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Abstract

We describe how to use the Matlab continuation and bifurcation package pde2path for Hopf
bifurcations and the continuation of branches of periodic orbits, including the computation
of Floquet multipliers, in systems of PDEs in 1, 2, and 3 spatial dimensions. The setup is
explained first by three reaction diffusion examples, namely a complex Ginzburg–Landau equa-
tion as model problem, a reaction diffusion system on a disk featuring interesting rotational
waves including stable (anti) spirals bifurcating out of the trivial solution, and an extended
Brusselator system with interaction of Turing and Turing–Hopf bifurcations. Finally we con-
sider a system from distributed optimal control, which is ill-posed as an initial value problem,
and thus needs a particularly stable method for computing Floquet multipliers, for which we
use a periodic Schur decomposition. The package (library and demos) can be downloaded at
www.staff.uni-oldenburg.de/hannes.uecker/pde2path.
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1 Introduction

The package pde2path [UWR14, DRUW14] has been developed as a continuation/bifurcation pack-
age for stationary problems of the form

G(u, λ) := −∇ · (c⊗∇u) + au− b⊗∇u− f = 0. (1)

Here u = u(x) ∈ RN , x ∈ Ω with Ω ⊂ R2 some bounded domain, λ ∈ Rp is a parameter (vector),
and c ∈ RN×N×2×2, b ∈ RN×N×2, a ∈ RN×N and f ∈ RN can depend on x, u,∇u, and parameters.1

The boundary conditions (BC) are of “generalized Neumann” form, i.e.,

n · (c⊗∇u) + qu = g, (2)

where n is the outer normal and again q ∈ RN×N and g ∈ RN may depend on x, u, ∇u and
parameters. These BC include zero flux BC, and a “stiff spring” approximation of Dirichlet BC via
large prefactors in q and g, and over suitable (rectangular) domains, periodic BC are also supported.
Moreover, there are interfaces to couple (1) with additional equations, such as mass conservation,
or phase conditions for considering co-moving frames, and to set up extended systems, for instance
for branch point continuation.

pde2path has been applied to various research problems, e.g., patterns in 2D reaction diffusion
systems [UW14, Küh15b, Küh15a, SDE+15, Wet16], some problems in fluid dynamics and nonlinear
optics [ZHKR15, DU16] and, with the add-on package p2poc, in optimal control [GU16, Uec16a].
We have now revised pde2path to also work efficiently for Ω ⊂ Rd with d = 1, 3. This extension
is based on replacing Matlab’s pdetoolbox by the FEM implementation OOPDE [Prü16]. This
can also be used in 2D, which makes pde2path independent of the pdetoolbox, and with unified
user interfaces in 1D, 2D and 3D. Moreover, we are adding new features, and the main purpose
of this note is to explain new pde2path–functions, collected in a library hopf, to treat Hopf (or
Poincaré–Andronov–Hopf) bifurcations and the continuation of time–periodic orbits for systems of
the form

∂tu = −G(u, λ), u = u(x, t), x ∈ Ω ⊂ Rd, d = 1, 2, 3, t ∈ R (d+ 1 dimensional problem), (3)

with G from (1) and BC from (2). Of course, adding the time dimension makes computations
more expensive, such that here we focus on 1D and 2D, and only give one 3D example to illustrate
that all user interfaces are essentially dimension independent. Thus, this manual also serves as an
introduction to the new pde2path OOPDE setup, although details on 3D computations (with focus
on the stationary case) will appear elsewhere.

For general introductions to and reviews of (numerical) continuation and bifurcation we recom-
mend [Gov00, Kuz04, Doe07, Sey10], and [Mei00], which has a focus on reaction–diffusion systems.
The treatment of large scale problems, typically from the spatial discretization of PDEs, includ-
ing the computation and continuation of time periodic orbits, has for instance been discussed in
[LRSC98, TB00, LR00], and has recently been reviewed in [DWC+14]. There, the focus has been
on matrix–free methods where the periodic orbits are computed by a shooting method, which can

1We have [∇ · (c⊗∇u)]i :=
∑N

j=1[∂xcij11∂x + ∂xcij12∂y + ∂ycij21∂x + ∂ycij22∂y]uj (ith component), and similarly

[au]i =
∑N

j=1 aijuj , [b⊗∇u]i :=
∑N

j=1[bij1∂x + bij2∂y]uj , and f = (f1, . . . , fN ) as a column vector.
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conveniently be implemented if a time–stepper for the given problem is available. In many cases,
shooting methods can also be used to investigate the bifurcations from periodic orbits, and to trace
bifurcation curves in parameter space, by computing the Floquet multipliers of the periodic orbits.
In this direction, see in particular [BT10, SGN13, WIJ13, NS15] for impressive results in fluid
problems.

Here we proceed by a collocation (in time) method for the continuation of periodic orbits. With
respect to computation time and in particular memory requirements such methods are often more
demanding than (matrix free) shooting methods. However, one reason for the efficiency of shooting
methods in the works cited above is that there the problems considered are strongly dissipative,
with only very few of the eigenvalues for the linearized evolution near the imaginary axis. We also
treat such problems, and show that up to moderately large scale they can efficiently be treated by
collocation methods as well. However, another class of problems we deal with are canonical systems
obtained from distributed optimal control problems with infinite time horizons. Such problems are
ill-posed as initial value problems, which seems quite problematic for genuine shooting methods.

We also compute the Floquet multipliers for periodic orbits. For this, a direct approach is to
explicitly construct the monodromy matrix from the Jacobian used in the collocation solver for
the periodic orbit. We find that this works well for dissipative problems, but completely fails for
the ill–posed optimal control problems, and thus we also provide a method based on a periodic
Schur decomposition, which can handle this situation. Currently, our Floquet computations can be
used to assess the stability of periodic orbits, and for detection of possible bifurcations from them.
However, we do not (yet) provide tools for localization of, or branch switching at, such bifurcation
points, which is work in progress.

To explain the setup and usage of our hopf library we use four example problems, with the
Matlab files included in the package download at [Uec16b] as demo directories. The first is a
cubic–quintic complex Ginzburg–Landau (cGL) equation, which we consider over 1D, 2D, and
3D cuboids with homogeneous Neumann and Dirichlet BC, such that we can explicitly calculate
all Hopf bifurcation points (HBP) from the trivial branch. For periodic BC we also have the
Hopf branches explicitly, which altogether makes the cGL equation a nice toy problem to validate
and benchmark our routines. Next we consider a reaction diffusion system from [GKS00] on a
circular domain and with somewhat non-standard Robin BC, which lead to rotating waves, and in
particular to the bifurcation of (anti) spiral waves out of the trivial solution. Our third example is a
Brusselator system from [YDZE02], which shows interesting interactions between Turing branches
and Turing–Hopf branches. As a non–dissipative example we treat the canonical system for a
simple control problem of “optimal pollution”. This is still of the form (1), but is ill–posed as
an initial value problem, since it includes “backward diffusion”. Nevertheless, we continue steady
states, and obtain Hopf bifurcations and branches of periodic orbits.

Many of the numerical results on periodic orbits in PDE in the literature, again see [DWC+14]
for a review, are based on custom made codes, which in turn very reasonably rely on large scale
packages, but which sometimes do not seem easy to access and modify for non–expert users. Al-
though in some of our research applications we consider problems with on the order of 105 unknowns
in space, pde2path is not primarily intended for large scale problems. Instead, the goal of pde2path
continues to be a general and easy to use (and modify and extend) toolbox to investigate bifur-
cations in PDEs of the (rather large) class given by (3). With our hopf library we provide some
basic functionality for Hopf bifurcations and continuation of periodic orbits for such PDEs over 1D,
2D, and 3D domains, where at least the 1D cases and simple 2D cases are sufficiently fast to use
pde2path as a quick (i.e., interactive) tool for studying interesting problems. The user interfaces
reuse the standard pde2path setup (with the addition of OOPDE), and no new user functions are
necessary. Due to higher computational costs in 2+1D, in 3D, or even 3+1D, compared to the
2D case from [UWR14], in this tutorial we work with quite coarse meshes, but give a number of
comments on how to adaptively generate and work with finer meshes.
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In §2 we review some basics of the Hopf bifurcation, of periodic orbit continuation and multiplier
computations, and their numerical treatment in pde2path. In §3 we review the pde2path setup,
data structures and help system, and in §4 we present the examples. A brief summary and outlook
are given in §5, and in the Appendices we collect information on the pertinent new pde2path fields,
functions and switches, and some implementation details. For comments, questions, and bugs,
please mail to hannes.uecker@uni-oldenburg.de.

Acknowledgment. Many thanks to Francesca Mazzia for providing TOM [MT04], which was
essential help for setting up the hopf library; to Uwe Prüfert for providing OOPDE; to Tomas Dohnal,
Jens Rademacher and Daniel Wetzel for some testing of the Hopf examples; to Daniel Kressner
for pqzschur; to Arnd Scheel for helpful comments on the system in §4.3; and to Dieter Grass for
the cooperation on distributed optimal control problems, which was one of my main motivations
to implement the hopf library.

2 Hopf bifurcation and periodic orbit continuation in pde2path

Our description of the algorithms is based on the spatial FEM discretization of (3), which, with a
slight abuse of notation, we write as

Mu̇(t) = −G(u(t), λ), (4)

where M ∈ Rnu×nu is the mass matrix, nu = Nnp is the number of unknowns (degrees of freedom
DoF), where np is the number of mesh-points, and, for each t,

u(t) = (u1,1, . . . , u1,np , u2,1, . . . , uN,1, . . . uN,np)(t) ∈ Rnu ,

and similarly G : Rnu × Rp → Rnu . As in [UWR14, DRUW14] we assume that the problem
is described by the Matlab struct p, with its various subfields such as p.nc, p.sw and p.fuha

for the numerical controls, switches, and function handles. We use the generic name λ for the
parameter vector, and the active continuation parameter, again see [DRUW14] for details. When
in the following we discuss eigenvalues µ and eigenvectors φ of the linearization

Mv̇ = −∂uG(u, λ)v (5)

of (4) around some (stationary) solution of (4), or simply eigenvalues of ∂uG = ∂uG(u, λ), we
always mean the generalized eigenvalue problem

µMφ = ∂uGφ. (6)

Thus eigenvalues of ∂uG with negative real parts give dynamical instability of u.

Remark 2.1. For, e.g., the continuation of travelling waves, the PDE (3) is typically transformed
to a moving frame ξ = x− st, where s is an unknown wave speed, which yields an additional term
s∂xu on the rhs of (3). This then requires an additional equation, a phase condition, for instance

of the form q(u) = 〈∂xũ, ũ− u〉
!

= 0, where ũ is a reference wave (e.g. ũ = uold, where uold is from
a previous continuation step), and 〈u, v〉 =

∫
Ω uv dx. Together we obtain a differential–algebraic

system instead of (4), and similarly for other constraints such as mass conservation, see [DRUW14,
§2.4,§2.5] for examples. More generally see for instance [BT07], for equations with continuous
symmetries and the associated “freezing method”. Hopf bifurcations can occur in such systems,
see e.g. the Hopf bifurcations from traveling (s 6= 0) or standing (s = 0) fronts and pulses in
[HM94, GAP06, BT07, GF13], but are more difficult to treat numerically than the case without
constraints. Thus, here we restrict to the simpler pure PDE problems of the form (3), and hence
(4) on the spatially discretized level. c
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2.1 Branch and Hopf point detection and localization

Hopf bifurcation is the bifurcation of a branch of time periodic orbits from a branch λ 7→ u(·, λ)
of stationary solutions of (3), or numerically (4). This generically occurs if at some λ = λH a pair
of simple complex conjugate eigenvalues µj(λ) = µj+1(λ) of Gu = ∂uG(u, λ) crosses the imaginary
axis with nonzero imaginary part and nonzero speed, i.e.,

µj(λH) = µj(λH) = iω 6= 0, and Reµ′j(λH) 6= 0. (7)

Thus, the first issue is to define a suitable test function ψH to numerically detect (7). Additionally,
we also want to detect real eigenvalues crossing the imaginary axis, i.e.,

µj(λBP) = 0, and Reµ′j(λBP) 6= 0. (8)

A fast and simple method for (8) is to monitor sign changes of the product

ψ(λ) =
∏

i=1,...,nu

µi(λ) = det(Gu) (9)

of all eigenvalues, which even for large nu can be done quickly via the LU factorization of Gu,
respectively the extended matrix in arclength continuation, see [UWR14, §2.1]. This so far has
been the standard setting in pde2path, but the drawback of (9) is that the sign of ψ only changes
if an odd number of real eigenvalues crosses 0.

Unfortunately, there is no general method for (7) which can be used for large nu. For small
systems, one option would be

ψH(λ) =
∏
i

(µi(λ) + µi+1(λ)), (10)

where we assume the eigenvalues to be sorted by their real parts. However, this, unlike (9) requires
the actual computation of all eigenvalues, which is not feasible for large nu. Another option are
dyadic products, [Kuz04, Chapter 10], which again is not feasible for large nu.

If, on the other hand, (3) is a dissipative problem, then we may try to just compute neig

eigenvalues of Gu of smallest modulus, which, for moderate neig can be done efficiently, and to
count the number of these eigenvalues which are in the left complex half plane, and from this
detect both (7) and (8). The main issue then is to choose neig, which unfortunately is highly
problem dependent, and for a given problem may need to be chosen large again.

The method presented in [GS96] uses complex analysis, namely the winding numberW (g(iω), 0,∞)

of g(z) = cT (Gu− zM)−1b, which is the Schur complement of the bordered sytem

(
Gu − zM b

cT 0

)
with (some choices of) b, c ∈ Rnu . We have

g(z) =
N(z)

det(Gu − zM)
, where W (g(iω), 0∞) = π(Zl − Zr + Pr − Pl)/2, (11)

where Zl,r, Pl,r are the zeros and poles of g(z) in the left and right complex half planes, respectively,
and where N is a polynomial in z which depends on b, c. Since det(Gu − zM) does not depend on
b, c, using some clever evaluation [GS96] of (11) for some choices of b, c one can count the poles of
g, i.e. the eigenvalues of Gu in the left half plane.

Here we combine the idea of counting small eigenvalues with suitable spectral shifts iω1,2,.... To
estimate these shifts, given a current solution (u, λ) we follow [GS96] and compute

[0, ωmax] 3 ω 7→ g(u, λ, iω; b) := bT (Gu − iω)−1b, (12)
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for one or several suitably chosen b ∈ Rnu . Generically, g will be large for iω near some complex
eigenvalue µ = µr + iµi with small µr, and thus we may consider this iω as a guess for a Hopf
eigenvalue during the next continuation steps. To accurately compute g from (12) we again use
ideas from [GS96] to refine the ω discretization (and actually compute the winding number). Then,
after each continuation step we compute a few eigenvalues near 0, ω1, . . .. We can reset the shifts
ωi after a number of continuation steps by evaluating (12) again, and instead via (12) the user can
also set the ωi by hand.2

Of course, the idea is mainly heuristic, and, in this simple form, may miss some bifurcation
points (BPs, in the sense of (8)) and Hopf bifurcation points (HBPs, in the sense of (7)), and can
and typically will detect false BPs and HBPs, see Fig. 1, which illustrates two ways in which the
algorithm can fail.3 However, some of these failures can be detected and/or corrected, see Remark
2.2, and in practice we found the algorithm to work remarkably well in our examples, with a rather
small numbers of eigenvalues computed near 0 and iω1, and in general to be more robust than
the theoretically more sound usage of (11).4 See Table 1 for an overview of the new bifurcation
detection setup in pde2path, flagged by p.sw.bifcheck, and §4 for examples.

(a) n = 0, nd = 0 (b) n = 1, nd = 1 (c) n = 1, nd = 0 (d) n = 2, nd = 0.

Figure 1: Sketch of the idea, and typical failures, of detecting Hopf points by counting eigenvalues with

negative real parts near some shift iω1, marked by �. Here, for illustration we use neig=2, i.e., use the 2

eigenvalues closest to iω1 for bifurcation detection, and show 4 eigenvalues near iω1, stable ones with ∗ and

unstable ones with ×. n is the total number of negative eigenvalues, and nd the number of detected ones.

From (a) to (d) we assume that some parameter λ varies, and the shown eigenvalues depend continuously

on λ; for better illustration we assume that the eigenvalue circled in (a) stays fixed. The dashed circle has

radius |µ(λ)− iω1| with µ the second closest eigenvalue to iω1. From (a) to (b) we correctly detect a HBP.

From (b) to (c) we incorrectly find a HBP, as the only unstable eigenvalue wanders out of the pertinent

circle. From (c) to (d) we miss a HBP, as the guess iω1 is too far off. The failure (b) to (c) can be detected

in the localization by requiring that at the end the real part of the eigenvalue closest to the imaginary axis

is sufficiently small. The failure from (c) to (d) can be resolved by either (i) computing more eigenvalues

close to iω1, or (ii) by updating iω1 using (12).

After detection of a (possible) BP or a (possible) HBP, or of several of these along a branch
between s0 and s0 + ds, it remains to locate the BP or HBP. Again, there are various methods
to do this, using, e.g., suitably extended systems [Gov00]. However, so far we restrict to a simple
bisection, which works well and sufficiently fast in our examples.5

2In principle, instead of using (12) we could also compute the guesses ωi by computing eigenvalues of Gu(u, λ) at
a given (u, λ); however, this may itself either require a priori information on the pertinent ωi (for shifting), or we may
again need to compute a large number of eigenvalues of Gu. Thus we find (12) more simple, efficient and elegant.

3A third typical kind of failure is that during a continuation step a number m of eigenvalues crosses the imaginary
axis close to iω1, and simultaneously m already unstable eigenvalues leave the pertinent circle to the left due to a
decreasing real part. The only remedy for this is to decrease the step–length ds. Clearly, a too large ds can miss
bifurcations even if we could compute all eigenvalues, for instance if along the true branch eigenvalues cross back and
forth.

4However, if additionally to bifurcations one is interested in the stability of (stationary) solutions, then the numbers
of eigenvalues should not be chosen too small; otherwise the situation in Fig. 1(c,d) may easily occur, i.e., undetected
negative eigenvalues.

5The only extended systems we deal with so far are those for continuation of stationary branch points and of fold
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Table 1: Setting of p.sw.bifcheck

bifcheck method, comments

0 Just continuation, no detection of bifurcation at all.
1 Use (9); fast, reliable, but only detects an odd number of eigenvalues crossing the

imaginary axis, hence no Hopf.
2 Compute p.nc.neig(j) eigenvalues nearest to the shifts p.nc.eigref(j), and for

each j = 0, 1, . . . , jmax count the number of those with negative real–part. General,
can detect (7) and (8), but can falsely detect bifurcation points.

A located BP or HBP is saved as p.file.dir/bpt[bpcount] or p.file.dir/hpt[hpcount],
respectively, where bpcount and hpcount are counters, and BPs will moreover be indicated by
p.sol.ptype=1, while HBPs have by p.sol.ptype=3. As before, BPs are indicated by a ◦ in
bifurcation diagrams, while HBPs have �.

Remark 2.2. To avoid unnecessary bisections and false BPs and HBPs we proceed as follows.
After detection of a BP or HBP candidate with shift ωj , we check if the eigenvalue µ closest to
iωj has |Reµ| ≤ µ1, with default µ1 = p.nc.mu1 = 0.01. If not, then we assume that this was a
false alarm. Similarly, after completing a bisection we check if the eigenvalue µ then closest to ωj
has |Reµ| < µ2, with default µ2 = p.nc.mu2 = 0.0001, and only then accept the computed point
as a BP (if ωj = 0) or HBP (if ωj > 0). In our examples, about 50% of the candidates enter the
bisection, and of these about 10% are rejected afterwards, and hardly any false BPs or HBs are
saved to disk. This seems to be a reasonable compromise between speed and not missing BPs and
HBPs and avoiding false ones, but of course the values of µ1, µ2 may be highly problem dependent.
Thus, some trial and error may be advisable, and if p.sw.verb>1, then the eigenvalues computed
near 0 and the shifts iωj are plotted for inspection, which might be helpful to estimate reasonable
values for µ1, µ2. c

2.2 Branch switching

Branch switching at a BP works as usual by computing an initial guess from the normal form of the
stationary bifurcation, see [UWR14, §2.1]. Similarly, to switch to a Hopf branch of time periodic
solutions we compute an initial guess from an approximation of the normal form

ẇ = µ(λ)w + c1(λ)|w|2w, (13)

of the bifurcation equation on the center manifold associated to (λ, µ) = (λH , iωH). Thus we use

µ(λ) = µr(λ) + iµi(λ) = µ′r(λH)(λ− λH) + i(ωH +O(λ− λH)) +O((λ− λH)2), (14)

and with w = reiωH t replace (13) by

0 = r

[
µ′r(λH)(λ− λH) + c1(λH)|r|2

]
. (15)

Following [Kuz04], c1 = c1(λH) ∈ R is related to the first Lyapunov coefficient l1 by c1(λH) = ωH l1,
and we use the formulas from [Kuz04, p531-536] for the numerical computation of l1. Setting
λ = sε2 with s = ±1 we then have a nontrivial solution

r = εα, α =
√
−sµ′(λH)/c1(λH) (16)

points, see [DRUW14, §2.1.4]. These can as well be used for branch point and fold point localization, although we
did not yet elaborate on this; see acfold cmds.m in demos/acfold for examples.
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of (15) for s = −sign(µ′(λH)/c1), and thus take

λ = λH + sε2, u(t) = u0 + 2εαRe(e−iωH tΨ), (17)

as an initial guess for a periodic solution of (4) with period near 2π/ω. The approximation (17)
of the bifurcating solution in the center eigenspace, also called linear predictor, is usually accurate
enough, and is the standard setting in the routine p=hoswibra(dir,pt,ds,para,aux), where dir

and pt determine the Hopf point previously saved to file, ds corresponds to the step length ε in
(17), where para=3 or para=4 distinguishes between natural (by λ) vs arclength parametrization
of the bifurcating branch, see §2.3, and where aux may be used to pass additional arguments, see
App. A. The coefficients s = ±1 and α in (17) are computed, and ε is then chosen in such a way
that the initial step length is ds in the norm (21) below.

2.3 The continuation of branches of periodic orbits

2.3.1 General setting

The continuation of the Hopf branch is, as usual, a predictor–corrector method, and for the cor-
rector we offer, essentially, two different methods, namely natural (p.sw.para=3) and arclength
(p.sw.para=4) continuation. For both, we reuse the standard pde2path settings for assembling G
in (3) and Jacobians, such that the user does not have to provide new functions. In any case, first
we rescale t = Tt in (4) to obtain

Mu̇ = −TG(u, λ), u(·, 0) = u(·, 1), (18)

with unknown period T , but with initial guess T = 2π/ω at bifurcation.

2.3.2 Arclength parametrization

We start with the arclength setting, which is more general and more robust, although our natural
continuation has other advantages such as error control and adaptive mesh refinement for the time
discretization, see below. We add the phase condition

φ :=

∫ 1

0
〈u(t),Mu̇0(t)〉 dt

!
= 0, (19)

where 〈·, ·〉 is the scalar product in Rnu and u̇0(t) is from the previous continuation step, and we
add the step length condition

ψ := ξH

m∑
j=1

〈
u(tj)−u0(tj), u

′
0(tj)

〉
+ (1−ξH)

[
wT (T−T0)T ′0 + (1−wT )(λ−λ0)λ′0

]
−ds

!
= 0, (20)

where again T0, λ0 are from the previous step, ds is the step–length, ′ = d
ds denotes differentiation

with respect to arclength, ξH and wT denote weights for the u and T components of the unknown
solution, and t0 = 0 < t1 < . . . < tm = 1 is the temporal discretization. Thus, the step length is ds
in the weighted norm

‖(u, T, λ)‖ξ =

√√√√ξH

m∑
j=1

‖u(tj)‖22 + (1− ξH)
[
wTT 2 + (1− wT )λ2

]
. (21)

Even if ξH is similar to the (average) mesh–width in t, then the term ξH
∑

j ‖u(tj)‖2 is only

a crude approximation of the “natural length”
∫ 1

0 ‖u(t)‖2 dt. However, the choice of the norm is
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somewhat arbitrary, and we found (21) most convenient. Typically we choose wT = 1/2 such that
T and λ have the same weight in the arclength (20). A possible choice for ξH to weight the number
mnu of components of u is

ξH =
1

mnu
. (22)

However, in practice we choose ξH = 10
mnu

, or even larger (by another factor 10), since at the Hopf

bifurcation the branches are “vertical” (‖u−u0‖ = O(
√
|λ− λ0|), cf. (17)), and ξH tunes the search

direction in the extended Newton loop between “horizontal” (large ξH) and “vertical” (small ξH).
See [UWR14, §2.1] for the analogous role of ξ for stationary problems.

The integral in (19) is discretized as a simple Riemann sum, such that the derivative of φ with
respect to u is, with ũ0(t) = Mu̇0(t),

∂uφ = (h1ũ(t1)1, . . . , h1ũ(t1)nu , h2ũ(t2)1, . . . , h2ũ(t2)nu , . . . , hl−1ũ(tm−1)nu , 0, . . . , 0), (23)

nu zeros at the end, where hl = tl+1−tl is the mesh–size in the time discretization. Similarly,
denoting the tangent along the branch as

τ = (τu, τT , τλ), τu ∈ R1×mnu (row vector as in (23)), τT , τλ ∈ R, (24)

we can rewrite ψ in (20) as

ψ = ξHτu(u− u0) + (1− ξH)(wT τT (T − T0) + (1− wT )τλ(λ− λ0))− ds. (25)

Setting U = (u, T, λ), and writing (18) as G(u, T, λ) = 0, in each continuation step we thus need
to solve

H(U) :=

G(U)
φ(u)
ψ(U)

 !
=

0
0
0

 ∈ Rmnu+2, (26)

for which we use Newton’s method, i.e.,

U j+1=U j−A(U j)−1H(U j), A=

∂uG ∂TG ∂λG
∂uφ 0 0
ξHτu (1−ξH)wT τT (1−ξH)(1−wT )τλ

 . (27)

After convergence of U j to U , i.e., ‖H(U)‖ ≤”tolerance” in some suitable norm, the next tangent
τ1 with preserved orientation 〈τ0, τ1〉 > 0 can be calculated as usual from

A(U)τ1 = (0, 0, 1)T . (28)

It remains to discretize in time and assemble G in (18) and the Jacobian ∂uG. For this we use
(modifications of) routines from TOM [MT04], which assumes the unknowns in the form

u = (u1, . . . , um) = (u(t1), u(t2), . . . , u(tm)), (m time slices), (29)

Then, using the TOM k = 1 setting, we have, for j = 1, . . . ,m − 1, the implicit backwards time
differences

(G(u))j = −h−1
j−1M(uj − uj−1)− 1

2
T (G(uj) +G(uj−1)), (30)

where u0 := um−1, and additionally the periodicity condition

Gm(u) = um − u1. (31)
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The Jacobian is ∂uG = A1, where we set, as it reappears below for the Floquet multipliers,

Aγ =



M1 0 0 0 . . . −H1 0
−H2 M2 0 0 . . . 0 0

0 −H3 M3 0 . . . 0 0
... . . .

. . .
. . .

. . .
...

...

0 . . . . . .
. . .

. . . 0 0
0 . . . . . . 0 −Hm−1 Mm−1 0
−γ I 0 . . . . . . . . . 0 I


, (32)

where Mj = −h−1
j−1M −

1

2
TGu(uj), Hj = −h−1

j−1M +
1

2
TGu(uj−1), and I is the nu × nu identity

matrix. The derivatives ∂TG, ∂λG in (27) are cheap from numerical differentiation, and ∂uφ and τ
do not change during Newton loops, and are easily taken care of anyway.

Remark 2.3. A ∈ R(mnu+2)×(mnu+2) in (27), (28) consists of A = A1 = Gu ∈ Rmnu×mnu , which is
large but sparse, and borders of widths 2, i.e., symbolically,

A =

(
A B
C D

)
, with large and sparse A, with CT , B ∈ Rmnu×2, and D ∈ R2×2.

There are various methods to solve bordered systems of the form

Ax = b, b =

(
f
g

)
, (33)

see, e.g., [Gov00]. Here we use the very simple scheme

V = A−1B, x1 = A−1f, D̃ = D − CV, y1 = g − Cx1, y2 = D̃−1y1, x2 = x1 − V y2, x =

(
x2

y2

)
. (34)

The big advantage of such bordered schemes is that solving systems such as Ax1 = f (where we
either pre-factor A for repeated solves, or use a preconditioned iterative method) is usually much
cheaper due to the structure of A than solving Ax = b (either by factoring A, or by an iterative
method with some preconditioning of A).6

The scheme (34) is implemented in the function mbel. It may suffer from some instabilities,
but often these can be corrected by a simple iteration: If ‖r‖ with r = Ax − b is too large, then
we solve Ax̂ = r (again by (34), which is cheap) and update x = x − x̂, until ‖r‖ ≤ “tolerance”.
We sometimes obtain poor solutions of (33) for b = (0, 0, 1)T from (28), but they typically can be
improved by a few iterations. Altogether we found the scheme (34) to work well in our problems,
with a typical speedup of up to 50 compared to the direct solution of Ax = b. Again, see [Gov00]
for alternative schemes and detailed discussion.

For the solutions of AV = B and Ax1 = f in (34) we give the option to use a preconditioned
iterative solver from ilupack [Bol11]. For this, the user may set p.hopf.ilss=1 before calling
p=cont(p), see the examples in §4. The (initial) computation of the ilu-preconditioner, the calls
to the iterative solvers, and the update of the preconditioner when needed, are handled in mbel.
The number of continuation steps along a (nontrivial) before a new preconditioner is needed can
be quite large, and often the iterative solvers give a significant speedup. However, this of course is
strongly problem dependent. Thus, the iterative option in mbel should rather be seen as somewhat
experimental, and the default settings as a template for building problem adapted solvers; see
[Bol11] for details on controlling the ilupack behavior. c

6The special structure of A from (32) can also be exploited to solve Ax = f in such a way that subsequently the
Floquet multipliers, see §2.4, can easily be computed. See [Lus01] for comments on the related algorithms used in
AUTO.
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2.3.3 Natural parametrization

By keeping λ fixed during correction we cannot pass around folds, but on the other hand can
take advantage of further useful features of TOM. TOM requires separated boundary conditions,
and thus we use a standard trick and introduce, in the notation (29), auxiliary variables ũ =
(ũ1, ũ2, . . . , ũm) and additional (dummy) ODEs ˙̃ul = 0. Then setting the boundary conditions

u1 − ũ1 = 0, um − ũm = 0 (35)

corresponds to periodic boundary conditions for u. Moreover, we add the auxiliary equation Ṫ = 0,
and set up the phase condition

φ = 〈u(0),Mu̇0(0)〉 !
= 0. (36)

as an additional boundary condition. Thus, the complete system to be solved isMu̇
˙̃u

Ṫ

 =

−TG(u)
0
0

 , (37)

together with (35) and (36). We may then pass an initial guess (from a predictor) at a new λ
to TOM, and let TOM solve for (u, ũ) and T . The main advantage is that this comes with error
control and adaptive mesh refinement for the temporal discretization. See §4 for examples.

2.4 Floquet multipliers

The (in)stability of – and possible bifurcations from – a periodic orbit uH are analyzed via the
Floquet multipliers γ. These are obtained from finding nontrivial solutions (v, γ) of the variational
boundary value problem

Mv̇(t) = −T∂uG(u(t))v(t), (38)

v(1) = γv(0). (39)

Equivalently, the multipliers γ are the eigenvalues of the monodromy matrixM(u0) = ∂uΦ(u0, T ),
where Φ(u0, t) is the solution of the initial value problem (4) with u(0) = u0 from uH . Thus,M(u0)
depends on u0, but the multipliers γ do not. By translational invariance, there always is the trivial
multiplier γ1 = 1. M(u0) is the linearization of the Poincaré map Π(·;u0) around u0, which maps
a point ũ0 in a hyperplane Σ through u0 and transversal to uH to its first return to Σ. Therefore,
a necessary conditions for the bifurcation from a branch λ 7→ uH(·, λ) of periodic orbits is that at
some (uH(·, λ0), λ0), additional to the trivial multiplier γ1 = 1 there is a second multiplier γ2 (or
a complex conjugate pair γ2,3) with |γ2| = 1, which generically leads to the following bifurcations
(see, e.g., [Sey10, Chapter 7] or [Kuz04] for more details):

(i) γ2 = 1, yields a fold of the periodic orbit, or a transcritical or pitchfork bifurcation of periodic
orbits.

(ii) γ2 = −1, yields a period–doubling bifurcation, i.e., the bifurcation of periodic orbits ũ(·;λ)
with approximately double the period, ũ(T̃ ;λ) = ũ(0;λ), T̃ (λ) ≈ 2T (λ) for λ near λ0.

(iii) γ2,3 = e±iϑ , ϑ 6= 0, π, yields a torus (or Naimark–Sacker) bifurcation, i.e., the bifurcation of
periodic orbits ũ(·, λ) with two “periods” T (λ) and T̃ (λ); if T (λ)/T̃ (λ) 6= Q, then R 3 t 7→ ũ(t)
is dense in certain tori.

Here we are first of all interested in the computation of the multipliers. Using the same dis-
cretization for v as for u, it follows that γ and v = (v1, . . . , vm) have to satisfy the matrix eigenvalue
problem

Aγv = 0, (40)
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where now γ in (32) is free. From this special structure it is easy to see, that M(uj0) can be
obtained from certain products involving the Mj and the Hj , for instance

M(um−1) = M−1
m−1Hm−1 · · ·M−1

1 H1. (41)

Thus, a simple way to compute the γj is to compute the product (41) and subsequently (a number
of) the eigenvalues of M(um−1). We implemented this in a function floq.m, and using

errγ1 := |γ1 − 1| (42)

as a measure of accuracy we find that this works fast and accurately for our dissipative examples.
Typically errγ1 < 10−10, although at larger amplitudes of uH , and if there are large multipliers, this
may go down to errγ1 ∼ 10−8, which is the (default) tolerance we require for the computation of uH
itself. Thus we give a warning if errγ1 > p.hopf.fltol, with default setting p.hopf.fltol=10−7.
However, for the optimal control example in §4.5, where we naturally have multipliers γj with
|γj | > 1020 and larger7, floq completely fails to compute any meaningful multipliers.

Indeed, in, e.g., [FJ91, Lus01], it is discussed that methods based directly on (41)
• may give considerable numerical errors, in particular if there are both, very small and very

large multipliers γj ;
• discard much useful information, for instance eigenvectors of M(ul), l 6= m − 1, which are

useful for branch switching.
As an alternative, [Lus01] suggests to use a periodic Schur decomposition [BGVD92] to compute
the multipliers (and subsequently pertinent eigenvectors), and gives examples that in certain cases
this gives much better accuracy, which as above is defined by the distance of the (numerical) trivial
multiplier to 1. See also [Kre01, Kre06] for similar ideas and results.

We thus provide a function floqps, which, based on pqzschur.m and percomplex.f from
[Kre01], computes a periodic Schur decomposition of the matrices involved in (41), from which we
immediately obtain the multipliers, see Remark 2.4(d). For large nu and m, floqps gets rather
slow, and thus for now we use it in two ways. First, to validate (by example) floq, and second to
compute the multipliers when floq fails, in particular for our OC example.

In summary, for small to medium sized dissipative problems, i.e., nu∗m < 10000, say, computing
(a number of) multipliers with floq, flagged by p.hopf.flcheck=1, is a matter of a seconds, and
only takes a fraction of the time needed to compute the orbit itself. For the ill-posed OC problems
we have to use floqps, flagged by p.hopf.flcheck=2, which is slower and for medium sized
problems can be as slow as the computation of uH . In any case, because we do not yet consider the
localization of the bifurcations (a)–(c) from periodic orbits (this is work in progress8 ), for efficiency
we give the option to switch off the simultaneous computation of multipliers during continuation
of periodic orbits by setting p.hopf.flcheck=0. As a simple alternative we provide floqap and
floqpsap for the a posteriori computation of multipliers.

Remark 2.4. (a) To save the stability information on the branch (if p.hopf.flcheck> 0) we
define

ind(uH) = number of multipliers γ with |γ| > 1 (numerically: |γ| > 1 + fltol), (43)

such that unstable orbits are characterized by ind(uH) > 0, and put ind(uH) in row three of
p.branch, i.e., p.branch(3, count) = ind(uH). This is consistent with the case of steady states, for

7I.e., |γnu | → ∞ as nu →∞, although the orbits may still be stable in the sense of optimal control, see §4.5
8In contrast to bifurcation from stationary solutions, the localization of the bifurcations via bisection becomes too

slow (except for simple 1D cases). Instead, the bifurcations will be localized via properly defined extended systems,
depending on the type (i)–(iii) of the (expected) bifurcation, which will also allow to efficiently compute curves of
bifurcation points from periodic orbits.
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which p.branch(3,count) contains the number of unstable eigenvalues of ∂uG. Thus, a change in
ind(uH) signals a possible bifurcation, and via

γcand := argmin{|γj | : |γj | > 1}

we also get an approximation for the critial multiplier, and thus a classification of the possible
bifurcation in the sense (i)-(iii). For p.hopf.flcheck=0 we set p.branch(3,count)=-1.

(b) In floq we compute n+ = p.hopf.nfloq multipliers γ2, . . . , γn+ of largest modulus (recall
that we reserve γ1 for the trivial multiplier), with |γ2| ≥ |γ3| ≥ . . . ≥ |γn+ |, and count how many of
these have |γj | > 1, which gives ind(uH) if we make sure that |γn+ | < 1. For dissipative systems,
typically 1 < n+ � nu, and the large multipliers ofM can be computed efficiently and reliably by
vector iteration. However, it does happen that some of the small multipliers do not converge, in
which case we also give a warning, and recommend to check the results with floqps.

(c) The idea of the periodic Schur decomposition is as follows. Given two collections (Ai), (Bi),
i = 1, . . . ,m, of matrices Ai, Bi ∈ Cn×n, pqzschur computes Qi, Zi, Ãi, B̃i ∈ Cn×n such that Ãi, B̃i
are upper triangular, Qi, Zi are orthogonal, and

A1 = Q1Ã1Z
H
m , B1 = Q1B̃1Z

H
1

A2 = Q2Ã2Z
H
1 , B2 = Q2B̃1Z

H
2

. . . , . . .

Am = QmÃmZ
H
m−1, Bm = QmB̃mZ

H
m .

Consequently, for the product M = B−1
m Am · · ·B−1

1 A1 we have

M = ZmB̃
−1
m Ãm · · · B̃−1

1 Ã1Z
H
m ,

and similar for products with other orderings of the factors. In particular, the eigenvalues of M

are given by the products di =
m∏
j=1

ã
(j)
ii /b̃

(j)
ii , and, moreover, the associated eigenvectors can also be

extracted from the Qj , Zj , see [Kre06] for further comments.
(d) Alternatively to using Floquet multipliers, we can assess the stability of the periodic orbits

by using the time–integration routines from pde2path, which moreover has the advantage of giving
information about the evolution of perturbations of unstable solutions; see §4 for examples, where
in all cases perturbations of unstable periodic orbits lead to convergence to some other (stable)
periodic orbit. c

3 Download, installation, help, and data structures

The package and demos, and older pde2path manuals and further information can be down-
loaded at [Uec16b]. The file pde2path.tar.gz (or pde2path.zip) unpacks to the root-directory
pde2path, which contains the directory tree shown in Fig. 2(a), where demos contains the sta-
tionary pde2path demos, hopfdemos contains the demos described here, html contains help, libs
contains the pde2path libraries, ocdemos contains the optimal control demos described in [Uec15],
pqzschur contains the periodic Schur decomposition, which has to be mexed (see README in
pqzschur for further instructions), and OOPDElightNA is a “light” version of OOPDE [Prü16], with
No Abstract classes for compatibility with older Matlab versions.

To get started, in Matlab change into the pde2path directory and run setpde2path, which also
makes available the help system. Calling p2phelp yields the main help menu shown in Fig. 2(b).
The first two topics are short thematic overviews of the data structures and main functions in
pde2path, while clicking p2plib, . . . , tom yields complete alphabetic function overviews of these
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(a) Directory tree (b) root help menu (d) demo overview (start)

(c) hopflib index (start)

Figure 2: Directory tree, Root help menu, and starting parts of hopflib index and demo overview.

pde2path libraries, with a short description of each function, which can then be clicked for docu-
mentation.9 Similarly, clicking on demos opens the demo overview in (d), with brief descriptions
of and pertinent links to the demo directories and the basic script files.

As already said, see [UWR14] and in particular [DRUW14] for the basic organization of the
pde2path-struct p describing a given problem, which however for convenience we briefly recall in
Table 2, where the last two lines contain new fields described here. Both are supplementary in
the following sense: p.pdeo is only needed/used if the user chooses the OOPDE setup described in
§4.1, while p.hopf is not needed/used for stationary problems, but initialized by hoswibra, i.e.,
by branch switching at a HBP.

Table 2: Fields in structure p; see [DRUW14] for a review of the contents of (and standard settings in)

these fields, except for p.pdeo, p.hopf, described in §4.1 and §A, respectively. See also the html help or

stanparam.m for further information.

field purpose field purpose
fuha function handles, e.g., fuha.G, . . . nc numerical controls, e.g., nc.tol, . . .
sw switches such as sw.bifcheck,. . . sol values/fields calculated at runtime
eqn tensors c, a, b for the sfem=1 setup mesh mesh data (if the pdetoolbox is used)
plot switches and controls for plotting file switches etc for file output
time timing information pm pmcont switches
fsol switches for the fsolve interface nu,np # PDE unknowns, # meshpoints
u,tau solution and tangent branch branch data
usrlam vector of user set target values for the primary parameter, default usrlam=[];
mat problem matrices, in general data that is not saved to file
pdeo OOPDE data if OOPDE is used, see [Prü16] for documentation
hopf Hopf data, initialized in hoswibra

To get started with the hopfdemos,
• change into one of the hopfdemos directories, and open *cmds.m; here * stands for cGL, rot,

bru or pollution, and the spatial dimension, where we recommend to start with cGL1dcmds;
• execute *cmds.m cell by cell, and compare to the descriptions given in §4.2–4.5.
To set up your own problem, copy the demo directory which seems closest to your problem to a

new directory, then modify the functions and scripts in it. See also the various (stationary) demos
in demos, described in [UWR14, DRUW14], for further tips and tricks regarding domains, BC, and
the general setup of the pertinent G from (3).

9Of course, help on any pde2path function foo is also given by typing help foo or doc foo, but in practice we
find the alphabetic library overviews such as in Fig. 2(c) most convenient.

14



To use ilupack, which we found useful in a number of demos, mex its Matlab interface,
put ilupacks */mex directory in the Matlab path, and before calling cont for a Hopf branch
set p.hopf.ilss=1. See also mbel.m in directory hopflib/ concerning the standard settings for
ilupack used. The settings concerning droptol, maxit etc. are often problem dependent, and
thus should be modified by copying mbel.m to your problem directory and modifying it there.

4 Four examples

4.1 OOPDE, and general remarks

Before presenting the demos we briefly comment on the new OOPDE setting in pde2path. OOPDE

(object oriented PDE) [Prü16] is a FEM package in Matlab. Inter alia, it provides, in 1D, 2D and
3D, most of the functionality that the pdetoolbox provides in 2D, and with similar basic interfaces.
Thus, we use it to transfer the functionality of pde2path to 1D and 3D, and to also make pde2path
independent of the pdetoolbox in 2D. A major difference, however, is the object oriented (OO)
setup of OOPDE, which has advantages such as tighter control of data access by the user and natural
reuse resp. overload of methods by inheritance, although currently we hardly use the OO aspects
of OOPDE.

Our basic strategy for using OOPDE is as follows: There are three templates for creating pde–
objects, namely the subclasses stanpdeo1D,stanpdeo2D, stanpdeo3D of the OOPDE class pde.
These only set up simple domains (interval, rectangle, cuboid, respectively), the grids (inter-
vals, triangles, tetrahedra) and the finite elements (piece-wise linear continuous). Thus, calling,
e.g., p.pdeo=stanpdeo1D(lx,2*lx/nx), we have pdeo as a pde object in p, i.e., the 1D domain
Ω = (−lx, lx) with a mesh of width 2lx/nx, and, by default, linear Lagrange elements associated to
it. This is already enough to, e.g., call [K,M,dummyF]=p.pdeo.fem.assema(p.pdeo.grid,1,1,0)
to assemble the (one component) mass matrix M and stiffness matrix K (such that M−1K corre-
sponds to the Neumann Laplacian), and there are very useful tools to set up boundary conditions
as well. After some post processing to, e.g., create the needed matrices for systems of PDEs, we
save these system matrices in p.mat.K, p.mat.M; see oosetfemops in the examples below. After
this, we can implement all functions necessary to describe the system in a standard pde2path way.
This way we only use a small subset of the OOPDE capabilities, but on the other hand stay close to
the original pde2path layout.

The basic setup of all four demos (cGL, rot, bru, pollution) is similar. Each demo directory
contains:
• Function files named *init.m for setting up the geometry and the basic pde2path data,

where * stands for the problem, i.e., cGL, rot, bru or pollution.
• Main script files, such as cGL*dcmds.m where * stands for the space dimension.
• Function files sG.m and sGjac.m for setting up the rhs of the equation and its Jacobian. Here,

somewhat different from the setup in [UWR14], we omit special names for these functions,
i.e., they are just files sG.m, sGjac.m in each problem directory. Of course, one can still
give individual names such as, e.g., cGLsG.m, and then set p.fuha.sG=@cGLsG. Moreover, we
decided to not introduce a new function handle for the nonlinearity f in (1), which is needed
in the computation of the coefficient α in the normal form (17); instead, we assume that f
is encoded as nodalf.m in the problem directory, and of course we then also call nodalf in
sG.m.10

10This assumes the semilinear setting, flagged by p.sw.sfem=1 (pdetoolbox) or p.sw.sfem=-1 (OOPDE ), i.e., ∂tu =
c∆u+ au+ b⊗∇u+ f(u), where c, a ∈ RN×N and b ∈ RN×N×2 are fixed tensors, f is the only nonlinearity in (1),
and the BC are linear as well. The computation of α is not yet supported for quasilinear problems, and thus for
these the user should provide a guess, see the description of hoswibra.m in §A. However, so far all our examples are
semilinear.
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• oosetfemops.m for setting up the system matrices, except for the demo rot where we use
the old pdetoolbox setup.
• A few auxiliary functions, for instance small modifications of the basic plotting routine
hoplot.m from the hopf library, which we found convenient to have problem adjusted a
posteriori plots, while during continuation we typically use the standard hoplot.
• Some auxiliary scripts auxcmds.m, which contain commands, for instance for creating movies

or for mesh–refinement, which here we do not discuss in detail, but which we find convenient
for illustrating either some mathematical aspects of the models, or some further pde2path

capabilities, and which we hope the user will find useful as well.
• For the demo pollution (which can also be seen as a optimal control demo) we additionally

have the functions polljcf.m, which implements the objective function, and pollbra.m,
which combines output from the standard Hopf output hobra.m and the standard OC output
ocbra.m.

In the following, we mostly focus on explaining the output of the main script files (i.e., the
relevant plots), and on relating them to some mathematical background of the equations. Thus,
for comments on implementation details, in particular for setting up the equations and Jacobians
in sG.m and sGjac.m we mostly refer to the m-files, and to [UWR14, DRUW14] and [Uec16b].
However, for our first example we also give some comments in Appendix B. The script files *cmds

are in cell mode, and we recommend to also execute them cell–by–cell to see the effect of the
individual commands.

In all examples, the meshes are chosen rather coarse, to quickly get familiar with the software.
We did check for all examples that these coarse meshes give reliable results by running the same
simulations on finer meshes, without qualitative changes. In some simulations (demo rot, and
cGL in 3D and bru in 2D) we additionally switch off the simultaneous computation of Floquet
multipliers, i.e., set p.hopf.flcheck=0, and instead compute the multipliers a posteriori at selected
points on branches. Computing the multipliers simultaneously is possible as well, but may be slow.
Nevertheless, even with the coarse meshes some commands, e.g., the continuation of Hopf branches
in 3+1D, may take several minutes, so for cGL and bru we recommend to start with the 1D problems,
where the numerics only take a few seconds. All computational times given in the following are
from an i5 laptop with Linux Mint 17 and Matlab 2013a.

4.2 A complex Ginzburg–Landau equation: Demo cGL

We consider the cubic-quintic complex Ginzburg–Landau equation

∂tu = ∆u+ (r + iν)u− (c3 + iµ)|u|2u− c5|u|4u, u = u(t, x) ∈ C, (44)

with real parameters r, ν, c3, µ, c5. Equations of this type are canonical models in physics, and are
often derived as amplitude equations for more complicated pattern forming systems [AK02, Mie02].
Using real variables u1, u2 with u = u1 + iu2, (44) can be written as a real 2–component system of
the form (3), i.e.,

∂t

(
u1

u2

)
=

(
∆ + r −ν
ν ∆ + r

)(
u1

u2

)
− (u2

1 + u2
2)

(
c3u1 − µu2

µu1 + c3u2

)
− c5(u2

1 + u2
2)2

(
u1

u2

)
. (45)

We set

c3 = −1, c5 = 1, ν = 1, µ = 0.1, (46)

and use r as the main bifurcation parameter. Considering (45) on, e.g., a (generalized) rectangle

Ω = (−l1π, l1π)× · · · × (−ldπ, ldπ) (47)
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with homogeneous Dirichlet BC or Neumann BC, or with periodic BC, we can explicitly calculate
all Hopf bifurcation points from the trivial branch u = 0, and, for periodic BC, the bifurcating
time periodic branches. For this let

u(x, t) = aei(ωt−k·x), with wave vector k = (k1, . . . , kd), kj ∈
1

2lj
Z, (48)

and temporal period 2π/ω, which yields

|a|2=|a(k, r)|2=− c3

2c5
±

√
c2

3

4c2
5

+ r − |k|2, ω=ω(k, r)=ν − µ|a|2, |k|2=k2
1 + . . .+ k2

d. (49)

Note that ω and hence the period T = 2π/ω depend on |a|, that u(t, x) on each branch is a
single harmonic in x and t, and that the phase of a is free. Using (46) we obtain subcritical Hopf
bifurcations of solutions (48) at

r = |k|2, with folds at r = |k|2 − 1

4
. (50)

Moreover, for these orbits we can also compute the Floquet multipliers explicitly. For instance, re-
stricting to k = 0 in (48), and also to the invariant subspace of spatially independent perturbations,

in polar-coordinates ũ(t) = ã(t)eiφ̃(t) we obtain the (here autonomous) linearized ODEs

d

dt
ã = h(r)ã,

d

dt
φ̃ = −2µaã, where h(r) = r + 3a2 − 5a4. (51)

The solution is ã(T ) = eh(r)T ã(0), φ̃(T ) = φ̃(0) + a
h(r)(eh(r)T − 1)ã(0), and therefore the analytic

monodromy matrix (in the k=0 subspace) isMk=0 =

(
eh(r)T 0

a
h(r)(eh(r)T − 1) 1

)
with multipliers γ1=1

and γ2=eh(r)T .
Thus, (45) makes a nice toy problem to validate and benchmark our routines, if we restrict

to periodic BC. However, as these are somewhat nonphysical, here we rather use Neumann and
Dirichlet BC, for which we still have the formula r = |k|2 for the HBPs, although we lose the
explicit branches, except the spatially homogeneous branch for k = 0 with Neumann BC.

Remark 4.1. An immediate consequence of the BC is that the solutions (48) have nodal sets, i.e.,
fixed subsets of Ω on which u(x, t) = 0 for all t, or equivalently (u1, u2) = (0, 0). For simplicity
restricting to 1D and Dirichlet BC, the general solution can be written as

u(x, t) =
∑
n∈N

an(t) sin(nx/l), an ∈ C. (52)

Then sin(nx/l) = 0 on |x| = lm/n, 0 ≤ m ≤ n, and the bifurcation at, e.g., r = n0/2l is into the
invariant subspace

u(x, t) =
∑

n∈{n0,3n0,5n0,...}

an(t) sin(nx/l),

i.e., the nodal structure is determined at bifurcation. The same conclusions hold for any spatial
dimension d, and Neumann boundary conditions, and therefore the bifurcation for (45) on cuboids
(47) with Neumann or Dirichlet BC is always to standing (i.e., oscillatory) patterns. In §4.3 we will
consider a similar problem on a circle, where suitable boundary conditions lead to the bifurcation
of rotating patterns. c
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The cGL demo directory consists, as noted above, of some function files to set up and describe
(45), and some script files to run the simulations. As functions we have
• cGLinit.m, which (depending on the spatial dimension) sets up the domain, mesh, boundary

conditions, and sets p.fuha.sG=@sG and p.fuha.sGjac=@sGjac;
• sG.m and sGjac, which encode (45) and the associated Jacobian of G;
• oosetfemops.m, which uses OOPDE s assema and assemb to set the system matrices;
• the auxiliary function plotana which plots the analytic branches (49).

Then we have three script files, cGL*dcmds.m, where *=1,2,3 stands for the spatial dimension, and
an auxcmds.m script file. The three files cGL*dcmds.m are very similar, i.e., only differ in filenames
for output and some plotting commands, but the basic procedure is always the same:

1. call cGLinit, then cont to find the HBPs from the trivial branch u ≡ 0;
2. compute branches of periodic orbits by calling hoswibra and cont again, including (in 1D

and 2D, but for efficiency not in 3D) the multipliers, then plotting.
3. additionally assess the stability of periodic solutions uH , and in case of instability get the

evolution of perturbatons, by using hotintxs to time integrate (45) with initial condition
uH(·, 0).

There are no real eigenvalues of ∂uG on the trivial branch u = 0 in this example. Thus, for
the HBP detection we can safely use bifcheck=2 with neig=10, and postpone to §4.4 and §4.5 the
discussion of problems which require preparatory calls to initeig to first estimate possible values
for ω1 (which here would be known a–priori as ω1 = 1). As already said, here we do not repeat all
details about, e.g., translating (45) into sG.m, but give some brief remarks in Appendix B.

In 1D we use Neumann BC, and nx = 30 spatial, and (without mesh-refinement) m = 20
temporal discretization points. Just for illustration, in cGL1dcmds.m we compute the first two
branches using the para=4 (arclength) setting from the start, while for the third branch we first
do 5 steps with para=3 (nat.param.), where tomsol refines the starting t–mesh of 20 points to 40
points.11 This produces the plots in Fig. 3, where the norm in (a) is

‖u‖∗ := ‖u‖L2(Ω×(0,T ),RN )/
√
T |Ω|, (53)

which is our default for plotting of Hopf branches. Additionally we remark that during the contin-
uation hoplot also plots the time–series t 7→ u1(x0, t), u2(x0, t) for some mesh point x0, selected by
the index p.hopf.x0i, which is set in cGLinit (see also Fig. 4). The simulations run in less than
10 seconds per branch, but the rather coarse meshes lead to some inaccuracies. For instance, the
first three HBPs, which analytically are at r = 0, 1/4, 1, are obtained at r = 6∗10−5, 0.2503, 1.0033,
and (b) also shows some visible errors in the period T . However, these numerical errors quickly
decay if we increase nx and m, and runtimes stay small.

On b1, initially there is one unstable multiplier γ2, i.e., ind(uH) = 1, cf. (43), which passes
through 1 to enter the unit circle at the fold. Its numerical value is 10−5 close to the analytical result
from (51), and this error decreases upon refining the t–mesh. On b2 we start with ind(uH) = 3,
and have ind(uH) = 2 after the fold. Near r = 0.45 another multiplier moves through 1 into the
unit circle, such that afterwards we have ind(uH) = 1, with, for instance γ2 ≈ 167 at r = 1. Thus,
we may expect a type (i) bifurcation (cf. p. 11) near r = 0.45, and similarly we can identify a
number of possible bifurcation on b3 and other branches. The trivial multiplier γ1 is 10−12 close
to 1 in all these computations, using floq.

Switching to continuation in another parameter works just as for stationary problems by calling
p=hoswiparf(...). See the start of cGL/auxcmds.m for an example, and Fig. 4 for illustration.

Via Fig. 5 we briefly explain how to use time integration to assess the stability of periodic
solutions, and in particular obtain the time evolution of perturbations of unstable orbits. The idea

11See also cGL/auxcmds.m for examples how to switch back and forth between para=4 and para=3 with the aim of
error control and mesh refinement in t.

18



(a) BD, norm ‖u(·, ·; r)‖∗ (b) Example plots

(c) BD; period T (r) (d) Multipliers at b1/pt8 (ind = 1), b1/pt27 (ind = 0), and b2/pt5 (ind = 3)

Figure 3: Numerical bifurcation diagrams, example plots and (leading 20) Floquet multipliers for (45) on

the domain Ω = (−π, π) with Neumann BC, 30 grid–points in x. Parameters (ν, µ, c3, c5) = (1, 0.1,−1, 1),

hence bifurcations at (restricting to the first three branches) r = 0 (k = 0, spatially homogeneous branch,

black), r = 1/4 (k = 1/2, blue) and r = 1 (k = 1, red), see (50). The black dots in (a), (b) are from the

analytical solution (49) with k = 0. The thick part of the black line in (a),(b) indicates the only stable

periodic solutions.

(a) c5 = 1 (b) BD T (c5) (c) c5 = 0.25

Figure 4: Continuing the solution b1/pt28 from Fig. 3(a,b) in c5. (a), (c) show t 7→ (u1, u2)(x0, t) for some

user selected x0 (here arbitrary). In accordance with (49) the temporal dependence stays a single harmonic,

and only the amplitude and period change. The blue dots in (b) are the analytical results (49).

is to start time integration from some point on the periodic orbit, e.g. u0(·) = uH(·, 0), and to
monitor, inter-alia, e(t) := ‖u(t, ·)−u0(·)‖, where by default ‖ · ‖ = ‖ · ‖∞. Without approximation
error for the computation of uH (including the period T ) and of t 7→ u(·, t) we would have e(nT ) = 0.
In general, even if uH is stable we cannot expect that, in particular due to errors in T which will
accumulate with n, but nevertheless we usually can detect instability of uH if at some t there is
a qualitative change in the time–series of e(t).12 In Fig. 5(a), where we use the smaller amplitude
periodic solution at r = 0 for the IC, this happens right from the start. Panel (b) illustrates
the stability of the larger amplitude periodic solution at r = 0, while in (c) the instability of the
solution on h2 at r = 1 manifests around t = 30, with subsequent convergence to the (stable)
spatially homogeneous periodic orbit.

Mainly to illustrate how to set up boundary conditions in OOPDE, in 2D we choose homogeneous

12 The time integration hotintxs takes inter alia the number npp of time steps per period T as argument. Time
integration is much faster than the BVP solver used to compute the periodic orbits, and thus npp can be chosen
significantly larger than the number m of time-discretization points in the BVP solver. Thus, choosing npp = 5m or
npp = 10m appears a reasonable practice.
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(a) Time series and solution for IC b1/pt8 (b) IC b1/pt27 (c) IC b2/pt19

Figure 5: Stability experiments for (45) in 1D. (a) IC h1/pt8, time series of ‖u(·, t) − u0‖∞ and u1(x, t),

showing the convergence to the larger amplitude solution at the same r. (b) IC h1/pt27 from Fig. 3, where

we plot ‖u(·, t)− u0‖∞ for t ∈ [0, 4T ], which shows stability of the periodic orbit, and a good agreement for

the temporal period under time integration. (c) instability of b2/pt19 from Fig. 3, and again convergence

to the solution on the b1 branch. Note that the time–stepping is much finer than the appearance of the

solution plots, but we only save the solution (and hence plot) every 100th step, cf. footnote 12.

Dirichlet BC for u1, u2, see also the discussion of oosetfemops.m in Appendix B. Then the first
two HBPs are at r1 = 5/4 (k = (1/2, 1), and r2 = 2 (k = (1, 1)). Figure 6 shows some results
obtained from cGL2dcmds.m, with a coarse mesh of 26×13 points, hence nu = 676 spatial unknowns,
yielding the numerical values r1 = 1.262 and r2 = 2.033. With m = 10 temporal discretization
points, the computation of each Hopf branch then takes less than a minute. Again, the numerical
HBPs converge to the exact values when decreasing the mesh width, but at the prize of longer
computations for the Hopf branches. For the Floquet multipliers we obtain a similar picture as
in 1D. The first branch has ind(uH) = 1 up to the fold, and ind(uH) = 0 afterwards, and on b2
ind(uH) decreases from 3 to 2 at the fold and to 1 near r = 7.2. Panel (c) illustrates the 2D
analogue of Fig. 5(c), i.e., the instability of the second Hopf branch and stability of the first.

(a) BD (b) solution snapshots (c) Instability of b2/pt10, conv. to b1

Figure 6: (a) Bifurcation diagrams of the first 2 Hopf branches for (45) in 2D. (b) Solution snapshot from

b2/pt10, at t = 0, 3
10T,

6
10T,

9
10T . (c) Time integration starting from (b) (t = 0), with convergence to the

first Hopf branch.

To illustrate that exactly the same setup also works in 3D, in cGL3dcmds.m and Fig. 7 we
consider (45) over Ω = (−π, π)× (−π/2, π/2)× (−π/4, π/4). Here we use a very coarse tetrahedral
mesh of np = 1386 points, thus 2772 DoF in space. Analytically, the first 2 HBPs are r1 = 21/4
(k = (1/2, 1, 2)) and r2 = 6 (k = (1, 1, 2), but with the coarse mesh we numerically obtain r0 = 5.7
and r1 = 6.58. Again, this can be greatly improved by, e.g., halving the spatial mesh width, but
then the Hopf branches become very expensive. Using m = 10, the computation of the branches
(with 10 continuation steps each) in Fig. 7 takes about 10 minutes, and a call of floqap to a
posteriori compute the Floquet multipliers about 30 seconds. Again, on b1, ind(uH) = 1 up to fold
and ind(uH) = 0 afterwards, while on b2 ind(uH) decreases from 3 to 2 at the fold and to 1 at
the end of the branch, and time integration from an IC from b2 yields convergence to a periodic
solution from b1.
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In 3D, the “slice plot” in Fig. 7(b), indicated by p.plot.pstyle=1 should be used as a default
setting, while the isolevels in (c) (via p.plot.pstyle=2) often require some fine tuning. Addition-
ally we provide a “face plot” option p.plot.pstyle=3, which however is useless for Dirichlet BC.
See hoplot.m for documentation of the plot options, and the ends of cGLcmds2d.m and cGLcmds3d.m

for example plot calls, and on how to create movies.

(a) BD, ‖u‖∗ and T (b) Example slice plot (c) Example isoplot

Figure 7: (a) Bifurcation diagram of first 2 Hopf branches for (45) in 3D. (b,c) Solution snapshots at t = 0

and t = T/2 for the blue dot in (a); slice-plot in (b), and isolevel plot in (c) with levels 0.525m1 + 0.475m2

and 0.475m1 + 0.525m2, where m1 = minx,t u1(x, t) and m2 = maxx,t u1(x, t).

4.3 Rotating patterns on a disk: Demo rot

While the Hopf bifurcations presented in §4.2 have been to (standing) oscillatory patterns, cf. Re-
mark 4.1, another interesting class is the Hopf bifurcation to rotating patterns, in particular to spiral
waves. Such spirals are ubiquious in 2D reaction diffusion problems, see, e.g., [Pis06, CG09]. Over
bounded domains, spiral waves are usually found numerically via time integration, with an O(1)
amplitude, i.e., far from bifurcation. On the other hand, the bifurcation of spiral waves from a ho-
mogeneous solution is usually analyzed over all of R2, e.g., [Hag82, KH81, Sch98], where the spirals
are relative equilibria, i.e., steady states in a comoving frame. Moreover, spiral waves often undergo
secondary bifurcations such as drift, meandering and period doubling, see [Bar95, SSW99, SS07]
and the references therein.

Here we study, on the unit disk, the bifurcation of spiral waves from the zero solution in a slight
modification of a real two component reaction diffusion system from [GKS00], somewhat similar to
the cGL, but with Robin BC. The system reads

∂tu = d1∆u+ (0.5 + r)u+ v − (u2 + v2)(u− αv),

∂tv = d2∆v + rv − u− (u2 + v2)(v + αu),
(54)

∂nu+ 10u = 0, ∂nv + 0.01v = 0, (55)

where n is the outer normal. First (§4.3.1) we follow [GKS00] and set α = 0, d1 = 0.01, d2 = 0.015,
and take r as the main bifurcation parameter. Then (§4.3.2) we set α = 1, let

(d1, d2) = δ(0.01, 0.015), (56)

and also vary δ which corresponds to changing the domain size by 1/
√
δ.

Due to the BC (55), the eigenfunctions of the linearization around (u, v) = (0, 0) are build from
Fourier Bessel functions

φ(ρ, ϑ, t) = Re(ei(ωt+mϑ)Jm(qρ)), (57)

where (ρ, ϑ) are polar-coordinates, and with in general complex q ∈ C \ R. Then the modes are
growing in ρ, which is a key idea of [GKS00] to find modes bifurcating from (u, v) = (0, 0) which
resemble spiral waves near their core.
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The implementation follows the general remarks from §4.1, and we only point out that the circle
is easily set up in circgeo.m, that the BC (55) are encoded in nbc.m, and we have two script files,
rotcmds a.m for §4.3.1, and rotcmds b.m for §4.3.2.

4.3.1 Bifurcations to rotational modes

The trvial homogeneous branch (u, v) = (0, 0) is stable up to r ≈ −0.21, and Fig. 8(a) shows the
first 6 bifurcating branches h1,h2,. . . , h6, from left to right, while (b) shows the spatial modes for
h1-h6 at bifurcation, with mode numbers m = 0, 1, 2, 3, 2, 4. We discretized (54), (55) with a mesh
of 1272 points, hence nu = 2544 DoF, and a coarse temporal discretization of 10 points, which
yields about 2 minutes for the computation of each branch, with 10 points on each. Example plots
of solutions on the last points on the branches are given in (e), with T near 2π for all branches.

(a) Bifurcation diagram (b) Spatial mode structure at bifurcation, h1,. . . ,h6

(c) Zero-contours of h2, h3, h4, h5 from (b) (d) selected snapshots from periodic orbits

Figure 8: Basic bifurcation diagram (a) for (54), (55) with h1-h6 from left to right, 10 continuation steps

for each. On each branch we mark the points 5 and 10. (b,c): information on initial mode structure on the

first six bifurcating branches. (d) Example plots last points in h2, h3 (upper row) and h4, h5 (lower row).

Snapshots of u at t = 0, Tj/5 and 2Tj/5, with Tj the actual period.

The nontrivial solutions from Fig. 8(a),(d) are “rotations”, except for the spatial m = 0 mode
h1. To discuss this, we return to (c), which shows the nodal lines for the components u, v at
bifurcation of h2 to h5 (vector Ψ in (17)). The pertinent observation is that h2 to h6 (not shown)
do not have nodal lines, i.e., u(x)v(x) 6= 0 except at x = 0.13 Thus, the branches h2 to h6 cannot
consist of oscillatory patterns but must rotate. On the other hand, this rotation must involve
higher order modes, and thus becomes more visible, i.e., almost (but never perfectly) rigid, at
larger amplitude.

To assess the numerical accuracy, in Table 3 we compare the numerical values for the Hopf
points and the temporal wave number ω with the values from [GKS00], who compute r4, r5, r6,
(and three more Hopf points) using semi analytical methods, and some numerics based on the

13The zero lines for h3 are close together, but not equal; for h1 we have u(x, 0) < 0 and v(x, 0) > 0 for all x.
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Matlab pdetoolbox with fine meshes. Given our coarse mesh we find our results reasonably close,
and again our values converge to the values from [GKS00] under mesh refinement.

Table 3: Comparison of HBPs with [GKS00] (starred values), and Floquet indizes at points on
branches.

branch h1 h2 h3 h4 h5 h6
r -0.210 -0.141 -0.044 0.079 0.182 0.236
ω 0.957 0.967 0.965 0.961 0.953 0.957
r∗ NA NA NA 0.080 0.179 0.234
ω∗ NA NA NA 0.961 0.953 0.957

ind(uH), pt5 0 2 6 12 16 20
ind(uH), pt10 0 2 4 8 18 16

Using floq to compute the multipliers at a given uH takes about 20s. Thus, for efficiency we
switch it off in the demo, and use floqap to compute the spectra a posteriori. The last two rows
of Table 3 give the Floquet indizes of points on the branches, where errγ1 (cf. (42)) is around 10−10

for each computation. All branches except h1 are unstable, and the instability indizes increase
from left to right, and also vary along the unstable branches. However, alltogether (54),(55) with
(α, δ) = (0, 1) does not appear to be very interesting from a dynamical and pattern forming point
of view, as time–integration yields that for r > r0 = −0.21 solutions to generic initial conditions
converge to a periodic orbit from h1. Thus, we next choose α = 1 to switch on a rotation also in
the nonlinearity.

4.3.2 Spiral waves

For (α, δ) = (1, 1) the linearization around (u, v) = (0, 0) and thus also the Hopf bifurcation points
rh1, . . . , rh6 are as in §4.3.1. However, the nonlinear rotation yields a spiral wave structure on the
branches s2,. . . , s6 bifurcating at these points, see Fig. 9(b), where we only give snapshots of u(·, 0),
at r = 1 and at r = 3 for s2, and r = 3 for the remaining branches. On s2 , s3, s4, and s6 the
solutions rotate almost rigidly in counterclockwise direction with the indicated period T , while on
s5 we have a clockwise rotation. Thus, on s2, s3, s4 and s6 we have inwardly moving spirals, also
called anti-spirals [VE01]. Moreover, again s1 is stable for all r > rh1, but additionally s2 becomes
stable for r > r1 ≈ 1, see Fig. 9(c), while s5 and the m–armed spirals with m > 1 on s3, s4, s6 are
unstable, as should be expected [Hag82]; also note how the core becomes flatter with an increasing
number of arms, again cf. [Hag82] and the references therein.

In Fig. 10(a) we first continue (u, v) from s2 at r = 3 in δ to δ = 0.1, i.e., to domain radius
√

10
(branch s2d). As expected, with the growing domain the spirals become more pronounced (see the
example plots in (c)). The solutions stay stable down to δ = δ1 ≈ 0.15, as illustrated in (b). In
(c) we continue the solution from s2d/pt29 (with δ = 0.2) again in r down to r = r∗h2 ≈ −0.22,
which is the associated Hopf bifurcation point over a circle of radius

√
5, see also the last plot in

(c), which is very close to bifurcation. Now the 1-armed spiral like solution is stable also for rather
small amplitude.

The model with (r, α, r) = (3, 1, 1) also appears to be quite rich dynamically. Besides solutions
converging to s1 (not shown), the 1-armed spiral s2 has a significant domain of attraction (see
Fig. 11(a) as an example), but there are also various at least meta-stable solutions, which consist
of long-lived oscillations (with or without rotations), see Fig. 11(b) for an example. Panels (c,d)
give just two examples for the dynamics for smaller δ, where in particular the instability of the
1-armed spiral for small δ is due to a bifurcation to a solution with a meandering spiral tip, again
see, e.g., [Bar95] for a review of such phenomena.
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(a) Bifurcation diagram (b) Profiles at selected points (c) Multipliers
s2/pt12

s2/pt15

Figure 9: Bifurcation diagram (a) with branches s1,. . . ,s6 left to right, and selected profiles (b) and Floquet

spectra (c). The (non–rotational) branch s1 is stable for all r but plotted as a thin line (first blue line in

(a)) for graphical reasons. The first two plots in (b) are both from s2, indicating the more pronounced spiral

nature for larger r (on all branches); remaining plots all at r = 3. T in (b) indicating the period, which

decreases in r and increases with number m of arms of the spirals.

(a) Continuation in δ, r = 3, (b) Multipliers (c) Continuation in r, δ = 0.2

s2d/pt29

s2d/pt44

Figure 10: (a) Continuation of the one armed spiral in δ (inverse domain-size). Over a larger domain the

spiral nature (of all spirals) is more visible. (b) Multipliers for points in (a). (b) Continuation of pt29 from

(a) in r; over a larger domain the “one-armed spiral” is stable for lower amplitudes.

4.4 An extended Brusselator: Demo bru

As an example where there is an interesting interplay between stationary patterns and Hopf bi-
furcations, where there are typically many eigenvalues with small real parts, and where therefore
detecting HBPs with bifcheck=2 without first using initeig for setting a guess for a shift ω1

is problematic, we consider an “extended Brusselator” problem from [YDZE02]. This is a three
component reaction diffusion system of the form

∂tu = Du∆u+ f(u, v)− cu+ dw, ∂tv = Dv∆v + g(u, v), ∂tw = Dw∆w + cu− dw, (58)

where f(u, v) = a−(1+b)u+u2v, g(u, v) = bu−u2v, with kinetic parameters a, b, c, d and diffusion
constants Du, Dv, Dw. We consider (58) on rectangular domains in 1D and 2D, with homogeneous
Neumann BC for all three components. The system has the trivial spatially homogeneous steady
state

Us = (u, v, w) := (a, b/a, ac/d),
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(a) IC from s5/pt18 (b) IC from s3/pt34 (c) IC from s2d/pt29 (d) IC from s2d/pt44

Figure 11: Time integration for (58). (α, δ, r) = (1, 1, 3) in (a,b); starting from various IC the solution

converges to the s2 branch (with (a) as an example), but other long time dynamics as in (b) also occur.

(c) Stability of the one-armed spiral for (α, δ, r) = (1, 0.2, 3). (d) Instability of the one-armed spiral for

(α, δ, r) = (1, 0.1, 3); the solution develops to a spiral with narrower arms and a meandering tip.

and in suitable parameter regimes it shows co-dimension 2 points between Hopf, Turing–Hopf (aka
wave), and (stationary) Turing bifurcations from Us. We follow [YDZE02] and fix the parameters

(c, d,Du, Dv, Dw) = (1, 1, 0.01, 0.1, 1). (59)

Figure 12(a) then shows a characterization of the pertinent instabilities of Us in the a, b plane.
Us is stable in region I, and can loose stability by (a, b) crossing the Turing line, which yields the
bifurcation of stationary Turing patterns, or the wave (or Turing–Hopf) line, which yields oscillatory
Turing patterns. Moreover, there is the “Hopf line” which corresponds to Hopf–bifurcation with
spatial wave number k = 0.

In the following we fix a = 0.95 and take b as the primary bifurcation parameter. Figure
12(b) illustrates the different instabilities from (a), i.e.: as we increase b from 2.75, we first cross
the Turing–Hopf line, with first instability at critical spatial wave number kTH ≈ 0.7, then the
Hopf line, and finally the Turing line with critical wave number kT ≈ 6.4. To investigate the
bifurcating solutions (and some secondary bifurcations) with pde2path, we need to choose a domain
Ω = (−lx/2, lx/2) (1D), where due to the Neumann BC lx should be chosen as a (half integer)
multiple of π/kTH. For simplicity we take the minimal choice lx = 0.5π/kTH, which restricts the
allowed wave numbers to multiples of kTH, as indicated by the black dots in Figure 12(b). Looking
at the sequence of spectral plots for increasing b, we may then expect first the Turing–Hopf branch
h1 with k = kTH, then a Hopf branch h2 with k = 0, then two Turing branches s1, s2 with k = 6.3
and k = 7, then a Turing–Hopf branch h3 with k = 2kTH, and so on, and this is what we obtain
from the numerics, as illustrated in (c) and (d). Besides stationary secondary bifurcations we also
get a rather large number of Hopf points on the Turing branches, and just as an example we plot
the (Turing)Hopf branch s1h1 bifurcating from the first Hopf point on s1. The example plots in (d)
illustrate that solutions on s1h1 look like a superposition of solutions on s1 and h1. Such solutions
were already obtained in [YDZE02] from time integration, such that at least some these solutions
also have some stability properties, see also [YE03] for similar phenomena. By following the models
various bifurcations, this can be studied in a more systematic way.

In Fig. 13(a)-(d) we give some illustration that interesting bifurcations from the Hopf branches
should occur in (58). It turns out that h1 is always stable, and that (the spatially homogeneous
branch) h2 is initially unstable with ind(uH) = 2, but close to pt5 on h2 we find a Neimark–Sacker
bifurcation, after which solutions on h2 are stable. Similarly, solutions on h3 start with ind(uH) = 5,
but after a Neimark–Sacker bifurcation, and a real multiplier going through 1 at b ≈ 3.35 we find
ind(uH) = 2, before ind(uH) increases again for larger b. Also note that there are always many
multipliers close to −1, but we did not find indications for period–doubling bifurcations. Finally,
in Fig. 13(e)–(h) we illustrate the evolution of perturbations of s1h1/pt10. After a transient near
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(a) (b) (c)

(d) solution plots

Figure 12: (a) Parameter plane with Hopf, Turing–Hopf (wave) and Turing instability lines for (58),

reprinted with permission from [YDZE02], copyright 2002, AIP Publishing LLC. (b) Spectra for increasing

b at a = 0.95. Contrary to the pde2path convention that due to ∂tu = −G(u) eigenvalues with negative

real parts yield instabilities, here we directly plot the spectra of −∂uG, such that instability occurs for

eigenvalues with positive real parts. The first instability (Turing–Hopf) occurs at b ≈ 2.794, with kc ≈ 0.7.

The admissible wave-numbers k on a domain (−lx, lx) with lx = 0.5π/kc are indicated by the dots. (c),(d):

(partial) bifurcation diagram, and example plots on Ω = (−lx, lx).

h3/pt5 (g) the solution converges to a solution from the primary Hopf branch h1 (h), which however
itself also shows some short wave structure at this relatively large distance from bifurcation.

In 1D we may still use bifcheck=2 without preparation to detect (and localize) the Hopf
bifurcations, i.e., by computing a number (here 20) of eigenvalues closest to zero. In 2D this is
unfeasible, because even over rather small domains we obtain many wave vectors k = (k1, k2) with
modulus |k| ∈ (5, 8), which give leading eigenvalues µ1(k) with small Reµ(k) and Imµ(k) = 0.
This is illustrated in Fig. 14, which shows that for Ω = (−0.5π/kTH, 0.5π/kTH)2 even for neig=200
(which is quite slow already) we do not even see any Hopf eigenvalues, which become “visible”
at, e.g., neig=300. Thus, here we first call initwn and initeig to generate a guess for the Hopf
bifurcation; subsequently bifcheck=2 with neig=[3 3] runs fast and reliably.

Finally, in Fig. 15 we give an example of just four of the many branches which can be obtained
for (58) in 2D, even over quite small domains. We use Ω = (−lx, lx)× (−ly, ly), lx = π/2, ly = π/8,
which means that admissible wave vectors are (k1, k2) = (n, 4m), n,m ∈ N0. Consequently, no
spatial structure in y direction occurs in the primary Hopf branches (cf. Fig. 12b), i.e., the first
three are just analogous to those in Fig. 12 and occur at b = 2.818 (with k = (1, 0)), b = 2.859 (with
k = (0, 0), i.e., spatially homogeneous, and hence b independent of the domain) and b = 3.202 (with
k = (2, 0)); see (b1) for an example plot on the first Hopf branch. The first stationary bifurcation
(at b = 2.912) is now to a spotted branch 2ds1, and stripe branches analogous to s1 from Fig. 12
bifurcate at larger b. Moreover, while so far all branches were continued using cont, the continuation
of the branch 2ds1 is problematic with cont as this leads to undesired branch switching (as usual
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(a) h1/pt10, ind = 0 (b) h2/pt5, ind = 2 (c) h2/pt10, ind = 0 (d) h3/pt5, ind = 5

(e) “error” time series (f) initial evolution (g) transient near h3 (h) convergence to h1

Figure 13: (a)-(d) A small sample of Floquet spectra of periodic orbits from Fig. 12 (200 largest multipliers

computed via floq), illustrating that a Neimark–Sacker bifurcation should be expected near h2/pt5, and

similar eigenvalue transitions occur on all other Hopf branches except h1. (e)-(h) Evolution of a perturbation

of s1h1/pt10. After a rather long transient near h3 the solution converges to an orbit on h1.

for Turing branches in 2D, cf. [UWR14, §4]). Thus, in br2dcmds.m we use pmcont ([UWR14, §4.3])
to continue the 2ds1 branch.

Interestingly, after some stationary and Hopf bifurcations this branch becomes stable at b =
bb ≈ 2.785, which illustrates that it is often worthwhile to follow unstable branches, as they may
become stable, or stable branches may bifurcate off. In particular, here for b < bb we have a
bistability of the trivial branch and 2ds1, and hence (over somewhat larger domains) phenomena
such as heteroclinics between solutions on the trivial branch and on 2ds1, and associated snaking
branches of localized spots. See [UW14] and the references therein for related results in various
models.

However, here we are interested in Hopf bifurcations from 2ds1, and Fig. 15(b2) shows an
example plot from such a secondary Hopf branch. This is analogous to s1h1 from Fig. 12, i.e.,
the solutions look like superpositions of the stationary pattern and solutions on the primary Hopf
branch h1. Concerning the multipliers we find that ind(uH) = 0 on 2dh1, and, e.g., ind(uH) = 5 at
2ds1h1/pt5, where as in 1D (Fig. 14) there are multipliers suggesting Neimark–Sacker bifurcations.
Figure 15 (c) illustrates the instability of the spotted Hopf solutions; the spots stay visible for about
4 periods, and subsequently the solution converges to a periodic orbit from the primary Hopf branch,
as in Fig. 13.

Remark 4.2. As an example that besides the new functions from the hopf library we still have
the full pde2path machinery available, in the script auxcmds.m we do some adaptive spatial mesh–
refinement at the start of the (1D and 2D) Turing branches s1 and 2ds1 and then continue.14 The

14In the OOPDE setting used here, mesh-adaption so far is implemented in 1D and 2D. Moreover, it works somewhat
differently and is slightly less general than in the pdetoolbox setting, as follows: its local error estimator is the same
as in the pdetoolbox, and needs a function [c,a,f]=eeG(p,u) (“error estimate G”) in the current directory, which
returns the diffusion tensor c, the linear part a (usually a=0), and the nodal nonlinearity f. For f we can typically
use the same nodalf which is also used in the normal form computation hogetnf or in setting up sG. See eeG.m in
the bru demo directory. Note that there is no joint mesh adaption in t and x yet, and no mesh adaption in x on Hopf
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(a) neig=200 (b) neig=300 (c) (d)

Figure 14: (a,b) neig eigenvalues of the linearization of (58) around Us at b = 2.75, remaining parameters

from (59); bifcheck=2 with neig=200 but without preparation by initeig will not detect any Hopf points.

(c) calling initeig yields a guess ω1 = 0.9375 for the ω value at Hopf bifurcation, and then using bifcheck=2

with neig=[3 3] is reliable and fast: (d) shows the three eigenvalues closest to 0 in blue, and the three

eigenvalues closest to iω1 in red.

(a) BD, and u at first HBP on
2ds1 branch

(b) Hopf example plots (u) (c) Convergence to the primary
Hopf branch 2dh1

1) 2dh1/pt5 at t = 0, T/2

2) 2ds1h1/pt5 at t=0, . . . , 3T/4

Figure 15: (a) Example bifurcations for (58) over a small 2D domain Ω = (−π/2, π/2)× (−π/8, π/8), and

example plots of u at 2nd Hopf point on the blue branch. (b) Example plots: solutions on primary Hopf

branch (1), and on the secondary Hopf branch (2) (the amplitude at t = 1.4 and t = 4.19 is about 0.2). (c)

Time integration with u(·, 0) from 2ds1h1/pt5, snapshots at 0, T, 2T, . . . , 8T .

further BPs and HBPs then obtained are very close to the BPs and HBPs on the coarser mesh,
but the resolution of the bifurcating Hopf branches becomes considerably better, with a moderate
increase of computation time, which in any case is faster than starting with a uniform spatial mesh
yielding a comparable accuracy. c

4.5 A canonical system from optimal control: Demo pollution

In [GU16, Uec16a], pde2path has been used to study so called canonical steady states and canonical
paths for infinite time horizon distributed optimal control (OC) problems, see also [Uec15] for a
short manual on OC computations with pde2path. As an example for such problems with Hopf
bifurcations15 we consider

V (v0(·)) := max
k(·,·)

J(v0(·), k(·, ·)), J(v0(·), k(·, ·)) :=

∫ ∞
0

e−ρtJca(v(t), k(t)) dt, (60a)

orbits.
15which so far could not be found in the systems studied in [GU16, Uec16a]
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where Jca(v(·, t), k(·, t)) =
1

|Ω|

∫
Ω
Jc(v(x, t), k(x, t)) dx is the spatially averaged current value func-

tion, with

Jc(v, k) = pv1 − βv2 − C(k) the local current value, C(k) = k +
1

2γ
k2, (60b)

ρ > 0 is the discount rate (long-term investment rate), and where the state evolution is

∂tv1 = −k + d1∆v1, ∂tv2 = v1 − α(v2) + d2∆v2, (60c)

with Neumann BC ∂nv = 0 on ∂Ω. Here,
• v1 = v1(t, x) are the emissions of some firms,
• v2 = v2(t, x) is the pollution stock,
• and the control k = k(t, x) is the firms’ abatement policies.

In Jc, pv1 and βv2 are the firms’ value of emissions and costs of pollution, C(k) are the costs for
abatement, and α(v2) = v2(1 − v2) is the environment’s recovery function. The discounted time
integral in (60a) is typical for economic problems, where “profits now” weight more than mid or far
future profits. Finally, the max in (60a) runs over all admissible controls k; this essentially means
that k ∈ L∞((0,∞)× Ω,R), and we do not consider active control or state constraints.

The associated ODE OC problem (no x–dependence of v, k) was set up and analyzed in [TW96,
Wir00]; in suitable parameter regimes it shows Hopf bifurcations of periodic orbits for the associated
so called canonical (ODE) system. See also, e.g., [DF91, Wir96, GCF+08] for general results about
the occurrence of Hopf bifurcations and optimal periodic solutions in ODE OC problems.

Setting g1(v, k) = (−k, v1 − α(v2))T , and introducing the co–states (Lagrange multipliers)

λ : Ω× (0,∞)→ R2

and the (local current value) Hamiltonian H = H(v, λ, k) = Jc(v, k) + 〈λ,D∆v + g1(v, k)〉, by Pon-
tryagin’s Maximum Principle for H̃ =

∫∞
0 e−ρtH(t) dt with H(t) =

∫
ΩH(v(x, t), λ(x, t), k(x, t)) dx,

an optimal solution (v, λ) has to solve the canonical system (first order necessary optimality con-
ditions)

∂tv = ∂λH = D∆v + g1(v, k), v|t=0 = v0, (61a)

∂tλ = ρλ− ∂vH = ρλ+ g2(v, k)−D∆λ, (61b)

where ∂nλ = 0 on ∂Ω. The control k fulfills k= argmaxk̃H(v, λ, k̃), and under suitable concavity
assumptions on Jc and in the absence of control constraints is obtained from solving ∂kH(v, λ, k)=0,
thus here

k = k(λ1) = −(1 + λ1)/γ. (62)

Note that (61) is ill–posed as an initial value problem due to the backward diffusion in the co–
states λ. Thus it seems unlikely that periodic orbits for (61) can be obtained via shooting methods.
For convenience we set u(t, ·) := (v(t, ·), λ(t, ·)) : Ω→ R4, and write (61) as

∂tu = −G(u) := D∆u+ f(u), (63)

where D =diag(d1, d2,−d1,−d2), f(u) =

(
−k, v1−α(v2), ρλ1−p−λ2, (ρ+α′(v2))λ2+β

)T
. Besides

the boundary condition ∂nu = 0 on ∂Ω and the initial condition v|t=0 = v0 (only) for the states,
we have the intertemporal transversality condition

lim
t→∞

e−ρt
∫

Ω
〈v, λ〉 dx = 0. (64)
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A solution u of the canonical system (63) is called a canonical path, and a steady state of (63)
(which automatically fulfills (64)) is called a canonical steady state (CSS), and a first step for OC
problems of type (60) is to study the CSS and canonical paths connecting to some CSS u∗. To find
such connecting orbits to u∗ we may choose a cut–off time T1 and require that u(·, T1) is in the
stable manifold Ws(u

∗) of u∗, which we approximate by the associated stable eigenspace Es(u
∗). If

we consider (61) after spatial dicretization, then, since we have nu/2 initial conditions, this requires
that dimEs(u

∗) = nu/2. Defining the defect d(u∗) of a CSS as

d(u∗) =
nu
2
− dimEs(u

∗), (65)

it turns out (see [GU16, Appendix A]) that always d(u∗) ≥ 0, and we call a u∗ with d(u∗) = 0 a
saddle–point CSS. See [GCF+08, GU16] for more formal definitions, and further comments on the
notions of optimal systems, the significance of the transversality condition (64), and the (mesh-
independent) defect d(u∗). For saddle point CSS u∗ we can then compute canonical paths to u∗,
and this has for instance been carried out for a vegetation problem in [Uec16a], with some surprising
results, including the bifurcation of patterned optimal steady states.

A natural next step is to search for time–periodic solutions uH of canonical systems, which
obviously also fulfill (64). The natural generalization of (65) is

d(uH) = ind(uH)− nu
2
. (66)

In the (low–dimensional) ODE case, there then exist methods to compute connecting orbits to
(saddle point) periodic orbits uH with d(uH) = 0, see [BPS01, GCF+08], which require compre-
hensive information on the Floquet multipliers and the associated eigenspace of uH . Our aim is to
extend these methods to periodic orbits of PDE OC systems.

However, a detailed numerical analysis of (60) and similar PDE optimal control problems with
Hopf bifurcations, and economic interpretation of the results, will appear elsewhere. Here we only
illustrate that
• Hopf orbits can appear as candidates for optimal solutions in PDE OC problems of the form

(60),
• and that the computation of multipliers via the periodic Schur decomposition can yield rea-

sonable results, even when computation directly based on the product (41) completely fails.
For all parameter values, (63) has the spatially homogeneous CSS

u∗ = (z∗(1− z∗), z∗,−1,−(p+ ρ)), where z∗ =
1

2

(
1 + ρ− β

p+ ρ

)
.

We use similar parameter ranges as in [Wir00], namely

(p, β, γ) = (1, 0.2, 300), and ρ ∈ [0.5, 0.65] as a continuation parameter, (67)

consider (63) over Ω = (−π/2, π/2), and set the diffusion constants to d1 = 0.001, d2 = 0.2.16

In Figure 16 we give some basic results for (63) with a coarse spatial discretization of Ω by only
np = 17 points (and thus nu = 68). (a) shows the full spectrum of the linearization of (63) around
u∗ at ρ = 0.5, illustrating the ill-posedness of (63) as an initial value problem. (b) shows a basic
bifurcation diagram. At ρ = ρ1 ≈ 0.53 there bifurcates a Hopf branch h1 with spatial wave number

16The motivation for this choice is to have the first (for increasing ρ) Hopf bifurcation to a spatially patterned
branch, and the second to a spatially uniform Hopf branch, because the former is more interesting. We use that the
HBPs for the model (63) can be analyzed by a simple modification of [Wir00, Appendix A]. We find that for branches
with spatial wavenumber l ∈ N the necessary condition for Hopf bifurcation, K > 0 from [Wir00, (A.5)], becomes
K = −(α′ + d2l

2)(ρ+ α′ + d2l
2)− d1l2(ρ+ d1l

2) > 0. Since α′ = α′(z∗) < 0, a convenient way to first fulfill K > 0
for l = 1 is to choose 0 < d1 � d2 < 1, such that for l = 0, 1 the factor ρ+ α′ + d2l

2 is the crucial one.
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l = 1, and at ρ = ρ2 ≈ 0.58 a spatially homogeneous (l = 0) Hopf branch h2 bifurcates subcritically
with a fold at ρ = ρf ≈ 0.55. (c) shows the pertinent time series on h2/pt14. As should be
expected, Jc is large when the pollution stock is low and emissions are high, and the pollution
stock follows the emissions with some delay. The abatement investment k can be negative, and
indeed must be for bifurcating periodic orbits as k = 0 for any CSS u∗. This, given the quadratic
term in the costs C(k) = k+ 1

2γk
2, might seem a bit odd, but as already said, here we refrain from

a detailed model discussion.

(a) spectrum of
∂uG(u∗), ρ = 0.5

(b) bif. diagram (c) time series on h2/pt14 (spat. homogen. branch)

(d) example plots at h1/pt4

(f) the nu

2 smallest γj
at h2/pt4

(g) |γj | for the nu

2
largest γj at h2/pt4

(h) the nu

2 smallest γj at h2/pt4 and at h2/pt14

Figure 16: (a) full spectrum of the linearization of (63) around u∗ at ρ = 0.5 on a coarse mesh with np = 17.

(b) Bifurcation diagram, value J over ρ. Black: u∗; blue: h1, red: h2, J(uH ; 0) (full line) and J(uH ;T/2)

(dashed line). (c) Time series of a spatially homogeneous solution, including current value Jc, control k, and

co–states λ1,2. (d,f,g) Example plots and and multipliers of uH at h1/pt4, which shows that ind(uH) = 0.

(h) multipliers at h2/pt4, which shows that ind(uH) = 3 at this point, while solutions on h2 become saddles

after the fold.

Since ultimately we are interested in the values J of solutions of (63), in (b) we plot J over
ρ. For the CSS u∗ this is simply J(u∗) = 1

ρJc,a(u
∗), but for the periodic orbits we have to take

into account the phase, which is free for (63). If uH is obtained for (63), then, for φ ∈ [0, T ), we
consider

J(uH ;φ) :=

∫ ∞
0

e−ρtJc,a(uH(t+ φ)) dt =
1

1− e−ρT

∫ T

0
e−ρtJc,a(uH(t+ φ)) dt,

which in general may depend on the phase, and for h2 in (c) we plot J(uH ;φ) for φ = 0 (full red
line) and φ = T/2 (dashed red line). For the spatially periodic branch h1, Jc,a(t) averages out in
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x and hence J(uH ;φ) only weakly depends on φ. Thus, we first conclude that ρ ∈ (ρ1, ρf ) the
spatially patterned periodic orbits from h1 give the highest J , while for ρ ≥ ρf this is obtained
from h2 with the correct phase. The example plots (c) at h1/pt4 illustrate how the spatio-temporal
dependence of k should be chosen, and the resulting behaviours of v and Jc.

It remains to compute the defects d(u∗) of the CSS and d(uH) of periodic orbits on the bifurcat-
ing branches. For d(u∗) we find that it starts with 0 at ρ = 0.5, and, as expected, increases by 2 at
each Hopf point. On the Hopf branches we always have n+ ≥ nu/2 unstable multipliers (computed
with floqps, which yields errγ1 < 10−8 for all computations, and hence we trust it), and the leading
multipliers are very large, i.e., on the order of 1020, even for the coarse space discretization. Thus,
we may expect floq to fail, and indeed it does so completely. For instance, calling floq to compute
all multipliers typically returns 10 and larger for the modulus of the smallest multiplier (which from
floqps is on the order of 10−25). For the plots we overload floqpsap.m in the directory pollution

to give the logarithmic plots of the large multipliers.
On h1 we find d(uH) = 0 up to pt4, see (e) for the nu/2 smallest multipliers, and (f) for |γj | for

the large ones, which are mostly real, and d(uH) ≥ 1 for larger ρ. On h2 we start with d(uH) = 3,
see (h), but d(uH) = 0 after the fold until ρ = ρ1 ≈ 0.6, after which d(uH) increases again by
multipliers going though 1. Since on h1 we have that J(uH) is larger than J(u∗), and since uH is
a saddle point up to pt4, we expect that these uH are at least locally optimal, and similarly we
expect uH from h2 after the fold until ρ1 to be locally, and probably globally, optimal. However,
as already said, for definite answers and, e.g., to characterize the domains of attractions, we need
to compute canonical paths connecting to these periodic orbits, and this will be studied elsewhere.

5 Summary and outlook

With the hopf library we provide basic functionality for Hopf bifurcations and periodic orbit
continuation for the class (3) of PDEs over 1D, 2D and 3D domains. The user interfaces reuse
the standard pde2path setup, and no new user functions are necessary. For the detection of Hopf
points we detect eigenvalues crossing the imaginary axis near guesses iωj , where the ωj can either
be set by the user (if such a priori information is available), or can be estimated via initeig, which
is based on computing the function g from (12). An initial guess for a bifurcating periodic orbit
is then obtained from the normal form (13), and the continuation of the periodic orbits is based
on modifications of routines from TOM [MT04]. Floquet multipliers of periodic orbits can also
be computed, and thus we can detect possible bifurcations from periodic orbits. We do not (yet)
provide functionality for localizing these bifurcations, and consequently, no routines for branch
switching at such bifurcation points.

Our OOPDE setup, with the goal of taking pde2path to 1D and 3D, is rather basic and does
not yet provide the same flexibility concerning boundary conditions and fully nonlinear equations
as the standard pde2path setup based on the Matlab pdetoolbox. Information for using more of
OOPDE can be found at [Prü16]. Also, our usage of ilupack [Bol11] for the preconditioned iterative
solution of linear systems is rather basic.

Floquet multipliers of periodic orbits can be computed using floq or floqps. The former is
suitable for dissipative systems, and computes the p.hopf.nfloq largest multipliers of the explicit
monodromy matrixM (41). This definitely fails for problems of the type considered in §4.5, and in
general we recommend to monitor errγ1 = |γ1−1| to detect further possible inaccuracies. floqps is
based on a periodic Schur decomposition of the factor matrices ofM. Therefore, for just computing
the multipliers of M it is generally slower than floq, but it has distinct advantages: It can be
used to efficiently compute eigenspaces at all time–slices and hence bifurcation information in case
of critical multipliers, and, presently most importantly for us, it accurately (measured by errγ1)
computes the multipliers also for ill posed evolution problems.
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We explained the usage of the software using four example problems, where we believe that the
second, third and fourth are close to interesting research problems. For instance, the demo rot, on
the linear level based on [GKS00], seems to be the first work where the bifurcation of spiral waves
out of zero has been studied numerically over a bounded domain, in a reaction diffusion system
without very special boundary conditions. Further interesting problems will be, e.g., the bifurcation
from Hopf branches in the demos rot) and bru. Thus, as one next step we plan to implemenent
the necessary localization and branch switching routines, for which the demo cGL will again provide
a good test case. The demo pollution gives a (very basic) illustration of the widely unexplored
field of Hopf bifurcations and time periodic orbits in optimal control PDE problems. For this, as a
next step we will implement routines to compute canonical paths connecting to periodic orbits.

Finally, an interesting field are Hopf bifurcations from travelling waves, or more generally in
systems with continuous symmetries, see Remark 2.1. The treatment of these is also planned as a
next step.

A hopf library overview

Our Hopf setup does not need any user setup additional to the functions such as p.fuha.sG,

p.fuha.sGjac (or p.fuha.G, p.fuha.Gjac) already needed to describe stationary problems. The
only changes of the core p2p library concern some queries whether we consider a Hopf problem,
in which case basic routines such as cont call a Hopf version, i.e., hocont. HBPs are flagged by
p.sol.ptype=3, while points on a Hopf branch have p.sol.ptype=4. The natural parametriza-
tion (§2.3.3) for periodic orbit continuation is flagged by p.sw.para=3, while p.sw.para=4 flags
arclength (§2.3.2).

Table 4: Entries in p.hopf (first block), and additions/modifications to p.nc.

field purpose
y for p.sw.para=4: unknowns in the form (29) (nu ×m matrix);

for p.sw.para=3: y augmented by ỹ and T, λ ((2nu+2)×m matrix).
y0d for p.sw.para=4: Mu̇0 for the phase condition (19) (nu ×m matrix);

for p.sw.para=3: Mu̇0(0) for the phase condition (36) (2nu+2 vector).
tau tangent, see (24)
ysec secant between two solutions (y0, T0, λ0), (y1, T1, λ1) for p.sw.para=3; (2nu+2)×m matrix
t, T, lam time discretization vector, current period and param.value
xi,wT weights for the arclength, see (21)
x0i index for plotting t 7→ u(~x(x0i);
plot aux. vars to control hoplot during hocont; see the description of hoplot; default plot=[]
wn struct containing the winding number related settings for initeig
tom struct containing TOM settings, including the mass matrix M
jac switch to control assembly of ∂uG. jac=0: numerically (only recommended for testing);

jac=1: via hosjac. Note that for p.sw.jac=0 the local matrices ∂uG(u(tj)) are obtained
via numjac, but this is still much faster than using p.hopf.jac=0.

flcheck 0 to switch off multiplier-computation during continuation, 1 to use floq, 2 to use floqps

nfloq # of multipl. (of largest modulus) to compute (if flcheck=1)
fltol tolerance for multiplier γ1 (give warning if |γ1 − 1| >p.hopf.fltol)
muv1,muv2 vectors of stable and unstable multipliers, respectively
p.nc.mu1
p.nc.mu2

for bifcheck=2: start bisection if ineg changed, and |Re(µ)| <mu1, where µ is the pertinent
eigenvalue; check that |Re(µ)| <mu2 at end of bisection, see Remark 2.2.

p.nc.eigref now a vector (in general), as is p.nc.neig

The Hopf related variables are collected in the field p.hopf, see Table 4, while Table 5 sum-
marizes the main functions from the hopf library. See also [DRUW14, App.A] for the general
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organization of p.fuha (function handles), p.nc (numerical controls), p.sw (switches), p.plot

(plot settings), p.file (file handling), p.sol (solution at runtime), etc in p. As Table 5 is only
intended as an overview, we refer to the m-files, the pde2path help system, and the demo directories
for the input and output arguments and further details on the used functions.

Table 5: Overview of main functions related to Hopf bifurcations and periodic orbits

name purpose
hoswibra branch switching at HBP, see (17), and comments below
hoplot plot the data contained in hopf.y. Space-time plot in 1D; in 2D and 3D: snap-

shots at (roughly) t = 0, t = T/4, t = T/2 and t = 3T/4; see also hoplotf;
initeig find guess for ω1; see also initwn
floq compute p.hopf.nfloq multipliers during continuation (p.hopf.flcheck=1)
floqps use periodic Schur to compute (all) multipliers during continuation (flcheck=2)
floqap, floqpsap a posteriori versions of floq and floqps, respectively
hobra standard–setting for p.fuha.outfu (data on branch), template for adaption to a

given problem
hostanufu standard setting for screen printout, see also hostanheadfu
plotfloq plot previously computed multipliers
hotintxs time integrate (4) from the data contained in p.hopf and u0, with output of

‖u(t)− u0‖∞, and saving u(t) to disk at specified values
tintplot*d plot output of hotintxs; x−t–plots for *=1, else snapshots at specified times
initwn init vectors for computation of g from (12)
hogetnf compute initial guess dlam, al for the coefficients of bifurcating Hopf branch

from the normal form (13)
hocont main continuation routine; called by cont if p.sol.ptype>2
hostanparam set standard parameters
hostanopt, hoMini standard options for, and initialization of hopf.tom
hoinistep perform 2 initial steps and compute secant, used if p.sw.para=3
honloopext,honloop the arclength Newton loop (27), and the Newton loop with fixed λ
tomsol use TOM to solve (37)
tomassemG use TOM to assemble G; see also tomassem, tomassempbc

gethoA put together the extended Jacobian A from (27)
hopc the phase condition φ from (19) and ∂uφ from (23)
arc2tom, tom2arc convert arclength data to tomsol data, e.g., to call tomsol for mesh adaptation.

tom2arc to go back.
ulamcheckho check for and compute solutions at user specified values in p.usrlam
hosrhs,hosrhsjac interfaces to p.fuha.G and p.fuha.Gjac at fixed t, internal functions called by

tomassempbc, together with hodummybc
horhs,hojac similar to hosrhs, horhsjac, for (37), see also hobc and hobcjac

Besides cont, the functions initeig, hoswibra, hoplot, floqap, floqpsap, floqplot, hotintxs,
and tintplot*d are most likely to be called directly by the user, and hobra and hostanufu are
likely to be adapted by the user. The functions involving TOM, and those with rhs or jac in their
name are basically described in §2. As usual, all functions in Table 5 can be most easily overloaded
by copying them to the given problem directory and modifying them there.

In p=hoswibra(dir,fname,ds,para,varargin), the auxiliary argument aux=varargin{2}
(varargin{1} is the new directory) can for instance have the following fields:
• aux.tl=20: (initial, i.e., might be refined for p.sw.para=3) number of (equally spaced) mesh-

points in t ∈ [0, 1]. For larger scale problems, i.e., with more than 2000 DoF in space, we rec-
ommend to at least initially reduce tl to 10, see, e.g., cGL/cGL2dcmds.m, cGL/cGL3dcmds.m,
rot/rotcmds.m and bru/bru2dcmds.m.
• aux.al, aux.dlam (no preset): these can be used to pass a guess for α and s=dlam from

(13) and thus circumvent hogetnf; useful for quasilinear problems, see footnote 10.
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hoplot(p,wnr,cnr,varargin), where wnr and cnr are the window number and component
number, is the basic plotting routine for periodic orbits, contained in p.hopf.y. The auxiliary
argument aux=varargin can contain a number of fields used to control its behavior. Examples are
(with default values as indicated)
• aux.lay=[2 2]: sets the subplot-layout for the snapshots (in 2D and 3D)
• aux.pind=[]; set the indices, i.e., the times T*p.hopf.t(aux.pind), to be used for plotting; if
pind=[], then the four indices 1, tl/4, tl/2, 3*tl/4 are used.
• aux.xtics=[]; set xtics, similar for ytics and ztics; see also aux.cb. (colorbar on/off)

This provides some flexibility for plotting snapshots of periodic orbits in 2D and 3D. However, most
likely the user will adapt hoplot to the problem; see, e.g., the examples hoplotrot and hoplotbru

in the demo directories rot and bru.

B Some implementation details

We exemplarily comment on how to set up and run (45), i.e.,

∂t

(
u1

u2

)
=

(
∆ + r −ν
ν ∆ + r

)(
u1

u2

)
− (u2

1 + u2
2)

(
c3u1 − µu2

µu1 + c3u2

)
− c5(u2

1 + u2
2)2

(
u1

u2

)
(68)

over 1D, 2D and 3D rectangles with homogeneous Neumann or Dirichlet BC in pde2path. In 1D,
the initialization is (l3-6 of cGL1dcmds.m)

ndim=1; d i r=’hom1d ’ ; p = [ ] ; l x=pi ; nx=30;
par =[−0.05; 1 ; 0 . 1 ; −1; 1 ] ; % r nu mu c3 c5
p=cGLinit (p , lx , nx , par , ndim ) ;

where we use the domain size lx, the number nx of points in the spatial discretization, the base
parameter set par from (46), and the space dimensions ndim as parameters. However, ndim only
plays a role in l5–l14 of the init routine:

f unc t i on p=cGLinit (p , lx , nx , par , ndim )
p=stanparam (p) ; s c r e en l ayout (p) ; % s e t standard parameters and s c r e en l ayout
p . nc . neq=2; p . nc . i lam =1; p . fuha . out fu=@hobra ; % number o f eq , cont−param , output
p . fuha . Gjac=@Gjac ; p . fuha . sG=@sG; p . fuha . sGjac=@sGjac ; p . sw . j a c =1; % rhs and Jac

5 switch ndim % s e t domain and BC depending on ndim
case 1 ; pde=stanpdeo1D ( lx ,2∗ l x /nx ) ; p . vo l=2∗ l x ; p . hopf . x0 i =1;

bc=pde . g r id . neumannBC( ’ 0 ’ ) ; % OOPDE BC syntax
case 2 ; pde=stanpdeo2D ( lx , l x /2 ,2∗ l x /nx ) ; p . vo l=2∗ l x ˆ2 ; p . hopf . x0 i =30;

bc=pde . g r id . d i r i ch l e tBC ( ’ 1 ’ , ’ 0 ’ ) ;
10 case 3 ; pde=stanpdeo3D ( lx , l x /2 , l x /4 ,2∗ l x /nx ) ; p . vo l =0.5∗ l x ˆ3 ; p . hopf . x0 i =200;

bc=pde . g r id . d i r i ch l e tBC ( ’ 1 ’ , ’ 0 ’ ) ;
p . p l o t . ng=20; % s e t t i n g s f o r 3D p l o t s ( somewhat problem dependent )
p . p l o t . l e v c={ ’ b lue ’ , ’ red ’ } ; p . p l o t . l e v =[−0.1 0 . 1 ] ; p . p l o t . alpha =0.5;

end
15 pde . g r id . makeBoundaryMatrix ( bc ) ; p . nc . s f =1e3 ; % OOPDE s e t up o f BC f o r assemb

p . pdeo=pde ; p . sw . sfem=−1; p . np=pde . g r id . nPoints ; p . nu=p . np∗p . nc . neq ;
p . s o l . x i=1/p . nu ; p=set femops (p) ; % set femops c a l l s ooset femops in problem d i r
u=0∗ones (p . np , 1 ) ; v=u ; p . u=[u ; v ; par ] ; % i n i t i a l guess ( here t r i v i a l ) and pars
p . usrlam =[−0.25 −0.2 −0.1 0 0 .5 1 2 3 ] ; % user−v a l s f o r output

20 p . f i l e . smod=10; p . p l o t . cm=hot ; p . p l o t . bpcmp=9; % saving , colormap , and branch−p lo t

In 1D, the choice of x0i (mesh point number for plot of time-series t 7→ u(x(x0i, t)) is somewhat
arbitrary due to the Neumann BC, but in 2D and 3D x(x0i) should not be on the boundary
due to the Dirichlet BC. To set up the BC we use the OOPDE routines pde.grid.neumannBC and
pde.grid.dirichletBC in l7, l9 and l11, respectively, such that the call of pde.grid.makeBoundary
Matrix in l15 can take care of the rest, where the Dirichlet BC are implemented via a stiff spring
approximation; see [Prü16] for details.
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The crucial files to implement (68) and the BC are thus oosetfemops.m, sG.m and sGjac.m,
which read

1 f unc t i on p=ooset femops (p) % in problem−d i r s i n c e h igh ly problem dependent
2 [K,M,˜]=p . pdeo . fem . assema (p . pdeo . gr id , 1 , 1 , 1 ) ; % s t i f f n e s s /mass matrix (1 comp)
3 [Q,G,H,R]=p . pdeo . fem . assemb (p . pdeo . g r id ) ; % matr i ce s f o r BC ( empty f o r Neumann BC)
4 % augment K and M to 2−compos , and add BC matr i ce s to K
5 s f=p . nc . s f ; N=spar s e (p . np , p . np ) ; % s t i f f n e s s f a c to r , and dummy N
6 p . mat .K=[ [K+s f ∗(H’∗H) N ] ; [ N K+s f ∗(H’∗H) ] ] ; p . mat .M=[ [M N ] ; [ N M] ] ;
7 end

1 f unc t i on r=sG(p , u) % compute pde−part o f r e s i d u a l
2 f=noda l f (p , u) ; r=p . mat .K∗u ( 1 : p . nu )−p . mat .M∗ f ;

1 f unc t i on Gu=sGjac (p , u) % compute pde−part o f Jacobian
2 [ f1u , f1v , f2u , f2v ]= njac (p , u) ; n=p . np ;
3 Fu=[ [ spd iags ( f1u , 0 , n , n ) , spd iags ( f1v , 0 , n , n ) ] ;
4 [ spd iags ( f2u , 0 , n , n) , spd iags ( f2v , 0 , n , n) ] ] ;
5 Gu=p . mat .K−p . mat .M∗Fu ;
6 end

In oosetfemops.m we first assemble the one–component Neumann Laplacian stiffness matrix
K and the one–component mass matrix M , and then the one–component BC matrices Q,H, which
implement the boundary conditions previously set in cGLinit.m, l7, 9, 13, respectively. Then in
l7 we put together the true system matrices “by hand”. So far we find this most convenient, but
refer to [Prü16] for more sophisticated ways to set up systems and more complicated BC directly.
Also note that here for the Dirichlet BC in 2D and 3D we use the typical stiff spring approximation
with stiffness factor sf, and the matrix Q and the vectors G,R (again see [Prü16]) are not used.

The function sG.m is completely generic: it uses the system stiffness and mass matrices K and
M , and to compute the nonlinear terms calls nodalf.m, which is also called in hogetnf.m for the
computation of the normal form coefficients, and which reads

1 f unc t i on f=noda l f (p , u ) % the ’ n o n l i n e a r i t y ’ ( i . e . , eve ryth ing except d i f f u s i o n )
2 % f o r cGL , d i r e c t l y de f ined v ia the nodal va lue s o f u1=Re(u) and u2=Im(u)
3 u1=u ( 1 : p . np ) ; u2=u(p . np+1:2∗p . np) ; us=u1.ˆ2+u2 . ˆ 2 ; par=u(p . nu+1:end ) ;
4 r=par (1 ) ; nu=par (2 ) ; mu=par (3 ) ; c3=par (4 ) ; c5=par (5 ) ;
5 f 1=r ∗u1−nu∗u2−us . ∗ ( c3∗u1−mu∗u2 )−c5∗us . ˆ 2 . ∗ u1 ;
6 f 2=r ∗u2+nu∗u1−us . ∗ ( c3∗u2+mu∗u1 )−c5∗us . ˆ 2 . ∗ u2 ;
7 f =[ f 1 ; f 2 ] ;
8 end

After the extraction in l3 of the two components u1 and u2 and of the parameters from the inter-
nal solution vector u, the rhs from (68) is simply typed in. Similarly, njac from sGjac.m, l2, is the
derivative of f , and thus easily typed in as well (see njac.m). All these files, i.e., oosetfemops.m,
sG.m, sGjac.m and the nonlinearity nodalf.m, are completely dimension independent.

After the initialization p=cGLinit(..), in cGL1dcmds we (re)set the output directory, the con-
tinuation step–length, and, most importantly, bifcheck=2, and then simply call cont:

p=s e t f n (p , d i r ) ; p . s o l . ds =0.1 ; p . sw . b i f ch e ck =2; p . nc . ne ig =10; p=cont (p , 2 0 ) ;

This finds a number of (Hopf) bifurcation points from the trivial branch u ≡ 0. Then we call
hoswibra (here for the first HP) and cont again:

1 para =4; ds =0.1 ; p=hoswibra ( ’hom1d ’ , ’ hpt1 ’ , ds , para , ’ 1db1 ’ ) ; % p . sw . verb =2;
2 p . fuha . b l s s=@mbel ; p . nc .mbw=2; % p . hopf . i l s s =1; % s e t to 0 i f no i l upack
3 p=cont (p , 1 0 ) ;

Uncommenting p.sw.verb=2 (verbosity switch) in l1 gives more output, and p.hopf.ilss=1 in l2
turns on the ilupack preconditioned iterative solver in mbel, see Remark 2.3.
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Except for an exemplarily call of hoswibra with para=3, the remainder of the script file
cGL1dcmds.m consists of plotting and stability check commands, and we refer to the script for
comments. The 2D and 3D scripts cGL2dcmds.m and cGL3dcmds.m follow the same rules (with
calls of floqap at the end of cGL3dcmds.m), and similarly do the scripts for the other demos. The
main (implementational) difference of the rot demo to the others is that in rot we do not use
OOPDE, such that the BC are set via gnbc.m, the system matrices are set directly via setfemops.m

in a more convenient way, and there is no oosetfemops.m. As already said, each demo directory
(except pollution) contains some auxiliary functions or scripts, for instance:
• cGL/auxcmds.m with examples of switching to a different parameter and of switching to

natural parametrization for temporal mesh–refinement, and cGL/plotana.m used for plotting
the analytical comparisons in Figs. 3 and 4;
• rot/auxcmds.m which contains commands to create a movie of the rotating patterns;
• bru/auxcmds.m which gives examples of how adaptive spatial mesh refinement can be used,

cf. Remark 4.2.
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