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Abstract

We consider a cubic nonlinear wave equation with highly oscillating cubic coefficient

and wave packet initial data. Using a regularization step of the initial data, we give a low

regularity justification of the Nonlinear Schrödinger equation as the envelope equation.

1 Introduction

Amplitude equations are an ubiquitous tool to describe complicated physical systems modeled

by partial differential equations. A phenomenon of particular interest is the propagation of

wave packets, e.g. light pulses in dispersive media. This has been addressed in various physical

settings, i.e. in linear and nonlinear media with or without oscillating coefficients. A non-

exhaustive list of work on amplitude equations for wave packet propagation is [Kal88, KSM92,

Sch98, SU01, GS01, MN02, SW04, SU03, Sch05, BSTU06, SU07]. In this amplitude formalism

(AF), first by a multiple scaling ansatz the amplitude equation is derived, which typically takes

the form of a (nonlinear) Schrödinger equation with constant so called effective coefficients.

Then, in a second step, the amplitude equation is justified by estimates for the error between

solutions of the full system and the approximation by the AF.

Our purpose here is to improve the AF to regularity assumptions on the data that are lower

than in previous results. We consider the cubic Klein–Gordon equation

ε2∂2t uε − ∂2xuε + ε−2uε + cεu
3
ε = 0, (1)

where uε = uε(t, x) ∈ R, t ≥ 0, x ∈ R, and where cε is highly oscillating with period ε, i.e.,

cε(x) := c(x/ε) with small ε and c ∈ L2((0, 1) extended via c(y + 1) = c(y) for y ∈ R. This can

be generalized in various ways, for instance to oscillating coefficients for the linear terms, but for

simplicity we stick to (1). On the other hand, the oscillating nonlinear coefficient cε gives some

averaging effects which go beyond the case of constant c; see Remark 1.1 for further comments.
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The conserved energy for (1) is

E(t) = E(uε(t)) :=

ˆ
1

2

[
(ε2∂tuε(t, x))2 + (ε∂xuε(t, x))2 + u2ε(t, x)

]
+
ε2

4
cεu

4
ε(t, x) dx. (2)

If for simplicity we restrict to the case c(y) ≥ 0 for all y ∈ [0, 1), then we immediately obtain

the uniform a priori–estimate

‖uε(t)‖2E := ε4‖∂tuε(t)‖2 + ε2‖∂xuε(t)‖2 + ‖uε(t)‖2 ≤ 2E(t) = 2E(0) for all t (3)

in the energy norm ‖uε‖E , where here and in the following always ‖ · ‖ = ‖ · ‖L2(R), i.e.,

‖uε(t)‖2 =

ˆ
u2ε(t, x)dx.

From (3) we obtain global existence of solutions of (1). However, without the sign condition

on c(y), which we do not assume in this paper, (3) is wrong, and good estimates for ‖uε(t)‖E
depend on the class of initial conditions (IC).

We consider IC in the form of wave–packets

uε(0, x) = v0(x)e1(0, x/ε) + εg1(x) + v̄0(x)e−1(0, x/ε) + εḡ1(x),

∂tuε(0, x) = ε−2v1(x)e1(0, x/ε) + ε−1g2(x, x/ε) + ε−2v̄1(x)e−1(0, x/ε) + ε−1ḡ2(x, x/ε),
(4)

with e±1(τ, y) = exp(±i(k0y − ω0τ), y = x/ε, τ = t/ε2, v0, g1 ∈ H1(R), v1, g2 ∈ L2(R), and

where v1 is related to v0 in a certain way, specified in Theorems 2.3 and 2.5 below. Here ¯

denotes the complex conjugate, from now on we will use the shorthand notation c.c. to denote

the complex conjugate of the preceding terms. The spatial wave number k0 ∈ R and the temporal

wavenumber ω0 are related by the dispersion relation, which for (1) takes the simple form

ω2 = k2 + 1. (5)

On a the level of formal asymptotic expansions it is well known, e.g., [dSS88], that (1) has

approximate solutions of the form

uε(t, x) = ψv(t, x) = v(t, x− νt/ε)e1(t/ε2, x/ε) + c.c., (6)

where ν = ∂kω(k0) (the group velocity) and v(t, x) fulfills the Nonlinear Schrödinger equation

(NLS)

∂tv =
i

2
∂2kω0∂

2
xv −

3i

2ω0
c∗|v|2v, c∗ =

ˆ 1

0
c(y)dy. (7)

As our main results we give justifications of (7) with low regularity requirements on v0. For

v0 ∈ H2(R), letting uε(x, t) = ψv(x, t) + εr(x, t) we prove, on an O(1) time scale, the error

estimate

‖r(t)‖E ≤ C. (8)

For v0 ∈ Hs(R), 1 < s < 2, letting uε(x, t) = ψv(x, t) + εs/2r(x, t) we show that

‖r(t)‖H1
ε
≤ C (9)

2



with the scaled H1 norm ‖u‖H1
ε (R) :=

√ˆ
R
u2(x) + ε2(∂xu(x))2dx. See Theorems 2.3 and 2.5

for the precise results. In particular, these also yield long time existence for (1) for the specific

IC without assumptions on the sign of c. The reduced regularity assumptions are achieved by

smooth approximations of the initial conditions via cut–off of Fourier modes of wave number k

with |k| > n, and balancing of errors: the approximation error is small for large n, while the

error estimates of the amplitude formalism will grow in n. We balance the growth in n with some

power of ε, track the errors and choose an appropriate n(ε) to achieve the desired estimates.

Remark 1.1 a) As already mentioned, many related results are known in the literature, see,

e.g., [Kal88, SU01, BSTU06, SU07] and the references therein. Our model (1),(4) is a simple

extension of the constant coefficient cubic Klein–Gordon equation, and the use of cε instead of

a constant c ∈ R allows to illustrate some averaging effects in the effective coefficients. More-

over, it allows to illustrate a slight technical improvement (see Remark 2.1) which avoids the

diagonalization of linear operators for instance used in [BSTU06] for the definition of improved

approximations. On the other hand, contrary to, e.g., [BSTU06, APR09, APR11], we do not

consider periodic coefficients in the linear part because we want to avoid the Bloch wave ma-

chinery needed in this case; the results given here can be extended to this case, but this requires

some technical effort.

b) A more complicated version of (1) contains quadratic terms, e.g.,

ε2∂2t uε − ∂2xuε + ε−2uε + ε−1bεu
2
ε + cεu

3
ε = 0, (10)

where bε(x) := b(x/ε), b sufficiently smooth with b(y + 1) = b(y). A priori estimates and

justification results for this quadratic case are typically obtained via normal form transforms

[Sha85, Sch98, Sch05, BSTU06], and require certain non–resonance conditions and a careful

handling of the regularity loss in the normal form transforms. We believe that the methods

from this paper can be transferred to the quadratic case, but for now restrict to the simpler

cubic case.

c) Other standard versions of (1), (4) are obtained from setting

ũε(τ, ξ) = εuε(ε
2τ, εξ), (11)

which yields

∂2τ ũε = ∂2ξ ũε − ũε − b(ξ)ũ2ε − c(ξ)ũ3ε, (12)

ũε(0, ξ) = εv0(εξ)ẽ1(0, ξ) + c.c., ∂τ ũε(0, ξ) = v1(εξ)ẽ1(0, ξ) + c.c. (13)

with ẽ1(τ, ξ) = ei(k0ξ−ω0τ). Note that (12) does not explicitly depend on ε, which makes this

scaling somewhat more natural, but the ε–dependence of the initial conditions justifies the

subscript ε in ũε. The advantage of (1), (4) is that it is somewhat closer to the underlying

physics: x, t and x/ε, t/ε2 are called the macroscopic and microscopic scales, respectively, and

consequently (7) is called the macroscopic equation.

d) A related class of problem, see, e.g., [MNO02, MN02] and the references therein, is given by

the case of spatially non–oscillatory initial data, corresponding to k0 = 0 in (4), for (typically)

constant coefficient and gauge invariant nonlinear Klein–Gordon equations with x ∈ Rd. In
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this case, the solutions formally decompose into fast oscillations in time modulated by slow

envelopes in time and space, which again can be described via solutions of NLS equations,

and [MNO02, MN02] give low regularity approximation results for this situation, which would

essentially correspond to v0 ∈ H1(R) (and k0 = 0) in (4). While our proofs below use pointwise

in time a priori estimates on the difference between the formal approximation and the solution

uε in some energy norms, the proofs in [MNO02, MN02] are based on Strichartz estimates,

which are not easily available in our case of highly oscillatory initial data (k0 6= 0) and non

gauge invariant nonlinearity. c

Remark 1.2 Another approach to derive and justify effective equations for problems with

rapidly varying data is the method of two-scale convergence (2SC). The 2SC method for wave

equations is based on the same formal calculation as the amplitude formalism, and on an a–

priori estimate like (3). On the linear level, terms involving the solution uε then have good

convergence properties within the 2SC, and this allows to derive and justify a limiting equation

in one step, for initial data v0 ∈ H1(R). See, e.g., [APR09], where this has been carried out for

a linear wave equation with x ∈ Rd, which moreover on the linear level is much more general

than (1).

A justification of (7) for (1) for v0 ∈ H1(R) using methods from 2SC would be an important

achievement, and an improvement of, or at least an alternative to, our results (8) and (9). How-

ever, 2SC is considerably harder for nonlinear equations, as so called strong 2SC is needed to

obtain some information on nonlinear expressions involving uε. In [Spa06], 2SC methods have

been combined with multiple scales expansions to prove justification results for the homogeniza-

tion of nonlinear Schrödinger equations with a large rapidly varying potential and highly regular

initial data. The linear Schrödinger case with v0 ∈ H1 is considered in [AP05, AP06], and in

[All08, Remark 7.5] it is claimed that the results of [AP05, All08] for the linear case in some

special cases generalize to the nonlinear case. However, it appears that sufficient information to

treat nonlinear terms in the framework of 2SC is not easily available for solutions of (1), and we

failed to make 2SC methods work for (1),(4) without directly using the results (8) or (9), which

in particular means that again we cannot deal with v0 ∈ H1 \Hs, s > 1. c

2 The justification results

Our derivation and justification of (7) proceeds in two steps. First, plugging the ansatz

uε(t, x) = ψv(t, x) := v(t, ξ)e1(t/ε
2, x/ε) + c.c., ξ = x− νt/ε, ej = eij(k0y−ω0τ), (14)

where y = x/ε, τ = t/ε2, into (1) and sorting with respect to ε yields a hierarchy of equations,

to be successively solved. All O(ε−2) terms vanish due to the dispersion relation ω2
0 = k20 + 1,

all O(ε−1) terms vanish by the choice ν = ∂kω(k0), and at O(ε0) we obtain

[−2iω0∂tv + (ν2−1)∂2ξ v + 3c(x/ε)|v|2v]e1 + c(x/ε)v3e3 + c.c. = 0. (15)

Clearly, the splitting into harmonics e1 and e3 in (15) is not self–evident, unless c is constant.

However, based on the separation of scales between the arguments ξ = x−νt/ε of v and y = x/ε

of c, the standard procedure is to average the coefficients of e1 in y over the periodicity cell (0, 1)
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of c, i.e., to require

ˆ 1

0
(−2iω0∂tv + (ν2−1)∂2ξ v + 3c(y)|v|2v)dy = −2iω0∂tv + (ν2−1)∂2ξ v + 3c∗|v|2v !

= 0, (16)

which is the NLS (7) for v. Thus, the O(ε0e1) terms vanish in an averaged sense, i.e., at O(ε0)

the so called residual has the form

Res0(ψv) := (c(x/ε)− c∗)|v|2ve1 + c(x/ε)v3e3. (17)

The complete residual is

Res(ψv) = ε2∂2t ψv − ∂2xψv + ε−2ψv + cεψ
3
v = Res0 + εRes1,

and it is easy to see that under mild conditions on v the terms Res1 are O(1) bounded in natural

norms (see below).

Given a solution v of the NLS, the question is whether the ansatz (14) gives an approximation

of a solution of (1) on an O(1) time–scale, which is the natural time–scale for the NLS evolution.

In the context of the AF this problem of justification is usually dealt with as follows. Defining

the (scaled) error ρ(x, t) via

uε(x, t) = ψv(x, t) + ερ(x, t),

we want to use a–priori estimates on the error equation

ε2∂2t ρ = ∂2xρ− ε−2ρ− f, f = f(t, x) = cε(3ψ
2
vρ+ 3εψvρ

2 + ε2ρ3)− ε−1Res(ψv), (18)

to show that ρ staysO(1) bounded in a suitable norm, on anO(1) time scale. In the energy–norm

we obtain

d

dt
‖ρ‖2E = 2ε2

ˆ
(∂tρ)fdx ≤ 2ε2‖∂tρ‖L2‖f‖L2 ≤ 2‖ρ‖E‖f‖L2 (19)

and using a Gronwall argument it would be sufficient to have

‖ε−1Res(ψv)‖L2 = O(1) (20)

to have ‖ρ‖E bounded. However, already from (17) we see that (20) does not hold in general if

v is O(1) in L2 ∩ L∞, say.

2.1 The improved residual

Our first main idea is to use an improved approximation in the form

φv(t, x) := ve1(t/ε
2, x/ε) + ε2

[
a1(x/ε)e1(t/ε

2, x/ε)|v|2v + a3(x/ε)e3(t/ε
2, x/ε)v3

]
+ c.c., (21)

with aj to be determined. First we note that if aj is bounded inH1((0, 1)) and supt∈[0,t0] ‖v(t, ·)‖H2 ≤
C1, then we have

‖φv − ψv‖E ≤ Cε2, (22)

such that by the triangle inequality it is sufficient to estimate r = ε−1(uε − φv).
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Plugging φv into (1) we require, at O(ε0), using (16),

[L1a1(y) + c(y)− c∗]e1|v|2v + [L3a3(y) + c(y)]e3v
3 + c.c. = 0, (23)

where L1a = [−∂2y−2ik0∂y]a and L3a = [−(3ω0)
2 +ω2(3k0)−6ik0∂y−∂2y ]a are elliptic operators

on L2((0, 1)). Thus, we need to solve

L1a1 = −c+ c∗ and L3a3 = −c, (24)

where c ∈ L2
per((0, 1)). Even though L1 has the one dimensional kernel spanned by constants,

here we obtain a1 ∈ H2
per((0, 1)) with ‖a1‖H2((0,1)) ≤ C‖c(·)− c∗‖L2((0,1)) since

〈c(·)− c∗〉 :=

ˆ 1

0
c(y)− c∗dy = 0.

Similarly using a Fourier representation, we see that L3 : H2((0, 1)) → L2((0, 1)) invertible

due to the non-vanishing imaginary part of the symbol for non-constant modes and due to the

nonresonance condition ω(3k0)
2−(3ω0)

2 6= 0 for the constant term, hence we have ‖a3‖H2((0,1)) ≤
C‖c‖L2((0,1)).

Remark 2.1 If c is constant, then a1 = 0 and a3 =
c

ω(3k0)2 − (3ω0)2
, and such relations have

been used since at least [Kal88, KSM92] to achieve small residuals. On the other hand, for non-

constant c, equations related to (24) have often been solved via diagonalization in Fourier (or

Bloch) space, see, e.g., [BSTU06]. The ansatz (21) instead of the less specific version φv(t, x) :=

ve1 + c.c.+ ε2a(x, t, x/ε, t/ε2) gives the splitting (24) and thus avoids this diagonalization. c

Our main idea is to carefully keep track of terms of low and high orders of derivatives in

the residual, and the associated ε orders. This is aimed at approximating v ∈ C([0, t0], H
m(R)),

1 < m ≤ 2, by sequences (vn) with vn ∈ C([0, t0], H
4(R)), and trading some powers of ε for

regularity.

Lemma 2.2 Let c ∈ L2((0, 1)), k0 ∈ R. There exists a C3 > 0 such that for all solutions

v ∈ C([0, t0], H
4(R)) of (7) and all t ∈ [0, t0] we have

‖ε−1Res(ψv(t))‖L2 ≤ C3(ε‖v(t)‖H4 + ε2‖v(t)‖2H2 + 1)(‖v(t)‖H1 + ‖v(t)‖9H1). (25)

Proof. In the following we drop the notation of complex conjugate terms and suppress the

explicit t dependence of v in the estimates, i.e., for instance, ‖v‖∞ = ‖v(t)‖∞. The term

involving the highest derivatives in Res(φv(t)) is

ε2(∂2t v)e1 =ε2∂t

[
i

2
∂2kω0∂

2
xv −

3i

2ω0
c∗|v|2v

]
e1 = ε2

[
i

2
∂2kω0∂

2
x∂tv −

3i

2ω0
c∗(2|v|2∂tv + v2vt)

]
e1,

where we replaced ∂tv by the rhs of (7). Doing this once more we obtain a fourth derivative as

the highest spatial derivative of v, i.e.,

ε2(∂2t v)e1 =ε2
[
−1

4
(∂2kω0)

2∂4xv + ε2
3

4ω0
∂2kω0c

∗∂2kω0∂
2
x(|v|2v)

]
e1

− ε2 3i

2ω0
c∗
[
−|v|2i(

∂2kω0

2
∂2xv +

3

ω0
c∗|v|2v) + v2i(

i

2
∂2kω0∂

2
xv +

3

2ω0
c∗|v|2v)

]
e1.
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Thus, by using ‖v‖L∞ ≤ C‖v‖H1 and ‖∂xv‖L∞ ≤ C‖v‖H2 we have

ε2‖(∂2t v)e1‖L2 ≤ Cε2
[
‖v‖H4 + ‖v‖H2‖v‖2H1 + ‖v‖5H1

]
. (26)

The other terms involving ∂2t are ε4(a1(y)e1∂
2
t (|v|2v)+a3(y)e3∂

2
t v

3), and these can be estimated

in a similar fashion to obtain

ε4‖(a1(y)e1∂
2
t (|v|2v) + a3(y)e3∂

2
t v

3)‖L2 ≤ ε4
[
‖v‖H4 + (‖v‖H2 + 1)2

]
C(‖v‖H1 + ‖v‖7H1). (27)

The remaining terms involving ∂tv are of the form ε2
[
a1(y)e1ω0∂t(|v|2v) + a3(y)e33ω0∂t(v

3)
]
,

such that their L2-norm can be estimated by

ε2(‖v‖H2 + 1)2C(‖v‖H1 + ‖v‖5H1). (28)

The lowest order terms in ε are due to residuals of the form

ε2ε−1
[
(a′1(y) + ik0a1(y))e1∂x(|v|2v) + (a′3(y) + 3ik0a3(y))e3∂xv

3
]
,

which can be estimated by

ε2ε−1‖a′1(y)e1∂x(|v|2v) + a′3(y)e3∂xv
3‖L2 ≤ εC(‖v‖H1 + ‖v‖3H1). (29)

All other terms involving ∂xv are of order ε2 and in a similar fashion can be estimated by

ε2C(‖v‖H1 + ‖v‖3H1)(1 + ‖v‖H2). (30)

All further terms do not involve any derivatives of v and are of order ε2 or higher. Their L2-norm

can be estimated by ε2C(‖v‖H1 + ‖v‖9H1). Collecting the above estimates and estimating the

linear terms in ‖v‖H2 by ‖v‖H4 yields (25). 2

2.2 The error estimates

We now give two theorems that estimate the error under weak regularity conditions on v0. The

first one, with v0 ∈ H2(R) yields the expected scaling u = ψv + ερ with supt∈[0,t0] ‖ρ(t)‖E ≤ C.

Theorem 2.3 Let c ∈ L2((0, 1)). For all C1 > 0 and t0 > 0 there exist ε0, C2 > 0 such that for

all solutions v ∈ C([0, t0], H
2(R)) of (7) with supt∈[0,t0] ‖v(t, ·)‖H2 ≤ C1, and all ε ∈ (0, ε0) the

following holds. If

uε(0, x) = ψv(0, x) + εg1(x, x/ε) and ∂tuε(0, x) =
d

dt
ψv(0, x) + ε−1g2(x, x/ε), (31)

where g1, ε
−1∂xg1, ∂yg1, g2 are bounded by C1 in L2(R), then there exist a unique mild solution

uε ∈ C([0, t0], H
1(R)) ∩ C1([0, t0], L

2(R)) of (1) with initial conditions uε(0, x) and ∂tuε(0, x),

which can be written as uε(t, x) = ψv(t, x) + ερ(t, x) with

sup
0≤t≤t0

‖ρ‖E ≤ C2. (32)
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Remark 2.4 a) In 1D, given t0 > 0 and v0 ∈ Hm(R), m ≥ 1, the associated solutions of the NLS

fulfill v ∈ C([−t0, t0], Hm(R)) with ‖v‖Hm ≤ Cm(t0, ‖v0‖Hm). The constant Cm is independent

of t0 for m = 1: In the defocussing case c∗ > 0 this follows directly from the conservation of

the coercive Hamiltonian H(v) =
∂2kω0

4

ˆ
R
v2xdx+

3c∗

8ω0

ˆ
R
|v|4dx. For the focussing case we can

use the mass conversation ‖v(t))‖L2 = const and the Gagliardo-Nierenberg estimate (see (37)

below) to bound the negative part from below by −C‖v‖H1‖v‖3L2 , which is enough to give a

uniform bound for ‖v‖H1 . The general statement then follows with a result on the preservation

of regularity, e.g. [Tao06, Prop. 3.11]. The result is applicable as the H1 bound implies uniform

L∞ estimates. Note that the constant Cm will in general grow exponentially in t0 for m > 1.

From [Tao06, Prop. 3.8] we obtain local Lipschitz continuity with respect to initial conditions,

i.e., ‖v1(t) − v2(t)‖Hm ≤ L(t0, ‖v1(0)‖Hm , ‖v2(0)‖Hm)‖v1(0) − v2(0)‖Hm for two solutions with

IC v1(0) and v2(0).

b) Given Lemma 2.2, a naive condition to close the a–priori estimate (19) would be v0 ∈ H4,

and our main contribution is to improve this by trading powers of ε in (25) for lower regularity of

v. A similar idea has been used in [BSTU06] for the justification of the NLS for a generalization of

(1) (in its rescaled form (12)) to periodic coefficients also for the linear terms, using a somewhat

heavy machinery of Bloch wave transform and diagonalization of the linear part. Transferring

back the result from [BSTU06] for (12), (13) to (1),(4) we obtain Theorem 2.3 under the condition

v0 ∈ H3(R), and thus a somewhat weaker result, with a significantly more complicated proof.

c) By requiring (31) we consider a special case of initial data (4), i.e., IC for wave–packets

ψv that move to the right, and which thus can be described by a single NLS equation for v. In

general, e.g., for ∂tuε(0, ·) ≡ 0, the solution will decompose into two wave–packets, one moving

left, and described by a NLS equation for v−, and one moving right described by a NLS equation

for v+. As this is merely a question of book keeping, here we restrict to a single NLS.

d) Our choice of perturbations g1, g2 ensures that (uε(0, .), ∂tuε(0, .)) ∈ H1(R) × L2(R),

where local existence and uniqueness holds by, e.g., semigroup methods, or Duhamel’s formula.

However, our theorem also provides the existence of a long-term solution. c

Proof. Using (22) we work with the improved ansatz (21). First we want to estimate ε−1Res(φv),

but for v(t) 6∈ H4(R) we cannot use Lemma 2.2 directly. Instead we approximate v0 ∈ H2(R)

by smooth vn,0 using a cutoff in Fourier space at wave-number n, i.e.,

vn,0(x) = F−1(χnv̂0)(x). (33)

Here χn is the characteristic function of [−n, n], and v̂ = Fv and v = F−1v̂ denote the Fourier

transform and its inverse, respectively, which is an isomorphism of Hm(R) and

L2(m) :=

{
û : R→ C : ‖û‖L2(m) :=

√ˆ
(1 + k2m)|û(k)|2dk <∞

}
.

Then vn,0 → v0 in H2(R) by Lebesgue dominated convergence, vn,0 ∈ Hm(R) for all m, and for

all m ≥ 2 there exists a Cm such that ‖vn,0‖Hm ≤ Cm‖v̂n,0‖L2(m) ≤ CCmnm−2‖vn.0‖H2 .

We set φn(t) = φvn(t) where vn(t) is the solution of the NLS (7) with IC vn,0, and start with

the triangle estimate

‖u− φv‖E ≤ ‖u− φn‖E + ‖φn − φv‖E .
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From Remark 2.4a we have ‖vn(t)− v(t)‖H2 ≤ C‖vn(0)− v(0)‖H2 and hence

‖φn − φv‖2E ≤ C
(
ε4
ˆ
|∂tvn − ∂tv|2dx+ ε2

ˆ
|∂xvn − ∂xv|2dx+

ˆ
|vn − v|2dx

)
≤ Cε2, (34)

where the second estimate is obtained by choosing n = ε−1/2, since

ˆ
|vn(0)− v(0)|2dx =

ˆ
|k|≥n

k4

k4
|v̂n(0)− v̂(0)|2dx ≤ n−4‖vn(0)− v(0)‖2H2 ≤ Cε2.

It remains to estimate ‖u− φn‖E . Setting rn = ε−1(u− φn), the equation for rn reads

ε2∂2t rn = ∂2xrn − ε−2rn − fn, fn = cε(3φ
2
nrn + 3εφnr

2 + ε2r3n)− ε−1Res(φn), (35)

rn(0) =
1

ε
(v(0)−vn(0))e1 + g1,

∂trn(0) = −ω0

ε3
(v(0)−vn(0))e1 + (∂tv(0)−∂tvn(0))e1 +

1

ε2
g2,

such that ‖rn(0)‖E = O(1). Next,

d

dt
‖rn‖2E = 2ε2

ˆ
(∂trn)fndx ≤ 2ε2‖∂trn‖L2‖fn‖L2 ≤ 2‖rn‖E‖fn‖L2 , (36)

and we need to estimate ‖fn‖L2 . By the (1D) Gagliardo–Nirenberg inequality

‖u‖Lp ≤ C‖∂xu‖αL2‖u‖1−αL2 for all u ∈ H1(R), where α =
1

2
− 1

p
, (37)

see, e.g., [Bre11, §8.6.1], we obtain, with CRes,n = ‖ε−1Resn‖L2 , and recalling that ‖u(t)‖2E =

ε4‖∂tu(t)‖2 + ε2‖∂xu(t)‖2 + ‖u(t)‖2,

‖fn‖L2 ≤C2
v‖rn‖L2 + Cvε‖r2n‖L2 + ε2‖r3n‖L2 + CRes,n

=C2
v‖rn‖L2 + Cvε‖rn‖2L4 + ε2‖rn‖3L6 + CRes,n

≤C2
v‖rn‖L2 + CvCε‖rn‖3/2L2 ‖∂xrn‖

1/2
L2 + Cε2‖rn‖2L2‖∂xrn‖1L2 + CRes,n

≤C2
v‖rn‖E + CvCε

1/2‖rn‖2E + Cε‖rn‖3E + CRes,n ≤ (C2
v + CRε

1/2)‖rn‖E + CRes,n, (38)

as long as ‖rn‖E ≤ R with a constant CR which depends on R, determined below, but not on ε.

As ‖vn‖H2 is bounded, from Lemma 2.2 we obtain CRes,n ≤ C(1 + ε2C + ε‖vn‖H4) ≤ CRes,

where again we used ‖vn‖H4 ≤ n2‖vn‖H2 ≤ ε−1‖vn‖H2 for n = ε−1/2. Thus,

d

dt
‖rn‖2E ≤ 2ε2‖∂trn‖L2‖fn‖L2 ≤ 2‖rn‖E‖fn‖L2 ≤ 2(C2

v + 1/2 + CRε
1/2)‖rn‖2E + C2

Res. (39)

Now we use that for any CR > 0 there exists an ε0 > 0 such that

CRε
1/2 ≤ 1/2 for all 0 < ε ≤ ε0. (40)

Then, by Gronwall’s inequality, for 0 ≤ t ≤ t0,

‖rn‖2E ≤ (‖r(0)‖2E + C2
Res)e

2(C2
v+1)t0 =: R2, (41)

and we are done, i.e., for this R we find CR in (38) and then ε0 > 0 from (40). Combining (34)

and (41) yields (32). 2
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We now state and prove a justification theorem when the envelope v is only in Hs(R) with

1 < s < 2. For solutions of (7) with v ∈ C([0, t0], H
s(R)) we cannot ensure ‖ψv(t)‖E < ∞

because one time derivative of v corresponds to two space derivatives and hence ∂tv ∈ L2(R) is

equivalent to v ∈ H2(R). Thus, we will bound the error in the scaled H1 norm

‖ρ‖H1
ε

=

√ˆ
R
ρ2(x) + ε2(∂xρ(x))2dx. (42)

The error εs/2ρ is smallest for s close to 2 and the proof shows that a larger s also yields larger ε0.

The case s = 1 cannot be treated in the same way due to the lack of a bound of the nonlinearity

as in (47).

Theorem 2.5 Let c ∈ L2((0, 1)) and s > 1. For all C1 > 0 and t0 > 0, there exist ε0, C2 > 0

such that for all solutions v ∈ C([0, t0], H
s(R)) of (7) with supt∈[0,t0] ‖v(t, ·)‖Hs ≤ C1, and all

ε ∈ (0, ε0) the following holds. If

uε(0, x) = ψv(0, x) + εg1(x, x/ε), ∂tuε(0, x) = −ω0

ε2
ψv(0, x) + ε−1g2(x, x/ε), (43)

where g1, ε
−1∂xg1, ∂yg1, g2 are bounded by C1 in L2(R), then there exist a unique mild solution

uε ∈ C([0, t0], H
1(R)) ∩ C1([0, t0], L

2(R)) of (1) with initial conditions uε(0, x) and ∂tuε(0, x),

which can be written as uε(t, x) = ψv(t, x) + εs/2ρ(t, x) with

sup
0≤t≤t0

‖ρ‖H1
ε
≤ C2. (44)

Proof. We follow the same strategy as in the proof of Theorem 2.3, and approximate v0 ∈ Hs(R)

by smooth vn,0 using the same cutoff in Fourier space at wave-number n. The difference in the

proofs lies in the norm ‖ · ‖H1
ε

instead of ‖ · ‖E , yielding first (45), and subsequently ε(s−1)/2

in (47), and δ = s − 1 after (49), which together yield the condition s > 1. We again set

φn(t) = φvn(t) where vn(t) is the unique solution of (7) with initial data vn,0, and start with the

triangle inequality

‖u− φv‖H1
ε
≤ ‖u− φn‖H1

ε
+ ‖φn − φv‖H1

ε
.

By Lipschitz continuity with respect to initial conditions for (7) (see Remark 2.4 a)) we have

‖vn(t)− v(t)‖Hs ≤ C‖vn(0)− v(0)‖Hs , and hence

‖φn − φv‖2H1
ε
≤ C(ε2

ˆ
|∂xvn − ∂xv|2dx+

ˆ
|vn − v|2dx) ≤ C(ε2 +

1

n2s
), (45)

since
´
|vn(0)− v(0)|2dx =

´
|k|≥n

k4

k4
|v̂n(0)− v̂(0)|2dx ≤ n−2s‖vn(0)− v(0)‖2Hs .

To bound ‖u − φn‖H1
ε

we again use the energy norm and the estimate (36). Letting rn :=

ε−s/2(u− φn), the equation for rn becomes

ε2∂2t rn = ∂2xrn − ε−2rn − fn, fn = cε(3φ
2
nrn + 3εs/2φnr

2 + εsr3n)− ε−s/2Res(φn), (46)

hence d
dt‖rn‖

2
E = 2ε2

´
(∂trn)fndx ≤ 2ε2‖∂trn‖L2‖f‖L2 ≤ 2‖rn‖E‖fn‖L2 . With CRes,n =

‖ε−s/2Resn‖L2 we obtain

‖fn‖L2 ≤C2
v‖rn‖L2 + Cvε

s/2‖r2n‖L2 + εs‖r3n‖L2 + CRes,n

≤C2
v‖rn‖L2 + CvCε

s/2‖rn‖3/2L2 ‖∂xrn‖
1/2
L2 + Cεs‖rn‖2L2‖∂xrn‖L2 + CRes,n

≤C2
v‖rn‖E + CvCε

(s−1)/2‖rn‖2E + Cεs−1‖rn‖3E + CRes,n

≤(C2
v + CRε

(s−1)/2)‖rn‖E + CRes,n, (47)
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as long as ‖rn‖E ≤ R with a constant CR which depends on R, determined below, but not on ε.

As ‖vn‖Hs is bounded, from Lemma 2.2 we obtain

CRes,n ≤ ε1−s/2C(1 + ε2‖vn‖2H2 + ε‖vn‖H4) ≤ C(ε1−s/2 + n2ε3−s/2 + ε2−s/2n4−s) ≤ CRes (48)

if s ≤ 2 and n = n(ε) = ε−1/2. Thus,

d

dt
‖rn‖2E ≤ ε2‖∂trn‖L2‖fn‖L2 ≤ 2‖rn‖E‖fn‖L2 ≤ (C2

v + 1/2 + CRε
δ)‖rn‖2E + C2

Res (49)

with δ = s− 1, and

rn(0) = ε−s/2(v(0)− vn(0))e1 + ε1−s/2g1,

d

dt
rn(0) = −ε−(2+s/2)ω0(v(0)− vn(0))e1 − ε−s/2v̇ne1 + ε−(1+s/2)g2.

With ‖rn(0)‖2E = ‖rn(0)‖2L2 + ε2‖∂xrn(0)‖2L2 + ε4‖ d
dtrn(0)‖2L2 we obtain that

‖rn(0)‖E ≤C
(
ε−s/2‖v(0)−vn(0)‖L2+ε1−s/2‖g1‖L2+ε1−s/2‖∂xv(0)−∂xvn(0)‖L2+ε2−s/2‖∂xg1‖L2

+ε1−s/2‖∂yg1‖L2+ε−s/2‖v(0)− vn(0)‖L2+ε2−s/2‖v̇n‖L2+ε1/2−δ‖g2‖L2

)
is also bounded for n = n(ε) = ε−1/2. As above we use that for any fixed CR > 0 there exists

an ε0 > 0 such that

CRε
δ ≤ 1/2 for all 0 < ε ≤ ε0. (50)

Then, by Gronwall’s inequality, for 0 ≤ t ≤ t0,

‖rn‖2E ≤ (‖r(0)‖2E + C2
Res)e

(C2
v+1)t0 =: R2, (51)

and the remainder of the proof works exactly as in the proof of Theorem 2.3. 2
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