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Abstract. We rigorously analyze the bifurcation of stationary so called nonlinear Bloch
waves (NLBs) from the spectrum in the Gross-Pitaevskii (GP) equation with a periodic
potential, in arbitrary space dimensions. These are solutions which can be expressed as
finite sums of quasi-periodic functions, and which in a formal asymptotic expansion are
obtained from solutions of the so called algebraic coupled mode equations. Here we justify
this expansion by proving the existence of NLBs and estimating the error of the formal
asymptotics. The analysis is illustrated by numerical bifurcation diagrams, mostly in 2D.
In addition, we illustrate some relations of NLBs to other classes of solutions of the GP
equation, in particular to so called out–of–gap solitons and truncated NLBs, and present
some numerical experiments concerning the stability of these solutions.

1. Introduction

The nonlinear Schrödinger/Gross–Pitaevskii (GP) equation in d ∈ N dimensions,

i∂tψ = ∆ψ − V (x)ψ − σ|ψ|2ψ, x ∈ Rd, t ∈ R,(1.1)

with a real potential V : Rd → R is a canonical model in mathematics and physics. It appears
in various contexts, e.g., nonlinear optics [33, 17], and Bose–Einstein condensation [26, 4].
See also, e.g., [34, 40, 19] for mathematical and modeling background. Plugging eiωtϕ(x) into
(1.1), where ω/(2π) is the frequency of time–harmonic waves in nonlinear optics, and where
ω is called the chemical potential in Bose–Einstein condensation, we obtain the stationary
problem

(1.2) ωϕ+ ∆ϕ− V (x)ϕ− σ|ϕ|2ϕ = 0.

Here we consider the case that the potential V is real and periodic. For simplicity, we let
V be 2π−periodic in each coordinate direction, i.e.,

V (x+ 2πej) = V (x) for all x ∈ Rd, j ∈ {1, . . . , d},
where ej denotes the j-th Euclidean unit vector in Rd. In other words, we consider the
periodic lattice 2πZd. We make the basic assumption that V ∈ Hs−2(P) for some s > d

2
,

where P = (−π, π]d. This smoothness assumption on V ensures Hs(P)-smoothness of linear
Bloch waves, i.e., solutions of (1.2) with σ = 0. See §1.1 for a review of spectral properties
of

L = −∆ + V

and linear Bloch waves. For suitable V the spectrum of L shows so called spectral gaps and
in recent years a focus has been on the bifurcation of so called gap solitons from the the zero
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solution at band edges into the gaps. These are localized solutions, which, in the near edge
asymptotics have small amplitude and long wave modulated shape. In detail, the asymptotic
expansion at ω = ω∗ + ε2Ω with Ω = ±1 is

(1.3) ϕ(x) ∼ ε
N∑
j=1

Aj(εx)ξnj(k
(j);x),

where ξnj(k
(j); ·), j = 1, . . . , N are Bloch waves at the edge ω∗, and the Aj are localized

solutions of a system of (spatially homogeneous) nonlinear Schrödinger equations. See, for
instance, [32, 12, 15, 23], and the references therein.

Here we seek solutions of (1.2) which can be expressed as finite a sum of M quasi-periodic
functions and call such solutions nonlinear Bloch waves (NLBs), with quasi–periodicities
determined from a selected finite subset of the Bloch waves at ω. NLBs have been studied in,
for instance, [12, 38, 42, 43, 9], where in [38, 42, 43] the approaches are numerical and formal.
They have been observed even experimentally, see e.g. [10] for experiments in Bose-Einstein
condensates. In [12] the special case of a bifurcation of NLBs into an asymptotically small
spectral gap for a separable periodic potential in two dimensions is studied rigorously. In
[9] the bifurcation of single component (M = 1) NLBs in one dimension is proved, including
results on secondary bifurcations and exchange of stability. Similarly to Bloch waves in
linear lattices NLBs can be understood as the fundamental bounded oscillatory states of
the nonlinear system. From the applied point of view one motivation for studying NLBs is
the continuation of gap–solitons to “out-of-gap” solitons, i.e., the continuation of localized
solutions from one band edge across the gap and into the spectrum on the other side of
the gap, where their tails start interacting with the NLBs. For this reason, the study of
bifurcation of NLBs from the zero–solution has been mostly restricted to band edges. Here
we show that nonlinear Bloch waves bifurcate in ω from generic points in the spectrum of L,
and give their asymptotic expansions in terms of solutions of the so called algebraic coupled
mode equations (ACME), together with error estimates.

In addition to the rigorous analysis we illustrate our results numerically. For this we focus
on 2D, as this is much richer than 1D, and use the same potential as in [15], i.e.

(1.4) V (x) = 1 + 4.35W (x1)W (x2), x ∈ [−π, π]2

with

W (s) =
1

2

[
tanh

(
7

(
s+

3π

5

))
+ tanh

(
7

(
3π

5
− s
))]

.

This represents a square geometry with smoothed-out edges. The function in (1.4) is extended
periodically to R2 to obtain V : R2 → R. The numerical band structure of L over the
Brillouin zone B := (−1/2, 1/2]d, and also along the boundary of the irreducible Brillouin
zone, is plotted in Fig. 1(a),(b), respectively. We denote the so called high symmetry points
in B for d = 2 by

Γ := (0, 0), X := (1/2, 0), X ′ := (0, 1/2), and M := (1/2, 1/2).

Example 1. Figure 2 shows a numerical bifurcation diagram of single component (M = 1)
NLBs for k = X, calculated with the package pde2path [36, 13], together with example plots
on the bifurcating branches. A branch of NLBs bifurcates from the zero solution at ω = ω∗
for any ω∗ attained by one of the band functions at k = X, i.e. at the ω−coordinate of any
of the points a, b, c, d in Fig. 1 (b). See §1.1 for the definition of band functions.
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Figure 1. (a): Band structure of L over the Brillouin zone B for the periodic potential

(1.4); (b): along the boundary Γ−X −M − Γ of the, so called, irreducible Brillouin zone.

In §7 we explain the method behind Fig. 2, and study in detail the bifurcations of NLBs
at the points marked A,B,C in Fig. 1(b), relating the numerical calculations to our analysis.

As already said, one motivation for studying NLBs are the intriguing properties of their
interaction with localized solutions, which we illustrate numerically in §8. For instance, when
a gap soliton is continued from the gap into the spectrum, we get a so called “out–of–gap”
soliton (OGS) with oscillating (delocalized) tails, see also [41, 24]. In 1D, numerically these
OGS can be seen to be homoclinic orbits approaching NLBs, and essentially the same happens
in 2D. Moreover, the NLB can form building blocks of so called truncated NLBs (tNLBs),
see also [4, 38]. These are localized solutions for ω in a gap which are close to a NLB on some
finite interval but approach 0 as |x| → ∞. Then, continuing a branch of tNLBs from the
gap into the spectrum, the same interaction scenario as for GS happens, i.e., the tails of the
tNLBs pick up NLBs bifurcating from the gap edge into the spectrum, and the tNLBs become
delocalized, for which we use the acronym dtNLB. Note that both gap solitons and tNLBs
have been observed experimentally, see e.g. [5] for experiments in optical lattices. However,
even in 1D at present it is unclear how to analyze OGS, tNLBs and dtNLBs rigorously, i.e.,
so far there only exist heuristic asymptotics, see §8 for further comments.

Stability of most of these solutions is an open problem. Thus, at the end of the paper we also
give a numerical outlook on this, and obtain stability of some NLBs in 1D, and, consequently,
stability of some tNLBs and some OGS and dtNLBs. In 2D, we did not find stable NLBs for
the potential V from (1.4), and we close with summarizing the open questions. The broad
spectrum of applications of NLBs clearly motivates our rigorous bifurcation analysis.

In the remainder of this introduction we explain the linear band structure, a simple analyt-
ical bifurcation result, formulate the main theorem, and describe the structure of the paper
in more detail.

1.1. Linear Bloch waves. For k in the Brillouin zone, k ∈ B := (−1/2, 1/2]d, consider the
Bloch eigenvalue problem

(1.5)
(−∆ + V (x))ξn(x, k) = ωn(k)ξn(x, k), x ∈ P

ξn(x+ 2πem, k) = e2πikmξn(x, k), m ∈ {1, . . . , d},
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Figure 2. Example 1: Bifurcation diagram of the first four bifurcating branches for k = X,

i.e. branches bifurcating from points a-d in Fig. 1 (b). Spectral bands are indicated by

the black dashed line. The sign ± in the branch labels stands for σ = ±1. Small panels:

example solution plots of NLBs from the bifurcation diagram, over the fundamental cell

x ∈ (−π, π)2. At bifurcation we choose a real Bloch wave. Then the imaginary parts are

small near bifurcation, and we only plot them for a±. Roughly horizontal axis corresponds

to x1 in all plots.

where em is the m−th Euclidean unit vector in Rd. The spectrum of L = −∆ + V is
continuous and is given by the union of the bands defined by the band structure (ωn(k))n∈N,
i.e.

σ(L) =
⋃
n∈N
k∈B

ωn(k) =
⋃
l∈N

[s2l−1, s2l], where s2l−1 < s2l ≤ s2l+1 for all l ∈ N,

see Theorem 6.5.1 in [16]. The functions k 7→ ωn(k) are called band functions. The Bloch
waves ξn(x, k) have the form ξn(x, k) = pn(x, k)eik·x with pn(x + 2πem, k) = pn(x, k) for all
m ∈ {1, . . . , d} and all x ∈ Rd. Clearly, both ωn(k) and ξn(x, k) are 1−periodic in each
component of k. We assume the normalization

‖ξn(·, k)‖L2(P) = ‖pn(·, k)‖L2(P) = 1 ∀n ∈ N ∀k ∈ B.

For a given point (k, ω) ∈ B×R in the band structure, i.e. with ω = ωn(k) for some n ∈ N,
also the point (−k, ω) lies in the band structure, which follows from the symmetry

(1.6) ωn(k) = ωn(−k) for all n ∈ N, k ∈ B.
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This symmetry is due to the equivalence of complex conjugation and replacing k 7→ −k in
the eigenvalue problem (1.5). Hence, we also have the conjugation symmetry of the Bloch
waves, namely

(1.7) ξn(x, k) = ξn(x,−k).

For k ∈ ∂B∩B we have −k ∈ ∂B\B and the point −k must be understood as the Zd-periodic
image within B. When k is one of the so called high symmetry points, i.e. km ∈ {0, 1/2}
for all m ∈ {1, . . . , d}, then k and −k are identified via this periodicity. Equation (1.7) then
implies that ξn(x, k) is real. This can be seen directly from the eigenvalue problem (1.5),
where km ∈ {0, 1/2} for all m ∈ {1, . . . , d} implies that the boundary condition is real such
that a real eigenfunction must exist. Note that the above k−symmetries rely only on the
realness of V .

1.2. The Bifurcation Problem.

Remark 1. In the simplest scenario we can look for real solutions of (1.2) with the quasi-
periodic boundary conditions given by a single vector k∗ ∈ B, i.e.

(1.8) ϕ(x+ 2πem) = ϕ(x)e2πik∗,m for all x ∈ Rd,m ∈ {1, . . . , d}.
In this case the realness condition on ϕ requires

(1.9) k∗ ∈
{

0, 1
2

}d
,

such that the sought solution is 2π-periodic or 2π-antiperiodic in each coordinate direction.
We study bifurcations in the parameter ω. Classical theory for bifurcations at simple eigen-
values, e.g., Theorem 3.2.2 in [29], shows that if ω∗ = ωn∗(k∗) for exactly one n∗ ∈ N, i.e. ω∗
is a simple eigenvalue of L under the boundary conditions (1.8), then ω = ω∗ is a bifurcation
point. To this end define f(ϕ, ω) = ωϕ+∆ϕ−V (x)ϕ−σϕ3 and study f(ϕ, ω) = 0 on P under
the boundary conditions (1.8). We have f(0, ω) = 0 for all ω ∈ R and fϕ(0, ω) = ω − L. As
ω∗ is a simple eigenvalue, we have the one dimensional kernel

Ker(fϕ(0, ω∗)) = ξn∗(x, k∗)R.
Because L with (1.8) and (1.9) is self adjoint, we have Ran(fϕ(0, ω∗)) ⊥L2(P) Ker(fϕ(0, ω∗)).
The transversality condition fωϕ(0, ω∗)ξn∗(x, k∗) /∈ Ran(fϕ(0, ω∗)) of Theorem 3.2.2 in [29]
thus holds because fωϕ(0, ω∗)ξn∗(x, k∗) = ξn∗(x, k∗) ⊥L2(P) Ran(fϕ(0, ω∗)). As a result, the
theorem guarantees the existence of a unique non-trivial branch of solutions bifurcating from
ω = ω∗.

Remark 2. Without the restriction to real solutions the eigenvalue ω∗ is never simple due to
invariances. In the real variables Φ := (ϕR, ϕI)

T , where ϕ = ϕR + iϕI , the problem becomes

G(Φ, ω) =

(
ωϕR + ∆ϕR − V (x)ϕR − σ(ϕ2

R + ϕ2
I)ϕR

ωϕI + ∆ϕI − V (x)ϕI − σ(ϕ2
R + ϕ2

I)ϕI

)
= 0.

Since (1.2) possesses the phase invariance and the complex conjugation invariance, we get
that G is O(2) invariant, i.e.

G(γΦ, ω) = γG(Φ, ω) for all γ ∈ Γ :=
{

( 1 0
0 −1 ) ,

(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ [0, 2π)

}
.

Bifurcations can now be studied using the equivariant branching lemma, see e.g. [28, §5],
by restricting to a fixed point subspace of a subgroup of Γ. The only nontrivial subgroup is
{( 1 0

0 1 ) , ( 1 0
0 −1 )} with the fixed point subspace being the vectors Φ with ϕI = 0 corresponding

to real solutions of (1.2). Therefore, this leads again to real solutions. Nevertheless, more
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complicated solutions than the single component ones in Remark 1 can be studied. The most
general real ansatz is

(1.10) ϕ(x) =

2q+r∑
j=1

ϕj(x), ϕj(x+ 2πem) = ei2πk
(j)
m ϕj(x),m = 1, . . . , d

with q, r ∈ N0, with k(j) ∈ B for all j = 1, . . . , 2q + r, such that k(j+q)=̇ − k(j), ϕj+q = ϕj
for all j = 1, . . . , q, and with k(j) ∈ {0, 1/2}d, ϕj(x) ∈ R for j = 2q + 1, . . . , 2q + r. Here
=̇ means equality modulo 1 in each coordinate. While the use of the equivariant branching
lemma should describe the bifurcation problem and produce the effective Lyapunov-Schmidt
reduction, we choose to carry out a detailed analysis without this tool in order to obtain more
explicit results. This will allow us to provide estimates of the asymptotic approximation error.

Our aim is to prove a general bifurcation theorem for NLBs, and, moreover, to derive
and justify an effective asymptotic model related to the Lyapunov-Schmidt reduction of the
bifurcation problem including an estimate on the asymptotic error. In our approach we select

a frequency ω∗ in the spectrum and choose N points {k(1)
∗ , . . . , k

(N)
∗ } ⊂ B in the level set of

the band structure at ω∗, such that for each j we have ω∗ = ωnj(k
(j)
∗ ) for some nj ∈ N. Our

method requires that each of the points {k(1)
∗ , . . . , k

(N)
∗ } is either one of the high symmetry

points k ∈ {0, 1/2}d or belongs to a pair k, l with l=̇ − k. See (H1)–(H6) on page 9 for a
summary of our assumptions. We seek NLBs bifurcating from ω∗ and having the asymptotic
form

(1.11) ϕ(x) ∼ ε
N∑
j=1

Ajξnj(x, k
(j)),

at ω = ω∗ ± ε2. The coefficients Aj, i.e. the (complex) amplitudes of the waves, are given
by solving the ACME as an effective algebraic system of N equations. Generally a sum
of N quasiperiodic functions with the quasiperiodicity of each given by one of the vectors
k(j) cannot be an exact solution of (1.2) as the nonlinearity generates functions with other
quasiperiodicities. Our ansatz for the exact solution is thus

ϕ(x) =
M∑
j=1

ϕj(x), ϕj(x+ 2πem) = ei2πk
(j)
m ϕj(x), m = 1, . . . , d

with M ≥ N and k(j) = k
(j)
∗ for j = 1, . . . , N . Importantly, this set {k(1), . . . , k(M)} (defined

in (3.2)) can be a proper subset of the level set. The subset may be finite even if the level set
is, for instance, uncountable. In fact, our assumption (H4) ensures the finiteness. Besides,
the subset {k(1), . . . , k(N)} can be much smaller than {k(1), . . . , k(M)} and hence the effective
ACME-system can be rather small. The subset has to satisfy only (H2-H6).

The major assumptions of our analysis are rationality (assumption (H4)) and certain non-
resonance conditions (H5) on the k-vectors {k(1), . . . , k(N)}. In addition, the solutions of
the coupled mode equations need to satisfy certain symmetry (“reversibility”) and non-
degeneracy conditions, see Definitions 2 and 3, in order for us to guarantee that (1.11)
approximates a solution ϕ of (1.2).The main result is the following

Theorem 1. Assume (H1)-(H6). There exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0)
the following holds. If the ACMEs (2.3) have a reversible non-degenerate solution A ∈ Vrev,
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then (1.2) with ω = ω∗ + ε2Ω has a nonlinear Bloch wave solution ϕ of the form (3.4), and∥∥∥∥∥ϕ(·)− ε
N∑
j=1

Ajξnj(·, k(j))

∥∥∥∥∥
Hs(P)

≤ Cε3.

There are three relatively straightforward generalizations of the result. Firstly, the periodic
lattice 2πZd can be replaced by any lattice {

∑d
j=1mjaj : m ∈ Zd} with linearly independent

vectors {a1, . . . , ad} ⊂ Rd. Of course, the periodicity cell P and the Brillouin zone B have to
be redefined accordingly. Except for the examples in §6 the results, in particular Theorem 1,
hold for a general lattice. Secondly, the nonlinearity |ϕ|2ϕ can be replaced by other locally
Lipschitz nonlinearities f(ϕ) which are phase invariant and satisfy f(ϕ) = o(ϕ) for ϕ → 0.
This may, however, change the powers of ε in the expansion and the error estimate. Also, the
linear operator L can be generalized to self adjoint second order differential operators with
periodic coefficients such that the asymptotic distribution of eigenvalues ωn(k) remains that
in (3.6).

1.3. The Structure of the Paper. In §2 we present a formal asymptotic approximation of
nonlinear Bloch waves and a derivation of the ACMEs as effective amplitude equations. In §3
we pose conditions on the solution ansatz and the band structure which are necessary for our
analysis, and apply the Lyapunov-Schmidt decomposition to the bifurcation problem. The
invertible part of the decomposition is estimated in §4. The singular part and its relation to
the ACMEs is described in §5, where also the proof of the main theorem is completed. In §6
we present the ACMEs and their solutions in the scalar case (N = 1) and in the case of two
equations (N = 2). Section 7 presents numerical computations of nonlinear Bloch waves in
two dimensions d = 2 for N = 1 and N = 2. The convergence rate of the approximation error
is confirmed by numerical tests. Finally, in §8 we give a numerical outlook on the interaction
of localized solutions with NLBs, first for some 1D and 2D GS, and second for tNLBs, and
we report numerical experiments on stability of NLBs and other solutions.

2. Formal Asymptotics

Let ω∗ ∈ σ(L) and choose N ∈ N vectors k(1), . . . , k(N) ∈ B in the level set of the band
structure at ω∗. For the asymptotics of nonlinear Bloch waves near ω∗ we make an analogous
ansatz to that used in [12, §3] for nonlinear Bloch waves near band edges in (1.2) with a
separable periodic potential. Formally we write

(2.1) ϕ(x) ∼ ε

N∑
j=1

Ajξnj(x, k
(j)
∗ ) + ε3

N∑
j=1

ϕ
(1)
j (x) for ω = ω∗ + ε2Ω (ε→ 0),

where the amplitudes Aj ∈ C are to be determined and where ϕ
(1)
j satisfies the quasiperiod-

icity given by the vector k
(j)
∗ .

Substituting (2.1) in (1.2) we get at O(ε3) for each j ∈ {1, . . . , N}

(−∆+V (x)−ω∗)ϕ(1)
j (x) = ΩAjξnj(x, k

(j)
∗ )−σ

∑
(α,β,γ)∈Aj

AαAβAγξnα(x, k(α)
∗ )ξnβ(x, k

(β)
∗ )ξnγ (x, k

γ
∗ ),

where

Aj = {(α, β, γ) ∈ {1, . . . , N}3 : k(α)
∗ − k(β)

∗ + k(γ)
∗ − k(j)

∗ ∈ Zd}.(2.2)
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The condition (α, β, γ) ∈ Aj in the sum ensures that the nonlinear terms have the same

quasi-periodicity as ϕ
(1)
j . Nonlinear terms generated by the ansatz (2.1) and having other

quasi-periodicity than one of those defined by k
(j)
∗ , j = 1, . . . , N have been ignored in this

formal calculation.
Imposing the solvability condition, i.e. making the right hand side L2-orthogonal to ξnj(·, k

(j)
∗ ),

we get the algebraic coupled mode equations (ACMEs)

(2.3) ΩAj −Nj(A1, . . . , AN) = 0, j ∈ {1, . . . , N},

Nj =σ
∑

(α,β,γ)∈Aj

µα,β,γ,jAαAβAγ,

µα,β,γ,j =

∫
P
ξnα(x, k(α)

∗ )ξnβ(x, k
(β)
∗ )ξnγ (x, k

(γ)
∗ )ξnj(x, k

(j)
∗ )dx.(2.4)

To make the approximation (2.1) rigorous, we must account for the nonlinear terms left

out above and provide an estimate on the correction ϕ(x)− ε
∑N

j=1 Ajξnj(x, k
(j)
∗ ).

3. Solution Ansatz, Assumptions, Lyapunov-Schmidt Decomposition

As mentioned above, one of the difficulties of the analysis is that for a sum of N functions
f1, . . . , fN with distinct quasi-periodic conditions the nonlinearity |f1+· · ·+fN |2(f1+· · ·+fN)
can generate functions with a new quasi-periodicity. If the k-points defining these new quasi-
periodic boundary conditions lie in the ω∗-level set of the band structure, then a resonance
with the kernel of the linear operator occurs. Also, if the points generated by a repeated
iteration of the nonlinearity merely converge to the level set, our techniques fail because a
lower bound on the inverse of the linear operator cannot be obtained. These obstacles are
avoided if for a selected ω∗ ∈ σ(L) assumptions (H4) and (H5) below hold.

We select N points {k(1)
∗ , . . . , k

(N)
∗ } ⊂ B in the ω∗-level set of the band structure. Suppose

we seek solutions of (1.2) with ϕ given by the sum of quasiperiodic functions. The ansatz

ϕ(x) =
∑N

j=1 ϕj(x) with quasiperiodic ϕj such that ϕj(x+ 2πem) = ei2πk
(j)
∗,mϕj(x) for all x ∈

Rd,m ∈ {1, . . . , d} can be a solution of (1.2) only if each term generated by the nonlinearity

applied to this sum has quasiperiodicity defined by one of the vectors in {k(1)
∗ , . . . , k

(N)
∗ }, i.e.

if the consistency condition

(3.1) S3({k(1)
∗ , . . . , k(N)

∗ }) ⊂ {k(1)
∗ , . . . , k(N)

∗ }+ Zd,
where

S3 : {k(1)
∗ , . . . , k(N)

∗ } → {k(α)
∗ − k(β)

∗ + k(γ)
∗ : 1 ≤ α, β, γ ≤ N},

is satisfied. In other words the consistency condition (3.1) says that all combinations (α, β, γ)
for α, β, γ ∈ {1, . . . , N} must lie in ∪Nj=1Aj, with Aj from (2.2).

An example of a consistent ansatz for N > 1 is N = 2, d = 2 with k
(1)
∗ = X =

(1/2, 0), k
(2)
∗ = X ′ = (0, 1/2), like e.g. for ω∗ = s3 in [15]. On the other hand, for

ω∗ = s5, where N = 4, k
(1)
∗ = (kc, kc), k

(2)
∗ = (−kc, kc), k(3)

∗ = (−kc,−kc), k(4)
∗ = (kc,−kc)

with kc ≈ 0.439, see Sec. 3.2.2.5 in [15], the ansatz is inconsistent. It is also inconsistent

for typical ω∗ in the interior of σ(L) with generic {k(1)
∗ , . . . , k

(N)
∗ } in the level set. Therefore,

we drop the consistency condition and pursue the more general case where the nonlinearity
generates quasiperiodic functions with quasi-periodicity vectors k not necessarily contained

in {k(1)
∗ , . . . , k

(N)
∗ }.
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Hence, we define the set of k-points generated by iterations of the nonlinear operator

K := {k ∈ B : k ∈ Sp3({k(1)
∗ , . . . , k(N)

∗ }) + Zd for some p ∈ N},(3.2)

and write, with M ≥ N ,

K = (k(j))Mj=1, where k(i) = k(i)
∗ for i = 1, . . . , N.(3.3)

At this point M = ∞ is possible but as explained below, our assumption (H4) ensures
M < ∞, i.e. only finitely many new vectors k are generated. Thus we can search for a
solution in the form of the sum of finitely many quasiperiodic functions

(3.4) ϕ(x) =
M∑
j=1

ϕj(x), ϕj(x+ 2πem) = ei2πk
(j)
m ϕj(x), m = 1, . . . , d

with ϕj ∈ Hs(P). The choice of the function space for ϕj is made clear below.
We make the following assumptions:

(H1) V ∈ Hs−2(P) for some s > d
2
, where P = (−π, π]d;

(H2) ω∗ ∈ σ(L) and k
(1)
∗ , . . . , k

(N)
∗ ∈ B are points in the ω∗-level set of the band structure,

i.e., there are n1, . . . , nN ∈ N such that

ωn1(k
(1)
∗ ) = · · · = ωnN (k(N)

∗ ) = ω∗;

(H3) each point k
(j)
∗ ∈ {k(1)

∗ , ..., k
(N)
∗ } is repeated according to the multiplicity of ω∗ at

k = k
(j)
∗ . In detail, if q ≥ 1 band functions ωm1 , ..., ωmq touch at (k, ω) = (k

(j)
∗ , ω∗),

then q points in {k(1)
∗ , ..., k

(N)
∗ } equal k

(j)
∗ and {m1, ...,mq} ⊂ {n1, ..., nN};

(H4) the points k
(1)
∗ , . . . , k

(N)
∗ ∈ B have rational coordinates, i.e.

k(1)
∗ , . . . , k(N)

∗ ∈ Qd ∩ B;

(H5) the intersection of the set K with the level set of the band structure at ω = ω∗ is

exactly the set {k(1)
∗ , . . . , k

(N)
∗ }, i.e.

K ∩ Lω∗ = {k(1)
∗ , . . . , k(N)

∗ },
where

Lω∗ := {k ∈ B : ωn(k) = ω∗ for some n ∈ N};
(H6) for each k

(j)
∗ ∈ {k(1)

∗ , . . . , k
(N)
∗ } the reflection w.r.t. the origin lies in the set too, i.e.

k(j)
∗ ∈ {k(1)

∗ , . . . , k(N)
∗ } if and only if k(j′)

∗ ∈ {k(1)
∗ , . . . , k(N)

∗ },

where B 3 k(j′)
∗ =̇ − k(j)

∗ and =̇ denotes congruence with respect to the 1-periodicity
in each component.

With (H3) the bifurcation from multiple Bloch eigenvalues is allowed. In one dimension
(d = 1) multiplicity is at most two, which occurs for so called finite band potentials, see
e.g. [27, 11], and only at k = 0 or k = 1/2. In higher dimensions (d > 1) crossing or touching
of band functions is abundant in generic geometries (potentials V ). Our results thus apply
also to Dirac points in two dimensions studied, e.g., in [18].

Due to the rationality condition (H4) the sought solution (3.4) is, in fact, periodic. (H4)
also ensures that the set K is finite (M < ∞). Indeed, iterating the operator S3 on a
set of points with rational coordinates on a d-dimensional torus generates a periodic orbit,
i.e. only finitely many distinct points are generated, and the number M depends solely on

k
(1)
∗ , . . . , k

(N)
∗ . Condition (H4) is satisfied, e.g. if {k(1)

∗ , . . . , k
(N)
∗ } is a subset of the high
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symmetry points of B, i.e. k
(j)
∗ ∈ {0, 1/2}d for all j = 1, . . . , N . This is frequently the case

for the locations of extrema defining a spectral edge. In general, (H4) is, however, a serious
limitation, and removing this assumption would be a major improvement.

The non-resonance condition (H5) is satisfied, for instance, if ω∗ ∈ ∂σ(L), i.e. for ω∗ at

one of the band edges, and k
(1)
∗ , . . . , k

(N)
∗ are all the extremal points of the band structure at

which the edge ω∗ is attained.
The symmetry condition (H6) is needed in the persistence step of the proof, see §5. Note

that if k(j) ∈ Lω∗ , then also k
(j′)
∗ ∈ Lω∗ by (1.6) and the periodicity in k. For k(j) ∈ intB,

clearly, k
(j′)
∗ = −k(j)

∗ . For k(j) ∈ ∂B ∩ B is −k(j)
∗ ∈ ∂B \ B (e.g. for d = 2,−k(j)

∗ = (−1/2, a)

with a ∈ (−1/2, 1/2)) and then k
(j′)
∗ is the Zd-periodic image of −k(j)

∗ within B (for the

example k
(j′)
∗ = (1/2, a)). Moreover, also (H6) is automatically satisfied if {k(1)

∗ , . . . , k
(N)
∗ } is

a subset of the high symmetry points of B.
Note again that (k(i))Ni=1 as well as K may be proper subsets of Lω∗ . This is, for instance,

the case in 2D if Lω∗ = {(1/2, 0), (0, 1/2)}, where we could choose N = 1 (if ω∗ is simple), and
K = {(1/2, 0)} or K = {(0, 1/2)}, which yields two decoupled scalar bifurcation problems;
see §6.2 for further discussion.

The remaining two assumptions in Theorem 1 are non-degeneracy and reversibility of A,
defined as follows.

Definition 2. A ∈ CN is a non-degenerate solution of (2.3) if the Jacobian1 J := DAF(A),
where Fj(A) := ΩAj −Nj(A), has a simple zero eigenvalue.

Note that due to the phase invariance A 7→ eiνA, ν ∈ R of (2.3) the Jacobian is singular.

Definition 3. A ∈ CN is reversible if

A ∈ Vrev = {v ∈ CN : vi = vi′ for all i ∈ {1, . . . , N}},

where i′ is given by B 3 k(i′)=̇− k(i).

Reversibility is a symmetry of the solution. The motivation for restricting to reversible
non-degenerate solutions A is to ensure the invertibility of J in the fixed point iteration
for the singular part of the Lyapunov-Schmidt decomposition in §5. Within Vrev the phase
invariance is, indeed, no longer present. The choice of Vrev in Definition 3 is natural and
based on the intrinsic symmetry (1.7) of the Bloch eigenfunctions which ensures the j 7→ j′

complex conjugation symmetry among the coefficients in (2.3) and, hence, the possibility of
reversible solutions. Note that (1.7) follows directly from V (x) ∈ R.

Next, we assume (H1-H6) and use the Lyapunov-Schmidt decomposition in Bloch variables
together with the Banach fixed point theorem to prove the main result, i.e., Theorem 1, which
justifies the formal asymptotics for solutions at ω = ω∗ + Ωε2.

3.1. Lyapunov-Schmidt Decomposition. Due to the completeness of the Bloch waves
(ξn(·, k))n∈N in L2(P) we can expand

(3.5) ϕj(x) =
∑
n∈N

Φ(j)
n ξn(x, k(j)) with Φ(j)

n = (ϕj(·), ξn(·, k(j)))L2(P) ∈ C.

1Strictly speaking, the problem should first be rewritten in real variables to define a Jacobian, see the
discussion above Lemma 10, but for brevity we use this compact symbolic notation here.
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As the following lemma shows, working with ϕj in the Hs(P) space is equivalent to working

with Φ(j) := (Φ
(j)
n )n∈N ∈ l2s/d, where

l2s/d = {F = (Fn)n∈N ∈ l2 : ‖F‖2
l2
s/d

=
∑
n∈N

(1 + n)2s/d|Fn|2 <∞}.

Lemma 4. For s ≥ 0 the following norm equivalence holds. There exist constants C1, C2 > 0
such that

C1‖f‖Hs(P) ≤ ‖F‖l2
s/d
≤ C2‖f‖Hs(P) for all f ∈ Hs(P),

where F := (Fn)n∈N is related to f ∈ Hs(P) by (3.5).

The proof is analogous to that of Lemma 3.3 in [8], see also [15, §4.1]. The main ingredients
are firstly the fact that for c > 0 large enough (such that c + ωn(k) > 0 for all n and k, e.g.
c > − ess inf V ) the squared norm ‖f‖2

Hs(P) is equivalent to∫
Rd

∣∣(c−∆ + V (x))s/2f(x)
∣∣2 dx =

∑
n∈N

(c+ ωn(k))s‖pn(·, k)‖2
L2(P)|Fn|2 =

∑
n∈N

(c+ ωn(k))s|Fn|2.

Secondly, one uses the asymptotic distribution of bands ωn(k) in d dimensions, see [21, p.55]:
there are constants c1, c2, c3 > 0 such that

(3.6) c1n
2/d ≤ ωn(k) + c3 ≤ c2n

2/d ∀n ∈ N ∀k ∈ B.

For the subsequent analysis we define for each k(j) ∈ K the set Ãj of indices producing
k(j) through the nonlinearity analogously to the definition of Aj, i.e.

Ãj := {(α, β, γ) ∈ {1, . . . ,M}3 : k(α) − k(β) + k(γ) − k(j) ∈ Zd}.

For the ansatz (3.4), (3.5) equation (1.2) is equivalent to the algebraic system

(3.7) F (j)
n (~Φ) := (ωn(k(j))− ω∗ − Ωε2)Φ(j)

n + σG(j)
n = 0, j ∈ {1, . . . ,M}, n ∈ N,

where

G(j)
n = 〈gj, ξn(·, k(j))〉L2(P) =

∫
P
gj(x)ξn(x, k(j))dx,

gj(x) =
∑

(α,β,γ)∈Ãj

∑
n,o,q∈N

Φ(α)
n Φ

(β)
o Φ(γ)

q ξn(x, k(α))ξo(x, k(β))ξq(x, k
(γ)) =

∑
(α,β,γ)∈Ãj

ϕαϕβϕγ.

Due to the kernel of the linear multiplication operator at ε = 0 in (3.7) we use a Lyapunov-
Schmidt decomposition in order to characterize the bifurcation from ω = ω∗ (i.e. from ε = 0).
For j ∈ {1, . . . ,M} we let

I(j) :=

{
N \ {nj} if 1 ≤ j ≤ N

N if j > N
, and let IR := {(j, n) : j ∈ {1, . . . ,M}, n ∈ I(j)}

and write

ϕ(x) = εϕsing(x) + ψ(x), ϕsing(x) =
N∑
j=1

Bjξnj(x, k
(j)), ψ(x) =

∑
(j,n)∈IR

Ψ(j)
n ξn(x, k(j))
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with 0 < ε� 1, Bj ∈ C and Ψ(j) := (Ψ
(j)
n )n∈N ∈ l2s/d. In other words we set

(3.8) Φ(j) =

{
εBjenj + Ψ(j) with Ψ(j) ∈ l2s/d,Ψ

(j)
nj = 0 for 1 ≤ j ≤ N

Ψ(j) with Ψ(j) ∈ l2s/d for j > N,

where enj is the nj-th Euclidean unit vector in RN. Analogously to ϕj we also define

ψj :=
∑
n∈I(j)

Ψ(j)
n ξn(x, k(j)).

This decomposition splits problem (3.7) into

F (j)
n := (ωn(k(j))− ω∗ − Ωε2)Ψ(j)

n + σG(j)
n = 0, (j, n) ∈ IR,(3.9)

F (j)
nj

:= −ε3ΩBj + σG(j)
nj

= 0, j ∈ {1, . . . , N}.(3.10)

The following program is analogous to that in [12, 15]. Namely, for (B1, . . . , BN) ∈ CN

given, we first show the existence of a small solution (Ψ(j))j∈N of the regular part (3.9)
and then prove a persistence result relating certain (reversible and non-degenerate) solu-
tions (A1, . . . , AN) ∈ CN of (2.3) to solutions (B1, . . . , BN) ∈ CN of the singular part
(3.10) including an estimate on their difference, and finally provide an estimate of ‖ϕ −
ε
∑N

j=1Ajξnj(·, k
(j)
∗ )‖Hs(P).

4. Regular Part of the Lyapunov-Schmidt Decomposition

We define the following spaces and norms

S(s) :=

{
ϕ =

∑
j∈N

ϕj : ϕj ∈ Hs(P) ∀j, ‖ϕ‖S(s) :=
∑
j∈N

‖ϕj‖Hs(P) <∞ and

∀j∃k ∈ B such that ϕj(x+ 2πem) = ei2πkmϕj(x),m = 1, . . . , d for a.e. x ∈ Rd

}
X (s) :=

{
~Φ = (Φ(j))j∈N : ‖~Φ‖X (s) :=

∑
j∈N

‖Φ(j)‖l2
s/d

<∞
}
.

Note that the condition k ∈ B in the definition of S(s) can be replaced by k ∈ Rd because

each k ∈ Rd can be written as k = k̃ + κ, where k̃ ∈ B and κ ∈ Zd. Also note that ~Φ is a
sequence of sequences. Similarly we denote

~Ψ := (Ψ(j))Mj=1 and ~G := (G(j))Mj=1.

Clearly, the ansatz (3.4) satisfies ϕ ∈ S(s) if and only if ϕj ∈ Hs(P) for all j ∈ {1, . . . ,M}.
Therefore, for the problem at hand, where the solution consists of M < ∞ components ϕj,
the spaces S(s) and X (s) could be defined with finite sums over j. However, since the use of
infinite sums in the definitions does not increase the complexity and since it may prove useful

in future work on the case of irrational coordinates of k
(j)
∗ , we keep these general definitions.

We will need the following two lemmas, the first following directly from Lemma 4.

Lemma 5. For s ≥ 0 there exist c1, c2 > 0 such that for all

S(s) 3 ϕ(·) =
∑
j∈N

∑
n∈N

Φ(j)
n ξn(·, k(j)) we have c1‖ϕ‖S(s) ≤ ‖~Φ‖X (s) ≤ c2‖ϕ‖S(s).



NONLINEAR BLOCH WAVES IN THE GROSS-PITAEVSKII EQUATION 13

Lemma 6. For s > d/2 the space S(s) is an algebra, i.e. there is a constant c > 0 such that
‖fg‖S(s) ≤ c‖f‖S(s)‖g‖S(s) for all f, g ∈ S(s).

Proof. We define the sets Kf and Kg of k−points, which determine the quasiperiodicity of
the functions fj and gj, j ∈ N, i.e.

Kf := {k ∈ B : ∃j ∈ N with fj(x+ 2πem) = e2πikmfj(x) for all m = 1, . . . , d and a.e. x ∈ Rd},
Kg := {k ∈ B : ∃j ∈ N with gj(x+ 2πem) = e2πikmgj(x) for all m = 1, . . . , d and a.e. x ∈ Rd}.

We have

‖fg‖S(s) =

∥∥∥∥∥
(∑
α∈N

fα

)(∑
β∈N

gβ

)∥∥∥∥∥
S(s)

=
∑

k(j)∈Kf+Kg
k(j) distinct

∥∥∥∥∥∥
∑

k(α)+k(β)∈k(j)+Zd
fαgβ

∥∥∥∥∥∥
Hs(P)

≤ c
∑

k(j)∈Kf+Kg
k(j) distinct

∑
k(α)+k(β)∈k(j)+Zd

‖fα‖Hs(P)‖gβ‖Hs(P) = c‖f‖S(s)‖g‖S(s),

where the inequality follows by the triangle inequality and by the algebra property of the Hs

norm

‖uv‖Hs(P) ≤ C‖u‖Hs(P)‖v‖Hs(P) ∀u, v ∈ Hs(P) and s > d/2,

see Theorem 5.23 in [2]. �

Our result on the regular part of the Lyapunov-Schmidt decomposition is the following

Proposition 7. Assume (H1)-(H5) and let B := (B1, . . . , BN) ∈ CN be given (not necessarily
a solution of (3.10)). There exist ε0 > 0 and C = C(‖B‖l1) > 0 such for all ε ∈ (0, ε0) there

exists a solution ~Ψ ∈ X (s) of (3.9) such that

‖~Ψ‖X (s) ≤ Cε3.

Proof. Writing (3.9) in the fixed point formulation

Ψ(j)
n = (ωn(k(j))− ω∗)−1(ε2ΩΨ(j)

n − σG(j)
n ) =: H(j)

n (~Ψ), (j, n) ∈ IR,

we seek a fixed point with ‖~Ψ‖X (s) ≤ const.ε3. Lemma 5 allows us to work interchangeably

in S(s) in the physical variables. We show the contraction property of ~H within

DCε3 := {~Ψ : ‖~Ψ‖X (s) ≤ Cε3}

for some C > 0.
The nonlinearity is

|ϕ|2ϕ = ε3|ϕsing|2ϕsing + ε2
(
2|ϕsing|2ψ + ϕ2

singψ
)

+ ε
(
2ϕsing|ψ|2 + ϕsingψ

2
)

+ |ψ|2ψ

such that we need to bound terms of the form ε3|ϕsing|2ϕsing, ε2|ϕsing|2ψ, εϕsing|ψ|2, and |ψ|2ψ.
Using the algebra property from Lemma 6 and the regularity of Bloch waves, we obtain

ε3‖|ϕsing|2ϕsing‖S(s) ≤ cε3‖ϕsing‖3
S(s) ≤ cε3

(
N∑
j=1

|Bα|‖ξnj(·, k(j))‖Hs(P)

)3

≤ cε3‖B‖3
l1 .



14 TOMÁŠ DOHNAL AND HANNES UECKER

Similarly, for the remaining terms we have

ε2‖|ϕsing|2ψ‖S(s) ≤ cε2‖B‖2
l1‖ψ‖S(s),

ε‖ϕsing|ψ|2‖S(s) ≤ cε‖B‖l1‖ψ‖2
S(s),

‖|ψ|2ψ‖S(s) ≤ c‖ψ‖3
S(s).

Next, thanks to assumptions (H3)-(H5) we have the uniform lower bound

|ωn(k(j))− ω∗| > c > 0 for all (j, n) ∈ IR.
¿From (H4) follows that the j−set in IR is finite so that the minimum of |ωn(k(j))− ω∗| in j
can be taken. (H3) and (H5) ensure that the minimum is positive.

Collecting the above estimates, we thus have

‖~H‖X (s) ≤ C
[
ε3‖B‖3

l1 + ε2(‖B‖2
l1 + |Ω|)‖~Ψ‖X (s) + ε‖B‖l1‖~Ψ‖2

X (s) + ‖~Ψ‖3
X (s)

]
.

We conclude that for ε > 0 small enough ~H maps DCε3 to itself.
Similarly, the contraction property of H follows by the same estimates as above, the simple

identities

|ψa|2 − |ψb|2 = 1
2

[
(ψa − ψb)(ψa + ψb) + (ψa + ψb)(ψa − ψb)

]
,

|ψ2
a − ψ2

b | = |ψa + ψb||ψa − ψb|,
|ψa|2ψa − |ψb|2ψb = (|ψa|2 + |ψb|2)(ψa − ψb) + ψaψb(ψa − ψb),

and by the algebra property. We find

‖~H(~Ψa)− ~H(~Ψb)‖X (s) ≤C
[
ε2(‖B‖2

l1 + |Ω|) + ε‖B‖l1(‖~Ψa‖X (s) + ‖~Ψb‖X (s))

+‖~Ψa‖2
X (s) + ‖~Ψb‖2

X (s)

]
‖~Ψa − ~Ψb‖X (s)

for all ~Ψa, ~Ψb ∈ X (s). In conclusion, the existence of a solution ~Ψ ∈ DC(‖B‖l1 )ε3 follows. �

5. Singular Part of the Lyapunov-Schmidt Decomposition, Persistence

The singular part (3.10) of the Laypunov-Schmidt decomposition is equivalent to the ex-
tended algebraic coupled mode equations

(5.1) ΩBj −Nj(B1, . . . , BN) = Rj, j ∈ {1, . . . , N}

with Rj := ε−3G
(j)
nj −Nj(B1, . . . , BN). Proposition 7 thus leads to the following

Corollary 8. Assume(H1)-(H5), and let (B1, . . . , BN) ∈ CN be a solution of (5.1). There
exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) equation (1.2) with ω = ω∗ + ε2Ω has a
nonlinear Bloch wave solution ϕ of the form (3.4) such that∥∥∥∥∥ϕ(·)− ε

N∑
j=1

Bjξnj(·, k(j))

∥∥∥∥∥
Hs(P)

≤ Cε3.

Corollary 8 is of little practical use since G
(j)
nj in (5.1) depend on the unknown ψ such

that solving (5.1) for (B1, . . . , BN) explicitly is not possible. This problem can be avoided by
showing persistence of solutions (A1, . . . , AN) ∈ CN of the formally derived explicit ACMEs
(2.3) to solutions (B1, . . . , BN) ∈ CN of (5.1), which is our next step. We show that persis-
tence holds for “reversible non-degenerate” solutions (A1, . . . , AN) ∈ CN . The problem then
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reduces to finding reversible non-degenerate solutions of the ACMEs. Writing the ACMEs
as Fj(A1, . . . , AN) = 0, equation (5.1) reads

Fj(B1, . . . , BN) = Rj, j ∈ {1, . . . , N}.

Lemma 9. Assume (H1). Given ~Ψ ∈ X (s) with ‖~Ψ‖X (s) < Cε3 we have

|Rj| ≤ Cε2

for all j ∈ {1, . . . , N}, where C = C(‖B‖l1) > 0.

Proof. Substituting for ϕj, the decomposition (3.8), we get

Rj = ε−3σG(j)
nj
−Nj(B1, . . . , BN) =

= ε−1σ

2
∑

(α,β,γ)∈Aj

BαBβ〈ψγ(·)ξα(·, k(α))ξβ(·, k(β)), ξnj(·, k(j))〉L2(P)

+
∑

(α,β,γ)∈Aj

BαBγ〈ψβ(·)ξα(·, k(α))ξγ(·, k(γ)), ξnj(·, k(j))〉L2(P)


+ ε−2σ

2
∑

(α,β,γ)∈Aj

Bα〈ψβ(·)ψγ(·)ξα(·, k(α)), ξnj(·, k(j))〉L2(P)

+
∑

(α,β,γ)∈Aj

Bβ〈ψα(·)ψγ(·)ξβ(·, k(β)), ξnj(·, k(j))〉L2(P)


+ ε−3σ

∑
(α,β,γ)∈Aj

〈ψα(·)ψβ(·)ψγ(·), ξnj(·, k(j))〉L2(P).

With the Cauchy-Schwarz inequality, the regularity of Bloch waves, and using the estimate
‖ψα‖Hs(P) ≤ Cε3 for all α, which follows from the assumption ‖~Ψ‖X (s) < Cε3, we obtain the
desired estimate for |Rj|. �

Next we let B = A+b, where similarly to A we denote B := (B1, . . . , BN)T . The difference
b solves

(5.2) Jb = W(b), W(b) := R(A + b)− (F(A + b)− Jb),

where F := (F1, . . . , FN)T , R := (R1, . . . , RN)T , and J = DAF(A) is the Jacobian2 of F at
A. Due to F(A) = 0, we get that F(A + b) − Jb is at least quadratic in b so that for |b|
small we have (in the Euclidean norm | · |)

|F(A + b)− Jb| ≤ c|b|2.
As a result

(5.3) |W(b)| ≤ c
{
ε2 + ε2|b|+ |b|2

}
for |b| small, where the cε2 term comes from A-homogenous terms in R and ε2|b| from linear
terms in b.

2A symbolic notation for the Jacobian used again.
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We aim to apply a fixed point argument on b = J−1W(b) in a neighborhood of 0 to
produce a solution b with |b| < cε2. However, due to the phase invariance A 7→ eiνA, ν ∈ R
of F(A) = 0 the Jacobian J is not invertible. To overcome this difficulty, we assume the
non-degeneracy of A, see Definition 2. Second, we restrict A and b to the reversible space
Vrev, see Definition 3, in which J is invertible, as shown below. Our precise requirements on
Vrev are:

(5.4) If 0 6= A ∈ Vrev, then

{
(i) ∃δ > 0 such that |Jb| > δ|b| for all b ∈ Vrev,

(ii) J−1W(b) ∈ Vrev for all b ∈ Vrev.

To check (i) and (ii) in (5.4), we first formulate b,A,F and J in real variables and define

the symmetry matrix Ŝ corresponding to the reversibility symmetry in Vrev. For v ∈ CN

define v̂ := ( vR
vI ) ∈ R2N , where vR ∈ RN and vI ∈ RN are the vectors of real and imaginary

parts of v. Then

(5.5) v ∈ Vrev ⇔ v̂ = Ŝv̂,

where

Ŝ =

(
P
−P

)
, P = (e1′ , e2′ , . . . , eN ′),

and ei is the i−th Euclidean unit vector in RN . Let us denote by Â, b̂, F̂ ∈ R2N the quantities
A,b,F in real variables and let Ĵ ∈ R2N×2N = DF̂ be the Jacobian of F̂.

The uniform boundedness property (i) in (5.4) follows since by the non-degeneracy con-

dition Ĵ has only one zero eigenvalue and for b ∈ Vrev is b̂ orthogonal to the corresponding
eigenvector. This is shown in the following

Lemma 10. If b,A ∈ Vrev,F(A) = 0, and if A is non-degenerate, then

b̂T v̂ = 0 for all v̂ ∈ ker(Ĵ) = span
{(

0 −I
I 0

)
Â
}
.

Proof. The well known fact ker(Ĵ) = span
{(

0 −I
I 0

)
Â
}

follows from the phase invariance

F(eiνA) = 0 for all ν ∈ R by rewriting it in real variables, differentiating in ν and evaluating

at ν = 0. Using now (5.5) for Â and b̂, we get

b̂T
(

0 −I
I 0

)
Â = b̂T

(
P T 0
0 −P T

)(
0 P
P 0

)
Â = −b̂T

(
0 −I
I 0

)
Â. �

For (ii) in (5.4) let us first show that A,b ∈ Vrev ⇒ W(b) ∈ Vrev. Because of the
symmetry (1.7) and the symmetry (α, β, γ) ∈ Aj ⇔ (α′, β′, γ′) ∈ Aj′ we get from (2.4) that
µα′,β′,γ′,j′ = µα,β,γ,j for all α, β, γ, j ∈ {1, . . . , N}. As a result, F has the symmetry

(5.6) F̂(Ŝv̂) = ŜF̂(v̂) for all v̂ ∈ R2N .

For A,b ∈ Vrev this results in F̂(Â + b̂) = ŜF̂(Â + b̂), i.e. F(A + b) ∈ Vrev.
Next, differentiating (5.6), we get

F̂′(Ŝv̂)Ŝ = ŜF̂′(v̂) for all v̂ ∈ R2N .

If A ∈ Vrev, then this translates for v = A to

(5.7) ĴŜ = ŜĴ

and for A,b ∈ Vrev we thus have Ĵb̂ = ĴŜb̂ = ŜĴb̂, so that Jb ∈ Vrev.
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The last term in W is R, where Rj = ε−3G
(j)
nj − Nj, j = 1, . . . , N . For Nj the above

identity µα′,β′,γ′,j′ = µα,β,γ,j implies that for A,b ∈ Vrev

Nj = Nj′ .

For G
(j)
nj we argue as follows. First, we define the symmetry map

S : ~Φ 7→ S~Φ, where (S~Φ)(j) = Φ(j′).

Lemma 11. ~G commutes with S, i.e.

~G(S~Φ) = S ~G(~Φ).

Proof. For all j ∈ {1, . . . ,M} and n ∈ N we get, using (1.7),

G(j)
n (S~Φ) =

∑
(αβγ)∈Ãj

∑
m,o,q∈N

Φ
(α′)
m Φ(β′)

o Φ
(γ′)
q

∫
P
ξm(x, k(α))ξo(x, k(β))ξq(x, k

(γ))ξn(x, k(j))dx

=
∑

(α′β′γ′)∈Ãj′

∑
m,o,q∈N

Φ
(α′)
m Φ(β′)

o Φ
(γ′)
q

∫
P
ξm(x, k(α′))ξo(x, k

(β′))ξq(x, k(γ′))ξn(x, k(j′))dx

= G
(j′)
n (~Φ). �

Lemma 12. If B ∈ Vrev, then there exists a solution ~Ψ of (3.9) with the properties as in
Proposition 7, and such that

~Ψ = S ~Ψ.

Proof. Defining ~Φsing via

~Φ
(j)
sing =

{
Bjenj , j ∈ {1, . . . , N},
0, j ∈ {N + 1, . . . ,M},

we have ~Φ = ε~Φsing + ~Ψ. Due to (H6) is B ∈ Vrev equivalent to S~Φsing = ~Φsing. And if

S~Φsing = ~Φsing, then the fixed point iteration ~Ψ = ~H(~Ψ) preserves the symmetry of ~Ψ, i.e.

~Ψ = S ~Ψ ⇒ ~H(~Ψ) = S ~H(~Ψ).

This is clear from the form

H(j)
n = (ωn(k(j))− ω∗)−1

(
ε2ΩΨ(j)

n − σG(j)
n (ε~Φsing + ~Ψ)

)
and from Lemma 11. �

¿From Lemma 12 we conclude that given B ∈ Vrev, the full vector ~Φ is S−symmetric, i.e.
~Φ = ε~Φsing + ~Ψ = εS~Φsing + S ~Ψ = S~Φ. Lemma 11 then yields for all j ∈ {1, . . . , N}

G(j)
nj

= G
(j′)
nj .

Thanks to (H6) j′ ∈ {1, . . . , N}, and in conclusion R ∈ Vrev for B = A + b ∈ Vrev.
Summarizing, we have W ∈ Vrev for A,b ∈ Vrev. To conclude the proof of (ii) in (5.4) we

need to prove v ∈ Vrev ⇒ J−1v ∈ Vrev. From (5.7) we get within Vrev, where J−1 is defined,

ŜĴ−1Ŝ−1 = Ĵ−1.

If v ∈ Vrev, then v̂ = Ŝv̂ and

Ĵ−1v̂ = ŜĴ−1Ŝ−1Ŝv̂ = ŜĴ−1v̂.
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This shows that J−1v ∈ Vrev. We can thus finally solve the fixed point problem (5.2) to
obtain b with |b| < Cε2. Herewith we obtain the following

Proposition 13. Assume (H6) and let A be a reversible non-degenerate solution of the
coupled mode equations (2.3). There exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) the

following holds. Given ~Ψ ∈ X (s) with ‖~Ψ‖X (s) ≤ Cε3, there exists a solution B ∈ Vrev of the
extended coupled mode equations (5.1) such that

|A−B| < Cε2.

Our main result, i.e. Theorem 1, for the bifurcation of nonlinear Bloch waves follows from
Corollary 8, Proposition 13 and the triangle inequality.

6. ACMEs for N = 1 and N = 2

We present here the complete solution structure of the ACMEs for the cases N = 1 and
N = 2.

6.1. One Mode: N = 1. If N = 1, then necessarily also M = 1 since S3({k∗}) = {k∗} for
each k∗ ∈ B. Hence, N = 1 is always consistent. However, only for k∗ ∈ {0, 1

2
}d condition

(H6) is satisfied. The ACMEs (2.3) now have the scalar form

(6.1) ΩA− σµ|A|2A = 0, µ = ‖ξn∗(·, k∗)‖4
L4(P) > 0,

where ξn∗(x, k∗) is the linear Bloch wave for the selected eigenvalue index n∗. Note that n∗
has to be chosen such that (H3) holds. Clearly, nonzero solutions of (6.1) satisfy

|A| =
√

Ω
σµ
,

which implies a bifurcation to the left in ω from ω∗ in the focusing case σ < 0 and to the
right in the defocusing case σ > 0.

6.2. Two Modes: N = 2. Also for N = 2 the solutions of the resulting ACMEs can be
calculated explicitly. We discuss only solutions with A1A2 6= 0. This is without any loss

of generality because if k
(2)
∗ ∈ −k(1)

∗ + Zd, then the reversibility A ∈ Vrev implies A2 = A1

and if k
(2)
∗ /∈ −k(1)

∗ + Zd, then considering only one nonzero component in A is equivalent to
considering the case N = 1.

For N = 2 the form of the ACMEs depends on the choice of {k(1)
∗ , k

(2)
∗ }. There are the

following two cases.

(a) Let

(6.2) 2k(1)
∗ − k(2)

∗ ∈ k(2)
∗ + Zd, i.e. k(1)

∗ ∈ k(2)
∗ + {−1/2, 1/2}d.

This can be easily seen to be the consistent case S3({k(1)
∗ , k

(2)
∗ }) ⊂ {k(1)

∗ , k
(2)
∗ } + Zd,

i.e. the case M = N = 2. In this case we have

A1 = {(1, 1, 1), (1, 2, 2), (2, 2, 1), (2, 1, 2)}, A2 = {(2, 2, 2), (2, 1, 1), (1, 1, 2), (1, 2, 1)},

and the ACMEs read

(6.3)
ΩA1 − σ

[
(µ1111|A1|2 + 2µ1221|A2|2)A1 + µ2121A

2
2A1

]
=0,

ΩA2 − σ
[
(µ2222|A2|2 + 2µ1221|A1|2)A2 + µ2121A

2
1A2

]
=0,
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where the obvious identities µ1221 = µ2112 and µ1212 = µ2121 have been used. A simple
calculation yields that solutions with both A1 and A2 nonzero satisfy

arg(A2) = arg(A1)− arg(µ2121)

2
+ q

π

2
, q ∈ Z,

|A1|2 =
Ω

σ

γ − µ2222

γ2 − µ1111µ2222

, |A2|2 =
Ω

σ

γ − µ1111

γ2 − µ1111µ2222

,

where γ := 2µ1221 + (−1)q|µ2121|.
A solution with A1, A2 6= 0 thus exists for sign(Ω) = sign(σ) if and only if

sign(γ − µ2222) = sign(γ − µ1111) = sign(γ2 − µ1111µ2222)

is satisfied either for q = 0 or q = 1. For sign(Ω) = − sign(σ) the existence follows if
and only if

sign(γ − µ2222) = sign(γ − µ1111) = − sign(γ2 − µ1111µ2222)

either for q = 0 or q = 1.
In order to satisfy the reversibility condition A ∈ Vrev, we need A2 = A1. This is

possible if and only if µ1111 = µ2222 such that |A1| = |A2|. The equality A2 = A1 then
follows if we choose

arg(A1) =
arg(µ2121)− qπ

4
.

(b) If (6.2) does not hold, then we have an inconsistent case M > N = 2,

A1 = {(1, 1, 1), (1, 2, 2), (2, 2, 1)}, A2 = {(2, 2, 2), (2, 1, 1), (1, 1, 2)},

and the ACMEs have the form

ΩA1 − σ(µ1111|A1|2 + 2µ1221|A2|2)A1 =0,

ΩA2 − σ(µ2222|A2|2 + 2µ1221|A1|2)A2 =0.

Solutions with both A1 and A2 nonzero satisfy

|A1|2 =
Ω

σ

2µ1221 − µ2222

4µ2
1221 − µ1111µ2222

, |A2|2 =
Ω

σ

2µ1221 − µ1111

4µ2
1221 − µ1111µ2222

.

Again, the reversibility condition can be satisfied (by choosing arg(A1) = −arg(A2))
if and only if µ1111 = µ2222.

In one dimension d = 1 with N = 2 the only consistent cases satisfying (H6) are

{k(1)
∗ , k(2)

∗ } = {0, 1/2} and {k(1)
∗ , k(2)

∗ } = {−1/4, 1/4}.

In two dimensions d = 2 with N = 2 there are 12 possible sets {k(1)
∗ , k

(2)
∗ } satisfying (H6)

and the consistency, namely{(
0
0

)
,
(

1/2

0

)} {(
0
0

)
,
(

0

1/2

)} {(
0
0

)
,
(

1/2

1/2

)} {(
1/2

0

)
,
(

0

1/2

)}
{(

1/2
0

)
,
(

1/2
1/2

)} {(
0

1/2

)
,
(

1/2
1/2

)} {(
1/4
0

)
,
( −1/4

0

)} {(
0

1/4

)
,
(

0
−1/4

)}{(
1/4
1/4

)
,
(
−1/4
−1/4

)} {(
1/4
−1/4

)
,
(
−1/4
1/4

)} {(
1/2
1/4

)
,
(

1/2
−1/4

)} {(
1/4
1/2

)
,
(
−1/4
1/2

)}
.
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7. Numerical Examples in Two Dimensions d = 2

In the following numerical computations we use the package pde2path [36, 13] for numerical
continuation and bifurcation in nonlinear elliptic systems of PDEs. The package uses linear
finite elements for the discretization, Newton’s iteration for the computation of nonlinear
solutions and arclength continuation of solution branches. In the case N = 1 below we
discretize P2 by 2 ∗ 2002 = 80000 isosceles triangles of equal size. For example B below with
N = 2 we use 2 ∗ 2802 = 156800 triangles. This fine discretization is needed only in the tests
of ε-convergence of the asymptotic error to ensure that the asymptotic error dominates the
discretization error. For all the numerical solutions (solution branches) presented in this and
the following sections we verified that these approximate PDE solutions by standard error
estimators and adaptive mesh–refinement.

For N = 1 we simply write ϕ(x) = eik∗·xη(x) and use real variables η = u1 + iu2 to obtain

0 = −
(

∆u1

∆u2

)
+ 2

(
k∗ · ∇u2

−k∗ · ∇u1

)
+ (|k∗|2 − ω + V (x))

(
u1

u2

)
+ σ(u2

1 + u2
2)

(
u1

u2

)
(7.1)

on the torus T2 = R2/(2πZ2). For the consistent case with N > 1 we may plug ϕ(x) =∑N
j=1 e

ik
(j)
∗ ·xηj(x) with 2π–periodic ηj into (1.2) and collect terms multiplying eik

(j)
∗ ·x in sep-

arate equations. Setting ηj = u
(j)
1 + iu

(j)
2 we obtain a real system of 2N equations for

u = (u
(1)
1 , u

(1)
2 , . . . , u

(N)
1 , u

(N)
2 ).

We may then use two methods to generate branches of NLBs. The first is to let pde2path
find the bifurcation points from the trivial branch u = 0 and then perform branch switching
to and continuation of the bifurcating branches. This is what we did in Example 1 from the
Introduction to obtain Figure 2. However, as due to the phase invariance the eigenvalues
of the linearization of (7.1) are always double, this needs some slight modification of the
standard bifurcation detection and branch–switching routines of pde2path, see [14, §2.6.4].
Thus, in the examples below we alternatively use the asymptotic approximation ϕ(x) =

ε
∑N

j=1Ajξnj(x, k
(j)
∗ ) as the initial guess in the Newton’s iteration for the first continuation

step near ω = ω∗.
We choose the potential (1.4), which is the same as in [15]. The band structure along

the boundary of the irreducible Brillouin zone is plotted in Fig. 1(b), and in Example 1 we
already gave an overview of the lowest bifurcations at point X with N = 1. In the following
examples we consider in more detail the points marked (A),(B),(C). Note that (C) is not a

case of high symmetry points as k
(1)
∗ = −k(2)

∗ = (1/4, 1/4) /∈ {0, 1/2}2.

7.1. Numerical Example for N = 1. For N = 1, d = 2 the only cases which satisfy (H6)
are

k∗ = (0, 0), k∗ = (1/2, 0), k∗ = (0, 1/2), and k∗ = (1/2, 1/2).

k∗ = (1/2, 0) with N = 1 was considered in Example 1, and in §7.2 we reconsider this k+ at
point (B) in Fig. 1 with N = 2. Here we present in some more detail nonlinear Bloch waves
bifurcating from point (A) with k∗ = (1/2, 1/2).

Example A. We choose k∗ = (1/2, 1/2) and ∂σ(−∆ + V ) 3 ω∗ = ω1(k∗) ≈ 1.703, see
point (A) in Fig. 1. This leads to µ = ‖ξ1(·, k∗)‖4

L4(P) ≈ 0.0765 and choosing Ω = σ and

arg(A) = 0, we get

A = 1√
µ
≈ 3.6154.
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Figure 3 shows the continuation diagram (in the (ω, ‖ϕ‖L2(P2))-plane) of the nonlinear Bloch
waves bifurcating from ω∗ for σ = −1 and σ = 1, the asymptotic curves (ω∗ + Ωε2, ε|A|)
for ε ≥ 0, and the error between the two in the log-log scale. The observed convergence
rate is 3.11, in agreement with Theorem 1. In Fig. 4 we plot profiles ϕ and the asymptotic
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‖ϕ− ϕasymp‖L2

line with slope 3.11

Figure 3. Left: Bifurcation diagram in the (ω, ‖ϕ‖L2(P2))-plane for example A: N = 1, k∗ =

(1
2 ,

1
2). Dashed lines: approximation ‖ϕ‖L2(P2) ∼ |A|

√
(ω − ω∗)/Ω with Ω = σ = ±1. Curves

bifurcating to the left/right of ω∗ are for σ = ∓1, respectively. The spectrum σ(−∆ + V ) is

plotted on the horizontal axis. Right: Error for σ = −1, where ϕasymp := εAξ1(x, k∗).

approximation εAξ1(x, k∗) at ω = ω∗ + ε2Ω with ε ≈ 0.12, i.e. close to the bifurcation point,
see points (A1-) and (A1+) in Fig. 3, and ϕ at ω ≈ 2.75 for σ = 1, i.e. far from the bifurcation,
cf. point (A2+). The asymptotic approximation is real since the Bloch wave ξ1(x, k∗) has
been selected real. This is possible as k∗ is one of the high symmetry points Γ, X,M .

Figure 4. Nonlinear Bloch waves for example A. (a) and (b): real and imaginary part of

the approximation εAξ1(x, (1/2, 1/2)) at ε = 0.12; (c) and (d): real and imag. part of ϕ at

(A1-) in Fig. 3; (e) and (f): real and imag. part of ϕ at (A1+) (σ = 1 and ω = ω∗+ σε2); (g)

and (h): real and imag. part of ϕ at (A2+)

7.2. Numerical Examples for N = 2. We present computations for two consistent exam-
ples with N = M = 2, cf. §6.2 (a), where the ACMEs (6.3) are valid. In example B we
choose ω∗ ∈ ∂σ(−∆ + V ) and in example C we take ω∗ ∈ int(σ(−∆ + V )).
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Example B: We choose k
(1)
∗ = (1/2, 0), k

(2)
∗ = (0, 1/2), ∂σ(−∆ + V ) 3 ω∗ = ω2(k

(1)
∗ ) =

ω2(k
(2)
∗ ) ≈ 2.035, see point (B) in Fig. 1. Choosing real Bloch waves ξ2(·, k(1)

∗ ), ξ2(·, k(2)
∗ )

(possible due to the real boundary conditions in (1.5)), we obtain

µ1111 = µ2222 = ‖ξ2(·, k(1)
∗ )‖4

L4(P) ≈ 0.0901,

µ2121 = µ1221 =

∫
P2

ξ2(x, k(1)
∗ )2ξ2(x, k(2)

∗ )2dx ≈ 0.003,

where the equalities between the µ coefficients follow by the symmetry ξ2((x1, x2), k
(1)
∗ ) =

ξ2((x2, x1), k
(1)
∗ ) and the fact that real Bloch waves ξ2(x, k

(1)
∗ ), ξ2(x, k

(2)
∗ ) have been chosen.

The resulting values of |A1| and |A2| are |A1| = |A2| ≈ 3.17567 and in order to satisfy
reversibility, we choose zero phases, such that

A1 = A2 ≈ 3.17567.

The non-degeneracy condition is satisfied as our computation of the eigenvalues of Ĵ produces

λ1 ≈ −0.1223, λ2 = 0, λ3 ≈ 1.6332, λ4 = 2.

The continuation diagram in Fig. 5 plots the families of nonlinear Bloch waves bifurcating

from ω∗ for σ = −1 and σ = 1, the asymptotic curves (ω∗ + Ωε2, ε‖
∑2

j=1 Ajξ2(·, k(j)
∗ )‖L2(P2))

for ε ≥ 0, and the ε−convergence of the approximation error for this case. The solutions ϕ
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Figure 5. Left: Bifurcation diagram in the (ω, ‖ϕ‖L2(P2))-plane for example B: N =

2, k
(1)
∗ = (1/2, 0), k

(2)
∗ = (0, 1/2). Full lines: numerically computed solution ϕ; dashed

lines: asymptotic approximation ‖ϕ‖L2(P2) ∼
√

(ω − ω∗)/Ω‖
∑2

j=1Ajξ2(·, k(j)
∗ )‖L2(P2) with

Ω = σ = ±1. Right: error for σ = −1, ϕasymp := ε
∑2

j=1Ajξ2(x, k
(j)
∗ ).

at the points (B-), i.e. ω = 1.8304, and (B+), i.e. ω = 2.2392, marked in Fig. 5 are plotted

in Fig. 6 together with the asymptotic approximation ε
∑2

j=1 Ajξ2(x, k
(j)
∗ ) at ω = ω∗ + ε2Ω

with ε ≈ 0.452 ≈
√
ω∗ − 1.8304 ≈

√
2.2392− ω∗. Despite the large value of ε the asymptotic

approximation is relatively good.

Example C: Finally, we take k
(1)
∗ = (1/4, 1/4), k

(2)
∗ = (−1/4,−1/4), int(σ(−∆ + V )) 3

ω∗ = ω1(k
(1)
∗ ) = ω1(k

(2)
∗ ) ≈ 1.576, see Point (C) in Fig. 1. Fixing the free complex phase of
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Figure 6. Nonlinear Bloch waves for example B. (a) and (b): real and imaginary part of the

asymptotic approximation ε
∑2

j=1Ajξ2(x, k
(j)
∗ ) at ε = 0.452; (c) and (d): real and imaginary

part of ϕ at (B-) in Fig. 5, i.e. for σ = −1 and ω = ω∗ + σε2; (e) and (f): real and imaginary

part of ϕ at (B+) in Fig. 5, i.e. for σ = 1 and ω = ω∗ + σε2.

the Bloch waves by setting Im(ξ1((0, 0), k
(1)
∗ ) = Im(ξ1((0, 0), k

(2)
∗ ) = 0, we obtain

µ1111 = µ2222 = µ1221 = ‖ξ1(·, k(1)
∗ )‖4

L4(P) ≈ 0.0526,

µ2121 =

∫
P2

ξ1(x, k(2)
∗ )2ξ1(x, k

(1)
∗ )

2

dx ≈ 0.0412.

The identities µ1111 = µ2222 = µ1221 follow from ξ1(x, k
(2)
∗ ) = ξ1(x, k

(1)
∗ ), and µ2121 ∈ R follows

because Im(ξ1(x, k
(1,2)
∗ )) happen to be antisymmetric in the x1 = x2 direction. The resulting

values of A1 and A2 (once again selected real due to µ2121 ∈ R) are

A1 = A2 ≈ 2.242.

Also here the non-degeneracy condition is satisfied as our computation of the eigenvalues of
Ĵ produces λ1 ≈ −0.9427, λ2 ≈ −0.828, λ3 = 0, λ4 = 2.

The continuation diagram from ω∗ for σ = −1 and σ = 1 and an error plot for σ = −1
are in Fig. 7, and the solutions ϕ at the points (C∓) with ω = 1.31, ω = 1.842, are in

Fig. 8 together with the asymptotic approximation ε
∑2

j=1Ajξ1(x, k
(j)
∗ ) at ω = ω∗+ ε2Ω with

ε ≈ 0.516 ≈
√
ω∗ − 1.31 ≈

√
1.842− ω∗.

8. Gap solitons, out–of–gap solitons, and tNLBs

NLBs play an important role in the bifurcation structure of many other solutions of (1.2).
As the numerical computations below suggest, when solutions with decaying tails are con-
tinued from spectral gaps into spectrum of −∆ + V , they delocalize as the tails become
oscillatory with the oscillation structure agreeing with a certain NLB. This puts NLBs in a
strong connection with other prominent solutions of (1.2).
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Figure 8. Nonlinear Bloch waves for example C. (a): the approximation

ε
∑2

j=1Ajξ1(x, k
(j)
∗ ) with ε = 0.516; (b) and (c): ϕ at (C-) and (C+) resp. in Fig. 7.

In (b) σ = −1 and ω = ω∗ − ε2 ≈ 1.31 and in (c) σ = 1 and ω = ω∗ + ε2 ≈ 1.842.

8.1. 1D simulations. We first consider (1.2) in 1D with V (x) = sin2(πx
10

), which is a stan-
dard choice in 1D. See Fig. 9(a) for the band–structure, which shows the gaps (s2, s3) and
(s4, s5). The first five spectral edges are, approximately,

s1 ≈ 0.2832, s2 ≈ 0.2905, s3 ≈ 0.7468, s4 ≈ 0.8434, s5 ≈ 1.0568.

For suitable σ = ±1, so called gap solitons bifurcate from the edges into a gap [1, 3, 30].
We display here gap soliton families bifurcating for σ = 1 to the right from edge s2 and for
σ = −1 to the left from s3. To study these numerically, we consider (1.2) on a large domain
x ∈ (−100, 100) with Neumann boundary conditions, and obtain the bifurcation diagram in
Fig. 9(b), where moreover we restrict to real solutions.

The gap solitons can be continued in ω well into the gap. In fact, numerically they can
also be continued into the next spectral band (and even further into higher gaps and bands),
where they are called out–of-gap solitons (OGS) [41, 24]. During this continuation the tails of
the OGS pick up the oscillations from the NLB that bifurcates at the first gap edge, where the
continuation family enters the spectrum, i.e., the A branch of OGS picks up the oscillations
from the NLB branch ANLB that bifurcates at s3 to the right. Moreover, the numerics then
show that the tails of the OGS are given by ANLB for all ω > s3. The same can be observed
for the B-family, where the OGS tails are given by BNLB for all ω < s2. Thus, an OGS is a
homoclinic orbit to a NLB.

Besides GSs the NLB play a role in the delocalization of many other solutions. In Fig. 10
we show two other solution branches for illustration. The B branch is an example of a so
called truncated NLB (tNLB), [4, 38, 42]. Point B0 at ω = 0.5 on that branch is obtained
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Figure 9. Panel (a): the band–structure for V (x) = sin2(πx
10

); (b): a bifurcation
diagram of GS and NLBs for (1.2) in 1D, σ = 1. (c) and (d): plots of the GS at AGS

and BGS resp.; (e)-(h): OGS and NLB at the remaining marked points.

from using

ϕIG(x) = asech(x2/w), a = 0.5, w = 50,(8.1)

as an initial guess for a Newton–loop for (1.2). It is homoclinic to 0 and composed of three
periods of the NLB bifurcating from s1 in the middle. That is why such solutions are called
truncated NLBs. By varying, e.g., w in (8.1), we can in fact produce tNLBs composed of
any number of periods of the NLB.

An important feature of tNLBs is that they do not bifurcate from 0, in contrast to the GS.
In fact, as a tNLB approaches the gap edge next to the ω value where its building–block NLB
bifurcates, it turns around while picking up a negative copy of the pertinent NLB. See also
[37] for a further discussion (in 2D). On the other hand, tNLBs behave quite similarly to GS
upon continuation through the other gap–edge: the tails again pick up the NLB bifurcating
at the edge (the tNLBs in Fig. 10 pick up the NLB family bifurcating from s3 in Fig. 9), and
afterward can be continued to arbitrarily large ω as homoclinics to these NLBs, still being
close to the original NLB in the middle. For these delocalized tNLBs we suggest the acronym
dtNLBs.

Finally, as there are “arbitrarily long” tNLBs, it is not surprising that there also exist
heteroclinics between 0 and NLBs. Upon continuation in ω these essentially behave like
tNLBs, see the C branch in Fig. 10 for an example.

A rigorous analysis of OGS, tNLBs, dtNLBs, and the above heteroclinics remains an
intriguing open problem, even in 1D. For the 1D case with narrow gaps a system of first
order differential coupled mode equations for the envelopes of the linear gap edge Bloch
waves is derived in [41]. Under suitable conditions, this system has spatial homoclinic orbits
to nonzero fixed points, which thus corresponds to dtNLBs or OGS. However, presently it is
not clear how to make this analysis rigorous. In [24] some explicit OGS solutions are given for
the case of a 1D discrete NLS. Concerning tNLBs, [43] gives so called composition relations,
which however are rather heuristic. Delocalized (or generalized) solitary waves also occur in
other nonlinear equations, in particular from fluid dynamics. See, e.g., [7, Chapters 1 and
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6.4] for a review, and a guide to the literature for rigorous existence proofs, for instance [35]
for the case of the fifth-order KdV equation. The solutions studied in this literature, however,
typically have exponentially small tails, which is different from our OGS and dtNLBs, where
the amplitude of the tails is that of the NLBs, i.e. O(ε1/2) in the bifurcation parameter ε as
given by (2.1).

8.2. 2D simulations. In 2D similar effects as in Figs. 9 and 10 occur, but the solution
structure becomes much richer, also qualitatively. For instance, since in 1D the pertinent
NLS amplitude equation is scalar, there typically is only one GS bifurcating at some sj
(modulo phase invariance, and on–site or off-site effects, see [30]). In 2D, in many cases the
GS are described by systems of NLS equations, see [15], and there may be various different
GSs. Moreover, while typically in 1D different tNLBs at fixed ω only differ in the number
of NLB periods, and the number and arrangements of “ups” and “downs”, in 2D we can
easily produce qualitatively different tNLBs. Accordingly, in the references already cited,
in particular [37], various families of 2D tNLBs have been studied, with focus on the fold
structure near one of the gap-edges.

However, the continuation of either tNLBs or GSs into the other spectral band seems to
be much less studied, but see also [39]. Here we restrict ourselves to just illustrating the
continuation of two (real) families of GS to OGS. We return to the potential (1.4), and in
Fig. 11 continue the σ = ±1 GS from the first gap into the respective other spectral band.
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Numerically we again use a large domain x ∈ (−40π, 40π)2 with Neumann boundary condi-
tions. For the GS these boundary conditions hardly matter, but the way in which the tails
pick up NLBs as the GS enter the spectral bands does significantly depend on the boundary
conditions, as should be expected. For instance, in (b) we find dislocations in the tail patterns
along the coordinate axes, and in (e) along one of the diagonals. Numerically, these disloca-
tions strongly depend on the chosen domain size and boundary conditions. Nevertheless, in
all cases considered the tails of the GS again pick up a pertinent NLB in large parts of the
domains. Figure 11 just gives two illustrations.
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Figure 11. Continuation of 2D–GS from the first spectral gap to OGS, see the text for

comments.

Note that in 2D there is typically a number of NLB families bifurcating from a given point
in the spectrum, cf. Theorem 1 with N > 1. At ω = s3 the level set of the band structure is
{(1/2, 0), (0, 1/2)}, i.e. to capture at least all the NLBs predicted by Theorem 1 to bifurcate
from s3, we must take N = 2. The resulting ACMEs are (6.3). The NLB family B in Fig.
11, which happens to describe the oscillations in AOGS, has A1 = A2 ∈ R. In general it is
not clear how to choose the correct solution of ACME which matches the tail oscillations in
a given OGS in dD with d ≥ 2.
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8.3. Remarks on stability of NLBs, GS, tNLBs, and OGS and dtNLBs. Dynamic
stability of GS, NLBs, (localized and delocalized) tNLBs and OGS is an important but widely
open question. Previous work, mostly based on numerics and formal asymptotics, include
the following: In [22] and [6] it is shown that, so called, on-site GSs in 1D are spectrally
stable while off-site ones are unstable. [31] and [40] show that 2D GSs near the spectral
edge from which they bifurcate, are spectrally unstable but can be stable further away from
the edge. Next, [20] gives numerics and formal asymptotics that indicate that GS near the
middle of (narrow) band gaps may be unstable due to a four wave mixing with the gap edge
NLBs. In [25] it is discussed that modulational instability of 1D NLBs bifurcating from gap
edges into the gap can lead to the formation of GS, while NLBs bifurcating from the edge
into the spectrum are stable. Some semi-analytical results on the stability of NLB at the
bottom of the band structure are given in [9], where, together with the secondary bifurcations
from NLBs, exchange of stability results are derived under some assumptions, and numerical
justifications and comparisons to numerical time–integration are given. Regarding tNLBs, in
[38] it is shown numerically that tNLB of the type B0 in Fig. 10, i.e., consisting of arbitrary
many periods of NLBs of the same parity, can be stable, while tNLB on the upper branch,
consisting of up and down copies of the basic NLB, are generically unstable.

Here we report some stability results from numerical time integration of (1.1) using a
Fourier split-step method. We plug ψ(t, x) = eiωtϕ(t, x) into (1.1) to obtain

i∂tϕ = ∆ϕ− (V (x)− ω)ϕ− σ|ϕ|2ϕ.(8.2)

Since (1.1) is Hamiltonian, we can at best obtain spectral stability (but not linearized sta-
bility) from linearization of (8.2) around a steady state ϕ(x, t) = ϕ0(x) of interest (NLB,
GS, tNLB etc). As initial conditions we choose random perturbations of the steady state
ϕ0, with perturbation amplitude 0.1 relative to the amplitude of ϕ0. These perturbations
yield a phase evolution, and thus here we concentrate on the solution shape, i.e., we plot
the supremum error ‖|ϕ(·, t)| − |ϕ0(·)|‖∞ of the modulus. This should provide an indication
regarding stability of the solutions at hand and motivate further stability studies. Our nu-
merical accuracy was checked by using smaller time steps without visible changes of results,
by comparison with a semi–implicit time stepping, and we checked that ‖ϕ‖L2 was conserved
up to 6 digits over the rather long time intervals needed in some cases to detect instabilities.

We mostly focus on 1D, and start with the NLBs. In order to draw a connection between
stability of NLBs and OGSs, we restrict ourselves to NLBs bifurcating at gap edges in Fig. 9.
We choose the periodicity cell x ∈ Ω = (−10, 10) for ϕ, which corresponds to wave-vectors
k = 0 and k = 1/2. However, the results appear to be the same for larger domains, i.e.,
if we observe instabilities, then they are w.r.t. the same spatial period. Below we use the
symbol sn± to denote the NLB families bifurcating from a spectral edge sn to the right and
left respectively.

Panels (a)-(d) in Fig. 12 are for the NLB branch s3+ in Fig. 9 for σ = 1. As an example
in (a),(b) we choose ω = 0.76 and observe a stable evolution up to t = 1000. In (c), (d)
the NLB at ω = 0.9, i.e. further away from the bifurcation edge, is shown to be unstable.
An analogous situation occurs for the s2− family of NLB for σ = −1. It appears stable for
ω ∈ (0.2, s2) and unstable for ω < 0.2.

Our tests suggest that similar stability results (stability near the bifurcation edge and
instability otherwise) hold also for other NLB branches bifurcating into the spectral bands in
Fig. 9. The stability near the bifurcation edge is in agreement with [25]. The loss of stability
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Figure 12. Numerical integration of (8.2) with initial data as random 10% perturbations

of the indicated NLB in (a)-(d) and OGS in (e)-(h). The NLB-branch s3+ appears stable at

bifurcation and unstable otherwise. The OGS family s2+ entering the spectrum at ω = s3

seems to inherit the (in)stability of the NLB.

of NLB away from a neighborhood of the bifurcation point is presumably due to a secondary
“loop” bifurcation as discussed in [9].

Given the results on the NLBs from Fig. 12 (a)-(d), we may expect that the OGS with
tails picking up the s3+ NLBs at s3 inherit the (in)stability from the NLBs s3+ NLBs and
hence is stable at ω = 0.76 and unstable at ω = 0.9. This is, indeed, observed in Fig. 12
(e)-(h). Note that one does not expect any instability from the GS “component” of the OGS
since we work with on-site GSs, which have been reported in [22] and [6] to be stable.

Next, the NLB branch s1+ bifurcating from s1 to the right for σ = 1 is stable throughout
the first band and the first gap. Thus, another relevant question is whether the associated
tNLBs inherit this stability of their building blocks. In accordance with, e.g., [38], this is the
case for tNLB consisting of copies of NLBs with the right parity, i.e., only up or only down
copies of s1+ NLBs; see for instance the tNLBs B0 and C0 from Fig. 10. In a next step we
then studied the stability of dtNLBs obtained from the continuation of such tNLBs across
the s3 gap edge. This is in complete agreement with the stability of OGS, i.e., the dtNLBs
obtained from B0, C0 (see B1, C1 in Fig. 10) are stable for small ω−s3>0 but become unstable
for larger ω−s3. On the other hand, we found that tNLBs consisting of up and down copies
of NLBs (e.g., B2, C2 in Fig. 10) are unstable, as in [38]. For instance, for C2 the leading
down NLB is first converted into an up NLB, and then a defect wanders to the right.

In 2D, the NLBs from Fig. 2 all appear modulationally unstable, with however very long
transients before the instability sets in for the branches bifurcating at smaller ω, and this
also holds for the other NLBs, for instance given in §7.2. Moreover, the 2D-GS are expected
to be unstable near bifurcation, but may become stable in the middle of gaps, see [23] for
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rigorous results in the semi-infinite gap, and [40, §6.4] for further heuristics. This agrees with
our numerics, where e.g., solutions on the AGS branch from Fig. 11 are numerically unstable
for ω < 1.8, then stable up to ω = s3. However, the OGS for ω > s3 with tails containing
BNLB NLBs is clearly unstable numerically.

Thus, besides analytical results regarding the existence and stability of tNLBs, OGS and
(d)tNLB, an interesting open problem is whether in 2D there exist potentials V such that

(1) (1.1) has stable GS;
(2) (1.1) has stable NLBs bifurcating from gap edges;
(3) putting (1) and (2) together: (1.1) has stable OGS.
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