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Abstract

Quorum sensing is a wide-spread mode of cell-cell communication among bacteria in
which cells release a signalling substance at a low rate. The concentration of this substance
allows the bacteria to gain information about population size or spatial confinement. We
consider a model for N cells which communicate with each other via a signalling substance
in a diffusive medium with a background flow. The model consists of an initial boundary
value problem for a parabolic PDE describing the exterior concentration u of the signalling
substance, coupled with N ODEs for the masses ai of the substance within each cell. The
cells are balls of radius R in R3, and under some scaling assumptions we formally derive an
effective system of N ODEs describing the behaviour of the cells. The reduced system is
then used to study the effect of flow on communication in general, and in particular for a
number of geometric configurations.

Keywords: Quorum sensing, parabolic PDE, drift, dimension reduction.

1 Introduction

Communication between bacteria is a rather common phenomenon [23]. The most prominent
example is quorum sensing [22]: by measuring the concentration of certain signals that are re-
leased by all cells at a low, constitutive level, a given bacterium is able to measure the population
density around its location. This explains the name, as the cells are able to decide if a certain
population size, the quorum, is reached. The signalling substance is relatively cheap to produce
and serves as a proxy to decide if it pays to release e.g. exoenzymes. If the diffusive space is
large, and only few bacteria also produce exoenzymes, it will not pay to fabricate these relatively
expensive molecules. They simply diffuse away. If, however, many other cells nearby also start
to generate these exoenzymes, then the concentration may reach levels such that it becomes ef-
ficient to release them. Often (but not always) quorum sensing is used to induce a synchronized
action in a population that only pays if a large number of cells perform this action at the same
time. In [18] it is recognized that not only a high population density but also confined space
leads to a situation where the excretion of exoenzymes is beneficial: quorum sensing becomes
“diffusion sensing”, the bacteria test if substances do or do not diffuse away as a consequence of
the geometry. Hense et al. [11] unified these two interpretations in the term “efficiency sensing”,
as ultimately it is only important if it pays to perform a certain action. It does not matter if this
is the case as a quorum is reached, or because the diffusible space is restricted. In any case, if the
concentration of the signalling substance exceeds a certain threshold, the bacteria change their
life style. The resulting phenotype can be very different: not only exoenzyme production, but

∗Institut für Mathematik, Universität Oldenburg, D-26111 Oldenburg, hannes.uecker@uni-oldenburg.de
†Centre for Mathematical Sciences, Technische Universität München, D-85748 Garching/Munich, jo-

hannes.mueller@mytum.de
‡Helmholtz Center Munich, Institut für Biomathematik und Biometrie, Helmholtzzentrum München, D-85764

Neuherberg, burkhard.hense@helmholtz-muenchen.de

1



also biofilm formation, swarming, or becoming virulent is under the control of quorum sensing
for some bacterial species [23].

Quorum sensing gains increasing interest as a promising treatment target e.g. for pathogenic
bacteria [19], requiring an adequate interpretation of its function. As described above, the
interpretation of quorum sensing strongly depends on the spatial properties of the environment: a
confined geometry and a batch culture may lead to completely different ideas about the purposes
of quorum sensing. Most experiments, thought experiments, mathematical experiments, as
well as biological experiments, take place in batch cultures, or stagnant water. However, most
bacteria live – at least temporarily – in running water and lotic habitats. Experiments modelling
runnels [17], or using microfluid devices [14] focus on the effect of flow (see also the review [12] and
citations therein). Mathematical models that take into account flow are described e.g. in [21, 8],
or the book of Eberl et al. [6]. These models, however, are often based on the Navier-Stokes
equations, focus rather on biofilm formation than on cell-cell communication, and often are
complex. They are quite realistic in that they take into account a lot of effects as the influence
of the bacterial growth on the flow itself, but they cannot be treated analytically anymore.
Another draw-back of these models is the fact that they mostly address the population density
in the sense of classical reaction-diffusion-advection equations, and that they do not allow to
reveal the dynamics of single cells and the interdependence of this dynamics via communication.
An exception are models that are at least partially based on single cells, e.g. [1, 4]. These
models are either still rather complex and do not target on analytic insight but on numerical
simulations, or – in the other extreme – simple stochastic particle models and cellular automata
that are used to focus on concepts and not on quantitative results.

In the present work, our interest is at an intermediate scale of complexity. Our model
describes cells with fixed location in a laminar flow with constant velocity. The time evolution
of the internal state of the cells is formulated by ODEs that couple via an outer field of signalling
substances. The dynamics of the outer field is governed by a diffusion-advection equation. Even
this simple model cannot be handled directly. In particular, the solution of the PDE for the outer
field is rather involved, both analytically and numerically. Therefore we adapt the approximation
techniques developed in [15, 16] to approximate the outer field by singularity solutions and thus
reduce the system to a much simpler system of coupled ODEs. Additionally to the full space
geometry we also consider cells in a confined space like a tube. The model thus allows to
address the dynamics of single cells localized in a three dimensional space, and the intercellular
communication, in a quantitative way, and some general rules of the influence of flow on cell-cell
communication can be derived.

2 The model

In [16] we studied a model for communication of bacteria in a diffusive medium via a signalling
substance produced by the cells. We briefly describe the model and extend it to allow for an
external laminar background flow.

We consider N ball-shaped cells centered around x1, · · · , xN . All cells have radius R, s.t.
they cover the regions Ωi = {‖x − xi‖ ≤ R}. The total mass (not concentration) of signalling
substance within cell i at time t is denoted by ai(t), the concentration of signalling substance
outside of the cells at location x ∈ Ω = R3 \ (∪Ni=1Ωi) and time t by u(x, t). The dynamics of
the model consists of three parts: (1) the production and degradation within the cells, (2) the
diffusion/convection outside of the cells, and (3) the communication between inside and outside.
(1) Internal dynamics. Following the usual approach [5, 16], we do not address any spatial
structure within cells, but assume the substance to be homogeneously distributed. Furthermore,
the regulatory network is collapsed into one ordinary differential equation, e.g. using time scale
arguments. Although it is no problem to handle a system of ODE’s here, for convenience we
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treat the scalar case
a′i = f(ai).

The function f incorporates the production and internal degradation. Usually, signalling sub-
stance is produced at a constitutive rate α0, and the production is enhanced by a positive
feedback modelled by a Hill function with Hill coefficient n, threshold athresh, and maximal
increase of the production rate β0; additionally, there is a degradation with rate η. Thus, a
minimal model for the internal regulatory pathway reads

f(a) = α0 +
β0a

n

anthresh + an
− ηa. (1)

This model leads to bistablility in suitable parameter ranges: if the concentration of signalling
substance is large enough, the Hill function indicates that the production term is increased, s.t.
the concentration becomes even higher. Decisive for this scenario to happen is in particular the
Hill coefficient. Experiments show that n is in the range between two and three [7]. We find
later that diffusive transport dominates degradation, and thus here we set η = 0.
(2) Diffusion-convection in the outer space. First of all, the signaling substance is assumed to
diffuse at linear rate D. Additional to [16] we now assume a laminar background flow c ∈ R3.
The basic assumptions are that cells stay in place but are so small that they do not perturb the
flow. Obviously this is a rather crude assumption, but appropriate if we think of small cells in
a slow velocity field and not of large colonies and a fast flow. We obtain

ut = D∆u− cT∇u in Ω.

(3) Boundary conditions and communication between inside and outside of the cells. The flow of
the diffusion-convection equation reads j = −D∇u+ cu, s.t. ut = −∇ · j in Ω. If ν is the outer
normal of Ω, the diffusion-convection flow j into cell i is given by νT j

∣∣
∂Ωi

, and this must balance

with terms j̃ describing the role of the cell. A natural assumption is the proportionality of j̃ to
the outside concentration u|∂Ωi

and inside mass ai. Later, we will rescale the radius R, and in
order to minimize the effect of this rescaling, we also rescale the proportionality constants. The
outflow part of j̃ scales with the surface of the cell, i.e. with R2. To balance this dependency, we
multiply the corresponding proportionality constant d2 by R−2. In consequence, u|∂Ωi

develops
a pole of first order for R → 0, and hence, we rescale the inflow proportionality constant d1 by
1/R. The boundary conditions of the PDE now read

νT j
∣∣
∂Ωi

= νT (−D∇u+ cu)
∣∣
∂Ωi

!
=
d1u

R
− d2ai

R2

∣∣∣∣
∂Ωi

,

and the net flow Ji into the cell i is the integral of d1u/R− d2ai/R
2 over ∂Ωi, i.e.,

Ji =

∫
∂Ωi

(
d1u

R
− d2ai

R2

)
do.

Altogether, after rearranging the boundary conditions, the extended model takes the form

ut = D∆u− cT∇u in Ω, u(x, 0) = u0(x), (2a)

Biu =
d2

R2
ai(t) on ∂Ωi, where Biu :=

[
νT [D∇u− cu] +

d1u

R

]∣∣∣∣
∂Ωi

, (2b)

a′i = f(ai(t)) +

∫
∂Ωi

(
d1u

R
− d2ai(t)

R2

)
do, ai(0) = ai0, (2c)

see Fig. 1 for a sketch.
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ut = D∆u− cT∇u in Ω = R3 \ (∪2
i=1Ωi)

B1u = d2
R2a1

a′1 = f(a1) + J1

cell Ω1
at x1 ν

Flow c

B2u = d2
R2a2

ν

cell Ω2 at x2

a′2 = f(a2) + J2

Figure 1: Sketch of the model setup for the case of two cells.

The goal is to derive effective (ODE) systems for the masses ai in the limit of small cells
R → 0, and to compare the effect of diffusion with that of transport. We assume that the re-
action resp. regulatory pathway of the cells has a slower time scale than the diffusive transport.
This assumption is in line with observations and heuristic computations [9, 13, 20]. Proceeding
in a similar way as in [16] we find the following result (see Appendix for the computations).

Result 1. Model (2a)-(2c) can be well approximated by effective systems of the form

a′i = f(ai)−M(1 +Rγ|c|)ai +R
d1M

D + d1

∑
j 6=i

aj
|xi − xj |

exp

(
cT (xi − xj)− |c| |xi − xj |

2D

)
, (3)

where

M =
4πDd2

d1+D
and γ =

d1

2D(D + d1)
. (4)

The field u can then be reconstructed from

u(x, t) =
n∑
i=1

[
(αi(t) +Rβi(t))ψi(x− xi) +R2θi(t)(c

T∇ψ)(x− xi)
]
, (5)

where

αi = Mai, βi =
d1|c|

2D(D + d1)
αi −

d1

D + d1

∑
i 6=j

αj
|xj − xi|

e(cT (xj−xi)−|xj−xi||c|)/(2D),

θi =
d1

2D(d1 + 2D)
αi= γαi,

(6)

and where

ψ(x) =
1

4πD |x| exp

(
cTx− |c| |x|

2D

)
(7)

is the singularity solution of Lu := D∆u− c∇u = 0, i.e., Lψ = δ0.

Remark 2.1 By “well approximated” we mean the following. For a single cell we set a1 =: a
and assume the compatibility condition u0(x) = Ma(0)ψ. Then, for all t1 > 0 there exist R0 > 0
and C > 0 such that for all 0 < R < R0 the following holds: if (u, a) is the solution to (2), and
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ã is the solution to (3) with initial condition ã(0) = a(0), then

sup
0≤t≤t1

|a(t)− ã(t)| ≤ CR‖a‖C1 . (8)

This result can be proven along the lines of the case c = 0 in [16, Theorem 4 and Corollary
5]; see also [16, Remark 2b)] for comments on the compatibility condition u0(x) = Ma(0)ψ.
In particular, the reconstructed u from (5) satisfies the the boundary conditions (2b) up to an
O(R0) error, and even though u satisfies the PDE (2a) only up to O(R−1), this turns out to
be sufficient to prove (8) via approximation of (2) by a delay equation as an intermediate step.
The asymptotic result (8) does not rely on a separation of time scales between the internal cell
dynamics a′ = f(a) and diffusive transport. However, the error in (2a) is in fact O(R−1a′) and
thus vanishes in the stationary case. From an application point of view, a slower time scale of
the internal dynamics a′ = f(a) of the cells then reflects in well behaved constants R0, t1, C in
(8), thus making the result applicable for finite R > 0.

For n ≥ 2 cells, the results from [16] also transfer to c 6= 0 to give a result similar to (8), if
one also assumes a certain scaling of cell distances. See [16, Theorem 10 and Corollary 11] for
a precise formulation for c = 0.

However, the necessary steps to prove (8) and its analogon for n ≥ 2 are quite technical and
give little additional insight, compared to [16]. Therefore, in Appendix A we only give the formal
derivation of (3), and below focus on the application of (3) to some example configurations. c

Before we present quantitative simulations we state one important qualitative conclusion
from the approximative equations.

Result 2. In the range of validity of the model and the approximation, the flow always has a
damping effect on the production of signalling substance of a single cell and the communication
of cells.

The first statement follows from the first order term −RMγ|c|ai in (3). This term indi-
cates that the washout-effect always decreases the chance for a signal molecule once it left
the cell where it has been produced to return to this cell. The second statement holds since∣∣∣∣exp

(
cT (xi − xj)− |c| |xi − xj |

2D

)∣∣∣∣ ≤ 1 for the velocity-depending weights in the communication

terms in (3).

3 Simulation results

We assume that the cells live in three-dimensional space, releasing chemical signals, as described
above. We compare the situation without flow (c = 0) and that with a moderate flow which
is realistic for experiments in microfluid chambers. The device used in [14] has height 0.4 mm,
width 3.8 mm, and length 17 mm; the flow is given by 2 ml/h resp. |c| = |c0| = 3.65 ·10−4 (m/s).
The parameters are close to those for the excretion of AHL by Pseudonomas putida (see e.g. [7]).
We only adapt the coefficient modelling the influx rate constant into the cells in order to have
a bistable situation for zero velocity; the situation at hand could be considered to describe a
micro-colony. In this scenario, the results become more clear and pronounced. All parameters
are summarized in Tab. 1.

We start off with one cell. As discussed above, the parameters are adapted in such a way that
a single cell is supercritical (Fig. 2(a)). The efflux terms in the ODE ȧ = f(a)−M(1 +Rγ|c|)a,
modelling the washout-effect, become eventually dominant if the velocity is increased. At the
same time, the outer field is deformed by the velocity field (Fig. 2(b),(c)). It is interesting to
estimate the velocity at which the washout-effect breaks the positive feedback loop (Fig. 2(d)).
We find that velocities around four times higher than that used in flow chamber experiments
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Parameter Value Meaning and source

Vc 1.96 · 10−19 m3/cell volume per cell
R 3.6 · 10−7 m radius iof a ball with volume Vc
D 4.9 · 10−10m2/s [12]
d2 0.008 D/(4π R2) [16]
d1 55 d2 Vc/R [16]
α0 6.4 · 10−23 mol/(s cell) constitutive AHL expression, [7]
β0 6.4 · 10−22 mol/(s cell) activated AHL expression, [7]
c 3.65 · 10−4 m/s assumption, see text and [14]
τ 70 n mol/l ≈ 1.37× 10−23 mol/cell threshold, [7]
n 2.5 Hill-coefficient, [7]

Table 1: Parameters used in the simulations. The parameters are mostly taken from experiments
with Pseudonomas putida [7], and from the paper [16]. The flow is adapted to micro-fluid device
experiments [14]. For the derived parameters we find M ≈ 26.38, γ = d1/(2D(D+d1)) ≈ 1.3·108,
R|c|γ = 0.01715.

will lead to a breakdown: the internal state suddenly jumps from an activated level to a quiet
level. This is due to a saddle-node bifurcation that destroys the activated branch of stationary
points (see also Fig. 2 (a)).
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Figure 2: (a) Effective RHS for one cell, for c = c0 := 3.65 10−4 m/s, c = 3c0, c = 5c0 (top
down). (b),(c) u (level lines) reconstructed from fixed point for c = 0 and c = 3.65 10−4 m/s,
other parameters as in Table 1. (d) dependence of the final cell state on flow velocity.

Next we investigate the influence of flow on the communication, i.e. on the interaction of
two cells (or micro–colonies). We expect two competing effects: the washout effect, that we
already found to be damping for one cell, and a downstream effect. Two geometrical settings
are of particular interest as they represent two extreme cases: the cells may either be aligned or
perpendicular with the direction of the flow. Figure 3 shows the results of such simulations. For
c = 0, both geometrical settings are of course identical. In case of cells aligned with the flow,
the downstream cell receives distinctively more signaling substance (see Fig. 3(b), (e)). If we
investigate the break-down of the positive feedback caused by the flow (Fig. 3(c)), we recognize
that there is almost no upstream communication: the velocity at which the positive feedback
breaks down is very close to the critical velocity in the one-cell case. The downstream cell,
however, is able to stay longer activated as the upstream cell. Even if the upstream cell is in the
quiet state, the little additional amount of signalling substance washed to the downstream cell
helps the latter to stay activated substantially longer. The perpendicular activation breaks down
at a velocity between that of the upstream- and the downstream case (Fig. 3(f)). Obviously,
reciprocal communication is longer possible perpendicular than upstream. However, in summary,
all communication breaks down at rather small velocities due to the washout effect.

The last scenario models confined space. The intuitive idea is that a confined space does
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Figure 3: Two cells at a distance of 2 µm, parallel (a), (b), (c) and perpendicular (d), (e), (f)
to the flow. c=0 in (a), (d), c=3.65 10−4 m/s in (b), (e); level lines are given at 2 · 10−7, 10−7,
and 0.7 · 10−7 mol/m3. (c) and (f) show the internal state ai of the cells. Note that in (d) the
two states are identical for symmetry reasons. Parameters as in Table 1.

not allow the signalling substance to diffuse and in this way the downstream effect should
be strengthened. The very simple scenario considered here consists of a tube with rectangular
profile, a number of cells in the shape of half–spheres sitting on the inner surface of the tube, and
a laminar constant flow directed along the symmetry axis of the tube, see Fig. 4. In particular
we assume perfect slip boundary conditions. This assumption is wrong for any real application,
but this simple setup can be treated via (3) by suitably introducing virtual cells, see §A.3 for
details, and even in this simple setup we find several remarkable results.

Firstly, theory and simulations show that still the washout dominates the downstream effect.
Figure 4(b1) shows the situation for 6 cells and a vanishing small flow (c = 10−10 m/s), which
we use to simulate the situation without flow (c = 0) only for technical reasons, i.e., to remove
some formal divergence, see the comments before (20). Here, each of the cells is activated, with
essentially a1 = a6, a2 = a5, a3 = a4 by symmetry, and the middle cells have the largest a. For
c = 3.65 10−5 m/s in (b2), the ai increase with i, i.e., the last cell has the highest ai. However,
even for this small c, 1

10 the reference c from Table 1 and Figures 2 and 3, this is the only
activated cell, but at only about half of its state in (b1), while the 5 upstream cells are quiet.
In (c1), for vanishing small c the middle cells are activated to a slightly larger state than in
(b1). For c = 3.65 10−5 m/s in (c2), now 5 cells downstream are activated, but for instance the
6th cell shows an almost identical behaviour to the 6th cell in (b2), indicating that upstream
communivation from cells 7,8,9 and 10 to cell 6 is negligible. Thus, the second result is that also
in the present geometry upstream communication is barely possible: A cell only recognizes the
number of cells upstreams, and the number of cells downstream is barely important. We expect
the result to be stable against more realistic geometries and flows, although quantitatively the
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Figure 4: Communication in a tube. The geometry is indicated in (a): a rectangular tube of
10µm width and infinite length is considered. In distance of 250 µm, single cells (indicated by
bullets) are located on the tube’s inner surface. (b) dynamics of the internal states of six cells,
for c = 10−10m/s and c = 3.65 10−5 m/s, starting with zero initial conditions for all cells. (c)
Analogous to (b) for 10 cells.

model is rather sensitive with respect to, e.g., L. For instance, for ten cells with parameters as
above but with L < 6µm all ten cells become activated while for L > 14µm all ten cells stay
quiet.

4 Discussion

Intuitively, there are two counteracting effects of a laminar flow: the washout and the down-
stream effect. Signalling substance is washed away, and thus communication is interrupted.
However, cells that are located downstream of other cells should receive more communication
signals. Consider N cells aligned in a row, and no flow. Assume that this population just reaches
its quorum. If a moderate flow is applied, we expect the first cells to become subcritical due
to the washout effect. On the other hand, if without flow the population is just subcritical, we
expect the last cells to become supercritial if a moderate flow is applied, due to the downstream
effect. However, in our model we found that for the stationary state flow is always damping, i.e.,
the washout always out-competes the downstream effect. This even holds in a confined space like
a tube, though downstream effects are longer visible as the signalling substance cannot diffuse
away in the direction perpendicular to the tube walls.

These seemingly counter-intuitive results are based on the fact, that in a scenario without
flow, the signalling substance is able to accumulate; only diffusive transport counteracts an
unbounded accumulation. In a confined space like a tube this accumulation is even stronger than
in the three dimensional space. In the long run, this increase leads to higher signal concentrations
than the downstream effect is able to create, even if many cells are located upstream.

Our theoretical results are in line with experimental observations [14], where a microfluid
device has been used to study the communication between colonies. It turned out that at no-
flow conditions, the colonies have been activated much earlier than with flow, and that in the
case with flow, a downstream effect has been barely recognizable. These findings indicate that
for realistic settings that incorporate even an intermediate flow, quorum sensing is not able
to create a population–wide communication, contrary to what batch culture experiments and
mathematical models without flow state. An aspect that becomes more prominent in recent time
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is that much of cell-cell communication happens in colonies and biofilms [10]. These habitats
are protected against much of the surrounding flow by an extracellular matrix. Interestingly,
a (partial) restriction of communication to single colonies fits to the prediction of theoretical
evolution that fluctuation of (sub)populations through bottlenecks (as new emerging colonies)
may evolutionary stabilize quorum sensing based cooperation against non-contributing cheater
mutants [3]. Meyer et al. [14] thus speculated that between colonies rather competition than
cooperation should be an evolutionary stable strategy. It is likely that often quorum sensing
only is aimed at bacteria within the same colony or within a biofilm, and the signal is not meant
to spread globally as the original interpretation as quorum sensing suggested. In this sense,
quorum sensing is likely to be rather an intra-colony and short-range communication.

A The reduction

Here we give the calculations to approximate the coupled PDE–ODE systems (2) by ODE
systems of the form (3). For simplicity we first consider only one cell. The generalization to
N ≥ 2 cells as in Result 1 then works rather naturally, and finally we explain how to treat the
spatially confined case.

A.1 One cell

Consider a single cell, located in x = 0 with radius R > 0. In lowest order we let u = αψ(x)

with ψ(x) =
1

4πD |x| exp

(
cTx− |c| |x|

2D

)
, cf. (7), and choose α such that the BC

Bu||x|=R =

[
νT [D∇u− cu] +

d1

R
u

]
||x|=R !

=
d2

R2
a (9)

are satisfied to leading order. We have

∇ψ(x) =
1

4πD

(
− x

|x|3 +
c

2D|x| −
x|c|

2D|x|2
)
e(cT x−|x||c|)/(2D).

Since ν = −x/|x|, (9) thus yields

α

4πD

(
D

R2
+D
|c| − cT x

R

2DR
+
cTx

R2
+
d1

R2

)
e(cT x−R|c|)/(2D) =

d2a

R2
.

As e(cT x−|x||c|)/(2D)
∣∣∣
|x|=R

= 1 +O(R), we find in leading order (O(R−2))

α = Ma with M =
4πDd2

D + d1
, (10)

independent of c.
Next, as

∫
cTxdo = 0,∫

|x|=R

ψ

R
do =

1

4πD

1

R2

∫
|x|=R

e(cT x−|x||c|)/(2D)do =
1

D

[
1−R|c|/(2D) +O(R2)

]
, (11)

see however Remark A.2 for remarks on this expansion. Consequently, the already generalized
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ansatz u(x) = αψ(x) +O(R0) yields
∫
|x|=R

d1u(x)
R do = d1

Dα+O(R). Thus, to leading order,

a′ = f(a)− 4πd2a+
4πd2d1

D + d1
a = f(a)−Ma. (12)

The interaction terms will be of order O(R1), thus we first need to calculate the O(R1)
interaction of a single cell with the environment. A natural ansatz is to assume

u = (α+Rβ)ψ(x)

and aim to determine α and β s.t. the BC are satisfied up O(R−1).
The BC in this case read

Bu = T1 + T2 + T3 + T4
!

=
d2a

R2
,

T1 =
1

4π

e(cT x−R|c|)/(2D)

R2
(α+Rβ), T2 =

1

4π

(
|c| − xT c

R

)
e(cT x−R|c|)/(2D)

2DR
(α+Rβ),

T3 =
cTx

R

1

4πD

e(cT x−R|c|)/(2D)

R
(α+Rβ), T4 =

d1

R2

1

4πD
e(cT x−R|c|)/(2D)(α+Rβ).

We expand T1 to T4 to order O(R−1), and find

T1 = R−2

{
1

4π
α

}
+R−1

{
1

4π
β +

1

8πD

(
cTx

R
− |c|

)
α

}
+O(R0),

T2 = R−1

{
1

8πD

(
|c| − xT c

R

)
α

}
+O(R0), T3 = R−1

{
1

4πD

cTx

R
α

}
+O(R0),

T4 = R−2

{
d1

4πD
α

}
+R−1

{
d1

4πD
β +

d1

8πD2

(
xT c

R
− |c|

)
α

}
+O(R0).

Like before, the R−2 terms yield α = Ma, and the next order reads

0 =
1

4π

[
β

(
1 +

d1

D

)
− α

D

d1|c|
2D

+
α

D

(
1 +

d1

2D

)
cTx

R

]
R−1, (13)

which cannot be satisfied.

Remark A.1 The term involving cTx yields no O(R) contribution to the differential equation

of a because
∫
|x|=R c

Tx do = 0. Thus, already at this point we may set β =
d1|c|

2D(D + d1)
α and

calculate the equation for a. Using (11) we obtain

a′ =f(a)−Ma+R|c|
(

d2
1

2D2(D + d1)
− d1

2D2

)
α+O(R2) = f(a)−M(1 +Rγ|c|)a+O(R2)

with γ = d1
2D(D+d1) , cf. (4). c

Remark A.2 In the applications above, D ≈ 5·10−10 m2/s and R ≈ 3.6·10−7m, i.e., parameters
have quite different magnitudes also relative to R. Thus, expansions like (11) should be taken
with care. For instance, 1 − R|c|/(2D) becomes negative for |c| > |c∗| ≈ 0.002778 m/s. In

fact, using spherical coordinates and

∫
sinϑeδ cosϑdϑ = −1

δ
eδ cosϑ we may as well evaluate

10



∫
|x|=R

ψ

R
do =

1

cR
(1 − e−cR/D) explicitly, and find that the relative error between

∫
|x|=R

ψ
Rdo

and its O(R) Taylor-expansion exceeds 0.4 for |c| > |c∗|/2. For consistency with the Taylor
expansions of the boundary conditions as in (10) we stick to the expansion (11), and keep in
mind considerations as above when applying the results of the expansions to realistic parameter
values. In the simulation in §3 we have |c0| = 3.65 · 10−4m/s≈ |c∗|/8 and the error in the Taylor
expansion is negligible. c

To find a consistent approximation of the outer field we now augment our ansatz. The new
ansatz reads

u = (α+Rβ)ψ(x) +R2θ (cT∇ψ)(x). (14)

We first work out ∇(cT∇ψ(x)), to find

(cT∇ψ)(x) =
1

4πD

(
− cTx

|x|3 +
|c|2

2D|x| −
|c| cTx
2D|x|2

)
e(cT x−|x||c|)/(2D), hence

∇(cT∇ψ)(x) =
1

4πD

(
− c

|x|3 +
3x (cTx)

|x|5 − |c|
2 x

2D|x|3
)
e(cT x−|x||c|)/(2D)

+
1

4πD

(
− |c| c

2D|x|2 +
|c| (cTx)x

D|x|4
)
e(cT x−|x||c|)/(2D)

+
1

8πD2

(
− cTx

|x|3 +
|c|2

2D|x| −
|c| cTx
2D|x|2

) (
c− x|c|
|x|

)
e(cT x+|x||c|)/(2D).

Thus, with ν = −x/R, and |x| = R, we find

νT∇(cT∇ψ(x)) =
1

4πD

(−2 cTx

R4
+
|c|2

2DR2
− |c| c

Tx

2DR3

)
e(cT x−R|c|)/(2D)

+
1

8πD2

(
− cTx

R3
+
|c|2
2DR

− |c| c
Tx

2DR2

) (
cTx

R
− |c|

)
e(cT x+R|c|)/(2D).

Furthermore, (νT c)(cT∇ψ)(x) = − 1

4πD

cTx

R

(
− cTx

R3
+
|c|2
2DR

− |c| c
Tx

2DR2

)
e(cT x−|x||c|)/(2D) and

therefore

R2B(cT∇ψ) = R2νT
[
D∇(cT∇ψ)− c(cT∇ψ)

]
+Rd1(cT∇ψ) = − 1

4π

(
2 cTx

R2
+ d1

cTx

R2

)
+O(R0)

Thus, (13) becomes

0 = R−1

[
β

(
1 +

d1

D

)
− d1|c|

2D2
α

]
+
cTx

R2

[
d1

2D2
α− d1 + 2D

D
θ

]
, (15)

and β, θ are uniquely determined to

β =
d1|c|

2D(d1 +D)
α, θ =

d1

2D(d1 + 2D)
α. (16)

11



A.2 Several Cells

We localize cells in x1 = 0,.., xN , and assume

u(x) =

N∑
i=1

[
(αi +Rβi)ψi(x− xi) +R2θi(c

T∇ψ)(x− xi)
]

(17)

In leading order only self-interaction is of relevance, hence again αi = Mai. To calculate the
interaction terms we focus on the cell located in x1 = 0 and determine “what’s coming in”. Only
the leading order terms of the other cells play a role and thus we determine B1ψ(x − xj). For
cell one, we again find ν = −x/R, and thus, since |x− xj | = O(|xj |) = O(R0),

(ν∇ψ)(x− xj) =− xT

R

1

4πD

(
− x− xj
|x− xj |3

+
c

2D|x− xj |
− (x− xj)|c|

2D|x− xj |2
)
e(cT (x−xj)−|c||x−xj |)/(2D)

=O(R0),

νT cψ(x− xj) =O(R0),
d1

R
ψ(x− xj) = R−1 d1

4πD

e(cT xj−|c||xj |)/(2D)

|xj |
+O(R0).

Therefore, B1ψ(x− xj) = R−1 d1

4πD

e(cT xj−|c||xj |)/(2D)

|xj |
+O(R0), and (15) is modified to

0 =βi

[
1+

d1

D

]
+ αi

d1

2D2

cTx

R
− αi

d1|c|
2D2

− θi
[
2+

d1

D

]
cTx

R
+
∑
j 6=i

d1

D

e(cT (xj−xi)−|c||xj−xi|)/(2D)

|xj − xi|
αj .

Thus, altogether, αi = Mai and

βi =
d1|c|

2D(D + d1)
αi −

∑
i 6=j

d1

D + d1

e(cT (xj−xi)−|xj−xi||c|)/(2D)

|xj − xi|
αj , θi =

d1

2D(d1 + 2D)
αi. (18)

It remains to derive the ODEs for ai, i = 1, . . . , N from a′i = f(ai)− 4πai +

∫
∂Ωi

d1u

R
do. To

order O(R) (where it is easy to see that the terms involving θi do not yet contribute) we find

a′i = f(ai)− 4πd2ai + d1

∑
j

Iij , Iij = (αj +Rβj)

∫
∂Ωi

ψ(x− xj)
R

do.

Thus, additional to

∫
∂Ωi

ψ(x− xi)
R

do =
1

D

[
1−R|c|/(2D)+O(R2)

]
, cf. (11), we need to evaluate

∫
∂Ωi

ψ(x− xj)
R

do =
1

4πD

∫
∂Ωi

e(cT (xi+O(R)−xj)−|c||xi+O(R)−xj |)/(2D)

R|xi +O(R)− xj |
do

=
1

D

R

|xi − xj |
e(cT (xi−xj)−|c||xi−xj |)/2D +O(R2)

for i 6= j. Thus, to O(R),

Iii = (αi +Rβi)
1

D

(
1− R|c|

2D

)
=

1

D
αi +

R

D
(βi −

|c|
2D

αi),

Iij =
R

D|xi − xj |
e(cT (xi−xj)−|c||xi−xj |)/2Dαj , i 6= j,

12



and hence

a′i = f(ai)−Mai +
d1R

D

βi − |c|
2D

αi +
∑
j 6=i

αj
|xi − xj |

e(cT (xi−xj)−|c||xi−xj |)/(2D)

 (19)

where αj = Maj and βj is given in terms of (a1, . . . , aN ) by (18), which yields (3). For c = 0
we have βi = − d1

D+d1

∑
j 6=i

αj

|xi−xj | , hence

βi +
∑
j 6=i

αj
|xi − xj |

=
∑
j 6=i

(
1− d1

d1 +D

)
αj

|xi − xj |
=
∑
j 6=i

D

d1 +D

αj
|xi − xj |

,

and thus

a′i = f(ai)−Mai +R
d1M

d1 +D

∑
j 6=i

aj
|xi − xj |

,

which recovers the result of [15, 16].

A.3 Confined space: flow through a tube at spatially independent velocity

In this section we consider a tube of rectangular profile. In order to carry over the arguments
from above, we again assume that the flow through the tube is laminar, and the velocity does
not depend on the location. In particular, the velocity does not vanish at the walls of the tube.
On this surface, bacteria are located that are assumed to have the shape of a half-sphere. These
assumptions may be more appropriate if we consider bacterial colonies instead of single bacteria.

To approximate this setup by (3) let us define the scenario more formally. Let Ωtube =
{(x, y, z) : 0 < x, y < L } and c = (0, 0, 1)T c0 be the tube and the fluid velocity, and let
half-spheres with radius R be located at x1, . . . , xN ∈ ∂Ωtube. This also means that the cells
have distance > R from the tube edges, and necessarily R < L/2. We define the region Ω =
Ωtube \ ∪Ni=1{|x − xi| < R} and split the boundary of Ω into n + 1 parts, the wall of the tube
itself, and the surface of each half-sphere, ∂Ω = ∂ΩT ∪ ∂Ωi with

∂ΩT = ∂Ωtube \ ∪Ni=1{|x− xi| ≤ R}, ∂Ωi = {|x− xi| = R} ∩ Ωtube.

As usual, ν denotes the outer normal of the region Ω. The PDE for the signalling substance
reads

ut = D∆u+ cT∇u, ∂νu|∂ΩT
= 0, Biu|∂Ωi

= 0

where Bi is the boundary value operator introduced in (2b); we furthermore assign for each cell
the “internal” function ai(t), that follows the ODE (2c).

This spatially confined setting can be replaced by a full sphere scenario that fits into the
situation considered above by introducing “virtual” spheres in full space. In a first step, we
mirror the cells via

xi,0 = xi, xi,1 = diag(−1, 1, 1)xi, xi,2 = diag(1,−1, 1)xi, xi,3 = diag(−1,−1, 1)xi

where diag(a, b, c) indicates a diagonal matrix. Next we extend the points periodically in x and
y direction,

xi,j,k,l = xi,l + j(2L, 0, 0)T + k(0, 2L, 0)T , i ∈ {1, .., N}, j, k ∈ Z, l ∈ {0, .., 3}

and re-define Ωi,j,k,l as full spheres with radius R and centres xi,j,k,l. Now we are back to the
model given in (2a)-(2c). Symmetry considerations imply that the solution of this surrogate
configuration satisfies ∂νu = 0 on ∂ΩT . Also due to symmetry reasons, all locations xi,j,k,l for i

13



given correspond to a single function ai(t), independently of j, k and l, and we identify ai,j,k,l =
ai. Our formal argument shows, that the solution of this system can be well approximated by
(3) and (5), where the sum extends over all sites xi,j,k,l. Since we do not include a degradation
term for the signalling substance, this infinite sum diverges pointwise if c = 0, which is why we
used the vanishing small c = 10−10 in the simulation in Fig. 4(b1),(c1).

For the simulation of (3) we conveniently truncate to finitely many virtual cells xi,j,k,l,
(j, k) ∈ J ⊂ Z2. This also removes the divergence of (3), (5) in case c = 0, and thus we rather
set c = 10−10 in the simulations for formal reasons. The system (3) can then be rewritten as

a′i = f(ai)−M(1 +Rγ|c|)ai +RM̃iai +R
d1M

D + d1

∑
m=1,...,N
m 6=i

Iimam, i = 1, . . . , N, (20)

where the interaction factor M̃ of ai with its virtual mirrors and the interaction matrix Iim with
the other cells can be calculated in advance, namely

M̃i =
d1M

D + d1

∑
(j,k,l)∈J×{0,...,3}

1

|xi − xi,j,k,l|
exp

(
cT (xi − xi,j,k,l)− |c| |xi − xi,j,k,l|

2D

)
,

Iim =
∑

(j,k,l)∈J×{0,...,3}

1

|xi − xm,j,k,l|
exp

(
cT (xi − xi,j,k,l)− |c| |xi − xm,j,k,l|

2D

)
.

In the numerics in Fig. 4 we introduced 2N0(2N0+3)+1 virtual spheres, xi,j,k,l, j = −N0, . . . , N0,
j = −N0, . . . , N0+1, j2+k2 6= 0, l = 0, for each original sphere xi, by assuming that the first two
components of each xi are y = 0 and x = L/2, and shifting by L, which makes the l–symmetries
above redundant. Then N0 = 10 turns out to be more than sufficient to satisfy the boundary
conditions ∂νu|∂ΩT

with high accuracy.

B The singularity solution

The singularity solution ψ(x) of 0 = D∆u − c∇u resembles the well known Gaussian plume,
which is also used to describe the spread of smoke or pollutant plumes originated from a point
source [2]; the only difference is that the standard Gaussian plume neglects the diffusion within
the drift direction. The singularity solution can be computed via

ut = D∆u− c∇u+ δ0, u|t=0 = u0 ⇔ u(t, x) = Ttu0 +

∫ t

0
Tt−sδ0 ds

and taking limt→∞ u(t, x), where Ttf =

∫
R3

e−|x−ct−x
′|2/(4Dt)

(4πDt)n/2
f(x′) dx′. Thus,

ψ(x) =

∫ ∞
0

e−|x−ct|
2/(4Dt)

(4πDt)n/2
dt = (4πD)−n/2

∫ ∞
0

exp

{
− 1

4D

( |x|2
t
− 2cTx+ |c|2t

)}
t−n/2 dt

=(4πD)−n/2ec
T x/(2D)

∫ ∞
0

exp

{
− 1

4D

( |x|2
t

+ |c|2t
)}

t−n/2 dt.

As this integral is somewhat less standard than the Gauss integral
∫∞

0 (4πt)−n/2e−|x|
2/(4Dt)dt =

1/‖x‖ for n = 3, we now give the calculations to evaluate it explicitly. With w = |x|2/(4Dt) we
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find

ψ(x) =(4πD)−n/2ec
T x/(2D)

( |x|2
4D

)−n/2+1 ∫ ∞
0

wn/2−2 e−w e
− |c|

2|x|2

(4D)2 w dw

=
π−n/2

4D
ec

T x/(2D)|x|2−n
∫ ∞

0
wn/2−2 e−w e

− |c|
2|x|2

(4D)2 w dw

Next define h2 = |c|2|x|2/(4D)2 and Iα(h) =
∫∞

0 wα/2−2e−w−h
2/w dw.

Lemma B.1 I3(h) =
√
πe−2h and thus ψ(x) =

1

4πD

e(cT x−|x||c|)/(2D)

|x| .

Proof. The function ζ(w) = w/2+h2/(2w) is monotonous in [0, h) and in (h,∞), where ζ(h) =
h. With w = w(ζ) = ζ ±

√
ζ2 − h2 and w′(ζ) = 1 ± ζ/

√
ζ2 − h2 = (

√
ζ2 − h2 ± ζ)/

√
ζ2 − h2

we obtain

Iα(h) =

∫ ∞
0

wα/2−2 e−w−h
2/w dw

=

∫ h

∞
(ζ−

√
ζ2 − h2)α/2−2

√
ζ2 − h2−ζ√
ζ2 − h2

e−2ζ dζ+

∫ ∞
h

(ζ +
√
ζ2 − h2)α/2−2

√
ζ2 − h2 + ζ√
ζ2 − h2

e−2ζ dζ

=

∫ ∞
h

(ζ −
√
ζ2 − h2)α/2−1 + (ζ +

√
ζ2 − h2)α/2−1√

ζ2 − h2
e−2ζ dζ.

Fix α = 3. Then α/2− 1 = 1/2,(
(ζ −

√
ζ2 − h2)1/2 + (ζ +

√
ζ2 − h2)1/2

)2

= ζ −
√
ζ2 − h2 + 2

(
ζ2 − (ζ2 − h2)

)1/2
+ ζ +

√
ζ2 − h2 = 2(ζ + h), (21)

and I3(h) =
∫∞
h

√
2(ζ+h)1/2√
ζ2−h2

e−2ζ dζ =
∫∞
h

√
2√

ζ−he
−2ζ dζ =

∫∞
0

√
2√
ηe
−2η dηe−2h = Γ(1/2)e−2h =

√
πe−2h. 2
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of AHL mediated quorum sensing under flow and non-flow conditions. Phys. Biol., 9:026007 (10pp),
2012.

[15] J. Müller, C. Kuttler, B. Hense, M. Rothballer, and A. Hartmann. Cell-cell communication by
quorum sensing and dimension-reduction. J. Math. Biol., 53:0672–702, 2006.

[16] J. Müller and H. Uecker. Approximating the dynamics of communicating cells in a diffusive
medium by ODEs – Homogenization with Localization. J. Math. Biol., 53:0672–702, 2012, DOI:
*10.1007/s00285-012-0569-y*.

[17] B. Purevdorj, J. Costerton, and P. Stoodley. Influence of hydrodynamics and cell signaling on the
structure and behavior of pseudomonas aeruginosa biofilms. Appl. Envir. Microb., 68:4457–4464,
2002.

[18] R. Redfield. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol., 10:365–370,
2002.

[19] M. Schuster, D. Sexton, S. Diggle, and E. Greenberg. Acyl-homoserine lactone quorum sensing:
From evolution to application. Ann. Rev. Microbiol., page submitted, 2013.

[20] P. Steward. Diffusion in biofilms. J. Bacteriol., 185:1485–1491, 2003.

[21] B. Vaughan, B. Smith, and D. Chopp. The influence of fluid flow on modeling quorum sensing in
bacterial biofilms. Bull. Math. Biol., 72:1143–1165, 2010.

[22] N. Wai-Leung and B. Bassler. Bacterial quorum-sensing network architectures. Annu. Rev. Genet.,
43:197–222, 2009.

[23] P. Williams, K. Winzer, W. Chan, and M. Camara. Look who’s talking: communication and quorum
sensing in the bacterial world. Phil. Trans. R. Soc. B, 362:1119–1134, 2007.

16


