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Abstract

In many spatial resource models it is assumed that an agent is able to harvest the re-

source over the complete spatial domain. However, agents frequently only have access to

a resource at particular locations at which a moving biomass, such as fish or game, may

be caught or hunted. Here we analyze an infinite time horizon optimal control problem

with boundary harvesting and (systems of) parabolic PDEs as state dynamics. We for-

mally derive the associated canonical system, consisting of a forward–backward diffusion

system with boundary controls, and numerically compute the canonical steady states and

the optimal time dependent paths, and their dependence on parameters. We start with

some one–species fishing models, and then extend the analysis to a predator–prey model

of Lotka–Volterra type. The models are rather generic, and our methods are quite gen-

eral, and thus should be applicable to large classes of structurally similar bio–economic

problems with boundary controls.

Keywords: optimal boundary control; bioeconomics; infinite time horizon; Pontryagin’s

Maximum Principle; optimal harvesting; bistable model; predator–prey model
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1 Introduction

Optimal control (OC) theory is an important tool to design optimal harvesting strategies

in the management of natural resources. Much of the literature considers only the tem-

poral dimension, see, e. g., the monographs Conrad et al. 1987; Conrad 2010 and Clark

2010, but recent work captures the spatial dimension as well. Early spatial models feature

discrete patches, where at each location of the resource the stock evolves according to an

ordinary differential equation (ODE). Migration of the biomass is then modeled as entry

and exit of the biomass from one location to the other, see, e.g., Sanchirico et al. 1999;

Behringer et al. 2014, and the references therein. However, in many cases the continuous

process of migration is more adequately described by partial differential equations (PDEs)

characterizing the spread or diffusion of the resource within the domain.

For the case of ODE–constrained optimal control problems, a main tool is Pontrya-

gin’s Maximum Principle providing first order necessary optimality conditions (Pontrya-

gin et al. 1962), see also Aniţa 2000; Lenhart et al. 2007; Grass et al. 2008; Aniţa et al.

2011 for textbook expositions, including many examples related to natural ressources. In

bioeconomics, the objective often contains a discounted time integral

J =

∫ T

0

e−ρtJc(v(t), u(t)) dt, (1)

where ρ > 0 is a discount rate, v(t) ∈ Rn are the states of the system, u(t) ∈ U ⊂ Rp

represents the controls, and Jc is called the current value function. If T =∞ in (1), then

we have an infinite time horizons, while for T <∞ we have a finite time horizon. Also for

PDE–constrained optimal control problems a large theory has been developed, see, e.g.,

Lions 1971; Li et al. 1995; Hinze et al. 2009; Tröltzsch 2010. Some maximum principles

have been rigorously established in an abstract way, assuming a priori the existence of

optimal solutions, but almost exclusively for the finite time horizon case. See §3 for further

comments and references.

In a number of bio-economic and resource–economic papers, e.g., Fister 1997; Lenhart

et al. 1999; Fister et al. 2006; Ding et al. 2009; Kelly et al. 2016; Baker et al. 2018, the
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existence of optimal controls, and subsequently the validity of the Pontryagin’s Maximum

Principle, has been proven on a case by case basis using some minimizing sequence and

compactness arguments, see also Lenhart et al. 2007, Chapter 25 and Aniţa et al. 2011,

Chapter 5. However, all these works consider steady problems or finite time horizons.

More specifically, Fister 1997 considers spatially distributed harvesting of both the prey

and the predator (on the full spatial domain) in a predator–prey diffusive model popula-

tion. In Fister 2001, the economic agent is interested in harvesting the predator only, but

the model also introduces a boundary control which allows for controlling the migration

of the populations across the boundary (e. g., a fence, mesh size of a net, filter). Simi-

larly, the further works refered to above consider OC in a bio-economic time dependent

diffusive setting. One common result of these works is that for distributed harvesting it

may be (economically) advantageous to have zones of no or substantially reduced harvest

(’marine reserves’ in the context of fisheries). The population may then grow to a high

level in the no–harvest zone, and the ’spillover’ by diffusion gives a higher yield than the

one obtained from a uniform harvesting. See also Leung 1995; Neubert 2003 for similar

results for steady state problems.

For the PDE case with infinite time horizons, Pontryagin type optimality conditions

have been proven for some linear PDE problems with linear–quadratic objectives, e.g.,

Barucci et al. 2001; Faggian 2004; Faggian et al. 2013; Boucekkine et al. 2013; Ballestra

2016. For genuinely nonlinear problems with diffusion such conditions have been formally

derived in Brock et al. 2008. See also Xepapadeas 2010; Brock et al. 2010; Uecker 2016;

Grass et al. 2017 for applications that in particular may lead to the emergence of spatial

heterogeneity of the resource and the harvesting.

Here we assume an infinite time horizon and a spatially distributed resource for which

harvesting can only be done on the boundary of the spatial domain. This constraint may

result from legal or physical restraints where the agent is not allowed or not able to

harvest inside the habitat. For instance, often a substantial part of fishing is done at

the shore or near the shore by artisanal fisheries; also, since fishing or hunting may be

banned within protected areas, such as nature reserves, marine protected areas, game

reserves etc., fishing and hunting frequently happens at the boundaries of those protected

areas, aiming at the spillover to the non–protected areas (Fogarty et al. 2004; Kellner

et al. 2007; McCauley et al. 2016). Moreover, harvesting may be further restricted to

subsets of the boundary, e.g., to certain places at the shore of a lake. Specifically, we

consider classes of infinite time horizon optimal control fishery problems with diffusion,

boundary catch, and classical Cobb–Douglas production functions. We start with some

one-species problems, and then extend the analysis to a two-species predator–prey model.

We formally (i.e., a priori assuming the existence of optimal controls, see §3.3 for further

comments) derive the so called canonical systems, i. e., necessary first order optimality

conditions. The associated stationary problems are systems of non-linear elliptic PDEs,
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which, depending on the parameter regimes, may have multiple solutions, and in order to

first obtain a comprehensive picture of these so called canonical steady states we use the

continuation and bifurcation software pde2path (Uecker et al. 2014). In a second step, we

compute canonical paths to canonical steady states and compare their values, and thus

characterize policies to reach optimal steady states in a profit-maximizing way.

It turns out that for both classes of models, i. e., the scalar one and the interacting

species model, generally speaking a “moderate harvesting policy” is optimal. This is quite

intuitive as excessive fishing leads to a drastic diminution of the stock and thus impairs

the conditions for future yield. A moderate fishing activity forgoes present profits, but

saves some of the stock for later growth and catch. However, some results of our analysis

are quite intriguing already for one of our scalar models, distinguished by a bistable

growth function. Here, the space of initial states is divided into three sets, namely ’sub-

threshold’ initial states from which we can only reach low–stock canonical steady states,

’super-threshold’ initial states from which we can only reach high–stock canonical steady

states, and a rather small ’intermediate’ set from which we can reach both.

We complement our analysis by discussing the spatial distributions of the respective

co-states or shadow prices. While in the one-species models the shadow price of fish is

falling with the distance from the shore, this does not necessarily hold for the predator in

the two-species case, even though the net market value of the predator species is positive.

Moreover, the asymmetric interaction between both species gives asymmetric cost effects:

While an increase in the fishing cost of the prey results in an increase in both stocks, an

increase in the fishing cost of the predator leads to a decrease in the stock of the prey. In

particular, if fishing of the predator is relatively costly, its value may become negative,

even though its market price exceeds the harvesting cost. Of course, here we leave the

gap that we apply the Pontryagin’s Maximum Principle in a formal way. Still, we identify

candidates for optimal solutions, and we believe that our analysis makes a methodological

contribution beyond the specific insights into optimal boundary fishing: our approach can

be applied to other PDE problems with controls restricted to the boundary of the domain,

and is rather independent of the functional forms of the state PDEs and the objective

function.

To the best of our knowledge, such infinite time horizon boundary harvesting prob-

lems have not yet been considered in the bio-economic literature. Fister 2001 considers

a finite time horizon problem, and, additionally to distributed controls, a rather special

boundary control which is not directly connected to harvesting. Kellner et al. 2007 focuses

on steady states, and the boundary harvest is not strictly at the boundary. Moreover,

both use simple quadratic expressions for the yields as functions of efforts and stocks.

The remainder of the paper is organised as follows. In §2 we describe our models, and

also provide a phase plane analysis of the constraints for the scalar stationary case. In §3
we formally derive the canonical system for the scalar case, discuss this formal derivation,
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and describe the basic numerical method for their solution. In §4 we present the results

for the one species models. Results of the two-species model are in §5, and in §6 we

conclude by discussing possible extensions and future research directions.

2 Problem setup

2.1 A class of scalar models

Consider a fishery problem where harvesting (fishing) can be done on the boundary of

some area, for example, a fisher catching fish from the shore. For simplicity we consider a

one-dimensional space represented by the interval Ω := (0, l), with fishing only at location

x = 0, the position of the fisher. Let v = v(x, t) be the biomass of fish at location x ∈ Ω

at time t ≥ 0. The catch depends on the available biomass of fish v and on the harvesting

effort k of the fisher, who wants to maximize his profit. We specify the catch (or harvest)

as a standard Cobb–Douglas function,

h = h(v, k) = vαk1−α (2)

with 0 < α < 1. Let p > 0 denote the market price of one unit of fish, and c > 0 the

(constant) per unit cost of harvesting effort. Since fish is a non-durable good, the catch is

offered at the market immediately when it is realized. Thus, we model the instantaneous

profit from harvesting as

Jc(v, k) = ph(v, k)− ck. (3)

The evolution of the stock is governed by net growth of the biomass and movement

of fish. Possible growth functions are

f(v) = flin(v) := δ − βv (linear), (4a)

f(v) = flog(v) := v(δ − βv) (logistic), (4b)

f(v) = fbi(v) := −(v − δ)(v − β)(v − 1) (bistable), (4c)

with parameters δ, β > 0, respectively 0 ≤ δ < β < 1 for fbi. For f = flin, the ODE

v̇ = f(v) has the unique globally stable fixed point v∗ = δ/β. For f = flog we again

have the stable fixed point v∗ and, in addition, the unstable fixed point v = 0. For our

purposes both models are quite similar: In particular, for each set of parameters both

have a unique canonical steady state (CSS) (which refers to steady states of the canonical

system (CS), see below), showing similar qualitative behavior. The main difference is that

for flin we can compute these CSSs semi-analytically, see §4.1.1, which can also be used

to validate the numerics.

For fbi we have the stable fixed points v=δ and v=1, and the unstable fixed point

v=β. For δ=0, fbi models critical depensation, see, e.g., Conrad et al. 1987, p. 63, Da Lara
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et al. 2008, p. 18f, here meaning that in order to grow the stock needs to be beyond the

threshold β, e.g., for mating reasons (Allee effect). The parameter δ > 0 could be used to

describe some small constant external input, i.e., fbi(0) = δβ > 0, but we rather see δ as

a regularization parameter, because h in (2) is not differentiable at v = 0 or k = 0, i.e.,

limv→0 ∂vh(v, k0) = limk→0 ∂kh(v0, k) = ∞ for all v0, k0 > 0. In economics, this models

infinite marginal values (Inada conditions) at low stocks/harvesting efforts. For (initially)

large stocks we can also work with δ = 0, but here we shall also be interested in the case

of optimal harvesting of low initial stocks. For δ > 0 we can derive and solve the CS, and

obtain well behaved (steady and time dependent) solutions with low v. We can then a

posteriori take the limit δ→0 which yields a well defined limit CS. Moreover, the (steady

and time dependent) solutions of the CS for δ>0 converge to solutions of the limit CS,

and although we do not have a rigorous proof this strongly suggests that the (low stock)

solutions of the limit CS yield optimal solutions of the problem with δ=0. Altogether we

find that f=fbi gives a much richer problem than flin and flog do.

The movement of fish is modeled as diffusion, i. e., by a term proportional to ∆v,

where ∆ denotes the Laplace operator with respect to x.1 Thus, the biomass of fish

evolves according to the system of differential equations and boundary conditions (BC)

∂tv = −G1(v) := D∆v + f(v) in Ω× T , (5a)

∂nv(l, t) = 0 in T (zero flux at the right boundary), (5b)

D∂nv(0, t)+g(v(0, t), k(t))=0 in T (control-dependent flux at the left boundary), (5c)

v(x, 0) = v0(x) in Ω, (5d)

where D is the diffusion coefficient, n denotes the exterior normal to the boundary ∂Ω.

In the one-dimensional case we could assume (by rescaling the domain) that D = 1,

but for conceptual clarity and generalizations we keep D. The zero-flux (or Neumann)

boundary condition at x = l model that no fish can leave or enter. The harvesting

at the left boundary of Ω gives the flux boundary condition (5c): if g > 0, then also

∂xv(0, t) = −∂nv(0, t) = 1
D
g > 0, meaning that x 7→ v(x, t) is an increasing function.

Since g is induced by the harvest h, we set

g(v, k) = γh(v, k), (5e)

for some γ > 0. Hence, a larger take out of fish at x = 0 increases the differential in

stocks between x = 0 and its (right) neighborhood x > 0, and γ can be thought of as

the inverse of the replacement flux of fish: when γ is high (low) a given amount of fishing

leads to a large (small) differential in stocks near x = 0, and this differential is due to

a slow (fast) replacement of fish due to diffusion. Thus, in a simple setting γ could be

1Although we focus on the one dimensional case Ω = (0, l), where ∆v = ∂2xv, we use dimension-
independent notation where suitable for the purpose of possible generalization. Note that ∂nv(0, t) =
−∂xv(0, t) and ∂nv(l, t) = ∂xv(l, t).
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chosen proportional to 1/D, but we keep it as an independent parameter, essentially to

possibly model special conditions for the replacement fluxes at the boundary.

Finally, given the instantaneous profit Jc from (3), the fisher seeks to maximize the

total discounted profits

V (v0) = max
k∈C([0,∞),R+)

J(v0, k), where J(v0, k) :=

∫ ∞
0

e−ρtJc(v(0, t), k(t)) dt. (5f)

We thus have an optimal control (OC) problem with the PDE constraints (5a)–(5e) and

the boundary control k : [0,∞)→ [0,∞). In particular, we do not impose an upper limit

on the harvesting effort k. Instead, it turns out that k is bounded above, and that the

natural constraint k ≥ 0 is automatically fulfilled, i.e., never becomes active.

2.2 Phase plane analysis of the steady state constraint

To get an intuition for the constraints in (5), we first sketch a phase plane analysis of the

constraint in the stationary case, i. e., for the scalar ODE

Dv′′ + f(v) = 0, (6)

where as a shorthand we write v′ ≡ ∂xv and v′′ ≡ ∂2
xv. Equivalently we can write (6) as

a spatial dynamics system

v′1 = v2, Dv′2 = −f(v1), (7)

which is Hamiltonian with conserved energy E(v, v′) = 1
2
Dv′2 + F (v), with F ′ = f ,

because d
dx
E(v(x), v′(x)) = v′(x)(Dv′′(x) + f(x)) = 0, and hence the orbits are level lines

of E. For the specifications of f given in (4), we obtain

Flin(v) = δv − β

2
v2, Flog =

δ

2
v2 − β

3
v3, (8)

Fbi(v) = δβv − 1

2
(β + (1 + β)δ)v2 +

1

3
(1 + β + δ)v3 − 1

4
v4. (9)

Clearly, for all three, (v1, v2) = (1, 0) is a saddle point of the energy. From the modeling

we know that we should only be interested in orbits of (6) with v(x) > 0 for all x ∈ (0, l),

with v′(l) = 0, and with v′(0) > 0 because we want a positive take-out at x = 0. Thus, the

only relevant solutions of (6) are those which start at x = 0 with v(0) > 0 and v′(0) > 0.

Figure 1(a,b) illustrates that flin and flog behave rather similarly in the pertinent

region of the phase plane, i. e., north-west of the fixed point (1, 0), but fbi in (c,d) is

qualitatively different. The black orbit in (c) is similar to those in (a,b), i.e., it starts

northeast and ’near’ the fixed point (1, 0). Additionally, see (d), there are now orbits (blue

example) that start at low v and v′ and end near (1, 0), and orbits (magenta example)

that start left of the low fixed point (δ, 0). Now, an immediate question is: For a given

model, flin, flog and fbi, which of its steady states maximize Jc in the set S of steady
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states? Moreover, we are interested in the solution of the intertemporal OC problem (5).

Thus, we next formally derive the necessary first order optimality conditions, known as

the canonical system (CS), with steady solutions called canonical steady states (CSSs).

Returning to Fig. 1, for both, flin and flog, at a given set of parameters there will be a

unique CSS, which corresponds to one of the black orbits in (a,b), respectively. However,

for f=fbi there will generically be multiple CSSs.

Figure 1: Phase plane analysis for (7), with (a) f = flin and (b) f = flog, both without loss of

generality with δ = β = D = 1, and (c) f = fbi with β = 0.5, δ = 0.05. The blue lines are the

level lines of the respective E, thus giving the phase portrait, while the black orbits (in (a,b))

are obtained from choosing v(l) near 1, v′(l) = 0, i. e., (v1, v2)(l) near the fixed point (1, 0), and

integrating “backward in time” to x = 0, here for illustration with l = 2. The black points

thus indicate the “initial condition” at x = 0. We obtain qualitatively similar behavior for all

l > 1, say, with the only difference that for larger l the “endpoints” of the black orbits must be

closer to the fixed points in order that the solutions are in the first quadrant. In (c) we proceed

similarly for fbi with l = 10. In (d) we plot v(t) for three orbits; the black orbit is from (c), while

the blue one corresponds to a slightly smaller v(l), and the magenta one to nearly constant v

near the fixed point (v, v′) = (δ, 0).

2.3 A predator–prey system

The scalar model of §2.1 can be greatly generalized. As an example, consider a standard

Lotka–Volterra system for prey (v1) and predator (v2) in the form

∂tv1 = d1∆v1 + (1− βv1 − v2)v1,

∂tv2 = d2∆v2 + (v1 − 1)v2,
(10)

with diffusion constants dj, and self damping parameter of the prey β > 0. This system

can more compactly be written as ∂tv = −G1(v) = D∆v+ f(v), with D =

(
d1 0
0 d2

)
and

growth function f(v) =

(
(1− βv1 − v2)v1

(v1 − 1)v2

)
. Using the Liapunov function φ(v1, v2) =

v1 + v2 − ln v1 − (1− β) ln v2 it follows that

V ∗ = (v1, v2) = (1, 1− β) (11)
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is the unique steady state of the ODE system d
dt
v = f(v) in the first quadrant, and is

globally stable. Similarly, using the functional

Φ(t) =

∫
Ω

φ(v1(t, x), v2(t, x)) dx (12)

it follows that for d1,2 sufficiently large, V ∗ is the unique steady state of (10) with zero

flux BC, and is globally stable, see, e. g., Hastings 1978. For v2 ≡ 0, the v1 equations

corresponds to the case f = flog from §2.1, and we have the additional fixed point (v1, v2) ≡
(1/β, 0), but here and in the following we always restrict to v1, v2 > 0.

Analogous to (5) we consider a boundary fishing problem for (10). We introduce J

and fishing efforts k1, k2 as controls via

Jc =
2∑
j=1

pjhj − cjkj, hj = hj(vj, kj) = v
αj
j k

1−αj
j , (13)

dj∂nvj = −gj := −γjhj as left BC, (14)

and want to maximize

V (v0) = max
k∈C([0,∞),R2

+)
J(v0, k), subject to (10) and (13), (14), (15)

where J(v0, k):=
∫∞

0
e−ρtJc(v(0, t), k(t)) dt, with the vector valued initial states v0 : Ω→R2

+,

and the vector valued boundary control k = (k1, k2) : [0,∞)→ R2
+.

3 The canonical system formalism

To solve (5), and (15), we formally derive the associated canonical systems, also called

state-costate or state-adjoint equations, which here take the form of forward–backward

diffusion problems. We first focus on the scalar case (5), and postpone the quite analogous

vector valued case (15) to §5. As already indicated in the Introduction, formally here

inter alia means that we a priori assume that optimal controls exist. See §3.3 for further

comments, and comparison with other methods and results for PDE constrained infinite

time-horizon OC.

3.1 Formal derivation

We consider the Lagrangian

L(v, λ, k) :=

∫ ∞
0

e−ρt
{
Jc −

∫
Ω

λ(∂tv +G1(v)) dx

}
dt (16)

where λ : Q → R, Q := Ω × [0,∞) is the Lagrange multiplier for the PDE constraint

(5a), also called co-state variable, or, in economics, the shadow price of the biomass at
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location x at time t. Using integration by parts in x we have∫
Ω

λD∆v dx = −
∫
〈∇λ,D∇v〉 dx+

∫
∂Ω

λD∂nv ds

=

∫
(D∆λ)v dx+

∫
∂Ω

λ(D∂nv)− (D∂nλ)v ds, (17)

and integration by parts in t yields

−
∫ ∞

0

e−ρt
∫

Ω

λ∂tv dx dt =

∫
Ω

λ(x, 0)v(x, 0) dx+

∫ ∞
0

e−ρt
∫

Ω

(∂tλ− ρ)v dx dt, (18)

where we used the so-called transversality condition

lim
t→∞

e−ρt
∫

Ω

λ(x, t)v(x, t) dx = 0, (19)

which here ensures that the boundary terms at t = ∞ vanish. See §3.3 for further

comments. Next, using the BCs (5c) and (5b), i. e., D∂nv|x=0 = −g and D∂nv|x=l = 0,

we obtain

L(v, λ, k) =

∫
Ω

v(x, 0)λ(x, 0) dx+

∫ ∞
0

e−ρt
{(
Jc−λg−(D∂nλ)v

)∣∣
x=0
−(D∂nλ)v

∣∣
x=l

−
∫

Ω

(ρλ−∂tλ−D∆λ)v−λf(v) dx

}
dt. (20)

The first variation of L with respect to v, applied to a test-function φ ∈ C∞(Q) with

φ(·, 0) = 0, yields

∂vLφ =

∫ ∞
0

e−ρt
{(

(∂vJc − λ∂vg −D∂nλ)φ
)∣∣
x=0
− (D∂nλ)φ

∣∣
x=l

−
∫

Ω

(ρλ− ∂tλ−D∆λ− ∂vf(v)λ)φ dx

}
dt.

Therefore, by density of C∞(Q) in L2(Q), and by density of ∂nC
∞(Ω) in L2(∂Ω), the

condition ∂vLφ = 0 yields ρλ − ∂tλ −D∆λ − ∂vf(v)λ = 0 and the boundary conditions

D∂nλ|x=l = 0 and D∂nλ − ∂vJc + λ∂vg = 0. Thus, using ∂vJc = p∂vh and ∂vg = γ∂vh,

the canonical system is

∂tv = D∆v + f(v), v(x, 0) = v0(x), (21a)

∂tλ = ρλ−D∆λ− ∂vf(v)λ, (21b)

D∂nv + γh = 0 at x = 0, ∂nv = 0 at x = l, (21c)

D∂nλ− (p− γλ)∂vh = 0 at x = 0, ∂nλ = 0 at x = l, (21d)

where k is obtained from k(t) = argmaxk L(v(·, t), λ(·, t), k). In the absence of control

constraints (see the remarks after (5f)), the condition ∂kL = 0 yields

0 = ∂kJc − γλ∂kh− v∂k(p− γλ)∂vh

= p∂kh− c− λγ∂kh− v(p− γλ)∂v∂kh = (p− γλ)∂kh− (p− γλ)α∂kh− c,
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and thus

(p− γλ)(1− α)∂kh = c ⇔ k = k̃(λ)v, k̃(λ) =

(
(1− α)2(p− γλ)

c

)1/α

. (21e)

Hence, if an optimal control k for the OC problem (5) exists, then (21) gives first

order optimality conditions. In particular, the optimal effort is determined by (21e),

where p−γλ represents the total value of one unit of biomass. The extent to which a

take out affects future catch depends on the replacement flux of fish at the boundary,

measured by γ. If γ is large (small), then the replacement flux of fish is slow (fast), so

that the stock recovers slowly (quickly). In economic terms, λ is the shadow price of fish,

and γλ represents a future reduction of profit due to today’s take out of fish, and this

value must be subtracted from the market price of fish.

3.2 Numerical method

We want to solve (21) on the infinite time horizon t ∈ [0,∞), and thus at first might

want to think of (21) as an initial value problem. However, (21a) provides initial data for

only half the variables, while (21b) has backward diffusion. We proceed similar to Grass

et al. 2008, Chapter 7; Uecker 2016 and Grass et al. 2017, see also Kunkel et al. 2000;

Beyn et al. 2001. First, setting u = (v, λ) we compute canonical steady states (CSSs) û,

i. e., steady states of the canonical system. Then, given some initial state v0, we want to

compute canonical paths (CPs) t 7→ u(·, t) = (v(·, t), λ(·, t)) connecting v0 to some CSS,

and from these paths the optimal control t 7→ k(t) via (21e).

Thus, write (21) as

∂tu = −G(u), u := (v, λ), u1(x, 0) = v0(x), (22)

where we generally suppress the dependence on parameters. The CSSs are solutions of

G(u) = 0. (23)

In general, (23) is a non-linear elliptic system, and thus at a given set of parameters we

may expect multiple CSSs, û=(v̂, λ̂), with (generically) different values J(v̂)=1
ρ
Jc(v̂), for

different CSSs. If, for instance, we let 1 parameter vary in (23), then the solutions come in

branches (1 dimensional continua), from which at certain parameter values new solution

branches may bifurcate. To find such solution branches we use the Matlab continuation

and bifurcation package pde2path (Uecker et al. 2014), designed for PDEs of type (22)

(and also for more general PDEs) over one-, two- and three-dimensional domains, based

on a spatial finite element method (FEM). As u in (23) always has an even number of

components, in the following we write 2n for the spatial degrees of freedom.

A canonical paths (CP) connecting v0 to some CSS û is a time dependent solution

t 7→ u(t) of (22) such that

u1(x, 0) = v0(x) and lim
t→∞

u(t) = û. (24)

11



Only the first component u1|t=0=v0 is fixed, while u2|t=0=λ|t=0 and hence the control k(0)

are free. Different situations may arise:

1. There is a unique CP connecting v0 to a CSS û.

2. There is a unique CSS û which can be reached from v0, but different CPs to do so.

3. Different CSSs û(1), û(2), . . . can be reached from v0, and for each target there may

be more than one CP.

If, given v0, there is more than one CP by choice of λ(0), then we can compare the

respective values of J for those paths, and decide which one is optimal. Reversely, we

can also consider a given CSS û and ask from which v0 it can be reached by a CP. In

particular, a CSS û that can be reached from all nearby v0 and such that the associated

CPs maximizes J(v0, ·) is called a locally stable optimal steady state (OSS), while a CSS

which can be reached from all v0 that are admissible, i. e., here all v0 ≥ 0 (pointwise),

and such that the CPs maximize J(v0, ·), is called a globally stable OSS. In general, all of

the alternatives 1.–3. can occur in a given system. In particular, there may be multiple

locally stable OSSs. See, e. g., Grass et al. 2008 for various ODE applications, and Uecker

2016; Grass et al. 2017 for some PDE examples. Additionally, there may be optimal limit

cycles (Wirl 1996, Uecker 2019, §3.4), or (slow, i.e., such that (19) still holds) divergence

of optimal solutions to infinity, see the AK example in §3.3.2.

To compute a CP towards a CSS û, we numerically proceed as follows. Given the

spatial discretization of G(u) = 0 with 2n degrees of freedom, i. e., u = (v, λ) ∈ R2n, (22)

becomes a coupled system of 2n ODEs, which with a slight abuse of notation, we again

write as

M
d

dt
u = −G(u), v(0) = v0 ∈ Rn. (25a)

Here M ∈ R2n×2n is the mass matrix of the FEM. We choose a truncation time T and

approximate (24) by

u(T ) ∈ Es(û) and ‖u(T )− û‖∞ small, (25b)

where Es(û) is the stable eigenspace of û for the linearization M d
dt
ũ = −∂uG(û)ũ of (25).

At t = 0 we already have the boundary conditions v(0) = v0 for the states. Then, in order

to obtain a well-defined two point boundary value problem in time we need

dimEs(û) = n. (26)

Since the eigenvalues of the linearization are always symmetric around ρ/2 (Grass et al.

2017, Appendix A) we always have dimEs(û) ≤ n. The number

d(û) = n− dimEs(û) (27)

is called the defect of the CSS û. A CSS û with d(û) > 0 is called defective, and if d(û) = 0,

then û has the so called saddle point property (SPP). These are the only CSSs such that

12



for general v0 close to v̂ we may expect a solution for the connecting orbits problem (25a),

(25b). See Grass et al. 2017 for further comments on the significance of the SPP (26)

on the discrete level, and its (mesh-independent) meaning for the canonical system as a

PDE. Furthermore, see Uecker 2017 for algorithmic details how to implement (25b) in

pde2path, and how to find CPs connecting some v0 to û by a continuation process in the

initial states.

3.3 Remarks on the formal derivation and comparison with other

methods

The derivation of (21) is formal in the sense that we assume

• that an optimal control k : [0,∞)→ R exists and gives a finite value J(k, v) <∞;

• that k and the associated solution v : Ω×R→ R are sufficiently smooth such that

the integration by parts in x and t are valid;

• that the transversality condition (19) holds.

These are non-trivial assumptions. There are simple ODE OC problems where naive

application of maximum principles yields wrong results, see, e.g., Lenhart et al. 2007,

Example 2.1, or Serovaiskii 2003 for various further examples and a thorough discussion.2

Thus, it would be desirable to prove the existence of an optimal control k for (5), and

to prove that (21) yields all candidates. However, a general theory for optimal control

for PDE problem so far only exists for finite time horizons, see, e.g., Raymond et al.

1999; Casas et al. 2000; Casas et al. 2015; Casas et al. 2018. The existing general theory

for infinite time horizons only deals with ODEs, and usually the existence of an optimal

solution is a priori assumed. See, e.g., Grass et al. 2008, §3.7, §3.8 and the references

therein, or Tauchnitz 2015.

In summary, (21) only gives some candidates for optimal solutions, i.e., candidates

within the class for which (21) can be derived, and the solutions we obtain are necessarily

regular in t and x. Thus, we cannot guarantee that there are no ’reasonable’ controls k,

e.g., k ∈ PC0([0,∞),R+), that yield a higher J than that obtained from the candidates

from (21). Moreover, we did not consider state or control constraints. However, our aim

are computations for models based on the Cobb-Douglas harvesting (2) that go beyond

simple models based on linear quadratic objective functionals (see §3.3.1 and §3.3.2 below).

In particular, we can check a posteriori that all CSSs and CPs fulfill the natural constraints

k(t) > 0 for all t ≥ 0, and v(x, t) ≥ 0 for all t ≥ 0 and all x ∈ Ω, and that both are also

reasonably bounded from above. Thus, we think that the existence of controls yielding a

higher objective value, not obtained via (21), is very unlikely.

2An even simpler example would be the function f : R → R, f(x) = x3, which has a unique solution

x = 0 of the ’necessary conditions’ f ′(x) = 3x2 = 0, but f has no maximum or mimimum. Also if

we restrict f to I = [−1, 1], then the extrema are at x = ±1 where f ′(x) = 0 does not hold. Clearly,

f ′(x) = 0 is only necessary for inner extrema, and in any case is in general not sufficient.
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On the other hand, there is some work which deals rigorously with (linear–quadratic)

infinite time horizon OC problems with linear PDE constraints. In the following two

subsections we give two examples and relate these to our formal analysis and the 2-step

numerical approach from §3.2.

3.3.1 Age specific advertising

Faggian et al. 2013 study optimal advertising models with a linear quadratic objective,

for instance of the form

V (v0) = max
w∈W

J(v0, w), J(v0, w) =

∫ ∞
0

e−ρt
(∫

Ω

π(x)v(x, t)−κ(x)

2
w2(x, t) dx

)
dt, (28)

subject to the first order (transport) linear PDE

∂tv = −∂xv − δv + w in Ω = (0, ω), v(0, t) = 0, v(x, 0) = v0(x). (29)

Here, [0, ω] is an age interval of customers, v : [0, ω] × [0,∞) → R+ is the (age and

time dependent) goodwill of the customers wrt some product, the control w(x, t) is the

advertising effort, distributed in age and time, and π, κ : Ω→ R describe the profits and

costs of advertising, respectively. Similar first order PDE OC problems have also been

considered in Barucci et al. 2001; Feichtinger et al. 2003, see also Grass et al. 2008, §8.3.

In Faggian et al. 2013, some rigorous analysis (using results based on Barucci et al. 2001)

is presented which inter alia yields the following:

[A] Assume that π, κ∈L2(Ω), v0∈H1(Ω), κ>0, π, v0≥0, and take W = Lpρ([0,∞),R) =

{w : [0,∞)→ R+,
∫∞

0
e−ρt‖w(t)‖pL2 dt} as the set of admissible controls. Then (28)

has a unique optimal advertising strategy w∗ = w∗(x), which in particular does not

depend on t. The associated optimal solution v∗ : Ω× [0,∞) is

v∗(x, t) = e−δtv0(x− t)χ[t,ω](x) +

∫ min t,x

0

e−δs
π(x− s)
κ(x− s)

ds, (30)

where χI is the characteristic function of the interval I, i.e., χI(x) = 1 if x ∈ I, 0

else, and π ∈ H1(Ω) can be explicitly computed. In particular, for all v0 ∈ H1(Ω),

v∗(·, t)→ v̂(·) as t→∞, where v̂(x) =
∫ x

0
e−δs π(x−s)

κ(x−s) ds.

Similar results can be obtained for related (linear–quadratic) models, which may also

include boundary controls, see, e.g., Barucci et al. 2001; Faggian 2004. The proofs use

some ideas from dynamic programming, and a posteriori yield a Pontryagin maximum

principle. Additionally, Faggian et al. 2013 give and discuss some interesting explicit

results for specific choices of π and κ.

We obtain the same results from directly applying the CS formalism as follows. The

Lagrangian reads

L(v, λ, w) :=

∫ ∞
0

e−ρt
{∫ ω

0

πv − κ

2
w2 − λ(∂tv + ∂xv + δv − w) dx

}
dt, (31)
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and by integration by parts in t of
∫∞

0
e−ρt

∫
Ω
λ∂tv dx dt (using the TC (19)), and inte-

gration by parts in x of
∫

Ω
λ∂xv dx, and taking first variations wrt λ and v we obtain

∂tv = −∂xv − δv + w, v(x, 0) = v0(x), v(0, t) = 0, (32a)

∂tλ = −∂xλ+ (ρ+ δ)λ− π, λ(ω, t) = 0, (32b)

while δwL = 0 yields w = λ/κ. Importantly, because Jc has no mixed term of the form

vw, (32b) decouples from (32a) and can thus be discussed first. This is also at the core

of the solution via dynamic programming. Here, (32b) has a unique steady solution λ̂(x),

which can be computed to be κ(x)w∗(x). Moreover, (32b) is ill-posed as an initial value

problem because the BC λ(ω, t) = 0 is on the ’wrong side’ as the transport in (32b) is

still to the right. Hence, λ̂(x) is the only feasible solution of (32b), and plugging ŵ = λ̂/κ

back into (32a) we obtain (30). Moreover, concerning the (numerical) SPP in (26), the

structure of (32a),(32b), i.e., the fact that (32b) is ill-posed and decoupled from (32a),

yields that every pertubation of λ̂ is in the unstable eigenspace of û, and hence a priori

λ ≡ λ̂ for every canonical path.

All this is readily confirmed by applying the numerics from §3.2 to (32a),(32b). Ad-

ditionally, for the numerics we can easily extend (28),(29) beyond the linear–quadratic

case.

3.3.2 The spatial AK model

A problem which is particularly interesting to illustrate the role of the TC (19), is the

’spatial AK model’ analyzed in Boucekkine et al. 2013 and Ballestra 2016. It reads

V (v0) = max
c∈C

J(v0, c), J(v0, c) =

∫ ∞
0

e−ρt
(∫

Ω

U(c(x, t)) dx

)
dt, U(c) =

c1−σ

1− σ
, (33)

subject to the linear diffusion equation

∂tv = ∂2
xv + Av − c(t, x) in Ω = (0, 2π), v|t=0 = v0, (34)

with the periodic BC v(0, t) = v(2π, t), ∂xv(0, t) = ∂xv(2π, t) (exactly the same results

can be obtained for homogeneous Neumann BC ∂nv|∂Ω = 0 over general domains). Here,

v = v(x, t) is a distribution of capital, the control c = c(x, t) is consumption, and A, ρ > 0

and σ ∈ (0, 1). In Boucekkine et al. 2013 the following result is shown via dynamic

programming, and has been related to Pontryagin’s Maximum Principle in Ballestra 2016:

[B] Assume that A(1 − σ) < ρ, let η = (ρ − A(1 − σ))/(2πσ), β = (A − ρ)/σ and

v0 =
∫ 2π

0
v0(x) dx. Then c∗ = c∗(t) = c0eβt with c0 = ηv0 is the unique optimal

control for (33).

In [B], the admissible controls fulfill c, v ≥ 0 and a suitable limiting transversality condi-

tion, which fixes the constant c0 in c∗, and which is discussed in detail and expressed in

various ways in Boucekkine et al. 2013 and Ballestra 2016.
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Here we want to illustrate that the CS formalism from §3.1 yields exactly the same

result via the equivalent TC (19). The Lagrangian reads

L(v, λ, c) =

∫ ∞
0

e−ρt
(∫

Ω

U(c)− λ(∂tv − ∂2
xv − Av + c) dx

)
dt,

and going through the integration by parts (using the pBC in x and the TC (19) in t)

and taking first variations we obtain the CS

∂tv = ∂2
xv + Av − c, c =

(
1

λ

)1/σ

, v|t=0 = v0, (35a)

∂tλ = −∂2
xλ+ (ρ− A)λ, (35b)

with pBC for v and λ. Again, (35b) decouples, and has the general solution

λ(x, t) =
∑
n∈N0

eµnt(an cos(nx)+bn sin(nx)), µn = n2+(ρ− A), an, bn ∈ N, b0 = 0, (36)

but the non-negativity λ > 0 (cause c > 0) yields an = bn = 0 for all n ∈ N. Thus,

λ(x, t) = λ(t) = e(ρ−A)tλ0 for some λ0 > 0, and consequently

c(t) = e(A−ρ)t/σc0 with c0 = (1/λ0)1/σ.

With et∂
2
x the semigroup for the linear diffusion equation ∂tv = ∂2

xv on Ω, the solution

v(x, t) of (35a) then reads

v(x, t) = et(∂
2
x+A)v0 − c0

∫ t

0

e(t−s)Aeβs ds = et(∂
2
x+A)v0 + c0etA

1

2πη
(e

1
σ

(A(1−σ)−ρ)t−1).

Since et∂
2
x (with Neumann BC or periodic BC) conserves the average v =

∫
Ω
v(x) dx, we

obtain

v(t) = etA
(
v0 +

c0

η

(
e(A(1−σ)−ρ)t/σ − 1

))
.

For A(1− σ) < ρ we have e(A(1−σ)−ρ)t/σ → 0 for t→∞, and the TC

lim
t→∞

e−ρt
∫
λ(t)v(x, t) dx = lim

t→∞
e−ρtλ(t)v(t)

= lim
t→∞

e(A−ρ)tλ0e(ρ−A)t(v0 +
c0

η
(e(A(1−σ)−ρ)t/σ − 1))

!
= 0

uniquely fixes c0 = ηv0 in dependence of the initial mass, illustrating the role of (19). In

particular, if one (wrongly) chooses c0 > c∗0, then v(t)→ −∞ as t→∞, clearly violating

the assumption v(x, t) ≥ 0 for all x, t, and limt→∞ e−ρtλ(t)v(t) < 0. Conversely, if c0 < c∗0

then limt→∞ e−ρtλ(t)v(t) > 0, and consumption is smaller than optimal.

Note that v(t), c(t) → ∞ if ρ < A (long sighted consumers) and v(t), c(t) → 0 if

ρ > A (short sighted consumers), and in these cases the method from §3.2 does not apply.

In the special case ρ = A, for which c∗(t) ≡ c0 = ηv0, we have (for fixed parameter values)

a line {(v̂, λ̂) : v̂ > 0, λ̂ = 1/(ηv̂)σ} of spatially constant CSSs, parametrized by the mass

v̂. These are ’weak’ saddle–points in the sense that one eigenvalue always equals zero,

and given a non-negative initial state v0 = v0(x) we obtain a unique CP to the CSS with

v̂ = v0.
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4 Results for the scalar fishery problems

We return to (5) and want to compute CSSs and CPs, starting with f = flin and flog.

While in general we need numerics already for CSSs, for the case f = flin in (5) we can

also compute the CSSs (semi–)analytically. This can be used to verify the numerics, and,

via comparative statics, the modeling.

4.1 Linear growth and logistic growth

4.1.1 Semi-analytical CSSs for linear growth

For flin(v) = δ−βv the steady canonical system takes the form (without loss of generality

choosing D = 1)

0 = v′′ + δ − βv, 0 = (ρ+ β)λ− λ′′, (37a)

v′(0) = γh, v′(l) = 0, λ′(0) = −(p− γλ)∂vh, λ′(l) = 0. (37b)

The ODEs in (37a) decouple, and the same holds true for the associated time depen-

dent PDEs, which makes them superficially similar to the examples in §3.3) but the two

problems are still coupled by the BC at x=0 in (37b). The general solution of (37a) is

v(x) = δ/β + a1e
√
βx + b1e−

√
βx, λ(x) = a2erx + b2e−rx, r =

√
ρ+ β, (38)

and it remains to compute the constants a1, a2, b1, b2 from the BCs in (37b). From the

Neumann BC at x = l we get

b1 = a1e2
√
βl, b2 = a2e2rl, (39)

and thus end up with an algebraic system for a1, a2, namely√
βa1

(
e2
√
βl − 1

)
= γk1−αvα, ra2

(
e2rl−1

)
= αk1−αvα−1(p− γλ), (40)

together with k = ((1− α)2(p− γλ)/c)
1/α

, where it is understood that λ = λ(0) and

v = v(0) are functions of a1, a2 via (38) and (39).

We now give a bio-economic discussion of the CSSs, aiming to illustrate general

features. Letting

Ψ(x, a) :=
exa + ea(2l−x)

a(e2la − 1)
,

the steady solutions of (37) can be implicitly written as

v(x) = δ/β − γh(v(0), k)Ψ(x, β), λ(x) = (p− γλ(0)) ∂vh (v(0), k) Ψ(x, r),

with spatial dependence given by Ψ. The stock of the resource in the CSS equals its

steady state value v∗ = δ/β minus some decrement, which depends on x and the decay

rate β, but does not (directly) depend on the discount rate ρ. Since Ψ is decreasing in x,
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Figure 2: Some results for linear growth. In (a) we compare the solution (38) from (40)

with parameters (41) (dots) with the direct numerical solution of (37) with pde2path (lines).

Similarly, (b) compares the dependence of k, v, λ and Jc on c, computed via the two approaches.

the stock is higher and the shadow price is lower at more distant locations. Both results

mirror the fact that a take out of fish exclusively takes place at the boundary x = 0. Due

to the diffusion of fish, its removal at x = 0 is compensated by gradual replenishment,

but since this process takes time the value of fish is lower at more distant locations.

System (40) cannot easily be solved algebraically for a1,2, i. e., for v(0), λ(0) and

k, but it can immediately and conveniently be solved numerically in Matlab or similar

systems. As an example, we choose the parameter specification

(ρ, α, p, γ, β, δ, l) = (0.02, 0.3, 1, 0.5, 0.01, 0.01, 20), (41)

and let c vary between 0.1 and 2. For c = 0.1, 1, 2 we then obtain the unique solutions

(a1, a2) = (−0.167, 0.0014), (a1, a2) = (−0.0077, 0.00022), and (a1, a2) = (−0.0027, 0.00006),

respectively. The associated solutions (38) are shown in Figure 2(a), and are indistinguish-

able from the direct numerical solution of (37) using pde2path.

Following §3.2, the next step would be to compute the time dependent CPs from an

arbitray initial state v0 (with v0(x) > 0 for all x) to the (for fixed parameters) unique

CSS which is always a saddle point, and the computation of their values. However, it

turns out that the case f = flog is quite similar to f = flin, and thus here we skip the

presentation of CPs for f = flin as we present CPs for f = flog in §4.1.3.
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4.1.2 Comparative statics

Figure 2(b) illustrates the dependence of the economically interesting quantities k, h, Jc

and of v(0), λ(0) on the effort cost c. Their qualitative behavior can also be obtained

analytically, which in economics is called comparative statics. From (21e) and (40) we

obtain v = v(0), λ = λ(0) and k as implicit functions of the cost parameter c. Using the

shorthand Ψ(a) = Ψ(0, a) we have

v =
δ

β
−γh (v, k) Ψ(

√
β), λ = (p−γλ) ∂vh (v, k) Ψ(r), c = (p−γλ) (1−α)∂kh (v, k) . (42)

Implicitly differentiating (42) with respect to c, using h(v, k) = vαk1−α and solving for

the desired derivatives yields

v′(c) =
vγkα+1Ψ

(√
β
)

(vkα + kαγvαΨ(r))

(1− α)α(p− γλ) (vkα + kγvαΨ(r))
(
vkα + kγvαΨ

(√
β
)) > 0, (43a)

k′(c) = −
kα+1v−α (vkα + kαγvαΨ(r))

(
vkα + kαγvαΨ

(√
β
))

(1− α)2α(p− γλ) (vkα + kγvαΨ(r))
(
vkα + kγvαΨ

(√
β
)) < 0, (43b)

λ′(c) = − kα+1Ψ(r)

(1− α) (vkα + kγvαΨ(r))
< 0, (43c)

h′(c) = − v′(c)

γΨ
(√

β
) < 0. (43d)

An increase in c renders harvesting effort more and more unattractive: effort k is reduced

implying a reduction in harvest h, and thus an increase in the stock v; in parallel, higher

costs reduce the value of the stock λ. Correspondingly, the resulting profit falls with

higher values of c. Since the comparative effects (43) are unambiguous, it is clear that

our numerical results depicted in Figure 2(b) are not due to our parameter specification

but illustrate general features of our model.

4.1.3 Logistic growth

Similarly to the case f = flin, for f = flog we again have unique CSSs (v(x), λ(x)) which

look qualitatively and even quantitatively similar to those for f = flin. The reason for this

similarity is that f(v) = v(δ− βv) is positive in the relevant range 0 < v < v∗ = δ/β (see

also our discussion of the phase plane in §2.2). Accordingly, the dependence on parameters

such as c is also qualitatively similar for logistic growth and linear growth. Moreover, it

turns out that the unique CSSs û for both models are globally stable OSSs, i.e., for any

v0 ≥ 0 (pointwise, with v0(x) > 0 at least one point) there is a CP connecting v0 to û. In

Fig. 3 we show two CPs for f = flog. In panels (a,b) we choose v0 ≡ 1 (full initial stock in

the domain), and in (c,d) v0 ≡ 0.1 (almost depleted stock). (a) and (c) show the control

k and the current value Jc at the left boundary as a function of time, while (b,c) show the

associated evolutions of v.3 The results are as expected: starting at a high (low) v0, the

3In these and similar plots to follow, “l1/pt13” denotes the target CSS, following the pde2path style

branch/pointnumber for solution labeling. In the surface plots (x, t) 7→ v(x, t) we only use a reduction
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fishing effort decreases (increases) monotonically to that of the CSS. The main benefit of

such a numerical computation is to find the precise quantitative behavior of t 7→ k(t).

Figure 3: Example CPs connecting initial states v0 to the unique globally stable CSS û for

f = flog, (ρ, α, p, γ, δ, β) = (0.02, 0.3, 1, 0.5, 0.01, 0.01), c = 1, and v0 ≡ 1 in (a,b), and v0 ≡
0.1 in (c,d). (a,c) show k, Jc, while (b,d) illustrate the associated evolution of v. Here, J =∫∞

0 e−ρtJc(u(t)) dt and J1 :=
∫∞

0 e−ρtJc(û) dt = 1
ρJc(û) denote the values of the CP and of the

target CSS, respectively.

4.2 Bistable growth

Compared with flin and flog, for f = fbi there are some important differences: depending

on v(l) (with v′(l) = 0) we may expect CSSs with v of the black, blue and magenta type

indicated in Figure 1(d). We now fix l = 10, and, in contrast to Fig. 2 where we used the

costs c as continuation parameter, we fix c and consider

(α, p, β, γ, c) = (0.2, 8, 0.5, 1, 1), (44)

as a base parameter set. We also first fix δ = 0.05, and start with the discount rate

ρ as our primary continuation parameter for the computation of (branches of) CSSs,

because this turns out to be more convenient to obtain multiple CSSs. Subsequently

we study the dependence of ’low stock CSSs’ û(·; δ) on the ’regularization parameter’ δ.

We (numerically) find that limδ→0 û(·; δ) = û(·, 0) where û(·, 0) is a CSS of the formal

limit system, and moreover, that the associated CPs also converge (uniformly in x and

t) for δ → 0 to the limit CP. We also studied the dependence of CSSs and CPs on other

parameters such as c as we did for f = flin in Fig. 2. This dependence is as expected

(similar to Fig. 2), and thus we refrain from presenting these results in detail, and only

note that fbi yields similar comparative statics results with respect to the parameters

(α, p, γ, c) as flin and flog.

of the computational grid for plotting, i.e., typically every 3rd or 4th point in x and t directions. The

computation of the CPs uses adaptive mesh-refinement in t, which usually occurs at the fast transitions

at the start of the CPs.
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Remark 4.1 In the derivation of (21) we assume the differentiability of h in v and k,

and thus we need v(0, t) > 0 and k(t) > 0 for all t ≥ 0. On the other hand, given (21e) we

may eliminate k from (21a)–(21d) and find that h(v, k) = vαk1−α = k̃(λ)1−αv such that

∂vh = k̃(λ)1−α (45)

exists also for v = 0. This will now be relevant for f = fbi when we let the small regu-

larization parameter δ > 0 go to 0. We find a branch of CSSs û(·; δ) with monotonously

increasing 0 < v̂(·; δ) ≈ δ, and monotonously decreasing λ̂(·; δ) > 0. Moreover, for δ → 0

we find that û(·; δ)→ û0(·), with v̂0 ≡ 0 and λ̂0 the solution of (21) obtained from setting

δ = 0 and using (45), and that, given some initial state v0 (with low stocks), the CPs

to û(·, δ) converge to the CP to û0(·) as well. This justifies to use the CS (21) with

(45) also for δ = 0, although a direct derivation of (21) for this case fails due to the

non-differentiability of h at (v, k) = (0, 0).

4.2.1 The case δ > 0

Figure 4 illustrates that for the choice (44) and δ = 0.05 we have up to four CSSs for,

e.g., ρ ∈ (ρ0, ρ1), where the left and right folds of the black branch are at ρ0 ≈ 0.051 and

ρ1 ≈ 0.11, respectively. The continuation of this branch starts in the upper left with a

solution obtained from an initial guess of the form v(x) = 0.8 + 0.1x/l and λ(x) = 1. The

CSSs on the first part (till the fold) have defect d = 0, on the middle part we have d = 1,

and after the second fold d = 0 again. Here the 1st (2nd and 3rd) parts corresponds to

solutions of ’black’ (’blue’) type in Fig. 1(d). Additionally we have the magenta branch

obtained from an initial guess of the form v(x) = δ/2, λ(x) = 1, with d = 0 throughout.

The example solution plots in (b) show four CSSs at ρ = 0.06 from (a). If we continue an

’upper solution’ such as b1/pt14 in the costs c, then we obtain a very similar behavior as

in Fig. 2 for f = flin and for f = flog. Clearly, this can be expected from the phase portrait

in Fig. 1(c), as northwest of and close to the fixed point (v, v′) = (1, 0) all three phase

portraits are similar. Continuation in c of solutions from the other branches, including

the magenta branch, behave accordingly.

However, in contrast to the case of flin and flog, the upper solutions are not globally

stable, i.e., they cannot be reached from arbitrary initial states v0. For illustration we

fix ρ = 0.06 and thus have b1/pt14, b1/pt42 and b2/pt14 (magenta CSS) as possible

target CSSs, while b1/pt26 cannot be a target CSS as it has defect d = 1 > 0. It then

depends on the initial state v0, which CSS can be reached by a CP starting in v0, and

which of these CPs is optimal. In Fig. 5(a,b) we start with v0 from the defective CSS

b1/pt26. From this v0 we can reach both, b1/pt14, and b1/pt42, and both are locally

stable OSSs. To reach b1/pt14 from v0, we need to temporarily decrease k to almost

0, while k is almost constant on the CP to b1/pt42. Therefore, even though the CSS

b1/pt42 has a significantly lower value (J1 = 7.11) than the CSS b1/pt14 (J1 = 15.04),
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Figure 4: CSSs for f = fbi, parameters from (44), δ = 0.05. (a) Continuation in ρ of two

branches of CSSs, leading to multiple CSSs (at fixed parameter values). d = 0 (saddle points)

and d = 1 refers to the defects of the CSS on the respective (sections of the) branches. (b)

Example CSS from the points marked in (a), b1=black branch, b2=magenta branch, cf. 3 for

the naming convention.

in this case it is preferable to control the system towards b1/pt42: For the CP to b1/pt42

we obtain J ≈ 9.76, while the CP to b1/pt14 only yields J ≈ 8.83. A CP to the low

stock CSS b2/pt14 does not exist.

In Fig. 5(c) we give an illustration of the possible ’waiting time’ phenomenon associ-

ated with CPs going to a CSS with a large stock, when the initial stock at x = 0 is low while

there is sufficient stock in the rest of the domain. Here we choose v0 = max(0.2+x/10, 1).

A CP to b1/pt14 exists and has k(t) ≈ 0 until at t ≈ 8 the diffusion has led to a sufficient

growth of the stock at x = 0. Nevertheless, for this v0 again the path to b1/pt42 (not

shown) is dominant as it yields J ≈ 8.95.

Due to the maximum principle for diffusion and the fact that f(v) < 0 for 0 ≤ δ <

v < β, for all v0 with 0 < v0(x) ≤ β for all x the stock cannot increase beyond β at

any point. Consequently, the only target CSSs that can be reached are those from the

magenta branch. In Fig. 5(d) we consider v0 ≡ 0.4 as an example. Here, the optimal

strategy is to start with a large harvesting effort k which then monotonously decreases to

that of the CSS. More generally, motivated by the bistability of fbi we introduce the set of

’sub-threshold’ initial states, which means that only a CP towards a low–stock CSS from
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Figure 5: Example CPs for f=fbi, parameters from (44), δ=0.05. In the time-series plots, J and

J1 give the values of the CP and the target CSS, respectively. In (a) and (b) we use the same

initial state v0 from the defective CSS b1/pt26, but connect to the two different saddle-point

CSSs on the black branch; The CP in (b) gives a somewhat higher J , although the target in (a)

has a higher J1. (c) Example of a CP with ’waiting time’ for the stock to first increase at x=0.

(d) Example CP for the ’sub-threshold’ initial state v≡0.4<β=0.5, connecting to the magenta

CSS b2/pt14. (e,f) Two CPs for the constant ’intermediate’ initial state v ≡ 0.51.

the magenta branch exists, and the set of ’super-threshold’ initial states, for which only

CPs towards the high–stock CSSs exist, where one could further distinguish between the

analogs of b1/pt14 and b1/pt42. Initial states for which CPs towards both, low–stock

and high–stock CSSs exist are then called ’intermediate’. In Fig. 5(e,f) we consider such

an intermediate case, namely v0≡0.51. Here, CPs to b2/pt14 and to b1/p14 (but not

to b1/pt42) exist. The resulting profit J≈7.405 is (slightly) higher by going to the low-

stock CSS (e) than by going to the high stock CSS (f) with J≈7.316, as, interestingly,

the latter is again associated with a waiting time (k almost 0), during which the stock

increases uniformly.

A constant v0 > v0
0 ≈ 0.52 turns out to be super–threshold. Of course, a precise

characterization of the sub–threshold, super–threshold, and intermediate sets would be
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tantamount to the computation of the ’basins of attraction’ (Grass et al. 2008, p237ff) of

the analogs of b2/pt14, and b1/pt14 and b1/pt42 at a given set of parameters, which

is not feasible for the present infinite dimensional PDE constrained problem, or even

for the high dimensional ODE problem obtained by spatial discretization. However, our

simulations show that in the class of constant v0 the super-threshold is only slightly larger

than β, and that generally speaking the intermediate set is rather small.

The ’upper’ CSSs (with large stocks at x = 0, e.g., b1/pt14) only exist up to ρ1 ≈
0.11. For higher discount rates (corresponding to more myopic fishers), only the lower

black and the magenta CSSs exist, but the (rough) characterization of sub–threshold,

intermediate, and super–threshold initial states, and the associated CPs, are similar.

Thus, so far this example illustrates the following:

1. To get an idea about possible optimal paths, it is crucial to first have a thorough

understanding of the multiple CSSs.

2. Given an initial state v0 for which CPs to different CSSs exist (intermediate case),

we need to compare the values of the CPs (not just of the target CSSs) to decide

which CP is optimal.

3. Constant v0 only slightly larger than β are super–threshold. Further examples for

super-threshold v0 are v0 from b1/pt26 and v0 from Fig. 5(c), where in both cases

a CP to b2/pt14 does not exist; roughly speaking, most v0 with v0(x) small at

small x but v0(x) large at more distant locations are super-threshold. This shows

that the boundary control is rather weak in the following sense. For a distributed

control (without control constraints) we would expect that a CP to a low stock CSS

exists for all initial states v0 (even though this CP might not be optimal). For the

boundary harvesting, such a CP often does not exist; the bulk of fish is safe on the

right, and is not sufficiently strongly ’pulled over’ by diffusion, and is thus protected.

4.2.2 Low stocks and the limit δ → 0

The magenta branch from Fig. 4 exists for all (small) δ > 0. Moreover, via (45) we may

a posteriori use the CS (21) also for δ = 0. Doing so, we can analytically compute the

analog of the magenta branch for δ = 0. We have v̂ ≡ 0, and the ODE for λ becomes

Dλ′′ = (ρ− f ′(0))λ, (46)

where f ′(0)|δ=0 = −β, with the general solution

λ(x) = c1eνx + c2e−νx, c1, c2 ∈ R, ν =
√

(ρ+ β)/D. (47)

The boundary condition λ′(l) = 0 yields c2 = e2νlc1, and the boundary condition−Dλ′(0) =

(p− γλ(0))k̃(λ)1−α (using (45)) then yields the algebraic equation

Dν(e2νl − 1)c1 = (p− γc1(1 + e2νl))k̃(c1(1 + e2νl))1−α, (48)
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which can easily be solved numerically for c1 using a Newton method with initial guess

c1 = 0. The solution then can be cross-checked with the numerical pde2path solution of

(21) for λ̂(x; 0), and v̂(x; 0) ≡ 0, yielding a perfect match.

Figure 6: (a–b) Continuation of the CSS b2/pt14 from Fig. 4 in δ, yielding a branch δ 7→ û(·, δ).
(a) Spatial dependence of CSSs, δ=0.05 (dots), δ=0.01 (dashed) and δ=0 (full lines), with a zoom

inset for λ̂. (b) λ(0; δ) as a function of δ, with limλ(0; δ)=λ(0; 0) with λ(0; 0) from (48). (c) J

and k on CPs from v0 ≡ 0.4 to the CSSs from (a), δ and linetypes as in (a).

Since the CS for δ = 0 is only obtained formally, in Fig. 6 we illustrate the (numerical)

convergence of the solutions for δ > 0 to û(·, 0) as δ → 0. For this we continue the CSS

from b2/pt14 in δ, and in (a) we display v̂(·; δ) and λ̂(·; δ) for δ = 0.05, δ = 0.01, and

δ = 0. The plots of λ̂(·, δ) show that λ̂ very weakly depends on δ, and the differences

are only visible in the zoom. (b) illustrates the convergence of λ(0; δ), while all other

quantities such as v(0; δ), k(δ) converge to 0 for δ → 0. (c) illustrates the convergence of

the CPs for fixed v0 ≡ 0.4 (as in Fig. 4(a)) for δ → 0 to the CP t 7→ u(0)(t) obtained for

the formal limit CS (δ = 0, full lines). Although we have no rigorous proof, this strongly

suggests that k(0)(t) from u(0)(t) is the optimal control for δ = 0 for such ’sub-threshold’

initial states, for which, as expected, the harvesting effort decreases monotonically to 0.

The CPs connecting to the upper black branch from Fig. 4 are hardly affected by changing

δ, and thus we refrain from presenting these results.

5 Results for the predator-prey case

To apply the formalism from §3.1 to the vector valued problem (15), we introduce the

co-states λ1,2 and the Lagrangian

L(v, λ, k) =

∫ ∞
0

e−ρt
{
Jc −

∫
Ω

〈λ, ∂tv +G1(v)〉 dx

}
dt,

where 〈u, v〉 =
∑2

i=1 uivi is the standard inner product in R2. Integration by parts in x

and t with the transversality condition

lim
t→∞

e−ρt
∫

Ω

〈λ(x, t)v(x, t)〉 dx = 0 (49)
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now yields

L(v, λ, k) =

∫
Ω

〈λ(0, ·), v(0, ·)〉 dx

+

∫ ∞
0

e−ρt
{

[Jc − 〈λ, g〉 − 〈D∂nλ, v〉]|x=0 − 〈D∂nλ, v〉 |x=l

−
∫

Ω

〈ρλ− ∂tλ−D∆λ, v〉 − 〈λ, f(v)〉 dx

}
dt.

Then ∂vL = 0 yields the evolution and the BCs of the co-states (combining with (10), to

have it all together)

∂tv = D∆v + f(v),
∂tλ = ρλ−D∆λ− (∂vf(v))Tλ

}
in Ω = (0, l), (50a)

D∂nv + g = 0,
D∂nλ+ ∂vg(v)λ− ∂vJc = 0,

}
on the left boundary x = 0, (50b)

D∂nv = 0,
D∂nλ = 0,

}
on the right boundary x = l, (50c)

and ∂kL = 0 yields

kj =

(
(1− αj)2(pj − γjλj)

cj

)1/αj

vj, j = 1, 2. (51)

As above, we first compute canonical steady states, i. e., we start with the stationary

version G(u) = 0, u = (v, λ) of (50), on Ω = (0, 20). We choose the base parameter set

(β, d1, d2, γ1, γ2, ρ, α1, α2, p1, p2) = (0.6, 1, 10, 0.1, 0.1, 0.03, 0.4, 0.4, 20, 10), (52)

and consider the costs (c1, c2) as our continuation parameters, starting with c1 = c2 = 0.1.

By (52), we assume that the predators move faster than the prey, d2 = 10 > 1 = d1, and

that the market price of the prey exceeds the price of the predator, p1 = 20 > 10 = p2,

so that, disregarding the interaction of both species, the fisher is interested in catching

the prey rather than the predator. Yet, in view of the interaction of the species, the

fisher may consider catching the predator as well in order to “protect” the prey from the

predator.

To find CSSs we use initial guesses of the form

v1 = 1, v2 = δ(1− β), λ1 = 50 + (1− sx/l), λ2 = 10 + (1− sx/l), (53)

with parameters δ ∈ (0, 1) and s close to 1, and some variations of (53). But if an initial

guess of this form yields convergence to a CSS, then (for the base parameters (52)) this

convergence always leads to the same CSS. Note that a graphical phase plane analysis

similar to §2.2 is no longer possible, and thus it is not clear how many CSSs may exist
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Figure 7: (a,b) continuation diagrams in c1 (costs for prey fishing) and c2 (costs for predator

fishing); Jj = pjhj − cjkj , J = J1 +J2. For graphical reasons we restrict to cj ∈ [0.1, 10] (except

for the plots of J) but all quantities continue as expected for cj ∈ [10, 20]. (c) example CSS

plots.

for (50). However, given that for d1,2 sufficiently large and zero flux BCs V ∗ is the unique

steady state of the Lotka–Volterra system (10), it appears reasonable to expect that for

given parameters the system (50) has a unique CSS, as we assume rather large values for

the diffusion parameters, (d1, d2) = (1, 10), relative to the size of the domain.

Figure 7 depicts the CSSs and their dependence on the cost parameters (c1, c2).4 (a)

and (b) show relevant quantities at the left boundary as functions of c1 and c2, respectively,

while (c) shows the spatial shape of the CSSs for selected values of (c1, c2). As expected,

an increase in ci (i = 1, 2) leads to a reduction in effort ki and the associated harvest hi,

and thus leads to a recovery of the stock vi. In addition, an increase in ci also imposes

an indirect effect on v3−i resulting from the interaction between both species. Consider

4We can extend our analysis in any parameter of the model, but as explained above we confine ourselves

to an analysis of the economically most immediate parameters c1 and c2.
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an increase in the effort cost c1. There is no direct effect of c1 on the fishing effort k2

as its cost as well as the market price p2 are unaffected. However, since an increase in

c1 results in less fishing effort k1 and thus in a higher stock v1, the living conditions of

the predator species improve. Accordingly, the stock v2 tends to increase, but since v2

and k2 are complements in the fishing technology, effort k2 can be reduced with the catch

h2 still going up. Naturally, with higher cost c1 the value of the the prey λ1 falls, but

the indirect effect makes the value of the predator λ2 go up. The direct and the indirect

effect of an increase in c1 are also reflected in the profit terms. As expected, J1 is a

decreasing function of c1, but the induced interaction effects between both species make

J2 to increase with c1. Since the direct effect dominates, total profit J falls with higher

cost.

Due to the biologically asymmetric situation of both species, an increase in c2 has

somewhat different indirect effects. In this case, higher c2 leads to a reduction in effort

k2 and thus to an increase in the stock v2. But with an increase of the predators the

prey become more threatened, rendering this population to decline, and thus the fishing

effort k1 is reduced. In this way, since the increase in c2 acts as a protection of the

predator against being fished, the growth of that population exerts a negative effect on

the prospects of fishing for the fisher. Accordingly, with the predator population becoming

sufficiently large, the value of a unit of this species becomes negative. This explains why

λ2 is decreasing in c2 and why it becomes (quickly) negative as the stock v2 rises.

The qualitative structure of the spatial distribution of both species (and of the associ-

ated shadow prices) is quite robust with respect to changes in the costs c1, c2. Inspecting

Figures 7(c1), (c2) and (c3), we infer that by catching the predator species the fisher

makes sure that its stock is kept low at the coast (left boundary) so as to safeguard the

prey there. In fact, the stock of the prey reaches its maximum close to the coast, but har-

vesting at the coast causes the stock to decrease drastically there (unless c1 is very high,

see Figure 7(c2)). In any case, fish located close to the coast is more worthy than at more

distant locations, where it is inaccessible for the fisher, i. e., λ1 and λ2 are both decreasing

in x. There is one exception, though: when, as explained above, c2 is sufficiently large,

such that it is very expensive to catch the predator species, this stock may swell until it

interferes with the prospects of the fisher to catch the prey. In this case, the value of the

predator is negative, λ2 < 0, and because the damage caused by the predator species is

the larger the closer it gets to the shore, λ2 has its minimum directly at the shore.

In Figure 8 we illustrate the transition dynamics from the unique steady state (11)

(with no fishing) to the CSS. Setting (c1, c2) = (0.1, 0.1) in Figure 8(a) and (c1, c2) =

(20, 0.1) in Figure 8(b), these figures can directly be compared with Figure 7(c1) and

Figure 7(c2), respectively. When the fishing cost of both species are low, (c1, c2) =

(0.1, 0.1), the transition to the CSS is accomplished by extensive fishing of both species at

an initial phase, with fishing intensities decreasing from high towards low values. Thus,
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Figure 8: Canonical paths starting from the spatially homogeneous steady state V ∗ of (10).

there is a some initial overfishing, followed by a recovery phase during which the stocks

of the CSS are reached from below, and during which the fisher increases the fishing

intensity to that of the CSS.5 If fishing the prey is very costly, (c1, c2) = (10, 0.1), the

CSS is characterized by a low effort level k1 and hence by a high stock of the prey,

cf. Figure 7(c2) and 8(b). Similarly, along the CP leading to the CSS the main harvest is

on the predator, with fishing effort being reduced over time, leading to the gradual increase

of the prey at the left boundary—and eventually on the complete domain. However, some

harvesting activity on the prey still takes place. Finally, for (c1, c2) = (0.1, 10), the roles

are basically reversed, subject to the indirect effects resulting from the implicit protection

of the predator species by a high effort cost c2, as explained above.

5The initial transition is rather fast, and thus we use logarithmic scales in the time-series of the values

at the left boundary.
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6 Discussion and extensions

To the best of our knowledge, in resource economics this is the first detailed numerical (and

in §4.1.1 semi-analytical) analysis of infinite time horizon optimal control problems with

PDE constraints and a boundary control, beyond linear-quadratic models as reviewed in

§3.3. We have set up one-species and two-species fishery models and characterized their

canonical steady states (CSSs), which turned out to be unique globally stable optimal

steady states (OSSs), except for the bistable case in the one–species model, for which

multiple locally stable OSSs exist. Moreover, while previous studies in marine economics

focus on the CSSs, we also compute the time-dependent canonical paths (CPs) connect-

ing initial states to OSSs; these describe the policies that achieve the OSS in the most

profitable way.

However, since our derivation of the canonical systems is formal in the sense detailed

in §3.3, the CSSs and CPs obtained must be checked a posteriori for plausibility, but

with this caveat the method seems highly effective. For the given examples, all results

appear natural and intuitive, and they are robust with respect to alternative parameter

specifications. The optimal policy compromises between immediate and future yield,

taking into account that a higher stock left may favor future growth of the resource,

and the optimal harvesting may feature ’waiting times’ allowing the stock to grow before

fishing starts. For the bistable case we can identify sub–threshold and super–threshold

initial stocks, for which only CPs to low–stock CSSs resp. high–stock CSSs exist. For

initial states from an ’intermediate’ set we can go to both types of CSSs, and to determine

which CP is optimal we need to compute the CPs and their values. This intermediate

set turns out to be rather small, while the set of super–threshold initial states is rather

large. This illustrates some natural limits of boundary controls compared with distributed

controls.

For the two-species Lotka–Volterra model, the asymmetric interaction between both

species provides an additional incentive to catch the predator species in order to protect

the prey for the purpose of own take out. This asymmetry between both species carries

over to the spatial distribution of the biomass of both species and their respective shadow

prices: while the shadow price of the prey is decreasing in the distance to the location of

the fisher, the shadow price of the predator may be higher at more distant locations, and

may increase as the harvesting cost of the prey goes up.

Keeping the above caveat about the formal derivations of the canonical systems in

mind, our approach can be extended to more complex and realistic models. One obvious

way would be to generalize the one-dimensional problems by, for instance, considering ei-

ther spatially dependent coefficients (of the PDEs), or more intricate multi-species fishery

models; in addition, we may consider advection to model the transport of fish by flow.

A second class of generalizations would be to extend the spatial domain to two (or even
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three) dimensions. The spatial domain could either take the form of depth dependence

of fishing at a fixed position in a river with one horizontal dimension, of a lake, or of a

marine reserve in the open sea. In all these cases we have a boundary control function

defined on a given part of the boundary, rather than a scalar control.

Similar boundary control models occur in other bio-economic circumstances. For

instance, the shallow lake optimal control model deals with the phosphorus contamination

of a lake, with the phosphate load, for instance from fertilizers, as control. Naturally, there

is diffusion of the phosphorus, and thus a spatially extended model with a distributed

control is studied in Grass et al. 2017. However, more realistically the phosphate load

should be taken as a boundary control. Finally, models as in §3.3.1, including boundary

controls, appear in a variety of settings, see for instance Faggian 2004 and the references

therein. It will be interesting to extend these by genuine nonlinear terms. Moreover,

as x in §3.3.1 models the age of consumers, and hence we have a transport equation for

the goodwill, one could additionally introduce a spatial coordinate y for the location of

consumers, which may diffuse in space, leading to a mixed 2D problem.
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