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We consider the sine-Gordon equation on metric graphs with simple topologies and derive vertex
boundary conditions from the fundamental conservation laws, such as charge, energy and momentum
conservation. For a special case we analytically obtain traveling wave solutions in the form of
standard sine-Gordon solitons such as kinks and antikinks for star and tree graphs. We show that
for this case the sine-Gordon equation becomes completely integrable just as in case of a simple 1D
chain. This simple analysis provides a cornerstone for the numerical solution of the general case,
including a quantification of the vertex scattering. Applications of the obtained results to Josephson
junction networks and DNA double helix are discussed.

Introduction. Nonlinear wave dynamics described by
the sine-Gordon equation is of importance in a variety
of topics in physics, such as as elastic and stress wave
propagation in solids, liquids and tectonic plates (see,
e.g., [1–7]), transport in Josephson junctions [8], and
topological quantum fields [2, 6]. Continuous and dis-
crete forms of the sine-Gordon equation have been used
so far for the description of wave transport in different
media. However, there are structures for which the wave
dynamics cannot be described within the traditional con-
tinuous or discrete approaches. These are networks and
branched structures where the transmission through a
branching point (network vertex) should be described by
vertex conditions. Early studies of nonlinear evolution
equations in branched structures are [9–11], and in re-
cent few years one can observe rapidly growing interest
in nonlinear waves and soliton transport in networks de-
scribed by nonlinear Schrödinger equation [12–17]. Inte-
grable boundary conditions following from the conserva-
tion laws were formulated, and soliton solutions yielding
reflectionless transport across the graph vertex were de-
rived in [12], see also [18] for the case of a discrete nonlin-
ear Schrödinger. Other issues of integrability and soliton
solutions are discussed in [14, 15]. deleted 1 sentence
here, which contained no (or wrong) information

In this paper we address the wave dynamics in net-
works described by the sine-Gordon equation on metric
graphs, which can be used for modeling of soliton trans-
port in DNA double helix, tectonic plates and Josephson
junction networks. The latter has attracted much atten-
tion in condensed matter physics [19, 20]. Another in-
teresting application of sine-Gordon equations, or, more
generally, nonlinear Klein-Gordon equations, on metric
graphs can be networks of granular chains [11, 21]. Re-
cently, soliton dynamics in networks was studied by con-
sidering the 2D sine-Gordon equation on Y and T junc-
tions [22], and the metric graph limit was also studied
numerically. See also [23] for similar results for the 2D
Nonlinear Schrödinger equation on “fat” graphs.

Here we focus on the problem of integrability of sine-
Gordon equations on metric graphs and soliton transmis-
sion at the graph vertex. In particular, using an approach
similar to that of [12], we discuss the conditions under
which the sine-Gordon equation is completely integrable
and allows exact traveling wave solutions which provide
reflectionless transmission of sine-Gordon solitons across
vertices. Numerical solutions with scattering at a vertex
when these conditions are violated are also presented.
Conservation laws and boundary conditions. For evolu-

tion equations on graphs, the connections of the bonds at
the vertices are provided by vertex boundary conditions.
In case of linear wave equations such conditions follow
from self-adjointness of the problem [24, 25]. For nonlin-
ear evolution equations one should use such fundamental
laws as energy, flux, momentum and (for sine-Gordon
model) topological charge conservations [12, 13, 22]. Be-
low we derive such conditions and show the existence of
infinitely many conservation laws in our model, which
yields the complete integrability of the system.

Most of the 1D sine-Gordon models follow from the
Lagrangian density L =

[
1
2

(
u2t − a2u2x

)
− β(1− cosu)

]
,

where a and β are positive constants. We want to explore
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FIG. 1. Sketch of a metric star graph

a sine-Gordon model on networks modeled by graphs, i.e.,
system of bonds which are connected at one or more ver-
tices (branching points). The connection rule is called
the topology of the graph. When the bonds can be as-
signed a length, the graph is called a metric graph. The
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sine-Gordon model on each bond bk, k = 1, 2, 3, ..., N is
given by Lagrangian density

Lk =

[
1

2

(
u2kt − a2ku2kx

)
− βk(1− cosuk)

]
,

where ak, βk > 0. In the following we consider a star
graph with three semi-infinite bonds connected at the
point O called vertex of the graph, see Fig. 1. The co-
ordinates are defined as x1 ∈ (−∞, 0] and x2,3 ∈ [0,∞),
where 0 corresponds to the vertex point. The equation of
motion derived from the above Lagrangian density leads
to the sine-Gordon equation on each bond given as

uktt − a2kukxx + βk sinuk = 0. (1)

To formulate physically reasonable vertex boundary con-
ditions (VBC) one can use the continuity of wave function

u1(0, t) = u2(0, t) = u3(0, t) (2)

and fundamental conservation laws, such as charge, en-
ergy and momentum conservations. For the primary star
graph in Fig 1, the charge Q is given by

2πQ =
a1√
β1

0∫
−∞

u1xdx+

3∑
k=2

ak√
βk

+∞∫
0

ukxdx. (3)

From Q̇ = 0 and (2) we obtain the sum rule

a1√
β1

=
a2√
β2

+
a3√
β3
. (4)

The energy for the star graph is defined as

E(t) =

3∑
k=1

1

βk

∫
Bk

[
1

2

(
u2kt + a2ku

2
kx

)
+ βk(1− cosuk)

]
dx,

(5)
where B1=(−∞, 0), B2,3=(0,+∞), and where for finite
E we have ∂xu1(x1, t), ∂tu1(x1, t)→0 and u1(x1, t) →
2πn1 as x1 → −∞, and ∂xuk(xk, t), ∂tuk(xk, t) → 0 and
uk(xk, t) → 2πnk as xk → ∞, k = 2, 3, for some integer
nk, k = 1, 2, 3. Then

Ė =
a21
β1
u1xu1t

∣∣∣∣
x1=0

− a22
β2
u2xu2t

∣∣∣∣
x2=0

− a23
β3
u3xu3t

∣∣∣∣
x3=0

,

and by (2) the energy conservation reduces to

a21
β1
u1x

∣∣∣∣
x1=0

=
a22
β2
u2x

∣∣∣∣
x2=0

+
a23
β3
u3x

∣∣∣∣
x3=0

. (6)

Now we consider the momentum defined by

P =

3∑
k=1

ak
βk

∫
Bk

ukxuktdx, (7)

such that

Ṗ =
a1
β1

[
1

2
(u21t + a21u

2
1x)− β1(1− cosu1)

]∣∣∣∣
x1=0

−
3∑
k=2

ak
βk

[
1

2
(u2kt+a

2
ku

2
kx)−βk(1− cosuk)

]∣∣∣∣
xk=0

.(8)

For Ṗ = 0, we impose was: must impose, but (very unfor-
tunately) I still don’t see that we “must”; to me it looks
just sufficient, not necessary two conditions. Firstly

β1 = β2 = β3 = β(> 0), (9)

which simplifies the sum rule (4) to

a1 = a2 + a3. (10)

Then (8) becomes

2βṖ = a31u
2
1x(0, t)− a32u22x(0, t)− a33u23x(0, t)

= − a2a3
a2 + a3

(a2u2x(0, t)− a3u3x(0, t))2,

where we used (6), (9) and (10) in obtaining the last

expression. Thus, Ṗ = 0 yields a2u2x(0, t) = a3u3x(0, t),
which together with (6), (9) and (10) gives

a1u1x(0, t) = a2u2x(0, t) = a3u3x(0, t). (11)

Conditions on higher-order space-derivatives
may be available from higher-order conservations,
where the analysis becomes more laborious. How-
ever, they can also be obtained directly from (1),
(2) via a21u1xx

∣∣
x1=0

= (u1tt + β sinu1)|x1=0 =

(uktt + β sinuk)|xk=0 = a2kukxx
∣∣
xk=0

(k = 2, 3).

Thus,

a21u1xx(0, t) = a22u2xx(0, t) = a23u3xx(0, t), (12)

and similarly, taking successive x−derivatives of (1), for
n ≥ 3,

an1∂
n
xu1(0, t) = an2∂

n
xu2(0, t) = an3∂

n
xu3(0, t). (13)

Integrability and traveling wave solutions. Let us now
introduce two functions defined on the bonds from 1
to k(= 2, 3) as v1→k ≡ u1(a1x√

β
, t√

β
) for x < 0 and

≡ uk(akx√
β
, t√

β
) for x ≥ 0. Thanks to the vertex boundary

conditions (VBC) in (11)-(13), together with the con-
tinuity condition in (2), both of v1→k with k = 2, 3
∈ C∞(−∞,∞)) and satisfy v1→2 = v1→3 = v(x, t),
where v(x, t) is a solution of the dimensionless sine-
Gordon equation

vtt − vxx + sin v = 0 (14)

defined on the real line. This fact is identical to the
expression of uk(x, t) in terms of the function v as

uk(x, t) = v

(√
β

ak
x,
√
βt

)
, x ∈ Bk (k = 1, 2, 3). (15)
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The scaling function v in (15) together with the sum
rule (10) guarantees the infinite number of constants of
motion and thereby the complete integrablity of the sine-
Gordon equation on the network.

In fact, from (15) and the sum rule (10) we find that
all the conservation laws [26, 27]

+∞∫
−∞

g(v, ∂xv, ∂tv, ∂
2
xv, ..., ∂

n
x∂

l
tv)dx = const (16)

of the sine-Gordon equation (14) on the real line also hold
on the star graph, because

3∑
k=1

∫
Bk

g
(
uk, akβ

− 1
2 ∂xuk, β

− 1
2 ∂tuk, ..., a

n
kβ
−n+l

2 ∂nx∂
l
tuk

)
dx

=a1

+∞∫
−∞

g
(
v, ∂xv, ∂tv, . . . , ∂

n
x∂

l
tv
)
dx

+ (a2+a3−a1)

+∞∫
0

g
(
v, ∂xv, ∂tv, . . . , ∂

n
x∂

l
tv
)
dx

= const. (17)

The conservation of charge Q, energy E, and momentum
P are just special cases.

From now on, we shall prescribe β = 1 without loss of
generality. Eq.(14) has a number of explicit soliton solu-
tions, for instance: kink “+” and anti-kink “-” solutions
which can be written as [3, 4]

v(x, t) = 4 arctan

[
exp

(
±x− x0 − νt√

1− ν2

)]
, (18)

where |ν| < 1 is the velocity of the kink. Other soliton
solutions include breathers, kink-kink collisions and kink-
antikink collisions [4], to name just a few, see also [28]
for further multi-soliton type solutions. If the sum rule
in (10) holds, then all these solutions, or, more generally,
all solutions of (14), transfer via (15) to solutions on the
metric graph. For instance, the kinks then provide reflec-
tionless transmission of energy through the graph vertex,
where the speed and energy of a kink traveling in positive
direction (ν > 0) split according to the ratios a2/a1 and
a3/a1, respectively. On the other hand, launching two
suitably fine tuned kinks on bonds 2 and 3 in negative
direction, their joint energy is transmitted to bond 1.

Before entering into the numerical analysis of kink dy-
namics, we comment on other VBCs originating in the
local scattering properties at each vertex. The VBC
(2) of continuity and (6) of local flux conservation with
βk = 1(k = 1, 2, 3) are also called δ VBC. They naturally
appear ([22], see also [23] for a similar construction for the
case of the NLS, and [25, Chapter 8] for an overview of re-
lated linear results) by considering the 2D sine–Gordon
equation ∂2t u − ∆u + sinu = 0 on a “fat” graph, i.e.,

a 2D branched domain with Neumann boundary condi-
tions, where w2/w1 = a22/a

2
1 and w3/w1 = a23/a

2
1 are the

relative widths of the (fat) bonds.
Similarly, the so–called δ′ VBCs [25, Chapter 8] consist

of (11) and

a1u1(0, t)− a2u2(0, t)− a3u3(0, t) = 0, (19)

which conserve charge and energy for all values of the ak.
A simple calculation shows both δ and δ′ VBCs can be
derived from (10) and (15), but the inverse derivation is
not possible. Most importantly, (10) and (15) give the
existence of the infinite number of constants of motion (as
shown in (16),(17)), which is equivalent to the complete
integrability of the sine–Gordon equation on the graph.
Vertex transmission. An important issue for wave dy-

namics in networks is the scattering at vertices. The sum
rule in (10) allows the tuning of the vertex scattering to
achieve reflectionless transmission. We now give numer-
ical solutions of (1) with βk = 1(k = 1, 2, 3), using 2nd
order in space and time finite differences, where we first
focus on (2) and (6) as VBC, i.e., the δ case. Figure
2 shows the reflectionless propagation of a kink in the
special case that the sum rule (10) holds.

(a) (b)

(c) (d)

FIG. 2. (Color online). Numerical solution of (1), (2), (6),
with βk = 1, k = 1, 2, 3, and a1 = 1, a2 = 0.7, a3 = 0.3
fulfilling (10). The initial conditions belongs to the kink (18)
on bond 1 with x0 = −5 and ν = 0.9, while u2,3 = ∂tu2,3 ≡ 0.
Panels (a),(b),(d) arranged corresponding to Fig. 1, while (c)
shows the t–dependence of the energies.

In Fig. 3 we numerically treat the transmission of soli-
tons through the graph vertex when the sum rule (10) is
violated. In (a)-(c) we consider the “natural” case ak=1,
k = 1, 2, 3, and the same kink initial condition as in Fig.2.
The total energy is still conserved (by (6)), but in con-
trast to the reflectionless case from Fig.2, there now is
significant reflection at the vertex. To demonstrate and
quantify the dependence of the vertex transmission on
the ak in some more detail, in Fig. 3(d) we essentially
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return to the situation of Fig. 2. That is, we set a1 = 1,
a2 = 0.7, but let a3 vary and plot the reflection coefficient
R, defined as the ratio of the energies in the incoming
bond at initial time t = 0 and at t = 15. At a3 = 0.3,
corresponding to Fig. 2, we have R = 0, i.e. zero reflec-
tion.

Additionally, the red line in Fig. 3(d) shows the anal-
ogous simulation for the case of δ′ vertex conditions (11)
and (19). Again we have zero reflection at a3 = 0.3,
while violating the sum rule gives qualitatively similar
but slightly stronger reflections than the δ case. Note
that the simulations in Figs. 2 and 3 do not use the soli-
ton properties of the kinks, but only the fact that they are
traveling wave solutions for which we have formulas for
the initial conditions. Thus, these numerical results can
be transfered to general nonlinear Klein-Gordon equa-
tions that admit travelling wave solutions.

(a) (b)

(c) (d)

FIG. 3. (Color online). (a)-(c) Numerical solution of (1), (2),
(6), with βk = 1 for k = 1, 2, 3. (a)-(c) Reflection of incoming
kink at the vertex in case that a1 = a2 = a3 = 1, violating
(10), initial conditions as in Fig. 2. u3 is identical to u2, and
hence u3 and E3 in (c) are omitted. (d) (blue line) Depen-
dence of the vertex reflection coefficient R = E1|t=15/E1|t=0

on a3, where a1 = 1, a2 = 0.7, hence a3 = 0.3 corresponding
to Fig. 2. The red line is similarly obtained from solving (1)
with δ′ VBC (11) and (19).

Other graph topologies. Our results can be extended
to other simple topologies such as general star graphs,
tree graphs, loop graphs and their combinations. Exact
traveling wave solutions of sine-Gordon models on such
graphs with one incoming semi-infinite bond can be ob-
tained similarly to the above case of a star graph with
three bonds, leading to generalizations of the sum rule.
We illustrate this for the tree graph from Fig. 4, consist-
ing of three “layers” b1, (b1i), (b1ij), where i, j run over
the given bonds.

On each bond b1, b1i, b1ij we have a sine-Gordon equa-
tion given by (1). Setting β1 = β1i = β1ij = 1 for all i, j,
the a1i and a1ij have to be determined from the sum rule

FIG. 4. A tree graph with three layers, b1∼(−∞, 0), b11, b12 ∼
(0, Lk), k = 1, 2, and b1ij ∼ (0,+∞) with i, j = 1, 2, . . ..

like (10) at each vertex. For instance, at the three nodes
in Fig. 4 we need

end of b1 : a0 = a11 + a12,
end of b11 : a11 = a111 + a112 + a113,
end of b12 : a12 = a121 + a122,

(20)

and this continues through the layers. By (14) and (15)
this is based on scalings such as

u1(x, t) = v(x/a1, t) and u1i(x, t) = v(x/a1i, t), (21)

where at subsequent bonds we also need to take into ac-
count the finite propagation length in the previous bonds,
for instance

u111(x, t) = v((x+x0)/a111, t), x0/a111 = L1/a11, (22)

i.e. x0 = a111L1/a11. Necessarily, the speeds and ener-
gies of, e.g., an incoming kink, also split according to
rules like (20), such that on each final bond we only have
slow and small energy kinks. A similar construction has
been done and formalized for the propagation of Nonlin-
ear Schrödinger solitons on tree graphs in [12].

FIG. 5. A graph with a loop. b0 ∼ (−∞, 0), bk ∼ (0, Lk),
k = 1, . . . , n, where Lk = akL, bn+1 ∼ (0,∞).

Another graph for which soliton solutions of sine-
Gordon models can be obtained is a graph with a loop
(see Fig.5), which consists of two semi-infinite bonds con-
nected by n bonds having finite lengths Lk. Requiring
the conditions

a0 =

n∑
k=1

ak = an+1 (23)
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for the coefficients, and Lk = akL (k = 1, 2, ...n) with
a constant L, we can write soliton solutions in a similar
way as in (21) and (22).

Finally, it can be shown that the above approach can
be applied to obtain exact traveling wave solutions of
sine-Gordon models on other (than above) graphs con-
sisting of at least two semi-infinite bonds and any sub-
graph between them. In this case one needs to impose
the pertinent vertex conditions like (21) or (23) at the
vertices connecting the semi-infinite bonds with the sub-
graph.

Conclusions. In this work we studied sine-Gordon
equations on simple metric graphs, and derived vertex
boundary conditions for charge, energy and momentum
conservation, and additionally conditions on parameters,
for which the problem has explicit analytical soliton solu-
tions. We find the sum rule (10) for bond-dependent coef-
ficients at each vertex of the graph, which makes the sine-
Gordon equation on the graph completely integrable. It
is shown that the obtained solutions provide the reflec-
tionless transmission of solitons at the graph vertex. This
is also illustrated numerically by quantifying the reflec-
tions for a case where these conditions are violated, and
we discussed how to generalize the results to other graph
topologies. The results can be directly applied to several

important problems such as Josephson junction network
and DNA double helix. In Josephson junction network
the parameter 1/β describes the Josephson penetration
depth for each bond of the network. In such an approach
our model corresponds to continuous version of the sys-
tem considered in [19, 20]. Finally, a very important
application can be DNA double helix models where the
energy transport is described in terms of sine-Gordon
equations [29, 30]. Base pairs of the DNA double he-
lix can be considered as a branched system and modeled
by a star graph [30]. Then the H-bond energy between
two base pairs in such system can be characterized by
the parameter, β. In summary, the sine-Gordon model
considered in this paper can be useful for the problem of
tunable soliton transport in various networks, and thus
for engineering branched structures, providing reflection-
less transport of energy, charge, and information in the
form of solitons.
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