ginzburg–
Landau equations derived in §3 (and extensions as in [KAC09]), but naturally they will be more
complicated. c

In contrast to the homoclinic snaking of the hl branch which at least for simpler models on
infinite cylinders can be also explained and predicted theoretically, see §3, finite size effects should
be regarded as essential for the “heteroclinic snaking” of the hot front branch hf in Fig. 5. In
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fact, at least for the 1D Swift–Hohenberg equation, beyond all order asymptotics [CK09] predict
that for each λ near the Maxwell point there are at most two pinned front solutions, again see §3.
Thus, the hot fronts should be seen as homoclinics by even extension of the solutions over the left
boundary (hexagons on a background of stripes) or right boundary (stripes on a background of
hexagons). See also Fig. 7 below. The m (as in multiple) branch, consists of solutions with multiple
fronts between stripes and hexagons.

To further assess the finite size effects, in Fig. 7 we plot homoclinic snakes from the second
bifurcation points on the bean branches over 8× 2 and 12× 2 domains. The 8× 2 branch (see also

2.6 2.64 2.68 2.72 2.76
3.7

3.8

3.9

4

λ

||
u
||

beans

8x2

12x2

Figure 7: Hot homoclinic snaking over 8× 2 and 12× 2 domains.

Fig. 1) is very close to the hf branch of the 4×2 domain, thus justifying the claim that the 4×2 hf

branch should be seen as a 8×2 hl branch by mirroring it over the left boundary. Remarkably, the
12× 2 hl branch is more slanted than the 8× 2 branch. This agrees with the trend already seen in
Fig. 5 by comparing the 4×2 hf and hl branches, and can be further confirmed by considering even
larger domains, but is contrary to numerical and analytical results for 1D snaking, see in particular
[KAC09] for the 1D quadratic cubic SHe (1). There, as the domain size increases, snaking becomes
more confined around the Maxwell point of the variational equation (1) and less slanted. At this
point we cannot offer an explanation for Fig. 7, but can only point out that our system is not
variational. Therefore, Maxwell points and energy arguments can only be given approximately by
asymptotic expansions, see §3, and the λ regime discussed so far is quite far from the primary
bifurcation. Moreover, we also have to deal with a possibly rather complicated interaction between
the length in x, which we increased, and the length in y, which we fixed, on the one hand to keep
calculational costs at base, but also to first vary only one size parameter. In fact, below we shall
find snakes which are much less slanted than those in Fig. 7. These are typically found much closer
to λc, and moreover involve different ratios between x and y wavenumbers, see for instance Fig. 12.

2.3 Time integration

The stability information in Figures 3, 5, 6 and 7 is based on the spectrum of the linearization
around a (FEM) solution. Given the rather large and complicated space of solutions it is interesting
to assess the nonlinear stability and basin of attraction of solutions. For this we use time integration
of the spatial FEM discretization of (4) by some standard semi implicit method. This is also quite
useful to quickly obtain nontrivial starting points for continuation and bifurcation. Generally
speaking, we obtain desired stable target solutions from only rough initial guesses, where typically
we integrate for some rather short time and then use a Newton loop for the stationary problem to
get to the stationary solution. See Fig. 8 for an example, where, with A=0.3, B=0.15 and L=12,

U0 =

 λ
(

1 +A cos(kcx) + sech( xL)[2B cos(kc2 x) cos(kc
√

3
2 y)− 0.1 cos(kcx)]

)
1
λ

(
1− 1

2

(
A cos(kcx) + sech( xL)[2B cos(kc2 x) cos(kc

√
3

2 y)− 0.1 cos(kcx)]
)) . (9)

11



0 10 20
0

0.01

0.02

0.03

t

||
U

t||

time evolution of residual

Figure 8: Finding a pattern from an initial guess and time integration, on an 8×2 domain. Here λ=2.7,

U0 from (9). For this U0, a Newton loop for the stationary problem does not converge, but it does after

decreasing the residual ‖∂tU‖∞ by a number of time steps, where U denotes the spatial discretization of U .

Allthough motivated by the desired mode structure, the precise form of (9) is rather arbitrary. We
obtain convergence to “hot localized” solution, where of course the width of the hexagon patch
over the stripe background, i.e., the position in the snake, depends on the initial width L.

Another interesting numerical experiment is to choose an initial point on a snaking branch and
externally modifying λ to some other value. For instance, in Fig. 9 we use the stationary solution
U for λ = 2.7 from Fig. 8 and modify λ to λ = 2.65, which is still inside the snaking region, and
to λ = 2.6, which is just outside. To illustrate the time evolution of u(t, x, y) we plot a space
time diagram of u(·, ·,−ly), i.e., of u on the lower boundary of Ω. In these the hexagons appear
as “rolls” with double the wavelength of the stripes due to |kx| = 1

2kc for hexagons. For both,
λ = 2.65 and λ = 2.6, we observe two fronts moving outwards with a “stick–slip” motion, where
n(t) := ‖u(t, ·, ·)‖ becomes flat as u(t, ·) comes close to the (here left) folds in the 8 × 2 snaking
branch from Fig. 7. For λ = 2.6 we then end up with space filling hexagons, and for λ = 2.65 with
some localized hexagons “further up” on the snake, which again shows stability of these solutions.

(a) λ=2.65, conv. to localized
hexagons further up the snake

(b) λ = 2.6, conv. to space filling
hexagons

(c) Norm evolution

0 1000 2000
3.7

3.9

4.1

t

||
u
||

λ=2.6

λ=2.65

Figure 9: Stick-slip motion after “stepping out of the snake”; (a), (b) u(t, x,−ly) in space–time diagram,

initial conditions from Fig. 8.

2.4 Planar fronts, localized patterns and pinning in the cold range

On the cold bean branch cb there are no bifurcation points over a 2× 2 or 4× 2 domain. However,
Fig.10(a) shows 4 of the 8 bifurcation points obtained on the cold bean branch over a 12×2 domain,
namely cbbp1, cbbp2, cbbp7, cbbp8, the branch cf (cold front) connecting cbbp1 and cbbp8,
and the branch cl connecting cbbp2 and cbbp7, and consisting of hexagons on a stripe background.
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Panel (b) shows 4 example solutions. In, e.g., cl50 it can be seen that the localized hexagons are
shifted by 2π/kc in x, such that here we really consider Scb which connects cs to Sch, cf. Remark
2.1, but for simplicity we omit the S.

(a)

3.06 3.08 3.1 3.12 3.14

3.4

3.45

3.5

40

15

70

50

75

24

λ

||
u

||

ch

cb

cf

cl

cs

λ
m

(b) cf15, cf40 and cl24, cl50

Figure 10: Bifurcation from the cold beans on a 12×2 domain. (a) cf branch connecting cbbp1 with cbbp8

in a monotonous way (no snaking), cold localized branch cl, and the cold Maxwell point (see §3). (b) Some

example solutions. See [UW13] for a movie.

Similar to Fig. 5, after bifurcation from, e.g., cbbp1, in the traverse to cf15 the solutions
reshape into stripes on the left and hexagons on the right. The growth of the hexagon part then
happens in a narrow λ regime around λm between cf15 and cf70, while between cf70 and cbbp8

the solutions are reshaped to near hexagon beans. Similar remarks hold for the cl branch.
The third bistable range we discuss is between the homogeneous solution w∗ = (λ, 1/λ) and

the cold hexagons for 3.21 ≈ λc < λ < λbch ≈ 3.22. Here, over sufficiently large domains, we have
bifurcation points on the small amplitude (unstable) cold hexagon branch, which now corresponds
to the r− branch for (2) in Fig. 1. As above we can find quasi 1D fronts between w∗ and cold
hexagons, see Fig. 11(e), and the associated 1D localized patterns. However, as in the qcSHe (1)
and the cqSHe (2), see [ALB+10] and the references therein, we can also calculate fully localized
patches of hexagons, see Fig. 11(a)–(d).

Remark 2.5. An essential difference between Fig. 5 and Figures 10 and 11 is that in the latter there
is no snaking. Starting with Fig. 10 and following Remark 2.4 we believe that the need for a large
domain to obtain bifurcations from the cb branch can be explained from the “weak subcriticality”
of the system in this range, such that the cold bistable range is rather narrow, compared to the hot
bistable range. Related to this, the difference in (Ginzburg–Landau–)energy between ch solutions
and cs solutions is much smaller than between hh solutions and hs solutions in their bistable range
and this results in flatter fronts for the associated Ginzburg–Landau system, which we discuss in
more detail in §3.2.

However, here increasing the domain gives bifurcation points on cb (e.g., 4 on a 12×2 domain),
and branches connecting the first and the last, the second and the second to last, and so on, as in
[Daw09], but no snaking. The reason is most likely an exponentially small width of the snaking
region, which cannot be resolved by our numerics, analogous to a number of results for the qcSHe
(1) and the cqSHe (2), which can directly be related to Fig. 11. For instance, [LSAC08, Fig.33,34],
see also [ALB+10, Fig.22], show the (numerically calculated) positions of the left λ−(ν) and right
folds λ+(ν) in the snake of hexagons over u = 0 in (1). Then, as expected, λ−(ν) < λM (ν) <
λ+(ν), where λM (ν) is the relevant Maxwell point, but the width s(ν) = λ+(ν) − λ−(ν) goes to
0 quickly as ν becomes small, and the snaking cannot be continued down to ν = 0. Analytically,
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Figure 11: Bistable range between homogeneous solution and cold hexagons. (a) partial bifurcation diagram

and the homogeneous Maxwell point (see §3). Additional to quasi 1D solutions we find fully 2D localized

hexagon patches. The triangle in (d) indicates the computational domain with a = (32π/kc, 0) and b =

(32π/kc, 32π/(
√

3kc), and about 90.000 triangles. We use Neumann BC on all three sides and for plotting

first make an even extension over y = 0 and then five rotations by 60 degrees. (e) Quasi 1D front between

w∗ = (λ, 1/λ) and spots on a 13× 1 domain, λ ≈ 3.219. See [UW13] for a movie.

[CK09, SM11, DMCK11, KC13] explain that the pertinent small parameter in (1) and (2) is the
subcriticality ε(ν) = λc−λf (ν), where λc = 0 and λf (ν) < 0 denotes the position of the fold where
the subcritical rolls become stable. Formulas for s(ε) = λ+(ε) − λ−(ε) can then derived using
beyond all order asymptotics, and show the exponential smallness of s(ε) in ε, i.e.,

s(ε) ∼ Cε−α exp(−β/ε) as ε→ 0, (10)

where C,α, β > 0 are numerical constants depending on the parameters of the problem and, e.g.,
front orientation, but not on ε. These formulas show good agreement with numerical simulations,
see, e.g., [KC06, Fig.2],[DMCK11, Fig.5], [SM11, Fig.1(c)], [KC13, Fig.2,3].

If we also assume a dependence like (10) here, with ε = λbs− λech ≈ 0.12 the “bistability width”
of stripes and cold hexagons in Fig. 10, and ε = λbch − λc ≈ 0.02 the subcriticality in Fig. 11, then
the snaking width might be too small to resolve numerically. In fact, increasing the domain size
and keeping the discretization reasonably fine, the steep part near λm becomes steeper, but in our
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numerics this process converges to a monotonous in λ branch. To elaborate this we set up the
modification (7) which for σ < 0 increases the subcriticality of the cold hexagons. See §3.3 where
we find snaking of the analoga of the cl, and l branches of Fig. 10 and 11, respectively. c

2.5 Sideband patterns

By our choice of l1 × l2 domains Ω =

(
−2l1π

kc
,
2l1π

kc

)
×
(
− 2l2π√

3kc
,

2l2π√
3kc

)
with homogeneous Neu-

mann boundary conditions, in a neighborhood of (w, λ) = (0, λc) only patterns with basic wave

vectors kc(1, 0) and kc(−1
2 ,±

√
3

2 ) exist, as these are the only unstable modes that fit into the domain.
However, for larger λc−λ more modes become unstable and hence patterns with sideband wave vec-

tors like k = kc(
4l1+m1

4l1
, 0), m1 = ±1,±2, . . . (sideband stripes), or k = kc(−1

2
4l1+m1

4l1
,±
√

3
2

4l2±m2
4l2

),

m1,2 = ±1,±2, . . . (with ‖(1
2

4l1+m1
4l1

,
√

3
2

4l2±m2
4l2

)‖ close to unity to build sideband hexagons) come
into play: branches of solutions with such modes bifurcate from the homogeneous branch below λc
and should be expected to behave roughly similar as the basic stripe and hexagon branches, i.e., for
λ < λc we get an existence balloon of patterns. Moreover, allthough unstable at bifurcation they
may become stable away from bifurcation, forming the so called Busse balloon as a subset of the
existence balloon. Of course, all this heavily depends on the size of the domain: for instance, on the
2× l2 domain, the sideband (vertical) stripes have wave vectors (k1, 0) with k1/kc = 1

4 ,
1
2 ,

3
4 ,

5
4 , . . .,

while on the 8 × l2 domain we have k1/kc = . . . , 15
16 ,

31
32 ,

33
32 ,

17
16 , . . ., where for instance we call the

stripe with expansion A sin(31
32kcx) + h.o.t. an odd stripe, in contrast to the even stripes considered

so far.
Just as an indication of how such sideband patterns can further complicate the bifurcation

diagram of (4), in Fig. 12 we plot a number of “sideband” branches and sample solutions on the
8 × 2 domain, thus allowing many more wave numbers k1 = 0, 1

32kc,
2
32kc, . . . in x direction than

wave numbers k2 = 0, 1
4kc, . . . in y direction. The branches s1, s2 belong to (hot) “subharmonic”

stripes with k1 = 30
32kc,

31
32kc, respectively. Interestingly they stay stable much longer than the basic

hot stripe branch hs which looses stability at λ = λes ≈ 2.51. However, this is not a contradiction as
kc need not be in the Busse balloon of stable wavenumbers for |λ−λc| = O(1), see, e.g., [DRvdS12]
for an interesting example.

In contrast to the hs branch, when loosing stability, the bifurcation is no longer to beans, but
directly to a localized branch l in case of s1 and to a front branch f in case of s2. For s1, an
explanation is that hot hexagons with k1 wave numbers 15

32kc do not exist for λ > λh ≈ 2.35: for
λ = 2.3 we can generate such hexagons from a suitable initial guess and time–integration, see §2.3,
but as we try to continue the h1 branch to larger λ we get a fold at λh, and on the lower branch
the hexagons loose their shape as λ increases again. This is a finite size effect, in particular of

the rather small size in y. The wave vector kh1 = kc(−15
32 ,±

√
3

2 ) of the h1 branch which yields the

slightly distorted hexagons shape is the one with |k| closest to kc in the family k = kc(
15
32 ,
√

3
2

8±m2
8 ),

and apparently this is not yet in the existence balloon for λ > λh. Consequently, we should not
expect beans involving kh1 for λ > λh, and this explains the direct bifurcation from the s1 branch
to the l branch.

Similar remarks apply to the bifurcation from the s2 branch to the f branch, where moreover
no hexagons with k = kc(−31

64 ,±
√

3/2) exist on the 8× 2 domain at all, for any λ in the depicted
range. Thus, bifurcation to the f branch is the natural candidate, and by mirroring solutions over
the left or right boundary this corresponds to an l branch over the 16× 2 domain. On both snakes
the segments pointing north–west are stable, and there are bifurcation points near the folds. Also
note that point 200 on the l branch has stripes on a hexagon background and thus is already on
the “way back” to the bifurcation point of l from s1. Here we close our brief discussion of 2D
sideband patterns, but refer to §3.4 for (1D) branches connecting different wave numbers, and to
§4.3 for fully localized sideband hexagons over stripes.
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Figure 12: (a) Bifurcation diagram for patterns with sideband wavenumbers on the 8×2 domain. (b) Stripes

with k1 = 15
16kc (s1) and k1 = 31

32kc (s2), and bifurcation directions from these. (c),(d) Some example plots

on the bifurcating branches. (e) Slightly distorted hexagons with k1 = 15
16kc, obtained from an initial guess

and time integration followed by a Newton loop at λ = 2.3. See [UW13] for a movie.

3 Ginzburg-Landau reduction

We now approximate the hexagons, stripes and mixed modes by the Landau formalism, and the
fronts and localized patterns with planar interfaces by the Ginzburg–Landau formalism. In partic-
ular, using an energy argument and the so called Maxwell point for the Ginzburg–Landau system
we find an approximate prediction where to find the respective branches in the bifurcation diagram
for (4). Similar ideas are worked out much more deeply for the 1D quadratic–cubic SHe (1) in
[CK09] (see also [KAC09]) and the cubic–quintic SHe (2) in [DMCK11], where, by augmenting
the Ginzburg–Landau ansatz with beyond all order asymptotics, accurate bifurcation diagrams for
homoclinic snaking were rigorously derived.

In our case we need a system of Ginzburg–Landau equations, and our analysis is more formal
since even a consistent derivation of the Ginzburg–Landau system is difficult as we refrain from
scaling assumptions for quadratic interactions but rather work with the numerical coefficients in
(4). However, from the Ginzburg–Landau system we calculate the Maxwell point as a necessary
condition for Ginzburg–Landau fronts, and the pinning argument from [Pom86] then suggest the
existence of stationary fronts for (4). This approximation turns out to be qualitatively and at least
in the cold regime also quantitatively correct, and thus it gives a lowest order approximation for
the numerical solutions, although it cannot explain the snaking (or the non–snaking).

In a second step we use the Ginzburg–Landau formalism as a predictive tool to choose the σ
direction in the modified model (7) in which we can increase the subcriticality of the cold regime
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to obtain cold snaking branches (§3.3), and in which we have subcritical bifurcation of stripes and
hence can expect 1D snaking (§3.4).

3.1 Landau description of hexagons, stripes, and mixed modes

To formally describe planar fronts for (4) by a Ginzburg-Landau system the idea is to treat x as
an unbounded variable, while y ∈ [− mπ√

3kc
, mπ√

3kc
] with Neumann boundary conditions, as in the

numerics. At least close to λc the most unstable modes of the linearization L(∆) of (5) around

0 are then e1Φ, e2Φ, and e3Φ, where e1 = eikcx, e2 = eikc(−x+
√

3y)/2, e3 = eikc(−x−
√

3y)/2, and
Φ = Φ(λ) ∈ R2 is the eigenvector of L̂(kc, λ) to the eigenvalue µ+(kc, λ). First we consider slowly
varying complex amplitudes Aj = Aj(t) of these modes, j = 1, 2, 3, i.e., our ansatz reads

w =

3∑
i=1

AieiΦ +
1

2

3∑
i=1

|Ai|2φ0 +

3∑
i=1

A2
i e

2
iφ1 +

∑
1≤i<j≤3

AiAjeiejφ2 + c.c. + h.o.t., (11)

where Aj means the complex conjugate of Aj , c.c. stand for the complex conjugate of all preceeding
terms, and h.o.t. stands for higher order terms. This is taken as a weakly nonlinear expansion, i.e.,
the goal is to successively remove terms of order Amj , m = 1, 2, 3 from the residual L(∆)w+G(w),
where the amplitudes Aj are assumed to be small, though later we will use the expansion also for
O(1) amplitudes. The vectors φ0, φ1, and φ2 are introduced to remove quadratic terms at wave
vectors k with k = |k| = 0, k = 2kc and k =

√
3kc from the residual.

The calculations are best organized by writing (5) in the form

∂tw = L(∆)w +B(w,w) + C(w,w,w), (12)

where B and C are symmetric bilinear and trilinear forms. To remove terms of order AiAj from
(4) we need

φ0(λ) = −2L̂(0, λ)−1B(Φ,Φ), φ1(λ) = −L̂(2kc, λ)−1B(Φ,Φ),

φ2(λ) = −2L̂(
√

3kc, λ)−1B(Φ,Φ).
(13)

These terms arise due to quadratic interactions of the forms, e.g., B(A1e1Φ, A1e1Φ) = |A1|2B(Φ,Φ),

B(A1e1Φ, A1e1Φ) = A2
1e2ikcxB(Φ,Φ), andB(A1e1Φ, A2e2Φ) = A1A2ei kc

2
(3x−

√
3y)B(Φ,Φ). Allthough

Φ ∈ R2 in our case we keep the notation Φ as this makes it easier to see where the respective terms
come from. The matrices L̂(0, λ), L̂(2kc, λ) and L̂(

√
3kc, λ) are invertible at least for λ not too

far from λc. From the Fredholm alternative we obtain the Landau ODE system as the solvability
conditions for removing terms up to cubic order at the critical modes, namely

at e1 : ∂tA1 = f1(A1, A2, A3) := c1A1 + c2A2A3 + c3|A1|2A1 + c4A1(|A2|2 + |A3|2),

at e2 : ∂tA2 = f2(A1, A2, A3) := c1A2 + c2A1A3 + c3|A2|2A2 + c4A2(|A1|2 + |A3|2), (14)

at e3 : ∂tA3 = f3(A1, A2, A3) := c1A3 + c2A1A2 + c3|A3|2A3 + c4A3(|A1|2 + |A2|2),

with c1(λ) = µ+(kc, 0, λ), c2(λ) = 2〈B(Φ,Φ),Φ∗〉, c3(λ) = 〈3C(Φ,Φ,Φ)+2B(Φ, φ1)+2B(Φ, φ0),Φ∗〉,
and c4(λ) = 〈6C(Φ,Φ,Φ) + 2B(Φ, φ2) + 2B(Φ, φ0),Φ∗〉. Here Φ∗(λ) is the adjoint eigenvector of
L̂(kc, λ) to the eigenvalue µ+(kc, λ), normalized such that 〈Φ,Φ∗〉 = 1. At ej , j = 1, 2, 3, we ob-
tain the complex conjugate equations. See, e.g., [GSK84, Pom86], [CH93, §IV,A,1,a(iii)], [DSSS03,
§2], [Hoy06, §5],[NG06, Pis06], which also explain that (14) is the generic form of the amplitude
equations for hexagonal symmetry. The next step is the actual calculation of the coefficients.

Remark 3.1. In (11), Φ = Φ(kc, λ) varies with λ and is not fixed at λ = λc, which would be the
more classical ansatz. Similarly, terms like (13) and the coefficients c2, . . . , c4 are evaluated at λ,
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not as usual at λ = λc. The formalisms are equivalent for λ → λc with the differences hidden in
the h.o.t. in (11). The reason why we always evaluate at λ is that we want to use the formalism
also for λc − λ = O(1) and then expect (and find) better approximations with Φ = Φ(λ). On the
other hand, for the comparison with the numerics we want to keep the wave vectors fixed and thus
evaluate at kc, which approximately stays the most unstable wave number also for λc−λ=O(1). c

From the coefficients cj(λ), j = 1, . . . , 4, see Fig. 13(a), it follows that

T± = ±
√
−c1

c3
and P± = − c2

2(c3 + 2c4)
±

√
c2

2

4(c3 + 2c4)2
− c1

c3 + 2c4
, (15)

are real in the Turing-unstable range λ < λc, respectively for λ < λGLfold ≈ λcb ≈ 3.22. The triples
(T+, 0, 0), (T−, 0, 0), (P+, P+, P+), and (P−, P−, P−) solve (14) and via (11) generate hot stripes,
cold stripes, hot hexagons, and cold hexagons, respectively. Mixed modes are obtained from setting
A3 = A2 and solving (14) for (A1, A2).
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Figure 13: (a) Landau coefficients, and Ginzburg–Landau coefficient c0, see §3.2. (b),(c) Landau bifurcation

diagram in the invariant subspace A1 =: A ∈ R and A2 = A3 =: B ∈ R, stability/instability indicated by

thick/thin lines. (d),(e) Comparisons of numerical bifurcation diagram from Fig. 3 (indicated by * for stable

points and + for unstable points) with Landau bifurcation diagram near the cold and hot bistable regimes.

(f) relative L1 errors between hot numerical and Landau solutions defined in (16).

The formulas, together with the signs of cj(λ), also explain the supercritical pitchfork bifurcation
of stripes, and the transcritical bifurcation of the hexagons. Figures 13(b),(c) show the complete
bifurcation diagram for stationary solutions of (14) in the invariant subspace A1 =: A ∈ R and
A2 = A3 =: B ∈ R, while (d),(e) compares the bifurcation diagram of stripes, hexagons and
beans for (14) with the numerical bifurcation diagram from Fig. 3 for the full system (4). Though
qualitatively correct down to λ = 2.4, the approximation errors grow with |λ − λc|, as expected.
Additionally to the L∞ like error already shown, for i ∈ {stripes,hexagons} we define the relative
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L1 errors

zi =
∑

(x,y)∈Ωd

‖Unum,i(x, y)− Ui(x, y)‖1

/ ∑
(x,y)∈Ωd

‖Unum,i(x, y)‖1 (16)

between the numerical solutions Unum and approximate solutions U = w∗+w from (11), where Ωd

is the discretization used to calculate the numerical solution from Fig. 3. It turns out that zstripes

stays rather small also for λc−λ = O(1), while zhex behaves worse, see Fig. 13(f), and also Remark
3.2 for further comments.

Another notable discrepancy between the Landau bifurcation diagram and the (numerical)
bifurcation diagram for (4) is that in the former the (hot) stripes are stable all the way to the
bifurcation point, while in the PDE this depends on the domain size. On a 1× 1 domain we obtain
exactly the same stability as displayed in Fig. 13(b),(c), and the instability near bifurcation of
the stripes already on a 2 × 2 domain as in Fig. 3 is due to a long zig-zag instability, which is
not captured in our Landau ansatz. Similar remarks apply for instance to the rectangle branches,
which are mostly unstable for (4) over a 2× 2 domain.

3.2 Ginzburg–Landau formalism and fronts

Motivated by the acceptable approximation of the hexagons, stripes and beans via (11) and (14) we
proceed to use the Ginzburg–Landau (GL) reduction to predict the stationary fronts and localized
patterns. If instead of Aj = Aj(t) we assume that Aj = Aj(t, x) are slowly varying functions also
of x ∈ R, then instead of the Landau system (14) we obtain the Ginzburg–Landau system

∂tA1 = c0∂
2
xA1 + f1(A1, A2, A3), ∂tAj =

c0

4
∂2
xAj + fj(A1, A2, A3), j = 2, 3, (17)

where c0(λ) = −1
2∂

2
k1
µ+((kc, 0), λ) > 0. See [Sch94, BvHS95, Sch99, Mie02] for background on this

formal procedure, and for so called attractivity and approximation theorems which estimate the
difference between a true solution of (3) and an approximation described by (11) and (17), close
to bifurcation. These theorems involve some small amplitude assumption for (u, v), related slow
scales for t and x in Aj(t, x), and, for the present case of three resonant modes, a suitable scaling
for the quadratic interactions, i.e., small c2.

Here we again want to use the GL system (17) at an O(1) distance from λc and find a necessary
condition for stationary fronts between hexagons like A ≡ (P+, P+, P+) and stripes like A ≡
(T+, 0, 0) in (17). Thus we consider the stationary Ginzburg–Landau system

c0∂
2
xA1+f1(A1, A2, A3) = 0,

c0

4
∂2
xAj+fj(A1, A2, A3) = 0, j = 2, 3, (18)

as a dynamical system in the spatial variable x. Now restricting to real amplitudes Aj , the total
energy of (18) is given by Etotal = Ekin + Epot, where

Ekin =
c0

2

(
(∂xA1)2 +

1

4
(∂xA2)2 +

1

4
(∂xA3)2

)
, and

Epot =

3∑
i=1

(c1

2
A2
i +

c3

4
A4
i

)
+ c2A1A2A3 +

c4

2
(A2

1A
2
2 +A2

1A
2
3 +A2

2A
2
3)

are the kinetic and potential energy, respectively. Then d
dxEtotal = 0, i.e., Etotal is conserved. Thus,

a necessary condition for, e.g., a heteroclinic orbit Afront between (P+, P+, P+) and (T+, 0, 0) to
exist in (18) is Epot(T+, 0, 0) = Epot(P+, P+, P+). Again we first focus on the hot bistable range
and in Fig. 14(a) plot Epot(T+, 0, 0) and Epot(P+, P+, P+). Their intersection defines the so called
(hot) Maxwell point λm. Though we refrain from discussing the general energy landscape and
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dynamics of (18), it turns out that at least numerically the necessary condition λ = λm is also
sufficient. Figure 14(b) shows a stationary front for (17) (with Neumann boundary conditions),
which can either be obtained from time evolution of (17) with a suitable initial guess, or from
solving the stationary boundary value problem. See also [MNT90] for some more analysis for front
solutions of (18), including some implicit solution formulas. On the other hand, for λ < λm with
Epot(T+, 0, 0) < Etotal(P+, P+, P+) we obtain a front for (17) travelling towards higher energy, i.e.,
(P+, P+, P+) invades (T+, 0, 0), and vice versa for λ > λm.
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Figure 14: (a), (c) Energies of hexagons and stripes near the hot resp. cold bistable regimes; their intersec-

tions define the respective Maxwell points λ = 2.62, λ = 3.11, and the zero of Epot(P−, P−, P−) defines the

third Maxwell point λ = 3.219. Hot (b) and cold (d) stationary Ginzburg–Landau fronts between stripes and

hexagons at the respective Maxwell points, for comparison both over domain [−12π/kc, 12π/kc], A3 = A2.

Thus, from the GL approximation standing fronts Uhet between different patterns are only
predicted at precisely λ = λm. In the physics literature, e.g., [Pom86], the basic argument for the
existence of Uhet in an interval around λm is that the patterns create an effective periodic potential
which yields a pinning of fronts.

It is not obvious whether the stationary GL system (18) has homoclinic solutions Ahom with,
say, Ahom(x) → (P+, P+, P+) as x → ±∞, and that pass near (T+, 0, 0) near x = 0. However,
(suitably shifted) fronts Afront(x0 + ·) and “backs” Aback(x1 + ·) with Aback(x) = Afront(−x) can be
glued together to give approximate homoclinics with long plateaus but also with some dynamics in
time which can be expected to be exponentially slow in the separation distance between Afront and
Aback, see, e.g., [CP90]. In fact we can generate almost stationary pulses numerically, but eventually
the solution decays to a homogeneous rest state (T+, 0, 0) or (P+, P+, P+). Similarly, (18) may have
periodic orbits which stay close to (P+, P+, P+) resp. (T+, 0, 0) over very long x-intervals. Clearly,
for these “approximate homoclinics” a similar pinning argument as for the heteroclinics should
apply and predict the existence of localized patterns as in Fig. 5 near the Maxwell point λm.

In [CK09, DMCK11] it is worked out mathematically that the pinning and hence also the
snaking are exponentially small effects and thus cannot be predicted at any order by Ginzburg–
Landau type asymptotic expansions alone. However, as already indicated in Remark 2.5, using
beyond all order asymptotics snaking in the model problems (1) and (2) can be described very
accurately. See also, e.g., [Kno08, ALB+10] and the references therein for alternative arguments
explaining the snaking via so called heteroclinic tangles in the spatial dynamics formulation of
again (1) and (2).

The same pinning arguments apply to the cold bistable range (Fig. 10), but the difference
to the hot range is that the bistability resp. subcriticality as measured by ε in Remark 2.5 in
the cold range is much smaller than in the hot range. Here we repeat, from a slightly different
point of view, the heuristic argument, why this makes the snaking region very small and thus
snaking impossible to detect in our numerics. Small ε in the cold range relates to the fact that the
dependence of |Epot(T−, 0, 0)− Epot(P−, P−, P−)| on λ in the cold range is much flatter than that
of |Epot(T+, 0, 0) − Epot(P+, P+, P+)| on λ in the hot range. A short calculation then yields that
relatively to the diffusion constant c0 the vector fields f1, f2 in (18) are smaller in the cold range
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than in the hot range. Therefore, cold Ginzburg–Landau fronts are flatter and wider than hot ones,
cf. Fig. 14(b) and (d). Thus, if for convenience we write u(x, y;λ) =

∑3
j=1Aj(εx;λ)eiΦ(kc) + c.c.

for a localized pattern u, assuming that the Aj vary on an O(1) scale, then there is a stronger
separation of scales in the cold range than in the hot range. Consequently, in the cold range the
Fourier transform of u in x is more localized around the pertinent kj due to

û(k, y;λ) =
1

ε

 3∑
j=1

Â

(
k − kj
ε

;λ

)
eiljy + c.c.f.

Φ(kc), (19)

where k1 = kc, k2,3 = −1
2kc, l1 = 0, l2,3 = ±

√
3

2 .
On the other hand, repeating the Ginzburg–Landau analysis leading to (17) with the x–wave

number k as a parameter, k ≈ kc, we obtain a wave number dependent Ginzburg–Landau energy
Etotal(λ, k) for patterns. Then d

dxEtotal = 0 along a localized pattern can be seen as a selection
principle for the average wave number k, or conversely defines a function λ = λ(k) with generically
λ′(k) 6= 0, see, e.g., [BD12]. Therefore, if û(k;λ) is only weakly localized in the different kj (i.e., ε
not very small in (19)), then we expect a strong λ dependence in the branch of localized patterns,
and hence that λ varies over a significant range during growth of a localized pattern, and we may
expect λ to snake back and forth during that growth. Conversely, for small ε in (19) we expect a
narrow λ range for some growing pattern, as in Fig. 10 and 11, and snaking is difficult to detect
numerically. See also §3.3 for more quantitative arguments.

Remark 3.2. An ad hoc way to derive a Landau system like (14) from a system like (4) is to
only consider the solvability conditions (14) at the critical modes without first removing the A2

residual at second harmonics. This amounts to the first order ansatz w =
∑3

i=1AieiΦ + c.c., or in
other words setting φ0, φ1, φ2 = 0 in (13). We denote the new coefficients in (14) by c31 and c41.
This is obviously simpler than (11), but not formally consistent. However, at order O(1) distance
from the bifurcation the first order ansatz may give a better approximation of solutions than the
ansatz (11), since (11) represents only an asymptotic expansion, and not the first terms in some
convergent series.

It turns out that in some sense this is indeed the case for (4), and this can be used to improve
the prediction of the Maxwell point. While in the hot bistable range the first order ansatz gives
a much larger error for the stripes, its error for the hot hexagons is in fact smaller than the one
in Fig. 13(c). The idea is to use the coefficients c3(λ) obtained from (11) for the stripes and
the coefficients c31(λ), c41(λ) from the first order ansatz for the hexagons in a “mixed” Ginzburg–
Landau system that retains the variational structure. Thus, let S be T+ and H be P+ determined
by using (11) and the first order ansatz, respectively, and consider the system

c0∂
2
xA1 + c1A1 + c2A2A3 +

(
c3

(
A1 −H
S −H

)
+ c31

(
A1 − S
H − S

))
A3

1 + c41A1(A2
2 +A2

3) = 0,

c0

4
∂2
xA2 + c1A2 + c2A1A3 +

(
c3

(
A2 −H
S −H

)
+ c31

(
A2 − S
H − S

))
A3

2 + c41A2(A2
1 +A2

3) = 0, (20)

c0

4
∂2
xA3 + c1A3 + c2A1A2 +

(
c3

(
A3 −H
S −H

)
+ c31

(
A3 − S
H − S

))
A3

3 + c41A3(A2
1 +A2

2) = 0.

In the hot bistable range we have S > H such that (20) is well-defined in this range. Moreover,
(20) has again a conserved energy Etotal = Ekin + Epot where now

Epot=
3∑
i=1

c1

2
A2
i+c2A1A2A3 +

3∑
i=1

A4
i

(
c3

1
5Ai −

1
4H

S −H
+ c31

1
5Ai −

1
4S

H − S

)
+
c4

2
(A2

1A
2
2 +A2

1A
2
3 +A2

2A
2
3).

Using this energy to calculate the hot Maxwell–point for (20) we find λm = 2.67 which is more in
the center of the snaking region than λm = 2.62. Thus, using the additional information that the
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hexagons are better approximated by the first order ansatz than by (11) we can obtain a better
prediction for the Maxwell point. c

3.3 A modification with cold snakes and 1D snaking

In §2.4 and before Remark 3.2 we conjecture that the observed non snaking of cold connecting
branches is due to the weak difference in (Ginzburg–Landau) energy of the associated patterns,
which are also related to the narrow range of bistability between the cold hexagons and the cold
stripes or the homogeneous solution, respectively, and which we expect to yield exponentially
narrow snaking regions, cf. (10). To study this quantitatively we now consider a modification of
(4). Clearly, many such modifications are possible, for instance using the Selkov–Schnakenberg
parameters a, b, or varying the diffusion constant d, which we fixed to d = 60.

Here consider the modification (7), i.e., for the stationary case,

D∆U +N(U, λ) + σ

(
u− 1

v

)2(
1
−1

)
= 0, (21)

which has the advantage that the homogeneous solution w = (λ, 1/λ), the linearization around w
and thus λc do not depend on σ. Consequently, proceeding as in §3.2, σ only changes the Landau
coefficients c2, c3, and c4. For solutions of (14) we calculate that there is a fold on the hexagon
branch if the discriminant of P± of (15) vanishes, i.e., at

c1 = cf :=
c2

2

4(c3 + 2c4)
. (22)

Let λf be the corresponding λ value, such that λf − λc is a measure of the strength of the sub-
criticality on the Landau level. Near λc this is proportional to −c1 since c1 is essentially a linear
function of λ−λc for λ near λc, see Fig. 13(a). In Fig. 15(a) we plot cf and the Landau coefficients
c2, c3, c4 in λc as functions of σ. The value cf (σ) and thus the subcriticality predicted by the Lan-
dau formalism increases monotonously by reducing σ from 0, and this also increases the potential
energy difference for λ > λc, see Fig. 15(b). Following Remark 2.5 and the end of §3.2 this suggests
that for negative σ we may find snaking branches for localized cold hexagons on the homogeneous
background, and this Ginzburg–Landau prediction is confirmed numerically for the system (21) in
(c), where snaking starts around σ = −0.25 and becomes stronger when further decreasing σ.

Similarly, the width of the bistable range between cold hexagons and cold stripes and the energy
differences between these patterns increase with decreasing σ (Fig. 15(d),(e)). This suggest to also
find snaking branches between cold hexagons and cold stripes for negative σ, and this confirmed
by the numerics in (f), where again the snaking increases with decreasing σ.

For σc ≈ −0.369 we have c3 + 2c4 = 0 and cf → ∓∞ for σ → σc ± 0. Clearly, this cannot
be used as a prediction of the fold position as for large λ − λc higher order terms must be taken
into account. Nevertheless, in Fig. 15(a) the plot continues down to σ = −0.9 as the sign change
of c3 near σ = σ0 ≈ −0.3 has another interesting consequence: for σ < σ0 we have a subcritical
bifurcation of stripes, and hence the possibility of 1D homoclinic snaking between stripes and the
homogeneous background, which we illustrate in the next section.

Remark 3.3. (a) From c2(σ0) = 0 in Fig. 15(a), with σ0 ≈ 0.3, we expect a codimension 2 point
for (21) at (λ, σ) = (λc, σc) with σc ≈ σ0. Then a formally consistent Ginzburg–Landau expansion
could be performed in (λc, σc), which together with beyond all order asymptotics should yield a
result like (10), i.e., s(ε) = Cε−α exp(−β/ε).
(b) From the subcriticality ε(σ) := λf (σ)− λc and the width s(ε) of the snakes in, e.g., Fig. 15(c)
we could also fit the coefficients C,α, β in expansions like (10), and thus estimate the snaking
width at σ = 0, and similar for the snaking between stripes and cold hexagons in Fig. 15(f). Here,
however, we refrain from this, since we should first establish (10), and since even if we assume (10),
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Figure 15: Switching on cold snaking for the modified model (21) by decreasing σ. (a) Landau coefficients

evaluated in λc, and cf , as functions of σ. (b) Potential energies of cold hexagons for different σ values. (c)

Branches of localized hexagons over the homogeneous state on the 4 × 2 domain for σ = −0.25, −0.3, and

−0.35. (d) λes(σ) and λbch(σ) such that λes − λbch gives the width of the bistable range of cold stripes and

hexagons as a function of σ. (e) Potential energies (solid lines) of cold hexagons and stripes (dashed). (f)

branches of localized patterns in bistable ranges between cold hexagons and cold stripes on the 4×2 domain.

then ε(σ) and s(ε) should be calculated numerically from fold continuation for λf (σ) and λ∓(σ),
where λ∓(σ) are, e.g., the first left and right folds in the snakes in Fig. 15(c). Our current version
of pde2path does not have this fold continuation, which will however be implemented in the next
version. c

3.4 1D snaking

For (3) in 1D there is no bistable range of patterns because the hexagons do not exist and stripes do
not bifurcate subcritically, and thus we do not expect any localized patterns. For the modification
(21) of (3) we have a bistable range: the stripes bifurcate subcritically if c3 is positive, i.e., for
σ < σ0 ≈ −0.3. We choose σ = −0.6 and use pde2path to numerically investigate (21) over the
one dimensional domain Ω = (−8π/kc, 8π/kc), cf. Remark 2.3(d). Then the stripe patterns branch
S8 with wave number kc and hence eight periods bifurcates in λc. From the second, third, and
fourth bifurcation point on the homogeneous branch stripe patterns with 8.5, 7.5, and 7 (S7 branch)
periods bifurcate, respectively. We chose the rather small domain as in this section we want to give
a somewhat complete picture of the secondary bifurcations on the S8 and S7 branches.

The first interesting observation is that the S8 branch does not aquire stability in the fold near
λ ≈ 3.4, but for smaller λ ≈ 2.93, see Fig.16(a), and the fold for the S7 branch is to the right of the
S8 fold, and S7 becomes stable in its fold. This is somewhat similar to Fig. 9 in [BBKM08] where it
is illustrated that also for the 1D quadratic-cubic SHe (1) the leftmost fold does not belong to the
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critical wave-number kc = 1 (in that case). Moreover, from the first bifurcation point on S8 there
bifurcates a snaking branch of stationary fronts F87 which however does not connect back to S8,
but to the 9th bifurcation point on S7, which is close to the fold. This agrees with the heuristics
that branches of localized patterns connect patterns with bistability.
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Figure 16: Two primary periodic branches S8 and S7, and branches connecting S8 and S7 for σ=−0.6 over

the one dimensional domain Ω=(−8π/kc, 8π/kc). (a),(b) front type; (c),(d) homoclinic type. The red dot in

(a) marks a Hopf point, see Remark 3.4. See also [UW13] for a movie.

Similarly, from the second bifurcation point on S8 we obtain a connecting branch to the 8th
bifurcation point on S7, see Fig. 16(c),(d). In fact, here we plot the full loop connecting these
points, as the way from S8 to S7, which consists of solutions with patterns at the boundary and a
hole in the middle, is different from the way back, given by solutions with a (negative) peak in the
middle, and these two branches are not related by symmetry.

From the third bifurcation point on S8 bifurcates a branch which connects to the S6.5 branch,
i.e., a branch with 6.5 periods. The branches bifurcating from the remaining bifurcation points on S8
reconnect to S8 as illustrated in Fig. 17, and similarly bifurcation points 1-6 on S7 connect pairwise
as P1 to P6, P2 to P5, and P3 to P4, via branches of localized patterns without snaking. Finally,
from the 7th and last unaccounted simple bifurcation point on S7 there bifurcates a branch which
connects to the S8.5 branch. Thus, even on the small domain we have some rather complicated
secondary bifurcations from the stripes, but of all the branches discussed above only S7 and the
snakes connecting to S7 have some stable parts for λ > 3.

Remark 3.4. Looking at the stability indices, i.e., the number of positive eigenvalues and the
eigenvalues themselves, on the branches we also find a Hopf point near the fold of S7, see Fig. 16(a).
This, however, will be studied elsewhere. c
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Figure 17: Bifurcations from the remaining bifurcation points on S8.

4 Outlook: additional numerical results

4.1 Fully localized spot patches over radial stripes

Besides the straight (planar) stripes considered so far, we may expect so called radial stripes which
only depend on the radius r and are asymptotically periodic in r, see, e.g., [Sch03]. Moreover, for
the 2D quadratic–cubic and cubic–quintic SHe (1) and (2) also a number of localized radial stripe
patterns are known, e.g., radial pulses (or spots) and rings [LSAC08, Figure 1 and §5], see also
[LS09], and again these patterns can also be expected for RD systems with a Turing instability,
cf. [LS09, Remark 1].

Thus we may search for such solutions of (4) or (7), and may study their bifurcations to patterns
with (dihedral) Dn symmetry, including some fully localized patterns. Here we restrict to (4), i.e.,
let σ = 0 again, over circular sectors with opening angle π/3, thus effectively restricting to patterns
with D6 symmetry. Again we choose some rather small domain

Ωr = {(x, y) = ρ(cosφ, sinφ) : 0 < ρ < r, 0 < φ < π/3},

with Neumann boundary conditions, and r = 12π/kc (this precise value of r is rather arbitrary,
even if we expect radial stripes with asymptotic period 2π/kc), which yields some interesting results
at acceptable numerical costs. (Typically we need meshes of about 60.000 triangles, locally refined
near (x, y) = (0, 0), to avoid branch jumping.)

Already the bifurcations from the trivial branch (Fig. 18(a)) show a number of interesting
directions, but we focus on the branch rs (radial stripes, see Remark 4.1(iii) on that terminology)
coming from branch point 6. The bifurcation diagram in (b) shows that similar to the straight
stripes from §2 the radial stripes bifurcate supercritically but unstable, gain stability at some
λbrs ≈ 3.15 and loose stability again at λ = λers ≈ 2.82. The example plots in (c),(d) show that rs

starts as a “hot stripe” with a peak in 0, and after losing stability turns around to return to the
homogeneous branch as a “cold stripe” with a slightly longer period. See also Remark 4.1(iv) on
the “cold stripe” half of rs branch.

In Fig. 19 we show the bifurcation of spot patches from the radial stripes at λers. The tangent at
bifurcation Fig. 18(c) shows that we may expect one sixt of a regular hexagon patch to appear near
0, and this indeed happens on the sp branch. During continuation the branch snakes as additional
spots are added, with alternating stable and unstable parts of the branch. Except for the central
hexagon, the added spots yield somewhat distorted hexagon patches, and as the spots approach the
radial boundary of the domain the numerical continuation becomes difficult: the mirror symmetry
along angle π/6 is lost due to numerical inaccuracy somewhere beyond point 120, the stepsize
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(a) bifurcation directions (first components) at selected points on the homogeneous branch.

(b) bifurcation diagram of
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Figure 18: Bifurcation of radial stripes from the homogeneous branch w(λ) = (λ, 1/λ) over a sector with

radius r = 12π/kc and angle π/3. (a) Some bifurcation directions from w. (b)-(d) Bifurcation diagram and

some example plots, including the bifurcation direction to the spot patch branch, see Fig. 19.

decreases quickly, and eventually continuation fails. Figure 19(c) shows the five-fold rotation of
sp60, while Fig. 2(d) in the Introduction is obtained from sp40 in the same way.

(a) bifurcation of
spot patch branch
from radial stripes.
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(b) example plots: sp25, sp40 (top) and
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(c) sp60 with rotations by j π3 .

Figure 19: Bifurcation of (hexagonal, in center) spot patch branch sp from radial stripes. See [UW13] for

a movie.

As this section is only intended as an outlook, and as we plan to study at least some of these
patterns elsewhere, including some analytical approaches in the spirit of [LS09], here we close with
the following remarks.

Remark 4.1. (i) Branch switching at some other bifurcation points on the homogeneous branch
gives a number of interesting different patterns, see Fig. 18(a) for some example bifurcation
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directions. However, in contrast to the radial stripes, all of these appear to depend strongly
on the somewhat artificial choice of the bounded domain, in particular the radial Neumann
boundary conditions.

(ii) Some of the earlier bifurcation points on the rs branch do give localized patterns, where, e.g.,
one of the “middle” stripes is replaced by a spot ring, but these are unstable.

(iii) From the bifurcation direction in Fig. 18(a), and from the radial profiles near bifurcation,
e.g., rs10 in (d), it appears that the rs branch should rather be classified as a radial spot
branch, i.e., solutions show radially decaying oscillations. However, since the branch contin-
uously turns into non-decaying oscillations we find the name radial stripes more appropriate.
Presumably, one needs significantly larger domains to cleanly distinguish radial spots and
stripes. The same applies to radial rings, which following [LS09, Theorem 1, Remark 1] we
may expect for (7) with σ < σc where we have a subcritical bifurcation of (straight) stripes.

(iv) From the “cold” branch bifurcating from the homogeneous branch at the same point as the
“hot” rs branch but in the opposite direction we obtain a bifurcation of a “cold” spot branch.

(v) It appears natural to conjecture that also localized radial stripes (i.e., spots or rings) over
a background of hexagons should exist. To find these we considered triangular domains as
in Fig. 11, which support hexagon patterns, and looked for radial stripes near (x, y) = 0 by
two methods: (a) via bifurcation as the hot hexagons gain stability roughly at λbhh (the start
of the bean branch over rectangular domains); (b) by using suitable initial guesses and time
integration or a direct Newton loop. Both methods failed so far.

c

4.2 An interface perpendicular to stripes

For all planar fronts so far we chose different lengths in x but kept the y dimension fixed and rather
small. Together with the choice of vertical stripes this gave interfaces parallel to the stripes, and
essentially this also holds true for the interfaces to radial stripes in §4.1. We now aim at more general
interfaces, and thus first consider long vertical stripes, i.e., large y–lengths. Figure 20 shows some
branches of solutions and example plots over the 1 × 6 domain Ω = (−2π

kc
, 2π
kc

) × (− 12π√
3kc
, 12π√

3kc
).

Decreasing λ, the stripes no longer lose stability at λes ≈ 2.51 to the regular beans with k2,3 =
kc
2 (−1,

√
3), but earlier to streched beans with wave vectors k2,3 = kc

( −
1
2 ,±

13
12

√
3

2 ), denoted by b1,
with 6.5 spots in y–direction. This branch turns into a streched hexagon branch, becoming stable
in a fold. The regular beans b3 bifurcate at the third bifurcation point after loss of stability of
the stripes and contain a number of bifurcation points. Two of the bifurcation points on b3 are
connected by a front in x–direction. However, on the example branch l1 the solutions first change
wave-number near the top and the bottom and then become very similar to hexagons with 7 spots
in y–direction, and similar effects occur on branches from the remaining bifurcation points on b3.

The b1 branch contains two bifurcation points which are connected by a branch containing a
rather flat vertical front between stripes and (streched) hexagons, i.e., the interface is perpendicular
to the stripes. We did not find similar branches bifurcating from other bean branches, in particular
not from the regular beans b3. We do not know, why this is so.

The numerics are considerably more difficult on the 1×6 domain compared to, e.g., the 4×2 from
Fig. 5. For instance, in Fig. 20 we had to refine the mesh to about 100000 points on the bifurcating
branches to avoid some behaviour like increasingly tilted interfaces during continuation, which do
not seem to be due to properties of the PDE, but due to finite size and discretization effects, i.e.,
poor meshes.

4.3 Fully localized (sideband) hexagon patches over straight stripes

In our final simulation we return to the modified system (21), with σ = −0.3, mainly because the
numerics for fully localized hexagons over stripes appear to be easier in that regime, than, e.g., in

27



(a) bifurcation diagram (b) b1-50, b1-90, hh-10, f1-20, l1-80, and l1-180
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Figure 20: Bifurcations from the stripes in the hot regime (σ = 0) over the 1× 6 domain.

the hot regime from Fig. 20, where y–fronts are quite flat, while x–fronts are rather steep, cf. §2.2.
Since over large domains we then again find that the selected wave vectors for patterns are not
necessarily k1, k2, k3 in a hexagonal lattice with |kj | = kc, here we choose the large square domain
Ω = (−8π/kc, 8π/kc) × (−8π/kc, 8π/kc). Note the missing 1/

√
3 in the y–length, such that this

does not allow regular hexagons with wave-vectors k2,3 = kc(−1
2 ,±

√
3

2 ). Instead, similar to §2.5

and Fig. 20 we expect sideband hexagons with k2,3 near kc(−1
2 ,±

√
3

2 ), and the closest wave vectors
allowed by the domain are k2,3 = kc(−1

2 ,±
3
4).

(a) bifurcation diagram

2.7 2.8 2.9 3

4

4.2

4.4

200

470

70

λ

||
u
||

cs

b1

fl

275

(b) fl70, fl200 (top), and fl275, fl470 (bottom)

Figure 21: Fully localized patches of stretched hexagons on a stripe background for σ = −0.3 over the

square domain Ω = (−8π/kc, 8π/kc)× (−8π/kc, 8π/kc). Colormap in all plots roughly between 0 and 5. See

[UW13] for a movie.

We start at λ = 2.8 in the stable part of the vertical cold stripes cs for σ = −0.3 and follow
the branch in positive λ direction. When the stripes lose their stability, there bifurcates a bean-
branch b1, which turns into a branch of (streched) cold hexagons and connects to the homogeneous
branch at λ very close to λc. As expected, the patterns of b1 are stretched in vertical direction,
i.e., k2,3 = kc(−1/2,±3/4). From the first bifurcation point on b1 bifurcates a (snaking) branch
of horizontal planar fronts between the b1 hexagons and the stripes cs, i.e., similar to Fig. 10, or
rather similar to Fig. 15(f), while from the second bifurcation point bifurcates a (snaking) branch
of planar fronts perpendicular to the stripe direction, similar to f1 in Fig. 20.
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Finally, from the third bifurcation point on b1 a branch fl of fully localized hexagon patches
bifurcates. At the beginning the solutions have a patch of (stretched) hexagons in two corners, see
flp70 of Fig. 21(c). The branch snakes and the patches grow towards the middle (flp200). At
flp275 the patches get together and the branch makes a loop, such that afterwards we rather have
two patches of stripes on a hexagon background, see, e.g., flp400.

Clearly, as for §4.1, many open questions remain for the patterns calculated in Fig. 20 and 21.

5 Discussion, and Open Problems

As for localized patterns over homogeneous backgrounds, the main ingredients for localized pat-
terns over a different background pattern is a bistable range, usually generated by a subcritical
bifurcation (of mixed modes, in the case of two patterns). For planar interfaces the existence and
approximate location of the pinning region can be predicted if there exists a heteroclinic connec-
tion between the corresponding fixed points in the associated Ginzburg–Landau system at some
Maxwell point λ = λm. The pinning effect in the full system then yields the existence of heteroclin-
ics in a parameter interval around λm, and the same effect yields branches of localized patterns in
a patterned background even if the Ginzburg–Landau system only has “approximate” homoclinic
solutions.

These results have already been suggested in [Pom86], and have been further worked out in 1D
problems and for patterns over homogeneous background in various papers cited above, but §2 of the
present paper appears to be the first numerical illustration for different patterns in 2D. Moreover,
in §4 we gave a numerical outlook on some classes of fully localized patterns over patterns. All the
numerics are somewhat delicate due to the very many solution branches that exist in the Turing
unstable range, in particular over large domains, which require rather fine discretizations to avoid
uncontrolled branch switching. Here we restricted to domains of still small to intermediate size.

The results are certainly not special for the model problems (4), (7), and we have for instance
used the same method to predict and numerically find various snaking branches in other 2D reaction
diffusion systems [WF13].

Our work has been almost entirely numerical, and at many places we just give first steps towards
understanding the new patterns found. Main Open Problems and “things to do” include (in order
of appearance):
(a) Clarify why the snaking in the hot regime is strongly slanted, see Fig. 7.
(b) Derive a formula like (10) giving exponential smallness of the snaking width in the subcriticality

parameter ε. For (7) this should probably be done near the codimension 2 point (λc, σc),
cf. Remark 3.3(a). Alternatively, discuss this near a codimension 2 point for the full Selkov–
Schnakenberg model using (at least one of) the parameters a, b discussed after (3).

(c) Following (b), or independently, calculate more numerical data for the relation of subcriticality
and snaking width using fold continuation, cf. Remark 3.3(b).

(d) Detect and study Hopf bifurcations in (4) or (7), see Remark 3.4 for just one example.
(e) Study, both numerically and analytically, fully localized patterns over patterns in more detail;

in §4 we gave just a very first outlook of these.
Additionally, it might be interesting to study the stick–slip motion (Fig. 9) near a snake in more
detail, including the derivation of equations of motion for interfaces. For (c) and (d), here we
refrain from setting up ad hoc modifications of pde2path, but instead plan to include the needed
upgrades (multi–parameter continuation and Hopf bifurcation) in a general way into the package.
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