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Abstract

We present a numerical framework to treat infinite time horizon spatially distributed optimal
control problems via the associated canonical system derived by Pontryagin’s Maximum Principle.
The basic idea is to consider the canonical system in two steps. First we perform a bifurcation
analysis of canonical steady states using the continuation and bifurcation package pde2path, yield-
ing a number of so called flat and patterned canonical steady states. In a second step we link
pde2path to the two point boundary value problem solver TOM to study time dependent canonical
paths to steady states having the so called saddle point property. As an example we consider a
shallow lake model with diffusion.
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1 Introduction

Many intertemporal optimization problems in applied science, specifically economics, are described by
optimal control (OC) problems with an infinite time horizon where the state dynamics are given by
some ordinary differential equation (ODE) [CH87, Cla90, GCF+08]. One central method of solution
of such OC problems is Pontryagin’s Maximum Principle [PBGM62], where the so called canonical
system, consisting of the state ODE and an associated adjoint ODE for the co–states, is derived as a
necessary optimality condition, and where for the infinite horizon case a crucial point are the so called
limiting transversality conditions for t→∞ [AK07, AV12, Tau15].

For optimal control problems with the states fulfilling a partial differential equation (PDE), the
theory is well developed in the stationary case, or for evolutionary problems over finite time horizons
[0, T ], where some conditions at the final time T need to be imposed. See, e.g., [Trö10], [RZ99a, RZ99b]
or [AAC11, Chapter 5], and §2.2 for further references. However, a strict mathematical proof of
Pontryagin’s Maximum Principle in the PDE setting over an infinite time horizon is still missing.
Nevertheless, in [BX08] this approach has been transfered to OC problems involving diffusion, and
after the formal derivation of the canonical systems for some example problems the authors show
the remarkable result that under certain conditions on the Hamiltonian there occurs a Turing like
bifurcation from flat to patterned steady states of the canonical system, and call this phenomenon
optimal diffusion-induced instability.

Here we present a numerical framework to (a) study such bifurcations of canonical steady states
numerically in a simple way, and (b) study their optimality by computing and evaluating time–
dependent canonical paths to such canonical steady states. As a model problem we consider one of
the three examples presented in [BX08], namely a version of the, in the field of ecological economics,
well-known shallow lake optimal control (SLOC) model, cf. [Sch98, MXdZ03, CB04].

1



We use the acronyms FCSS and PCSS for flat and patterned canonical steady states, respectively.
The SLOC model has up to three (branches of) FCSS in relevant parameter regimes, and in these
regimes we also find a large number of (branches of) PCSS. In this situation of multiple canonical
steady states a local stability analysis at a given canonical steady state is in general not sufficient to
discuss their optimality. Here, local stability analysis means that the stationary canonical system is
analyzed, analogous to a steady-state analysis of the canonical system in the ODE setting. It is well
known and shown for many models that the appearance of multiple canonical steady states (even if
these steady-states are saddle-points) does not necessarily imply the appearance of multiple steady-
states in the optimal system, cf. [GCF+08, KW10]. The reason is that there can exist non–constant
extremal solutions, i.e. canonical paths connecting the state values of a given canonical steady state to
some other canonical steady state, and yielding a higher objective value. Therefore, to study whether
a canonical steady state is optimal, the values of canonical paths also have to be considered.

Here we numerically compute the bifurcation behavior of FCSS and PCSS for the diffusive SLOC
model in some detail, and study their optimality by evaluation of their objective values J and compar-
ison to time-dependent canonical paths. Such a global analysis is inevitable and has to accompany the
local stability analysis. Since in general the pertinent ODEs or PDEs cannot be solved analytically
we have to use numerical methods for the calculation of FCSS and in particular PCSS, and for the
calculation of canonical paths. For the steady state problem we use the continuation and bifurcation
software pde2path [UWR14], based on a spatial finite element method discretization, which we then
combine with the boundary value problem (BVP) solver TOM to obtain canonical paths.

A standard reference on ecological economics or “Bioeconomics” is [Cla90], which also contains
a very readable account, and applications, of Pontryagin’s Maximum Principle in the context of
ODE models, while [GCF+08] focuses more on socio–economical ODE model applications. Besides in
[BX08], and in [BX10], PDE models roughly similar to our diffusive SLOC model are considered in,
e.g., [LW07, AAC11, DHM12, ACKLT13, ADS14], partly including numerical simulations. However,
these works are in a finite time horizon setting, and with control constraints, which altogether gives a
rather different setting from the one considered here. See Remark 2.2 for further comments.

In §2 we present the SLOC model. To give some background, in §2.1 we briefly present the 0D
(ODE) version, and some basic concepts of optimal control, in particular Pontryagin’s Maximum
Principle. In §2.2 we turn to the distributed case and explain the associated canonical system. In §3
we explain the numerics to first compute the bifurcation diagram of canonical steady states, and then
find canonical paths. We mostly focus on one spatial dimension (1D), but also give a short outlook
on the 2D case. It turns out that in the parameter regimes studied here the PCSS are not optimal,
but nevertheless they play a relevant role. Moreover, calculating optimal canonical paths to FCSS
yields interesting and to some extent counter–intuitive information about the optimal control of the
distributed SLOC model.

In §4 we close with a short summary and discussion, and Appendix A contains remarks about the
saddle point property for canonical steady state in a PDE setting, starting on the discretized level.

Our software, including demo files and a manual to run some of the simulations in this paper, can be
downloaded at [Uec16b]. In fact, the present paper is the first in a series of four related works, the other
three being [Uec15, Gra15, Uec16a]: [Uec15] contains a Quickstart guide and implementation details
of the add on package p2poc to pde2path used for the computations in this paper. Thus, the reader
interested in these details should read (parts of) [Uec15] in parallel. Next, [Gra15] explains the usage
of OCMat orcos.tuwien.ac.at/research/ocmat_software/ to study 1D distributed OC problems
based on spatial finite difference approximations, with the same SLOC model as in the present paper
as an example, and thus obtaining comparable results, but also studying a second parameter regime.
Finally, in [Uec16a] we apply p2poc to an OC problem for a reaction–diffusion system modeling a
vegetation-water-harvesting interaction. In contrast to the SLOC model studied here, this yields
dominant patterned optimal steady states in wide parameter regimes, and thus interesting new results
on spatial patterns in optimal harvesting.
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2 The model, and background from optimal control

2.1 The shallow lake model without diffusion

A well known non–distributed or 0D version of the SLOC model, see e.g. [Wag03], can be formulated
in dimensionless form as

V (P0) := max
k(·)≥0

J(P0, k(·)), J(P0, k(·)) :=

∫ ∞
0

e−rt Jc(P (t), k(t))dt, (1a)

where Jc(P, k) = ln k − γP 2 (1b)

is the current value objective function, and P fulfills the ODE initial value problem

Ṗ (t) = k(t)− bP (t) +
P (t)2

1 + P (t)2
, P (0) = P0 ≥ 0. (1c)

Here r, γ, b > 0 are parameters, P = P (t) is the phosphorus contamination of the lake, which we want
to keep low for ecological reasons, and k = k(t) is the phosphate load, for instance from fertilizers
used by farmers, which farmers want high for economic reasons. The objective function consists of
the concave increasing function ln k, and the concave decreasing function −γP 2; b is the phosphorus
degradation rate in the lake, and r is the discount rate. The discounted time integral in (1a) is typical
for economic (or socio-political) problems, where “profits now” weight more than mid or far future
profits. More specifically, r often corresponds to a long-term investment rate. Following [Wag03] we
focus on the parameter choice

r = 0.03, γ = 0.5, b ∈ (0.5, 0.8) (primary bifurcation parameter), (2)

which is mainly motivated by the fact that in this regime the model has so called Skiba points, see
§3.3.2. The max in (1a) runs over all admissible controls k and (associated) states P ; for k we can take
the space C0

b ([0,∞), [0,∞)), and for P the space C1
b ([0,∞),R). In fact, we naturally have k(t) > 0

for all t as Jc(k, P )→ −∞ as k ↘ 0 and the equilibrium P̂ = k̂ = 0 is not optimal, cf.[Wag03]. Thus,
one can choose some ε > 0 and restrict the admissible controls to satisfy k(t) ≥ ε.

By Pontryagin’s Maximum Principle [PBGM62], see also, e.g., [GCF+08], an optimal solution
(P ∗(·), k∗(·)) has to satisfy the first order optimality conditions

k∗(t) = argmax
k

H(P (t), k, q(t), q0) for almost all t ≥ 0, (3a)

with the local current value Hamiltonian function

H(P, k, q, q0) := q0Jc(P, k) + q

(
k − bP +

P 2

1 + P 2

)
. (3b)

The state P (·) and costate q(·) paths are solutions of the canonical system1

Ṗ (t) = ∂qH(P (t), k∗(t), q(t)) = k∗(t)− bP (t) +
P (t)2

1 + P (t)2
, (4a)

q̇(t) = rq(t)− ∂PH(P (t), k∗(t), q(t)) = 2γP (t) + q(t)

(
r + b− 2P (t)

(1 + P (t)2)2

)
, (4b)

with

P (0) = P0 > 0,

additionally satisfying the transversality condition

lim
t→∞

e−rtP (t)q(t) = 0. (5)

1It can be proved that the problem is normal, i.e. q0 > 0, and hence w.l.o.g. q0 = 1 can be assumed and is therefore
subsequently omitted.
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A solution (P (·), q(·)) of the canonical system (4) is called a canonical path, and a steady state of
(4) is called a canonical steady state. Due to the strict concavity and continuous differentiability of
the Hamiltonian function with respect to the control k, and the absence of control constraints, the
solution of (3a) is given by

∂kH(P (t), k(t), q(t)) = 0 which yields k∗(t) = − 1

q(t)
. (6)

Consequently, for (P (·), q(·)) a canonical path, i.e., a solution of the canonical system, with a slight
abuse of notation we also call (P, k) with k = −1/q a canonical path. In particular, if (P̂ , q̂) is a
canonical steady state, so is (P̂ , k̂). Canonical paths yield candidates for optimal solutions, defined as
follows:

Definition 2.1. (P ∗(·), k∗(·, P0)) is called an optimal solution of (1) if for every admissible k(·) and
associated P (·) we have

J(P0, k(·)) ≤ J(P0, k
∗(·, P0)) = V (P0).

Then k∗(·, P0) is called an optimal control, P ∗(·) is called the corresponding optimal (state) path, and

Ṗ (t) = k∗(t, P0)− bP (t) +
P (t)2

1 + P (t)2
(7)

is called the optimal ODE. A constant solution (P ∗(·), k∗(·, P0)) ≡ (P̂ , k̂(P̂ )) of (7) is called an optimal
steady state.

It turns out that the long-run behavior of an optimal solution (P ∗(·), k∗(·)) can be characterized
completely, see, e.g., [Wag03]. Each optimal solution converges to an optimal steady state, and
depending on the parameters (4) can have I = 1, 2, 3 canonical steady state (P̂ , q̂)i, i = 1, . . . , I.2 For
simplicity omitting the non-generic case I = 2, if I = 1 then the unique canonical steady state is
a globally stable optimal steady state, while for I = 3 two canonical steady state are locally stable
optimal steady states, and the third is unstable. Here, an optimal steady state (P̂ , q̂) is called globally
(locally) stable if for each P (0) (in a neighborhood of P̂ ) the associated optimal path converges to
(P̂ , q̂); see [KW10, Kis11] for a detailed discussion.

Setting
u := (P, q),

and letting û be a steady state of (4), the problem now is to compute a path, or “connecting orbit”,
with P (0) = P0 and lim

t→∞
u(t) = û. One standard approach, see, e.g. [LK80, DCF+97, BPS01] and

in particular [GCF+08, Chapter 7], is to treat (4) on a finite time interval [0, T ] and to require
u(T ) ∈ Ws(û), where Ws(û) is the local stable manifold of û. In practice we approximate Ws(û) by
the stable eigenspace Es(û), and thus require

u(T ) ∈ Es(û) and close to û. (8)

To obtain a well defined two point boundary value problem we then need dimEs(û) = 1. We now
generalize this to distributed problems, and thus in §3 explain further details on that level.

2.2 The shallow lake model with diffusion

Following [BX08] we consider the shallow lake model with diffusion in a domain Ω ⊂ Rd, d = 1, 2, i.e.,

V (P0(·)) := max
k(·,·)≥0

J(P0(·), k(·, ·)), J(P0(·), k(·, ·)) :=

∫ ∞
0

e−rt Jca(P (t), k(t)) dt, (9a)

2 cf., e.g., the FCSS branches in Fig. 1 for our specific parameter choice.
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where Jca(P (·, t), k(·, t)) =
1

|Ω|

∫
Ω
Jc(P (x, t), k(x, t))dx (9b)

is the spatially averaged current value objective function (with Jc(P, k) = ln k − γP 2 as before), and
P fulfills the initial boundary value problem

∂tP (x, t) = k(x, t)− bP (x, t) +
P (x, t)2

1 + P (x, t)2
+D∆P (x, t), (9c)

∂νP (x, t)|∂Ω = 0, P (x, t)|t=0 = P0(x), x ∈ Ω ⊂ Rd, (9d)

where ∆ = ∂2
x1 + . . .+ ∂2

xd
, and ν is the outer normal of Ω.

We normalize Jca by the domain size |Ω| for easy comparison between the 0D, 1D, and 2D cases,
and, more generally, between different domains. We mostly focus on Ω = (−L,L) a real interval, but
also give an outlook to 2D. In 2D the model is somewhat less intuitive, as a controlled phosphate
dumping in the “middle” of the lake from farming appears difficult to motivate, and thus in 2D we
rather think of (9) as a general pollution model. Instead of the periodic boundary conditions (BC) in
1D in [BX08] we require Neumann (zero flux) BC, which from a modeling point of view we find more
reasonable because a body of water with torus geometry is somewhat unnatural, in particular in 2D.

Introducing the costate q : Ω× (0,∞)→ RN and the (local current value) Hamiltonian

H = H(P, q, k) = Jc(v, k) + q
[
k − bP +

P 2

1 + P 2
+D∆P

]
, (10)

by techniques of optimal control for PDE from [Lio71, LY95], typically again called Pontryagin’s
Maximum Principle, one may formally (see Remark 2.2) derive a canonical system for (9), which
reads

∂tP (x, t) = [∂qH](x, t) = k(x, t)− bP (x, t) +
P (x, t)2

1 + P (x, t)2
+D∆P (x, t), (11a)

∂tq(x, t) = rq(x, t)− [∂PH](x, t) = 2γP (x, t) + q(x, t)

(
r + b− 2P (x, t)

(1 + P (x, t)2)2

)
−D∆q(x, t), (11b)

∂νP (x, t)|∂Ω = 0, ∂νq(x, t)|∂Ω = 0, P (x, t)|t=0 = P0(x), x ∈ Ω, (11c)

where k = argmaxk̃H(P, q, k̃), which similar to (6) is obtained from

∂kH(P, q, k) = 0 ⇔ k(x, t) = − 1

q(x, t)
. (11d)

The costate q also fulfills zero flux BC, and derivatives like ∂PH etc are taken variationally, i.e., for

H(t) =

∫
Ω
H(P (x, t), p(x, t), k(x, t)) dx. (12)

For instance, for Φ(P, q) := q∆P we have Φ(P, q) =
∫

Ω q∆P dx =
∫

Ω(∆q)P dx by Gauß’ theorem,
hence δPΦ(P, q)[h] =

∫
(∆q)hdx, and by the Riesz representation theorem we identify δPΦ(P, q) and

hence ∂PΦ(P, q) with the multiplier ∆q.
Finally, we impose the transversality condition

lim
t→∞

e−rt
∫

Ω
q(x, t)P (x, t)dx = 0, (13)

which is needed for going from the Lagrangian (see [BX06, Appendix])

L(P, q, k) =

∫ ∞
0

e−rt
[∫

Ω
Jc(P, k)− q

(
∂tP −

(
k − bP +

P 2

1 + P 2
+D∆P

))
dx

]
dt
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to the Hamiltonian H̃ =
∫∞

0 e−rtH(t) dt, i.e., for integration by parts in t to obtain

−
∫ ∞

0
e−rt

∫
Ω
q(x, t)∂tP (x, t) dx dt =

∫
Ω
q(x, 0)P (x, 0) dx

+

∫ ∞
0

e−rt
∫

Ω
P (x, t)(∂tq(x, t)− rq(x, t)) dx dt.

We now give a definition analogous to Def. 2.1, which however is somewhat ad hoc, because for instance
we refrain from giving function spaces for (P, q), or (P, k), and hence use “admissible” in a heuristic
sense k(x, t) > 0 for all x ∈ Ω, t ∈ [0,∞). In fact, ultimately we will only consider (11) as a system of
ODEs after spatial discretization, see also Remark 2.2.

Heuristic definition. Let (P ∗(·, ·), k∗(·, ·, P0)) be an optimal solution of problem (9), i.e. for every
admissible k(·, ·) and associated P (·, ·) we have

J(P0, k(·, ·)) ≤ J(P0, k
∗(·, ·, P0)) = V (P0).

Then k∗(·, ·, P0) is called a (distributed) optimal control, P ∗(·, ·) is called the associated distributed
optimal (state) path, and

∂tP (x, t) = k∗(x, t, P0(x))− bP (x, t) +
P (x, t)2

1 + P (x, t)2
+D∆P (x, t), ∂νP (x, t)|∂Ω = 0, (14)

is called the optimal PDE. Again with a slight abuse of notation, (P ∗, k∗) is also called an optimal
path, and an optimal stationary solution (P̂ (·), k̂(·)) of (11) is called an optimal steady state. If
P̂ (·) ≡ P̂ then the optimal steady state is called a flat optimal steady state, otherwise it is called a
patterned optimal steady state.

For convenience we let u = (P, q), and call solutions u(·, ·) of (11) canonical paths, and steady
states û(·) of (11) canonical steady states. Moreover, we use the acronyms FCSS for flat canonical
steady states (û(·) ≡ û) and PCSS (patterned canonical steady state) otherwise. Obviously, the FCSS
correspond precisely to the 0D canonical steady state from §2.1. It was already indicated in [BX08]
that (11) can additionally have PCSS arising from Turing like bifurcations. Thus, we first calculate
bifurcation diagrams of steady states for (11), in 1D and 2D, recovering the up to 3 branches of FCSS
from §2.1, and many branches of PCSS. Next, analogous to the 0D case, we expect a solution of (9)
to converge to some canonical steady state û. Thus, we only consider solutions u(·, ·) of (11) with
limt→∞ u(·, t) = û(·), where û(·) is a canonical steady state.

Remark 2.2. (a) As already said in the Introduction, a strict mathematical proof of Pontryagin’s
Maximum Principle for diffusion problems over infinite time horizons is still missing, specifically for
the transversality condition (13), which in the Appendix of [BX06] was used to derive (11) from L
by the above formal variational argument. Alternatively, one could first discretize (9) in space and
then for a given discretization for instance apply the theory from [Tau15] to obtain a spatially discrete
version of (11), and the transversality condition in [Tau15, Corollary 4.1]. In the spatially discrete
sense this is equivalent to (13). The crucial assumption (A2) from [Tau15] holds for k bounded away
from zero, and as in the 0D case in §2.1 we expect this to hold due to term ln k in the objective
function, which in particular yields that no optimal steady state with k(x) = 0 for some x ∈ Ω exists.
Of course, to obtain a rigorous argument from [Tau15] for the PDE problem (9), the constants in
[Tau15] must be controlled uniformly in the discretization, and we refrain from this analysis here.
Thus, at the moment apply Pontryagin’s Maximum Principle in an ad hoc sense.

(b) See also [RZ99a, RZ99b, DHM12, ACKLT13] and in particular [LY95, Chapter 4] and [AAC11,
Chapter 5] for Pontryagin’s Maximum Principle for OC problems for semilinear parabolic state evo-
lutions. However, these works are in a finite time horizon setting, and often the objective function is
linear in the control and there are control constraints, e.g., k(x, t) ∈ K with some bounded interval
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K. Therefore k is not obtained from the analogue of (11d), but rather takes values from ∂K, which is
usually called bang–bang control. In, e.g., [Neu03] and [DL09], stationary spatial OC problems for a
fishery model with (active) control constraints are considered, including numerical simulations, which
correspond to our calculation of canonical steady states for the SLOC model. Here we do not (yet)
consider explicit control or state constraints, and have an objective function strictly concave in the
control, and thus we have a rather different setting than the above works.

(c) We summarize that we do not aim at new theoretical PDE results, but rather consider (11)
after a spatial discretization as a (large) ODE problem. Moreover, we specifically assume, based on
the results for the 0D shallow lake model, that canonical paths converge to canonical steady states,
and therefore make no use of the “critical” transversality condition (13).3 Thus, we first compute a
detailed bifurcation diagram of canonical steady states, and then aim to find orbits connecting general
initial states to these steady states. This means that we take a broader perspective than computing
just one (possibly non–unique) optimal control, given an initial condition P0. Instead, our method
aims to give a somewhat global picture by identifying the pertinent canonical steady states and their
respective domains of attraction. c

3 Numerical algorithm, and results

The general idea is to use a method of lines discretization of (11), i.e., to approximate

u(x, t) := (P (x, t), q(x, t)) =

2n∑
i=1

ui(t)φi(x), (15)

where (φi)i=1,...,2n spans a subspace Xn of the phase space X of (11), e.g., here X = [H1(Ω)]2, and
(ui, un+i), i = 1, . . . , n, are the expansion coefficients of P, q, respectively. This converts (11) into a
(high dimensional) ODE

u̇(t) = −G(u(t)), ui(0) = u0,i, i = 1, . . . , n, (16a)

for the coefficient vector u = (ui)i=1,...,2n, where we have initial data for exactly half of the expansion
coefficients. We choose a truncation time T and augment (16a) with the approximate transversality
condition

u(T ) ∈ Es(û), and ‖u(T )− û‖ small, (16b)

where û is a steady state of (16a), and Es(û) is spanned by the eigenvectors of −∂uG belonging to
eigenvalues with negative real parts. To choose an arbitrary initial point in the state space we then
need

dimEs(û) = dimEu(û), (17)

which gives rise to the following definition.

Definition 3.1. A canonical steady state û ∈ R2n with ns := dimEs(û) = n is called a saddle point
canonical steady state. The number d(û):=n−ns is called the defect of û, and a canonical steady state
û with defect d(û) > 0 is called defective.

In App. A we show that always d(û) ≥ 0, explain that d(û) is mesh-independent for well resolved
meshes, and discuss possible extension of the saddle point property d(û) = 0 to PDEs, which is not

3As noted in §2.1, for the 0D SLOC problem (1) all canonical paths converge to a steady state; in particular, (4) has
no periodic orbits, and this can be proven analytically via Poincaré–Bendixon, see [Wag03]. For the distributed model
(11), or its high-dimensional ODE counterpart via spatial discretization, we cannot rule out periodic orbits a priori, but
we found no Hopf bifurcations in the (numerical) bifurcation analysis in §3.
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straightforward since Es(û) (and Ws(û)) and Eu(û) (and Wu(û)) are infinite dimensional for the PDE
case. Here we first continue with the discretized system (16a). Arguably, the simplest discretization
for (15), at least in 1D, is a finite difference scheme, which has the advantage that we can directly use
OCMat for (16a),(16b), see [Gra15]. However, here we opt for a finite element ansatz for (15), using
the setting of pde2path [UWR14, DRUW14] for two reasons:

1. We want to consider (9) and hence (11) also on general 2D domains, and for more general models
where the state variables may be vector valued functions already, see §4, again in 1D or 2D. In
all these cases, finite differences and the coding of the respective spatially discrete systems may
become rather cumbersome, while pde2path provides convenient interfaces precisely for such
systems. Moreover, for more complicated systems adaptive meshes may become important,
which are more easily handled in a finite element discretization, and are already an integral part
of pde2path.

2. As explained above, the canonical system may have many stationary states; it is thus desirable
to use a continuation and bifurcation package to find canonical steady states. The goal then is to
“seamlessly” link the setting of pde2path for stationary problems with boundary value problem
(BVP) solvers for (16).

On the other hand, a drawback of spatial finite element discretizations is that the associated
evolutionary problems have the natural form

Mu̇(t) = −Ku(t) +MF (u(t)) =: −G(u(t)), (18)

where u corresponds to the nodal values, M,K ∈ R2n×2n are called the mass matrix and the stiffness
matrix, respectively, and F : R2n → R2n is the nonlinearity. 4 The occurrence of M on the left hand
side of (18) creates problems for the usage of standard BVP solvers. Thus we modified routines from
the BVP solver TOM [MS02, MST09]5 to handle M on the left hand side. For speedup it is advisable
to avoid numerical differentiation and hence to pass a Jacobian function ∂uG = fjac(t, u) to TOM,
additionally to the right side G from (18). This is generically very easy as pde2path already provides
a fast and easy way to assemble Jacobians. See [Uec15] for implementation details.

3.1 Computing paths to saddle point canonical steady states

To calculate canonical paths from a given state P0 that connect to some saddle point canonical steady
state û we want to solve the two-point BVP

Mu̇(t) = −G(u(t)), t ∈ (0, T ), (19a)

Pi(0) = P0,i, i = 1, . . . , n, (n left BC), (19b)

Ψ(u(T )− û) = 0 ∈ Rn (n right BC), (19c)

where Ψ ∈ Rn×2n encodes the projection onto the unstable eigenspace, i.e. Ψ(u− û) = 0 for u ∈ Es(û),
and where T is the chosen truncation time. The calculation of Ψ at startup, which for large n turns
out to be one of the bottlenecks of the algorithm, also gives a lower bound for the time scale T via
T ≥ 1

−Reµ1
, where µ1 is the eigenvalue with largest negative real part, i.e., gives the slowest direction

of the stable eigenspace of û. In our simulations we typically use T between 50 and 100.
In general, a BVP solver needs a good initial guess of t 7→ u(t) to solve problem (19). Therefore

we embed problem (19) into a family of problems replacing (19b) by

P (0) = αP0 + (1− α)P̂ , α ∈ [0, 1], (19d)

where we assume that for some α the solution is known: this holds for instance for α = 0 with the
trivial solution u ≡ û. We may then gradually increase α, using the last solution as the new initial
guess. This is implemented in the algorithm summarized in Table 1.

4The “-” signs in (18) comes from the convention that pde2path discretizes −∆ as K (positive definite).
5see also http://www.dm.uniba.it/~mazzia/bvp/index.html
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There are more sophisticated variants of the simple continuation in Step 2 of Table 1 (some of
which are implemented in OCMat), but the simple version in general works well for the problems we
considered. Nevertheless, it may be that no solution of (19a), (19c) and (19d) is found for α > α0 for
some α0 < 1, i.e., that the continuation to the intended initial point fails. In that case usually the
BVP problem undergoes a fold bifurcation. We then use an adapted continuation step 2′ that allows
us to continue solutions around the fold.

Step 0 (selection of û and implementation of (19c)). Given û we solve the generalized adjoint
eigenvalue problem ∂uG(û)TΦ = ΛMΦ for the eigenvalues Λ and (adjoint) eigenvectors Φ,
which also gives the defect d(û). If d(û) = 0, then from Φ ∈ C2n×2n we generate a real
base of Eu(û) which we sort into the matrix Ψ ∈ Rn×2n.

Step 1 (selection of initial mesh and initial guess). To start the BVP solver we choose the initial
guess u(t) ≡ û on a suitable initial grid 0 = t0 < t1 < . . . < tm = T . Typically, we choose
m = 20 at startup, and afterwards TOM uses its own mesh-adaption strategy.

Step 2 (solution and continuation). Using (19d) we try to increase α in small steps δ to α = 1,
in each step using the previous solution as the new initial guess, often trying δ = 1/4.
After thus having computed the first two solutions we may use a secant predictor for the
subsequent steps.

Step 2′ (arclength continuation). If the continuation fails for α > α0 with α0 < 1, then we use
a pseudo–arclength continuation for a modified BVP, letting α be a free parameter.

Table 1: The continuation–algorithm iscont (Initial State Continuation); Steps 0,1 are preparatory,
Step 2 or 2′ is repeated. See [Uec15] for implementation details, and for remarks on performance.

Remark 3.2. (a) For some applications it is useful to rescale the time t = Tτ and hence consider
Mu̇(τ) = TG(u(τ))) on the normalized time interval τ ∈ [0, 1], which turns the truncation time T
into a free parameter. This is for instance implemented in OCMat, but for simplicity not used here.

(b) Similarly to the normalized normalized objective value Jca in (9b), in the bifurcation diagrams
we use the normalized L2 norm for comparison between different domains and space dimensions, i.e.,
henceforth, ‖P‖2 := ‖P‖L2/

√
|Ω|, and in the table in Fig. 1 we present averaged values, i.e.,

〈P 〉 :=
1

|Ω|

∫
Ω
P (x) dx, 〈k〉 :=

1

|Ω|

∫
Ω
k(x) dx. (20)

To take the finite truncation time T into account we let

J̃(k(·), T ) := J(P0(·), k(·, ·)) +
e−rT

r
Jca(P (T ), k(T )). (21)

Obviously, for T � 1

r
the last term can be made arbitrarily small, while for canonical steady state it

yields the exact (discounted) objective value. In the following we drop the tilde in (21), and write,
e.g., Jû for the objective value of a canonical steady state û, and, e.g., JP0→û for the canonical path
which connects P0 to û. c

3.2 1D canonical steady states

Recall that first we use pde2path to study the steady state problem for (16a), i.e.,

0 = − 1

q(x)
− bP (x) +

P (x)2

1 + P (x)2
+D∆P (x), (22a)

0 = 2cP (x) + q(x)

(
r + b− 2P (x)

(1 + P (x)2)2

)
−D∆q(x), (22b)
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∂νP (x)|∂Ω = 0, ∂νq(x)|∂Ω = 0. (22c)

where additionally to (2) we choose the diffusion constant D = 0.5 as in [BX08], and Ω = (−L,L) in
1D. The steady states of the canonical system for the 0D model (1) are FCSS of (22), and for easy
reference we introduce the acronyms in Table 2. The FCSS are of course independent of the domain,
but to search for PCSS bifurcating from FCSS, the domain size 2L should be close to a multiple of
2π/kc, where kc is the wave number of a Turing like bifurcation. The parameters in (2), with b near
0.7, yield kc ≈ 0.44 [BX08], and for simplicity we then choose L = 2π/0.44 ≈ 14.28.

name description

FSM Flat State Muddy, the upper FCSS branch with a high phosphor load P
FSI Flat State Intermediate, the upper half of the second FCSS branch, intermediate P
FSC Flat State Clean, the lower half of the second FCSS branch, low P

Table 2: Classification of the FCSS branches, see also Fig.1. The high P state is also called eutrophic,
and our “muddy” refers to the fact that under eutrophic conditions there are a lot of algae and other
organic matter in the lake, while the low P regime is called oligotrophic conditions, and typically gives
much “cleaner” water.

Continuing the FSI branch in b we find a number of Turing like bifurcations to PCSS, and follow four
of these; see Fig. 1a,b for the bifurcation diagram(s), and (c) for example solutions6. On the branches
p1,p2, and p3 there are secondary bifurcations, not further considered here. For the subsequent
examples we focus on b = 0.75 and b = 0.65, compute the defects d(û) for all canonical steady state,
and find d(û) = 0 only for the FSM, for the FSC, and for some points on the p1 branch, e.g. at point
71 between the folds (see Fig. 1).

3.3 1D canonical paths

For b = 0.75, the only canonical steady state is the FSM (FSM/pt20). It has d(û) = 0, we can
reach it from an arbitrary initial state P0, and thus it is a globally stable flat optimal steady state.
Therefore, this regime is not very interesting, and we immediately turn to the case b = 0.65 with
multiple canonical steady state.

For b = 0.65 seven canonical steady states are marked in Fig. 1a, and characterized in the table,
where only three are saddle points. These are the FSC (which has the maximal value among these
canonical steady states), the FSM, and the PCSS p1/pt71, subsequently denoted as ûPS. Next we
numerically analyze which of these canonical steady states belong to optimal paths.

3.3.1 PCSS with d(û) > 0

From the analysis of non-distributed optimal control problems we know that canonical steady states
with d(û) > 0 can nevertheless be optimal. To illustrate that this is at least not typical in the SLOC
model, we first compare the objective value of some (arbitrary chosen) canonical steady states, e.g.,
the PCSS ûPS−(·) p3/pt19 with d(û) = 3, with that of the t–dependent canonical paths ui(·, ·) which
connect to ûi(·), i ∈ {FSC,FSM,PS}. For the objective values we write JPS− for the canonical steady
state, and, e.g., JPS−→FSC for the canonical path which goes from PPS− to ûFSC. The optimal solution
for P0 = P̂PS− has to satisfy

V (P̂PS−) = max{JPS− , JP̂PS−→FSC, JP̂PS−→FSM, JP̂PS−→PS}. (23)

The canonical paths are given in Fig. 2a–c, while (d) presents some norms along the path in (a), which
show that and how fast u(t) (including the co–states q) converges to û. In all cases we find without

6The notation, e.g., p1/pt16 follows the pde2path scheme, e.g.: continuation step 16 on the branch p1 is stored in
folder p1 and file pt16.mat.
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(a) bifurcation diagram,
(normalized) L2 norm over b

(b) current values Jc,a over b (c) sample canonical steady states

(d) Characteristics of points in (a)-(c).
name 〈P 〉 〈k〉 J d name 〈P 〉 〈k〉 J d

FSM/pt20 1.22 0.32 -63.11 0 p1/pt16 0.61 0.14 -74.83 1
FSM/pt11 1.44 0.26 -79.28 0 p1/pt71 1.24 0.22 -78.93 0
FSI/pt36 0.87 0.13 -79.47 5 p2/pt16 0.76 0.15 -76.70 2
FSC/pt12 0.45 0.12 -72.95 0 p3/pt19 1.02 0.17 -79.48 3

Figure 1: Basic bifurcation diagrams (a) and (b), example plots (c), and characteristic values of
selected canonical steady state (d). In (a), the blue and black lines represent the FCSS, and for
instance the red line p1 contains patterned canonical steady state with one “interface” between high
and low P . The numbered points on all these lines correspond to selected solutions plotted in (c), and
characterized in (d). The small circles in (a) denote bifurcation points. The values Jca and J = Jca/r
of the canonical steady state are all negative, but this is merely a question of offset.

problems canonical paths to both FCSS and to the PCSS; in particular the path to the FSM is rather
quick.

For the objective values we find, up to 2 significant digits,

JPS−=− 79.48 < JPS−→FSC=− 78.24 < JPS−→PS=− 78.19 < JPS−→FSM=− 77.5. (24)

Thus, the optimal path is the one converging to ûFSM. Repeating these steps for every PCSS with
d(û) > 0 we find that these are always dominated by paths converging to one of the FCSS. Therefore,
only ûFSC, ûFSM and ûPS remain as candidates for optimal steady state.

Before we turn to determining optimal steady states we briefly discuss the canonical paths in
Fig. 2. We focus on (a), but similar remarks apply to (b,c) as well. In (a), the initial P (·, 0) is above
the target P̂FSC, so naively we may expect that the control k should start below the target k̂FSC and
slowly increase to k̂FSC. However, such a control would not be optimal. Instead, k is initially similar
to k̂PS− , and in particular k(·, 0) is large where P0(·) is already large. Only after a short transient k
drops below k̂FSC and then behaves as expected.

At first sight, this startup behavior of k may appear rather counter–intuitive. However, the reason
is that we do not want to drive the system to ûFSC “as quickly as possible”, which essentially would
amount to choosing k “as small as possible” at startup. Instead, we want to maximize J , and for this
it pays off to have, for a short transient, k large near the maxima of P (·, 0). To illustrate this point,
in Fig. 2(e) we choose the naive control k(t) ≡ kFSC for all t and numerically integrate the initial
value problem (9c). While this does take us to ûFSC, the first observation is that this needs a rather
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(a) canonical path from p3/pt19 to FSC (b) canonical path from p3/pt19 to FSM

(c) canonical path from p3/pt19 to PS (d) diagnostics for (a) (e) P for a naive control

Figure 2: Canonical paths from the (state values of) PCSS− p3/pt19 to FSC (a), FSM (b), and PS
(c) at b = 0.65, and typical path diagnostics (d). For comparison, (e) shows the solution P of the
initial value problem (9c) with P (0) as in (a) and the externally chosen control k(t) ≡ kFSC for all t.

long time. Secondly, for the value of this solution we obtain J = −80.1, which is even worse than the
starting canonical steady state with JPS−=− 79.48.

3.3.2 Determining optimal steady states

We return to the question whether one or more of the saddle point canonical steady states at b = 0.65
are optimal, and proceed in three steps. First we search for a canonical path starting at P̂PS and
connecting to ûFSC. In the second step we repeat that for ûFSM, and in the last step we check if both
or only one of the FCSS are optimal.7

Paths between P̂PS and ûFSC – a Skiba candidate. Using iscont to get a canonical path
starting at P̂PS and converging to the FSC it turns out that the continuation (19d), i.e.,

Pα(0) := αPPS + (1− α)PFSC, (25)

yields a fold around α ≈ 0.6, see the blue curve in Fig. 3a), and that no canonical path connecting
P̂PS to ûFSC exists. Instead, multiple solutions that converge to ûFSC exist for initial distributions of
the form (19d) with α ∈ [0.6, 0.71]; two examples are shown in Fig. 3b, and their diagnostics in (c).

Similarly, trying to continue to a path that connects P̂FSC and ûPS yields a fold (green curve in (a)),
and no such path exists. However, the solutions returned during the continuation process allow us to
determine and compare the respective objective values. This yields that there exists a specific initial
distribution PS where the objective values are equal, given by the intersection of the green and blue
curves in Fig. 3a. Thus, from an economic point of view both solutions are equal. This suggests that
PS is a Skiba or indifference threshold point (distribution)8, well known from non-distributed optimal

7The second step reveals that the first step is superfluous, but this we do not know a priori.
8however, taking into account also the FSM solution, below we identify PS as only a Skiba candidate
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(d) A Skiba candidate between PPS and FSC
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(e) Ji,a for FSM target
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Figure 3: Canonical paths to various canonical steady state for b = 0.65, and illustration of some
Skiba points; see text for details.

control problems, see, e.g., [Wag03, KW10]. The paths u starting at PS (red curve) are depicted in
Fig. 3d: P (·, 0) is the same for both solutions, but the controls k(·, 0) are different. In any case, to
assure that these solutions are optimal we have to prove that no other dominating solution exists.
Thus in a last step we calculate the objective values of the paths converging to ûFSM.

From P̂PS to ûFSM. Here the continuation is successful and we find a path connecting P̂PS to ûFSM.
Comparing the objective values reveals that ûPS is dominated by this path, see Fig. 3e and 3f. Thus,
the ûPS is ruled out as an optimal steady state, and therefore we a posteriori identify PS as only a
Skiba candidate as it does not separate two optimal steady states.

A Skiba manifold between P̂FSM and P̂FSC. It is well known that in 0D the FSC and FSM are
only locally stable with regions of attractions separated by a Skiba manifold (parametrized by, e.g.,
b) of homogeneous solutions, [KW10], see Fig. 3g for our case b = 0.65. Of course, this also yields a
homogeneous Skiba distribution in 1D, see Fig. 3h. More generally, we may expect the domains of
attraction of the FSC and the FSM to be separated by a Skiba manifold MS , which in the continuum
limit becomes infinite dimensional.

A continuation process, analogous to the non-distributed case, see [Gra12], could be used to ap-
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proximate this manifold MS . However, to find a non homogeneous example point on that manifold,
here we can readily combine Fig. 3a and 3e, to find a Skiba distribution of the form

PSkiba = αP̂FSC + (1− α)P̂PS; (26)

see Fig. 3i for paths to the FSC and the FSM yielding the same J = −76.3.

Summary for 1D. The picture that emerges is as follows: for b > bfold ≈ 0.727 the FSM as the only
canonical steady state is the globally stable optimal steady state, while for b < bfold there exist multiple
canonical steady state. Specifically for b = 0.65, ûFSC, ûFSM and one of the PCSS are saddle points,
but only ûFSC and ûFSM are optimal, and in particular no patterned optimal steady states exist. The
flat optimal steady states FSC and FSM are separated by a (presumably rather complicated) Skiba
manifold MS , and Fig. 3h and 3i show just two examples of points on MS .

3.4 Outlook: 2D results

As a 2D example we consider (11) on the domain Ω = (−L,L)× (−L/2, L/2), L = 2π/0.44 as before,
with a rather coarse mesh of 40× 20 points, hence approximately 1600 DoF. The FCSS branches are
of course the same as in 1D (or 0D), and again at the end of the FSI branch we find a number of
Turing like bifurcations. In Fig. 4(a),(b) we only present the “new” patterned branches, i.e., those
with a genuine x and y dependence.

(a) Two 2D PCSS branches (b) some example plots

Figure 4: New patterned branches in 2D; (x, y) ∈ (−L,L)× (−L
2 ,

L
2 ).

These new bifurcating PCSS have d(û) > 0. As an example for a canonical path, in Fig. 5 we
present snapshots from a path from P̂ of the PCSS h2/pt17 to the FSC, which yields a higher J than
the PCSS, i.e.,

J(PCSS) = −77.53 < J(PCSS→ FSC) = −76.23 < J(FSC) = −72.97. (27)

Thus, this PCSS is not optimal, and neither is any other one we checked. Using the methods from
§3.2 it is now of course also possible to find points with a genuine x and y dependence on the Skiba
manifold separating FSC and FSM, but here we skip this presentation.

The behavior and economic interpretation of the path from the PCSS to FSC in Fig. 5 is rather
similar to the convergence to FSC in Fig. 2a. After a short transient the optimal strategy is to give
a high phosphate load k where P is below the limit value P̂FSC (south-west and north-east corners of
the domain), but initially there also is a high k at high P values (north-west and south-east corners).

4 Discussion

We have presented a numerical framework to treat infinite time horizon spatially distributed optimal
control problems. First we derive the canonical PDE systems, which we then discretize in space and
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Figure 5: Solutions on the canonical path to FSC

thus approximate by large systems of ODEs. For these we can resort to the theory and experience with
non-distributed optimal control problems. Thus our results are intrinsically numerical; however, we
believe that they can help to develop the theoretical concepts for distributed optimal control problems.

From the economic point of view, the computation of canonical paths to the flat optimal steady
states yields nontrivial and interesting results. Even more interesting would be locally stable patterned
optimal steady states, but there is strong evidence that these do not exist for the shallow lake model
(9), at least in the parameter regimes we considered so far.9 On the other hand, in [Uec16a] we use our
method to study the vegetation system from [BX10], and find that patterned optimal steady states
dominate in large parameter regimes. We believe that the same happens in many other important
systems. Natural candidates, i.e., systems with natural objective functions and controls, are related
vegetation systems as in [SZvHM01, ZKY+13], fishery models as in [Neu03, Gra12], or “crimo-taxis”
systems as in [SBB10].

A The saddle point property for PDEs

In this appendix we discuss the saddle point property (Def. 3.1) in a somewhat more general situation,
tailored to canonical systems coming from spatial discretizations of PDEs. Let û = (p̂, q̂) ∈ R2N be a
stationary state of a (non–distributed) canonical system of the form

d

dt

(
p
q

)
= F (p, q) :=

(
f(p, q)

rq −Hp(p, q))

)
, (28)

where f = Hq, and let J = DuF (û) be the Jacobian at û. In [GCF+08, Thm 7.10] it is explained that
the eigenvalues of J are symmetric around r/2, i.e., that there exist N complex numbers ξi such that

σ(J) =
{r

2
± ξi : i = 1, . . . , N

}
. (29)

In detail, since det(J − ξ) = det(Jr − (ξ − r
2)) where

Jr := J − r

2
=

(
Hpq − r

2 Hqq

−Hpp −Hpq + r
2

)
, (30)

we have that r
2 + ξi ∈ C is an eigenvalue of J if and only if ξi is an eigenvalue of Jr. But Jr has the

structure

(
A B
C −A

)
with symmetric matrices B,C ∈ RN×N , and as a consequence the eigenvalues of

Jr are ξi = ±
√
ξ̃i, i = 1, . . . , N .

9 See however “Scenario 2” in [Gra15] for some locally stable patterned optimal steady states
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Now consider the distributed canonical system

∂t

(
p(x, t)
q(x, t)

)
= F (p(x, t), q(x, t)) +

(
D∆p(x, t)
−D∆q(x, t)

)
, (31)

where D ∈ RN×N is a diffusion matrix, i.e., positive definite. Let

d

dt
u(t) = G(u(t)), u ∈ R2nN , (32)

be the associated spatially discretized system with n spatial points, where u = (p(x1), . . . , p(xn),
q(x1), . . . , q(xn)) ∈ R2nN , and let û ∈ R2nN be a steady state of (32). Then J = DuG(û) has the
structure J = −K + Jlocal, where Jlocal has the block structure

Jlocal =



H1
pq 0 . . . 0 H1

qq 0 . . . 0

0 H2
pq . . . 0 0 H2

qq . . . 0
...

...
. . . . . .

...
...

. . .
...

0 0 . . . Hn
qq 0 0 . . . Hn

qq

−H1
pp 0 . . . 0 r −H1

qp 0 . . . 0

0 −H2
pp . . . 0 0 r −H2

qp . . . 0
...

...
. . . . . .

...
...

. . .
...

0 0 . . . −Hn
pp 0 0 . . . r −Hn

qp


, (33)

composed of local matrices Hj
pq := Hpq(p(xj), q(xj)), H

j
qq, H

j
pp ∈ RN×N , and K =

(
L 0
0 −L

)
with

L ∈ RnN coming from the discretization of D∆. The notation K of course reflects the finite element

background of the present paper, but the same structure

(
L 0
0 −L

)
occurs for any discretization, in

any space dimension, and for any D not necessarily diagonal, i.e., containing cross diffusion.
It follows that again r

2 + ξi is an eigenvalue of J if and only if ξ is an eigenvalue of Jr := J − r
2 ,

where Jr has the structure

Jr =

(
A B
C −A

)
, with symmetric B,C ∈ RnN .

Applying [GCF+08, Lemma B.2, Lemma B.3] we obtain

Theorem A.1. Let û be a steady state of the spatially discretized distributed system (32), and let J
be the associated Jacobian. Then there exist ξi ∈ C, i = 1, . . . , nN , such that

σ(J) =
{r

2
± ξi : i = 1, . . . , nN

}
. (34)

As a consequence, dimEs(û) ≤ Nn, and the only candidates û for right BC in (19c) are those with
d(û) = 0. As a corollary we find a property that, on the discretized level, is equivalent to d(û) = 0.

Corollary A.2. Let û ∈ R2nN be an equilibrium of the spatially discretized distributed system (32)
and r > 0. Then d(û) = 0 iff every eigenvalue ξ of the Jacobian J(û) satisfies

‖Re ξ − r

2
‖ > r

2
. (35)

Theorem A.1 is formulated on the discretized level, and the question is how it ultimately relates
to the PDE. As a first step one can ask: Let a steady state û ∈ R2nN of (32) be an approximation
of a PDE steady state (p̂, q̂) ∈ X for (31), with X ⊂ {(p, q) : Ω → R2N} some function space, e.g.,
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X = [H1(Ω)]2N . If ˜̂u ∈ R2ñN is an approximation of (p̂, q̂) on a finer mesh ñ > n, or just a different
mesh, do we have

nN − dimEs(û) = ñN − dimEs(˜̂u) ? (36)

Heuristically, if Ec(û) = ∅, i.e., σ(J) ∩ {Reξ = 0} = ∅, then (36) is true, for large enough n, ñ.
Given some û, this can be easily tested numerically, and it is also clear from an analytical point of view.
Refining û to ˜̂u we essentially add high frequency modes to the mesh. These introduce the same number
of additional eigenvalues at large positive and negative ξ for the linearization J̃ , because JF (p, q) :
X → X is relatively compact with respect to the Laplacian, i.e., w.r.t. (p, q) 7→ (D∆p,−D∆q). On
the other hand, the small eigenvalues µi, |µi| < R for some fixed R, are only slightly perturbed, i.e.,
|µi − µ̃i| ≤ C‖û∗ − ˜̂u‖, where û∗ is suitably defined, for instance by interpolating û to the mesh of ˜̂u.
But ‖û∗ − ˜̂u‖ → 0 as n, ñ→∞, which yields a positive answer to (36).

To make this rigorous, we need to define appropriate function spaces and study the approximation
properties of the spatial discretization. This is easy, as the stationary problem for (31) can be written
as an elliptic system, and hence (p, q) is arbitrary smooth, but we omit the details here.

Importantly, (35) can also be formulated on the PDE level and might therefore replace the saddle
point property from Def. 3.1 for spatially distributed models. However, we also postpone an in depth
analysis of this to future work.
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