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Soliton transport in tube-like networks is studied by solving the nonlinear Schrödinger equation
(NLSE) on finite thickness (”fat”) graphs. The dependence of the solution and of the reflection
at vertices on the graph thickness and on the angle between its bonds is studied and related to a
special case considered [1], in the limit when the thickness of the graph goes to zero. It is found
that both the wave function and reflection coefficient reproduce the regime of reflectionless vertex
transmission studied in [1].

I. INTRODUCTION

Particle and wave transport in branched structures
is of importance for different topics of contemporary
physics such as optics, cold atom physics, fluid dynam-
ics and acoustics. For instance, such problems as light
propagation in optical fiber networks, BEC in network
type traps and acoustic waves in discrete structures deal
with wave transport in branched systems. In most of the
practically important cases such transport is described
by linear and nonlinear Schrödinger equations (NLSE)
on graphs. The latter has become the topic of extensive
study during past few years [1–10] and is still rapidly
progressing. Such interest in the NLSE on networks is
mainly caused by possible topology-dependent tuning of
soliton transport in branched structures which is rele-
vant to many technologically important problems such
as BEC in network type traps [11–13], information and
charge transport in DNA double helix [14, 15], light prop-
agation in waveguide networks [16] etc.

Soliton solutions of the NLSE on simplest graphs and
connection formulae are derived in [1], showing that for
certain relations between the nonlinearity coefficients of
the bonds soliton transmission through the graph vertex
can be reflectionless (ballistic). Dispersion relations for
linear and nonlinear Schrödinger equations on networks
are discussed in [3]. The problem of fast solitons on star
graphs is treated in [4] where estimates for the transmis-
sion and reflection coefficients are obtained in the limit
of high velocities. The problem of soliton transmission
and reflection is studied in [2] by solving numerically the
stationary NLSE on graphs. More recent progress in the
study of the NLSE on graphs can be found in [5–8]. Scat-
tering solutions of the stationary NLSE on graphs are
obtained in [9], and analytical solutions of the stationary
NLSE on simplest graphs are derived in [10].

In metric graphs the bonds and vertices are one and
zero dimensional, respectively. However, in realistic sys-
tems such as electromagnetic waveguides and tube-like
optical fibers, the wave (particle) motion may occur
along both longitudinal and transverse directions [17–
19]. Therefore it is important to study below which

(critical) thickness the transverse motions become neg-
ligible and the wave(particle) motion can be treated as
one-dimensional. In other words, studying the regime of
motion when wave dynamics in such tube-like network
can be considered the same as that in metric graph is of
importance.

In this paper we study the NLSE on so-called fat
graphs, i.e. on two-dimensional networks having finite
thickness. The geometry will be explained in more detail
below, but see Fig.1 for a sketch. In particular, we con-
sider the same relations between the bond nonlinearity
coefficients as those in the paper [1] and study shrinking
of the fat graph into the metric graph keeping such rela-
tions. Initial conditions for the NLSE on fat graph are
taken as quasi 1D solitons. By solving the NLSE on fat
graphs we find that in the shrinking limit such fat graphs
reproduce the reflectionless regime of transport studied
in [1], i.e., the vertex transmission become ballistic.
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FIG. 1: Sketch of a metric graph Γ and a fat graph Ωε =
Vε ∪ B1 ∪ B2 ∪ B3, with bonds of width wj , where wj =
O(ε). Ideally, the lengths l1, l2, l3 of the bonds are infinite, but
for numerical simulations of the NLSE we use finite lengths
with Dirichlet boundary conditions (DBC) at the ends, and
homogeneous Neumann boundary conditions (NBC) else.

The linear Schrödinger equation on fat graphs was the
subject of extensive study during the past decade (see,
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e.g. [20–35]). The first treatment of particle transport on
fat graphs dates back to Rudenberg and Scherr [30], who
used a Green function based heuristic approach. A pio-
neering study of particle transport in fat networks comes
from the paper by Mehran [36] on particle scattering in
microstrip bends and Y− junctions, where theoretical
results on reflection and transmission are compared with
the experimental data. However, the dependence of the
scattering on the bond thickness and the shrinking limit
are not considered in [36].

The main problem to be solved in the treatment of the
Schrödinger equation on fat graphs is reproducing of ver-
tex coupling rules in the shrinking limit, i.e., when the
fat graph shrinks to the metric graph. In case of met-
ric graphs, ”gluing” conditions, or vertex coupling rules,
are needed to ensure self-adjointness of the Schrödinger
equation. The most important example of a vertex cou-
pling is the Kirchhoff condition. For fat graphs there are
no such coupling rules; they only appear in the shrink-
ing limit, and their form depends on specifics of the fat
graph, for example on the boundary conditions imposed
at the lateral boundary. For Neumann boundary condi-
tions, the resulting vertex coupling is the Kirchhoff con-
dition, as was shown in [20, 21], who study convergence
of the eigenvalue spectrum of the Schrödinger equation,
and in a series of papers by Exner and Post [22]-[27], who
study various aspects of the Schrödinger equation with
Neumann boundary conditions (including transport, res-
onances and magnetic field effects). The vertex couplings
obtained in the shrinking limit of the Schrödinger equa-
tion on the fat graph with Dirichlet and other boundary
conditions were obtained in [31, 35]. Recent studies of the
linear Schrödinger equation on fat graphs focused on the
inverse problem of finding a suitable fat graph problem
which reproduces a given coupling rule in the shrinking
limit [28]. Further references on linear Schrodinger equa-
tion on fat graphs are [26, 27, 32, 33, 37–42], and the
reviews [29, 43]. All the above results have been lim-
ited to linear and stationary cases, and spectral results.
Related problems also have a long history in (nonlinear)
PDEs, see [44] and the references therein, where however
the focus is on dissipative systems, and on damped wave
equations.

The case of the NLSE on fat graphs is much more
complicated than the linear case. Therefore one may
expect that the treatment of the NLSE with the same
success as for the linear problem is not possible. To our
knowledge, the only work dealing with nonlinearities on
fat graphs is by Kosugi [34], who considers semilinear
elliptic problems and shows L∞ convergence of solutions
towards solutions of the metric graph problem. However,
for problems such as soliton transport, scattering and
interaction with external potentials which are described
by time-dependent evolution equations on fat graphs, we
have to rely to a large extent on numerics.

In this paper, using the numerical solution of the NLSE
on fat graph we explore dependence of soliton transmis-
sion and reflection at the fat graph vertex on the bond

thickness and the angle between the bonds. It is orga-
nized as follows. In the next section we give detailed for-
mulation of the problem both for fat and metric graphs.
Section III presents numerical (soliton) solutions of the
NLSE on fat graphs, and analysis of the soliton reflec-
tion at the graph vertex in the shrinking limit, including
the dependence of reflection coefficient on the angle be-
tween the graph bonds. The last section presents come
concluding remarks.

II. THE NLSE ON METRIC AND FAT GRAPHS

Consider the nonlinear Schrödinger equation

∂tψk = i(ψ′′k + βk|ψk|2ψk), k = 1, 2, 3, (1)

on a metric star graph Γ with 3 edges Γk, and nonlin-
earity coefficients βk > 0. The graph is assumed to have
semi-infinite bonds Γ1 = (−∞, 0), Γ2,3 = (0,∞), but the
main part of our analysis will be numerical, for which
we assume finite lengths lk of bonds, with coordinates
ξ1 ∈ (−l1, 0), ξ2,3 ∈ (0, l2,3), and homogeneous Dirichlet
boundary conditions at ξ1 = −l1, ξ2,3 = l2,3. Further-
more, we assume that the solutions, ψk = ψk(t, ξk) ∈ C
obey the vertex (at ξk = 0) conditions

α1ψ1 = α2ψ2 = α3ψ3,
1

α 1
ψ′1 =

1

α2
ψ′2 +

1

α3
ψ′3, (2)

with parameters αk, where it is understood that ψ′1 (ψ′2,3)
denote the derivatives from the left (right). In the fol-
lowing we call Eqs.(1) and (2) problem (P0).

Soliton solutions of the problem (P0) that propagate
without reflection (i.e., ballistically) were obtained ana-
lytically in [1] for the special case when the nonlinearity
coefficients satisfy the relation

1

β1
=

1

β2
+

1

β3
. (3)

These solutions have, after properly identifying ξ with ξk
on Γk the form

ψk(t, ξ) =

√
2√
βk
ηsech(η(ξ − ξ0 − ct))e−i(2cξ−(c2−4η2)t)/4,

(4)

with free parameters amplitude η > 0, speed c (wavenum-
ber c/2), and reference position ξ0. Fig.2 presents ampli-
tudes, Ak = maxx∈Γk

|ψk(t, x)| for Kirchhoff boundary
conditions (α1 = α2 = α3 = 1) and for the boundary
conditions given by Eq.(2). The vertex boundary condi-
tions given by (2) are one possibility to make the linear
part of (1) skew-adjoint. The problem (P0) conserves the
norm N and the Hamiltonian H given by

N=
√
N2

1 +N2
2 +N2

3 , N2
k (t)=

∫
Γk

|ψk(t, x)|2dξ, (5)

H = H1 +H2 +H3,

Hk(t) =

∫
Γk

|∂ξψk(t, ξ)|2 − βk
2
|ψk(t, x)|4dξ. (6)
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(a) Kirchhoff case (b) Ballistic case
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FIG. 2: (Color online) Amplitudes Ak = maxx∈Γk |ψk(t, x)|
for (1) on the metric graph Γ with bond lengths 15. Initial
soliton of the form (4) with η, c = 1, 10 and x0 = −7.5, see also
(19). (a) α = (1, 1, 1), β = (1, 1, 1); (b) α = (1, 1.73, 1.22),
β = (1, 3, 1.5).

It is a question of normalization to set

α1 = β1 = 1, (7)

which leaves 4 parameters for (P0), and, of course, the
choice of the initial conditions.

Our goal is to compare exact and numerical solu-
tions (ψ1, ψ2, ψ3) of (P0) with the numerical solutions
φ = φ(t, x) of an associated NLSE on a fat graph pre-
sented in Fig. 1, i.e.,

∂tφ = i(∆φ+ β̃(x)|φ|2φ), (8)

where ∆ = ∂2
x1

+ ∂2
x2
, x = (x1, x2) ∈ Ωε, and Ωε =

Vε ∪B1,ε ∪B2,ε ∪B3,ε consists of a “vertex–region” Vε of
diameter O(ε), and O(ε)-tubes Bk around Γk, see Fig. 1.
In the following Eq.(8) will be called the problem (Pε).
We also use the notation φk for φ|Bk

.
It is clear that different versions of Ωε are possible.

Here we choose to give the following 5 parameters to Ωε
not a priori present in Eq.(1):

1. the angles θ2, θ3 between the bonds B2 and B3 and
the x1–axis,

2. the widths w1, w2, w3 of the different bonds.
In the numerical calculations we impose homogeneous
Dirichlet boundary conditions (DBC) for both, (P0) and
(Pε), at the “ends” of bonds, and for (Pε) homogeneous
Neumann boundary conditions (NBC) ∂nψ = 0 every-
where else. As our simulations will run on time–scales
where the solitons will be well separated from the ends
of the bonds, we could as well pose NBC there. Also
note that strictly speaking (4) is not a solution over the
finite graph, but it is exponentially small at the ends of
the bonds.

We take β̃(x) constant on bond k and with suitable
jumps near 0. Furthermore, we set

ε := w1, w2 = δ2ε and w3 = δ3ε (9)

and write Ωε for fixed δk, θk, k = 2, 3. For definiteness
we choose

B1 = Ωε ∩ {x1 < 0}, B2 = Ωε ∩ {x2 > w1/2},
B3 = Ωε ∩ {x2 < −w1/2}, (10)

and thus Vε = Ωε \ (B1 ∪ B2 ∪ B3). Motivated by
1
ε

∫
Ωε

1dx → l1 + δ2l2 + δ3l3 as ε → 0, corresponding

to N on Γ we define the scaled norms

Nε(t) =

(
1

ε

∫
Ωε

|φ(t, x)|2dx

)1/2

, (11)

and Nk,ε(t) :=

(
1

ε

∫
Bk

|φ(t, x)|2dx

)1/2

. (12)

Then Nε is conserved for (8), and the Nk,ε indicate how
much “mass” is in the different bonds.

For the linear problem it is known, [25], that under the
scaling

w1

wk
= α2

k, i.e. δk =
1

α2
k

, and ψk =
1

αk
φk|Γk

, (13)

the vertex conditions (2) appear in the limit ε → 0.
Then, at least formally, we can expect (P0) as a “limit”
of (Pε) if

β̃|Bk
= wkβk = α−2

k βk. (14)

If α2 6= 1 (or α3 6= 1), then boundary condition presented
in Eq.(2) gives jumps from ψ1 to ψ2 (resp. ψ3) at the
vertex. This, however, is merely a question of scaling.
For instance, setting ψ̃k = αkψk (cf. (13)), we obtain

∂tψ̃k = i(ψ̃′′k + γk|ψ̃k|2ψ̃k), ψ̃1 = ψ̃2 = ψ̃3,

ψ̃′1 =
1

α2
2

ψ̃′2 +
1

α2
3

ψ̃′3, at x = 0, (15)

i.e., continuity at the vertex, where γk = βkα
−2
k , as in

(14). The scaling given by Eqs.(1),(2) is more custom
[1, 25] than (15), and therefore we stick to (1),(2) as the
“limit problem”. Note that the angles θ1,2 of the fat
graph do not appear in (P0).

We expect that for ε → 0 solutions φk of (Pε) behave
like 1

αk
ψk with ψk being the solutions of (P0), i.e., are

constant in transverse direction on each bond Bk, with
width wk = δkε. Therefore, from Eqs. (12) and (13) we
expect

N2
k,ε(t) =

1

ε

∫
Bk

|φk(t, x)|2dx ≈ δk
∫

Γk

|φk|Γk
|2dξk

≈ δk
∫

Γk

|αk|2|ψk|2dξk = N2
k (t), (16)

In the numerical calculations, in addition to Nk,ε we ex-
plore the following functions (dropping the dependence
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on parameters ε, δ2,3, θ2,3, c and η):

Ak(t) =
1

αk
max
x∈Bk

|φk(t, x)| (scaled amplitude), (17)

mk(t) = max
x∈Bk

∣∣|ψ̃k(t, x)| − 1

αk
|φk(t, x)|

∣∣ (18)

(maximal amplitude distance between (Pε) and (P0)).

Here ψ̃k is the extension of ψk to Bk, constant in trans-
verse direction, and for ψk we either use the explicit for-
mula (4) if (3) holds, or numerics for (P0) if not. Note

that (18) ignores phase differences between ψ̃k and φk,
as these are less important from the viewpoint of appli-
cations.

III. SOLITON TRANSPORT IN FAT GRAPHS

The main practically important problem in the con-
text of wave propagation in branched systems is energy
and information transport via solitary waves. Depen-
dence of the soliton dynamics on the topology of a net-
work makes such systems attractive from the viewpoint
of tunable particle transport in low dimensional optical,
thermal and electronic devices. Therefore treatment of
the problems (P0) and (Pε) from the viewpoint of vertex
soliton transmission is of importance. Our main purpose
is to compare propagation of solitons in Ωε with that in
Γ, and in particular to “lift” the earlier results [1] from
Γ to Ωε. Transition from two- to one-dimensional wave
motion in the shrinking limit is of special importance for
this analysis.

In a typical simulation, for (P0) we use soliton-type
initial condition given as

ψ1(0, ξ1) =
√

2η sech(η(ξ1 − x0))e−icξ1/2, ψ2,3(0, ·) ≡ 0
(19)

where x0 and η are chosen in such a way that ψ1(0, 0) is
very close to 0. Similarly, for (Pε) we choose

φ(0, x)=

{ √
2 ηsech(η(x1−x0))e−icx1/2 x1 < 0,

0 else,
(20)

i.e., we extend the initial condition (19) trivially in trans-
verse direction. We then run both, (P0) and (Pε) until
some final time t1 such that the solitons launched by
(19) and (20), respectively, have interacted with the ver-
tex, and have been reflected or transmitted sufficiently
far into the bonds. See the appendix for the numeri-
cal methods used. Our main solution diagnostics will be
the time dependent norms Nk(t), Nk,ε(t), the amplitudes
Ak(t), Ak,ε(t), the distances mk(t), and the reflection co-
efficients defined below.

For definiteness, we consider Γ1 as the “incoming”
bond and Γ2,3 as “outgoing”. In Fig. 3 solutions of
the problem (Pε) for the Kirchhoff boundary conditions
are presented for the case of a “relatively fat” graph

(a) geometry and mesh (b) Reψ(0.5, ·)

−1 0 1
−1

−0.5

0

0.5

1

(c) |ψ(0.75, ·)| (d) |ψ(1, ·)|

FIG. 3: (Color online) Numerical solution of (Pε) for δ2,3 = 1

and ε = 0.5, i.e. w = (0.5, 0.5, 0.5); β̃ ≡ 1, l = (15, 15, 15),
θ = (π/3, π/3). Initial condition (20) with x0 = −l/2 and
η, c = 1, 10. (a) Mesh near the vertex. (b) Real part of
incoming soliton at t = 0.5; (c),(d) |ψ(·, x)| during and after
transmission/reflection trough/at the vertex.
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FIG. 4: (Color online) Norms and amplitudes corresponding
to the solutions presented in Fig.3. Dashed lines present re-
spective quantities from (P0) .

(ε = 0.5), while Fig. 4 show the plots of the correspond-
ing norms Nk and amplitudes Ak for the simulation for
(Pε) in Fig. 3 (Kirchhoff case), together with the respec-
tive quantities for (P0). At this relatively large ε = 0.5
there is a significant difference between (Pε) and (P0).

In the following we focus on soliton reflection and



5

(a1) (a2)

−1 0 1
−1

−0.5

0

0.5

1

0 0.5 1
0

0.5

1

1.5

2

t

 

 

N
1

N
2

N
3

N
tot

(a3) (a4)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

 

 

A
1

A
2

A
3

0 0.5 1
0

0.2

0.4

0.6

0.8

t

 

 

m
1

m
2

m
3

FIG. 5: (Color online) Norms and amplitudes for fat and
metric graphs with 1/α2

2 + 1/α2
3 = 1 and βk = α2

k, hence

β̃ = 1, and plots of the amplitude distances mk,ε, cf. (18).
Here θ1 = θ2 = π/3, δ2 = 2/3, δ3 = 1/3, and ε = 0.5, hence
w = (0.5, 0.17, 0.33).(see Fig. 6). In (a1) we also plot the
geometry and mesh near the vertex. For the lengths of the
bonds we again have l1 = l2 = l3 = 15. In (a2),(a3) the full
lines are Nε,k and 1

αk
Aε,k, respectively, and the dashed lines

are Nk and Ak, cf. Fig. 2(b), and similarly in (b1),(b2) and
(c1),(c2).

transmission in the shrinking limit ε→ 0, for the ”ballis-
tic” boundary conditions given by (3) on (P0). In Fig.5
and 6 we plot the diagnostics defined above for different
ε on an otherwise fixed graph fulfilling the conditions of
Eq.(3), i.e., for the ballistic case. As ε → 0, the ampli-
tudes and masses in the different bonds get close to the
metric graph case, and also the (numerical) wave func-
tions as a whole converge to the ones on the metric graph,
with one small qualification: While the main mismatches
between (Pε) and (P0) result from reflection and position
shifts of the incoming soliton during interaction with the
vertex around t = 7.5, already for 0 < t < 5, i.e., before
interaction of the soliton with the vertex, there is a small
linear growth of m1,ε, i.e., of the amplitude mismatch
in the incoming bond. This is not a property of the fat
graph itself, but related to the fact that it is difficult to
accurately resolve the speed of the soliton numerically.
In other words, for small ε, a significant part of mis-
match between our (numerical) fat graph solution φ and
the (analytical) metric graph solution (ψ1, ψ2, ψ3) from
[1] is not due to the behaviour at the vertex, but due to
an error in (numerical) soliton speed, which results in a
position mismatch growing in time. However, noting the
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FIG. 6: (Color online) The same as in Fig.5, ε = 0.2 in (b)
and ε = 0.1 in (c)

different scales in panels (a4),(b3) and (c3) strongly in-
dicates the convergence of the (Pε) wave function to the
(P0) wave function in L∞ (modulo phases), uniformly on
bounded time intervals.

From the viewpoint of practical applications, probably
the most important question is how much of an incoming
soliton is reflected resp. transmitted in the vertex region
of a fat graph. To display this in a concise way, for (Pε)
we define the reflection and transmission coefficients

rAk,ε := Ak,ε(t1)/A1,ε(0) (amplitude reflection), (21)

rNk,ε := Nk,ε(t1)/N1,ε(0) (mass reflection), (22)

where again we dropped the dependence on parameters
w2,3, β2,3, c and η here, but will plot rA,k, rN,k as func-
tions of some parameters below. Thus, e.g., rA1,ε = 0 (and

thus also rN1,ε = 0) means zero reflection of an incoming
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FIG. 7: (Color online) (a) Reflection coefficients as functions
of thickness ε, with fixed θ1,2 = π/4, l = (15, 15, 15), (η, c) =
(1, 10). (b) Reflection coefficient rA1,ε as a function of ε and
angle θ := θ1 = θ2.

soliton at the vertex, while, e.g., rN2,ε = 1 means that all
of the “mass” was transmitted to bond two. These ex-
treme cases of course do not occur, but the goal is, e.g.,

to tune rN,Ak,ε . The corresponding quantities for (P0) are
defined as

rAk := Ak(t1)/A1(0), rNk := Nk(t1)/N1(0), (23)

and the transmission formula (3) means, e.g., that

rA,N1 → 0 in the limit of infinite bonds and of t1 →∞.
In Fig. 7(a) the vertex reflection coefficients (both for

norm and amplitude) are plotted as functions of the
graph thickness ε for the case described by (3). The
limit ε→ 0 again shows a rather smooth transition from
the “scattering” regime to ballistic transmission. Fig-
ure 7(b) presents the dependence of rA1,ε on the graph
thickness and the angles θ = θ1 = θ2. Even though the
angles do not appear in the ε → 0 limit (P0), at finite ε
they of course play an important role. Ballistic transport
through the vertex occurs in the shrinking limit as well
as in the limit of small angles.
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FIG. 8: (Color online) Reflection coefficients as functions of
thickness ε, with fixed θ1,2 = π/4, l = (15, 15, 15) for differ-
rent values of (a) speeds (with fixed η = 1) and (b) amplitudes
(with fixed c = 10) of soliton in the ballistic case.

Besides the equal angle case θ2 = θ3 considered so
far, we checked a variety of other configurations with
θ2 < θ3 (angle of the thinner bond with the incoming
bond smaller than the other angle), and vice versa, for
various θ1,2 between π/20 and π/2. The results remain
qualitatively similar to Figs. 5–7, i.e., in the limit ε→ 0
the reflection coefficients vanish, and as above the (Pε)
wave functions converge to the θ2,3 independent wave
functions (ψ1, α2ψ2, α3ψ3) of (P0). As the convergence
for ε→ 0 is clearly linear, an interesting question is how
to choose a first order in ε correction of the fat graph

geometry or NLSE coefficients that minimizes rN,A1,ε also
for finite ε > 0.

An important issue for particle and wave transport in
fat graphs is the dependence of the scattering on initial
soliton velocity and amplitude. In Fig.8 reflection coef-
ficients are plotted as functions of bond thickness ε for
different initial velocities (a) and amplitudes (b). The
dependence of reflection on initial data is significant for
fat graphs, with, e.g., less reflection for slower and longer
waves, as should be expected. However, in the shrinking
limit the reflections again vanish in all cases considered.

Finally, although in Figs. 5–7 we focused on the bal-
listic case δ2 + δ3 = 1, for other values of δ2, δ3, as for
instance δ2 = δ3 = 1 in Fig. 4, as ε → 0 we have the

same kind of convergence of (Nk,ε,
1
αk
Ak,ε, r

N,A
k,ε ,mk,ε)

to (Nk, Ak, r
N,A
k , 0) as above, and altogether of φ to

(ψ1, α2ψ2, α3ψ3), i.e., of (Pε) to (P0).

IV. CONCLUSIONS

We studied soliton transport in tube like networks
modeled by the time-dependent NLSE on fat graphs,
i.e. graphs with finite bond thickness. We numerically
solved the NLSE on fat graphs for different values of
thickness, and focussing on the ballistic case given by
Eq.(3) studied the shrinking limit of the fat graph. It is
found that in the shrinking limit solutions of the NLSE on
fat graphs converge to those the associated metric graphs,
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and hence that the conditions presented in Eq.(3) for re-
flectionless transport also work on fat graphs with small
ε. Dependence of the vertex reflection coefficient on the
bond thickness and on the angle between the bonds of
fat graph is also studied.

At this point it is not clear in which norms we can
expect or analytically show convergence of solutions of
(Pε) to solutions of (P0), as ε → 0. First, following [34]
this will be discussed for the stationary case, including
some potentials at the vertex in order to have nontriv-
ial stationary solutions for the fat graph and the metric
graph, cf. [5, 10]. An important point in the study of
wave(particle) dynamics in fat graphs is the definition of
the fat graph thickness at which one can neglect trans-
verse motion and consider the system as one-dimensional.
The above treatment allows us to define such a regime.
However, the transition from two- to one dimensional
motion is rather smooth and there is no critical value of
the bond thickness at which a ”jump” from fat to metric
graph occurs. In any case, we believe that our numerical
results should be considered as a first step in the way
for the study of particle and wave transport described
by nonlinear evolution equations on fat graphs, and can
be useful for further analytical studies of NLSE on such
graphs.
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Appendix: Details of numerical approach

We discretize (P0) by second order spatial finite differ-
ences and denote uj = uj(t) = ψ1(t, ξ1,j), ξj = −l1 + jδ,
vj = vj(t) = ψ2(t, ξ2,j), wj = wj(t) = ψ3(t, ξ3,j), j =
1, . . . , n− 1, such that, e.g., u′′j = 1

δ2 (uj−1− 2uj + uj+1).
Moreover, we set

u0 = ψ1(−l1) = 0, vn = ψ2(l2) = 0, wn = ψ3(l3) = 0,

and un = ψ1(0), v0 = ψ2(0), and w0 = ψ3(0).

The vertex conditions then are

un = α2v0 = α3w0, u′n =
1

α2
v′0 +

1

α3
w′0.

Using one-sided FD for u′n, v
′
0 and w′0 we have

u′n =
1

δ
(un − un−1) =

1

δ

(
1

α2
(v1 − v0) +

1

α3
(w1 − w0)

)
,

⇔ un(1 +
1

α2
2

+
1

α2
3

) = un−1 +
1

α2
v1 +

1

α3
w1. (24)

which expresses un and hence v0, w0 in terms of
un−1, v1, w1. The resulting z′′ := (u′′i , v

′′
i , w

′′
i )i=1,...,n−1

can be best expressed by a matrix vector multiplication
Mz. The scheme differs from the one in [1], where the
PDE is extended up to and including the vertex from the
left, which works well to discretize the reflectionsless so-
lutions (4) in case of (3), but it introduces an asymmetry
between the bonds not present in (P0).

To integrate the resulting ODEs ∂tz = i(Mz+β|z|2z),
where β = (βu, βv, βw) with obvious meaning, we use an
explicit scheme with stepsize h in t, namely

zn+1 = zn−1 + 2h(Mzn + β|z̃n|2zn), (25)

where ũi = 1
2 (ui−1 +ui+1) and similar for ṽi and w̃i. For

h ≤ δ2/4 this conserves N(t) with high accuracy, and
also H(t).

To simulate (Pε) we write it as a 2-component real
system for z = (u, v) where ψ = u + iv. We set
up and discretize the domain Ωε using routines from
pde2path [45] which are based on the FEM from the Mat-
lab pdetoolbox. For efficiency it is quite useful to apply
some local mesh refinement near the vertex. We typically
work with meshes of 5000-20000 triangles. Eq. (8) then
translates into the system of ODEs

Mzt = Kz + F (z) (26)

where M is the mass matrix, K = Ki∆ is the stiffness
matrix, and F (z) is the FEM nonlinearity. For the time
integration of (26) we use a semilinear trapez rule, i.e.,
setting zn = z(·, tn), tn = nh,

[M − h

2
K]zn+1 = [M +

h

2
K]zn + hF (zn). (27)

Over relevant time-scales (27) conserves (the discretized
version of) Nε from (12) reasonably well. We also
tried the relaxation scheme from [46] which conserves
Nε slightly better, but becomes computationally much
slower, mainly since one can no longer LU -pre-factorize
M − h

2K. On the other hand, the stability requirements
for explicit schemes like (25) become prohibitive for fine
meshes near the vertex. For (27), typical calculation
times for the propagation of a solitary wave through the
network are on the order of 1 minute.
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