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Abstract

We describe the algorithms used in the Matlab continuation and bifurcation package pde2path
for Hopf bifurcation and continuation of branches of periodic orbits in systems of PDEs in 1, 2,
and 3 spatial dimensions, including the computation of Floquet multipliers. We first test the
methods on three reaction diffusion examples, namely a complex Ginzburg–Landau equation as
a toy problem, a reaction diffusion system on a disk with rotational waves including stable spirals
bifurcating out of the trivial solution, and a Brusselator system with interaction of Turing and
Turing–Hopf bifurcations. Then we consider a system from distributed optimal control, which is
ill-posed as an initial value problem and thus needs a particularly stable method for computing
Floquet multipliers, for which we use a periodic Schur decomposition. The implementation de-
tails how to use pde2path on these problems are given in an accompanying tutorial, which also
includes a number of further examples and algorithms, for instance on Hopf bifurcation with
symmetries, on Hopf point continuation, and on branch switching from periodic orbits (periodic
orbit pitchfork and period doubling bifurcations).
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1 Introduction

The package pde2path [UWR14, DRUW14, Uec18b] has originally been developed as a continua-
tion/bifurcation package for stationary problems of the form

G(u, λ) := −∇ · (c⊗∇u) + au− b⊗∇u− f = 0. (1)

Here u = u(x) ∈ RN , x ∈ Ω with Ω ⊂ Rd some bounded domain, d = 1, 2, 3, λ ∈ Rp is a parameter
(vector), and the diffusion, advection and linear tensors c, b, a, and the nonlinearity f , can depend
on x, u,∇u, and parameters.1 The boundary conditions (BC) are of “generalized Neumann” form

n · (c⊗∇u) + qu = g, (2)

where n is the outer normal and again q ∈ RN×N and g ∈ RN may depend on x, u, ∇u and
parameters. These BC include zero flux BC, and a “stiff spring” approximation of Dirichlet BC via
large prefactors in q and g, and periodic BC are also supported over suitable domains. Moreover,
there are interfaces to couple (1) with additional equations, such as mass conservation, or phase
conditions for considering co-moving frames, and to set up extended systems, for instance for fold
point and branch point localization and continuation.

pde2path has been applied to various research problems, e.g., patterns in 2D reaction diffusion
systems [UW14, Küh15b, Küh15a, SDE+15, Wet16, ZUFM17], some problems in fluid dynamics
and nonlinear optics [ZHKR15, DU16, EWGT17] and in optimal control [Uec16, GU17]. Here
we report on features and algorithms in pde2path to treat Hopf (or Poincaré–Andronov–Hopf)
bifurcations and the continuation of time–periodic orbits for systems of the form

∂tu = −G(u, λ), u = u(x, t), x ∈ Ω ⊂ Rd, d = 1, 2, 3, t ∈ R (d+ 1 dimensional problem), (3)

with G from (1) and BC from (2). Adding the time dimension makes computations more expensive,
such that here we focus on 1D and 2D, and only give one 3D example to illustrate that all user
interfaces are essentially dimension independent.

For general introductions to and reviews of (numerical) continuation and bifurcation we recom-
mend [Gov00, Kuz04, Doe07, Sey10], and [Mei00], which has a focus on reaction–diffusion systems.
The treatment of large scale problems, typically from the spatial discretization of PDEs, including
the continuation of time periodic orbits, has for instance been discussed in [LRSC98, TB00, LR00,
SNGAS04, SN10], and has recently been reviewed in [DWC+14, NS15, SN16]. There, the focus
has been on matrix–free methods where the periodic orbits are computed by a shooting method,
which can conveniently be implemented if a time–stepper for the given problem is available. In
many cases, shooting methods can also be used to investigate the bifurcations from periodic orbits,
and to trace bifurcation curves in parameter space, by computing the Floquet multipliers of the
periodic orbits. In this direction, see in particular [SGN13, WIJ13, NS15, LRTT16] for impressive
results in fluid problems.

Here we proceed by a collocation (in time) method for the continuation of periodic orbits. With
respect to computation time and in particular memory requirements such methods are often more
demanding than (matrix free) shooting methods. However, one reason for the efficiency of shooting

1Originally, pde2path was based on the Matlab pdetoolbox, with d = 2. Then, as also detailed in the pdetoolbox

documentation, c ∈ RN×N×2×2, [∇ · (c ⊗ ∇u)]i :=
∑N
j=1[∂xcij11∂x + ∂xcij12∂y + ∂ycij21∂x + ∂ycij22∂y]uj (ith com-

ponent), and similarly b ∈ RN×N×2, a ∈ RN×N with [b ⊗∇u]i :=
∑N
j=1[bij1∂x + bij2∂y]uj , [au]i =

∑N
j=1 aijuj , and

f = (f1, . . . , fN ) as a column vector. For d = 1 these formulas simplify drastically, while for d = 3 we refer to the
OOPDE documentation. For a given PDE, there is some freedom how to distribute terms to a, b and f ; we typically
set a = 0 in the genuine PDE implementation, and only use a 6= 0 for assembling linearizations. Altogether we
recommend the tutorials and various demo directories included with pde2path [Uec18b] for hints how to implement
a PDE of the form (1) (or (3)) in pde2path.
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methods in the works cited above is that the problems considered there are strongly dissipative,
with only few eigenvalues of the linearized evolution near the imaginary axis. We also treat such
problems, and show that up to moderately large scale they can efficiently be treated by collocation
methods as well. However, another class of problems we deal with are canonical systems obtained
from distributed optimal control with infinite time horizon. Such problems are ill-posed as initial
value problems, which seems quite problematic for genuine shooting methods.

We also compute the Floquet multipliers for periodic orbits. For this, a direct approach is to
explicitly construct the monodromy matrix from the Jacobian used in the collocation solver for the
periodic orbit. We find that this works well for dissipative problems, but completely fails for the
ill–posed optimal control problems, and thus we also provide a method based on a periodic Schur
decomposition, which can handle this situation.

To illustrate the performance of our hopf library we consider four example problems, with
the Matlab files included as demo directories in the package download at [Uec18b], where also
the pde2path user-guide [dWDR+18] with installation instruction, the tutorial [Uec18a] on Hopf
bifurcations, and various other tutorials on how to run pde2path are available. The first example
is a cubic–quintic complex Ginzburg–Landau (cGL) equation, which we consider over 1D, 2D, and
3D cuboids with homogeneous Neumann and Dirichlet BC, such that we can explicitly calculate
all Hopf bifurcation points (HBP) from the trivial branch. For periodic BC we also have the Hopf
branches explicitly, which altogether makes the cGL equation a nice toy problem to validate and
benchmark our routines. Next we consider a reaction diffusion system from [GKS00] on a circular
domain with Robin BC, which lead to the bifurcation of (standing and) rotating waves, and in
particular of spiral waves, from the trivial solution branch. Our third example is a Brusselator
system from [YDZE02], which shows interesting interactions between Turing branches and Turing–
Hopf branches. As a non–dissipative example we treat the canonical system for a simple control
problem of “optimal pollution”. This is still of the form (3), but is ill–posed as an initial value
problem, since it includes “backward diffusion”. Nevertheless, we continue steady states, and obtain
Hopf bifurcations and branches of periodic orbits.

Highly developed software packages for numerical continuation and bifurcation include AUTO

[DCF+97], CONTENT [KLS96], and MATCONT [DGK03]. These mainly focus on algebraic equations
and ordinary differential equations, but can also be used for PDEs, especially in 1D. See also
CL MATCONT [DGK+08], which has a focus on invariant subspace continuation that makes it suit-
able for larger scale computations [BFG+14], or coco [DS13] which is a general toolbox, which
for instance has been coupled with Comsol for a PDE problem in [FALD12], and LOCA [Sal16]
or oomphlib [HH17] for continuation and bifurcation tools (libraries) aimed at PDEs. On the
other hand, many of the numerical results on periodic orbits in PDEs in the literature, again see
[DWC+14, NS15] for reviews, are based on custom made codes, which sometimes do not seem
easy to access and modify for non–expert users. Although in some of our research applications we
consider problems with on the order of 105 unknowns in space (and the largest Hopf demo here
has 120000 total unknowns), pde2path is not primarily intended for very large scale problems.
The goal of pde2path is to provide a general and easy to use (and modify and extend) toolbox to
investigate bifurcations in PDEs of the (rather large) class given by (3). With the hopf library
we provide some basic functionality for Hopf bifurcations and continuation of periodic orbits for
such PDEs over 1D, 2D, and 3D domains, where at least the 1D cases and simple 2D cases are
sufficiently fast to use pde2path as a quick (i.e., interactive) tool for studying interesting problems.
The algorithms used for the Hopf problems, except maybe for the (heuristic) Hopf point detection
in §2.1, are essentially taken from the literature, and our objective has been their user friendly
implementation and seamless link with the pde2path structure. The user interfaces reuse the stan-
dard pde2path setup, and no new user functions are necessary. The results given here are for the
same meshes as in the tutorial [Uec18a], which gives implementation details for these and some
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more demos. Due to higher computational costs in 2+1D, in 3D, or even 3+1D, compared to the
2D case from [UWR14], in these demos we work with rather coarse meshes to quickly get familiar
with the software. We checked for all examples that (spatially and temporally) finer meshes give
consistent (i.e., qualitatively the same, and also quantitatively close) results, and in [Uec18a] give
a number of comments on how to adaptively generate and work with finer meshes, but we refrain
from a genuine convergence analysis.

In §2 we review some basics of the Hopf bifurcation, of periodic orbit continuation and multiplier
computations, and explain their numerical treatment in pde2path. In §3 we present the demos,
and §4 contains a brief summary and outlook. For comments, questions, and bugs, please mail to
hannes.uecker@uni-oldenburg.de.

Acknowledgment. Many thanks to Francesca Mazzia for providing TOM [MT04], which was
essential help for setting up the hopf library; to Uwe Prüfert for providing OOPDE; to Tomas Dohnal,
Jens Rademacher and Daniel Wetzel for some testing of the Hopf examples; to Daniel Kressner
for pqzschur; to Arnd Scheel for helpful comments on the system in §3.2; and to Dieter Grass for
the cooperation on distributed optimal control problems, which was an important motivation to
implement the hopf library. Additionally I want to thank three anonymous reviewers for invaluable
comments on an earlier version of this paper.

2 Hopf bifurcation and periodic orbit continuation in pde2path

Our description of the algorithms is based on the spatial FEM discretization of (3), which, with a
slight abuse of notation, we write as

Mu̇(t) = −G(u(t), λ), (4)

where M ∈ Rnu×nu is the mass matrix, nu = Nnp is the number of unknowns (degrees of freedom
DoF) with np is the number of mesh-points, and, for each t,

u(t) = (u1,1, . . . , u1,np , u2,1, . . . , uN,1, . . . , uN,np)(t) ∈ Rnu ,

and similarly G : Rnu × Rp → Rnu . We use the generic name λ for the parameter vector, and the
active continuation parameter, again see [DRUW14] for details. Given a stationary solution u of
(4), when in the following we discuss eigenvalues µ and eigenvectors φ of the linearization

Mv̇ = −∂uG(u, λ)v (5)

of (4) around u, or simply eigenvalues of ∂uG = ∂uG(u, λ), we always mean the eigenvalue problem

µMφ = ∂uGφ. (6)

Thus eigenvalues of ∂uG with negative real parts give dynamical instability of u.

Remark 2.1. For, e.g., the continuation of traveling waves in translationally invariant problems,
the PDE (3) is typically transformed to a moving frame ξ = x − γ(t), with BC that respect the
translational invariance, and where γ̇ is an unknown wave speed, which yields an additional term
γ̇∂xu on the rhs of (3). The reliable continuation of traveling waves then also requires a phase

condition, i.e., an additional equation, for instance of the form q(u) = 〈∂xũ, u〉
!

= 0, where ũ is a
reference wave (e.g. ũ = uold, where uold is from a previous continuation step), and 〈u, v〉 =

∫
Ω uv dx.

Together we obtain a differential–algebraic system instead of (4), and similarly for other constraints
such as mass conservation, see [DRUW14, §2.4,§2.5] for examples, and for instance [BT07, RU17]
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for equations with continuous symmetries and the associated “freezing method”. Hopf bifurcations
can occur in such systems, see e.g. the Hopf bifurcations from traveling (γ̇ 6= 0) or standing (γ̇ = 0)
fronts and pulses in [HM94, GAP06, BT07, GF13], but are somewhat more elaborate to treat
numerically than the case without constraints. Thus, here we restrict to problems of the form (3)
without constraints, and hence to (4) on the spatially discretized level, and refer to [RU17, Uec18a]
for examples of Hopf bifurcations with constraints in pde2path. For instance, in [RU17, §4] we
consider Hopf bifurcations to modulated traveling waves in a model for autocatalysis, and the Hopf
bifurcation of standing breathers in a FitzHugh–Nagumo system, and in [Uec18a, §5] the Hopf
bifurcation of modulated standing and traveling waves in the Kuramoto-Sivashinky equation with
periodic boundary conditions. c

2.1 Branch and Hopf point detection and localization

Hopf bifurcation means the bifurcation of a branch of time periodic orbits from a branch λ 7→ u(·, λ)
of stationary solutions of (3), or numerically (4). This generically occurs if at some λ = λH a pair
of simple complex conjugate eigenvalues µj(λ) = µj+1(λ) of Gu = ∂uG(u, λ) crosses the imaginary
axis with nonzero imaginary part and nonzero speed, i.e.,

µj(λH) = µj(λH) = iω 6= 0, and Reµ′j(λH) 6= 0. (7)

Thus, the first issue is to define a suitable function ψH to numerically detect (7). Additionally, we
also want to detect real eigenvalues crossing the imaginary axis, i.e.,

µj(λBP) = 0, and Reµ′j(λBP) 6= 0. (8)

A fast and simple method for (8) is to monitor sign changes of the product

ψ(λ) =
∏

i=1,...,nu

µi(λ) = det(Gu) (9)

of all eigenvalues, which even for large nu can be done quickly via the LU factorization of Gu,
respectively the extended matrix in arclength continuation, see [UWR14, §2.1]. This so far has
been the standard setting in pde2path, but the drawback of (9) is that the sign of ψ only changes
if an odd number of real eigenvalues crosses 0.

Unfortunately, there is no general method for (7) which can be used for large nu. For small
systems, one option would be

ψH(λ) =
∏
i

(µi(λ) + µi+1(λ)), (10)

where we assume the eigenvalues to be sorted by their real parts. However, this, unlike (9) requires
the actual computation of all eigenvalues, which is not feasible for large nu. Another option are
dyadic products, [Kuz04, Chapter 10], which again is not feasible for large nu.

If, on the other hand, (3) is a dissipative problem, then we may try to just compute neig

eigenvalues of Gu of smallest modulus, which, for moderate neig can be done efficiently, and to
count the number of these eigenvalues which are in the left complex half plane, and from this
detect both (7) and (8).2 The main issue then is to choose neig, which unfortunately is highly
problem dependent, and for a given problem may need to be chosen large again.

Here we use the idea of computing only a few eigenvalues near suitable spectral shifts iω1,2,....
To estimate the shifts, we use ideas from [GS96] and consider the function g(z) = cT (Gu−zM)−1b,

2To distinuish steady bifurcation points from fold points, we then additionally need to check that Gλ 6∈ R(Gλ).
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which is the Schur complement of the bordered extension

(
Gu − zM b

cT 0

)
with (some choices of)

b, c ∈ Rnu . By Cramer’s rule we have

g(z) =
N(z)

det(Gu − zM)
, (11)

where N is a polynomial in z which depends on b, c. Thus, a geometrically simple eigenvalue µ of
Gu (in the sense (6)) is a pole of g, if b is not in the range of Gu − µM and if c is not orthogonal
to the null space of Gu − µM . Expanding this idea, it is shown in [GS96] that if no pole or zero of
g has real part zero, then

W (g(iω), 0,∞) =
π

2
(Zl − Zr + Pr − Pl), (12)

where W (g(iω), 0,∞) is the winding number of g, and Zl,r, Pl,r are the zeros and poles of g(z) in
the left and right complex half planes, respectively.

Here we only use the idea that for generic choices of b, and c = b, g(iω) is large if iω is close
to an eigenvalue µ. The algorithm can be made more robust by choosing multiple b and using the
max of g(iω) over these b, but in practice just using

b = (1, 1, . . . , 1)/
√
nu (13)

works well. Thus, given a current solution (u, λ) we choose some ωmax (either user defined, or
ωmax = ‖Gu‖1) and compute the function

[0, ωmax] 3 ω 7→ g(u, λ, iω; b) := bT (Gu − iω)−1b, (14)

with b from (13), and take (one or several) maxima of this function as shifts ωj during the next
continuation steps.3 I.e., after each continuation step we compute a few eigenvalues near 0, iω1, . . .
and check their real parts. We can reset the shifts ωi after a number of continuation steps by
evaluating (14) again, and instead of using (14) the user can also set the ωi by hand.4

Of course, the idea is mainly heuristic, and in this simple form may miss some bifurcation
points (BPs, in the sense of (8)) and Hopf bifurcation points (HBPs, in the sense of (7)), and can
and typically will detect false BPs and HBPs, see Fig. 1, which illustrates two ways in which the
algorithm can fail.5 However, some of these failures can be detected and/or corrected, see Remark
2.2, and in practice we found the algorithm to work remarkably well in our examples, with a rather
small numbers of eigenvalues computed near 0 and iω1, and in general to be more robust than
the theoretically more sound usage of (12).6 For convenience, in the following we refer to these
algorithms as

3To accurately compute g from (14) we use ideas from [GS96] to refine the ω discretization (and actually compute
the winding number). The pde2path function initeig computes and plots |g| (see Fig. 9(c) for an example), and
this plot should be inspected for assurance that ωmax has been chosen large enough.

4In principle, instead of using (14) we could also compute the guesses ωi by computing eigenvalues of Gu(u, λ) at
a given (u, λ); however, this may itself either require a priori information on the pertinent ωi (for shifting), or we may
again need to compute a large number of eigenvalues of Gu. Thus we find (14) more simple, efficient and elegant.

5A third typical kind of failure is that during a continuation step a number m of eigenvalues crosses the imaginary
axis close to iω1, and simultaneously m already unstable eigenvalues leave the pertinent circle to the left due to a
decreasing real part. The only remedy for this is to decrease the step–length ds. Clearly, a too large ds can miss
bifurcations even if we could compute all eigenvalues, for instance if along the true branch eigenvalues cross back and
forth.

6However, if additionally to bifurcations one is interested in the stability of (stationary) solutions, then the numbers
of eigenvalues should not be chosen too small; otherwise the situation in Fig. 1(c,d) may easily occur, i.e., undetected
eigenvalues with negative real parts.
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HD1 (Hopf Detection 1) compute the neig smallest eigenvalues of ∂uG and count those with neg-
ative real parts;

HD2 (Hopf Detection 2) initially compute a number of guesses ωj , j = 1, . . . , g for spectral shifts,
then compute the neig,j eigenvalues of ∂uG closest to iωj , and count how many have negative
real parts to detect crossings of eigenvalues near iωj . Update the shifts when appropriate.

(a) n = 0, nd = 0 (b) n = 1, nd = 1 (c) n = 1, nd = 0 (d) n = 2, nd = 0.

Figure 1: Sketch of the idea, and typical failures, of detecting Hopf points by counting eigenvalues with

negative real parts near some shift iω1, marked by �, which can be somewhere between 0 and ωmax/2, say,

with ωmax suitably chosen, see footnote 3. Here, for illustration we use neig=2, i.e., use the 2 eigenvalues

closest to iω1 for bifurcation detection, and show 4 eigenvalues near iω1, stable ones with ∗ and unstable ones

with ×. n is the total number of negative eigenvalues, and nd the number of detected ones. From (a) to (d)

we assume that some parameter λ varies, and the shown eigenvalues depend continuously on λ; for better

illustration we assume that the eigenvalue circled in (a) stays fixed. The dashed circle has radius |µ(λ)− iω1|
with µ the second closest eigenvalue to iω1. From (a) to (b) we correctly detect a HBP. From (b) to (c) we

incorrectly find a HBP, as the only unstable eigenvalue wanders out of the pertinent circle. From (c) to (d)

we miss a HBP, as the guess iω1 is too far off. The failure (b) to (c) can be detected in the localization by

requiring that at the end the real part of the eigenvalue closest to the imaginary axis is sufficiently small.

The failure from (c) to (d) can be resolved by either (i) computing more eigenvalues close to iω1, or (ii) by

updating iω1 using (14).

After detection of a (possible) BP or a (possible) HBP, or of several of these along a branch
between s0 and s0 + ds, it remains to locate the BP or HBP. Again, there are various methods to
do this, using, e.g., suitably extended systems [Gov00]. However, so far we typically use a simple
bisection, which works well and sufficiently fast in our examples.7

Remark 2.2. To avoid unnecessary bisections and false BPs and HBPs we proceed as follows.
After detection of a BP or HBP candidate with shift iωj , we check if the eigenvalue µ closest to
iωj has |Reµ| ≤ µ1, with default µ1 = 0.01. If not, then we assume that this was a false alarm.
Similarly, after completing a bisection we check if the eigenvalue µ then closest to iωj has |Reµ| < µ2,
with default µ2 = 0.0001, and only then accept the computed point as a BP (if ωj = 0) or HBP (if
ωj > 0). In our examples, about 50% of the candidates enter the bisection, and of these about 10%
are rejected afterwards, and no false BPs or HBPs are saved to disk. This seems to be a reasonable
compromise between speed and not missing BPs and HBPs and avoiding false ones. However, the
values of µ1, µ2 are of course highly problem dependent. For instance, if the problem is strongly
dissipative with a rather large spacing of the real parts of the eigenvalues, then it may be needed
and efficient to increase µ1, and possibly µ2. c

7The only extended systems we deal with in pde2path so far are those for localization and continuation of stationary
branch points, and of fold points, see [DRUW14, §2.1.4] or [UW17].
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2.2 Branch switching

Branch switching at a (simple, see Remark 2.3 below) BP works as usual by computing an initial
guess from the normal form of the stationary bifurcation, see [UWR14, §2.1]. Similarly, to switch
to a Hopf branch of time periodic solutions we compute an initial guess from an approximation of
the normal form

ẇ = µ(λ)w + c1(λ)|w|2w, (15)

of the bifurcation equation on the center manifold associated to (λ, µ) = (λH , iωH). Thus we use

µ(λ) = µr(λ) + iµi(λ) = µ′r(λH)(λ− λH) + i(ωH +O(λ− λH)) +O((λ− λH)2), (16)

and with w = reiωH t replace (15) by

0 = r

[
µ′r(λH)(λ− λH) + c1(λH)|r|2

]
. (17)

Following [Kuz04], c1 = c1(λH) ∈ R is related to the first Lyapunov coefficient l1 by c1(λH) = ωH l1,
and we use the formulas from [Kuz04, p531-536] for the numerical computation of l1. Setting
λ = sε2 with s = ±1 we then have a nontrivial solution

r = εα, α =
√
−sµ′(λH)/c1(λH) (18)

of (17) for s = −sign(µ′(λH)/c1), and thus take

λ = λH + sε2, u(t) = u0 + 2εαRe(e−iωH tΨ), (19)

as an initial guess for a periodic solution of (4) with period near 2π/ω. The approximation (19)
of the bifurcating solution in the center eigenspace, also called linear predictor, is usually accurate
enough, and is the standard setting in the pde2path function hoswibra, see [Uec18a]. The coeffi-
cients s = ±1 and α in (19) are computed, and ε is then chosen in such a way that the initial step
length is ds in the norm (23) below.

Remark 2.3. Although multiple branch points, which naturally occur if the system has some
symmetries, are not yet officially supported in pde2path, we have some preliminary routines for
multiple steady bifurcations which we hope to include in the next version of pde2path. Similarly,
(19) is only for simple Hopf points. This holds for all examples considered below, except for the
patterns on a disk in §3.2, where we give further remarks on a double Hopf case. c

2.3 The continuation of branches of periodic orbits

2.3.1 General setting

The continuation of the Hopf branch is, as usual, a predictor–corrector method, and for the corrector
we offer, essentially, two different methods, namely natural and arclength continuation. For both,
we reuse the standard pde2path settings for assembling G in (3) and Jacobians, such that the user
does not have to provide new functions. In any case, first we rescale t = Tt in (4) to obtain

Mu̇ = −TG(u, λ), u(·, 0) = u(·, 1), (20)

with unknown period T , but with initial guess T = 2π/ω at bifurcation.
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2.3.2 Arclength parametrization

We start with the arclength setting, which is more general and more robust, although the continua-
tion in natural parametrization in pde2path has other advantages such as error control and adaptive
mesh refinement for the time discretization, built into TOM, which we have not yet implemented
in the arclength setting. We use the phase condition

φ :=

∫ 1

0
〈u(t), u̇0(t)〉 dt

!
= 0, (21)

where 〈·, ·〉 is the scalar product in Rnu and u̇0(t) is from the previous continuation step, and we
use the step length condition

ψ := ξH

m∑
j=1

〈
u(tj)−u0(tj), u

′
0(tj)

〉
+ (1−ξH)

[
wT (T−T0)T ′0 + (1−wT )(λ−λ0)λ′0

]
−ds

!
= 0, (22)

where again T0, λ0 are from the previous step, ds is the step–length, ′ = d
ds denotes differentiation

with respect to arclength, ξH and wT denote weights for the u and T components of the unknown
solution, and t0 = 0 < t1 < . . . < tm = 1 is the temporal discretization. Thus, the step length is ds
in the weighted norm

‖(u, T, λ)‖ξ =

√√√√√ξH

 m∑
j=1

‖u(tj)‖22

+ (1− ξH)
[
wTT 2 + (1− wT )λ2

]
. (23)

Even if ξH is similar to the (average) mesh–width in t, then the term ξH
∑

j ‖u(tj)‖22 is only

a crude approximation of the “natural length”
∫ 1

0 ‖u(t)‖22 dt. However, the choice of the norm
is somewhat arbitrary, and we found (23) most convenient. Typically we choose wT = 1/2 such
that T and λ have the same weight in the arclength. A possible choice for ξH to weight the mnu
components of u is ξH = 1

mnu
. However, in practice we choose

ξH =
10

mnu
, (24)

since at the Hopf bifurcation the branches are “vertical” (‖u− u0‖ = O(
√
|λ− λ0|), cf. (19)), and

ξH tunes the search direction in the extended Newton loop between “horizontal” (large ξH) and
“vertical” (small ξH). This could also be fine tuned by using α from (18), i.e., increase ξH further
for large α, but (24) seems quite robust. See also [UWR14, §2.1] for the analogous role of ξ for
stationary problems.

The integral in (21) is discretized as a simple Riemann sum, such that the derivative of φ with
respect to u is, with ũ0(t) = u̇0(t),

∂uφ = (h1ũ(t1)1, . . . , h1ũ(t1)nu , h2ũ(t2)1, . . . , h2ũ(t2)nu , . . . , hl−1ũ(tm−1)nu , 0, . . . , 0), (25)

nu zeros at the end, where hl = tl+1−tl is the mesh–size in the time discretization. Similarly,
denoting the tangent along the branch as

τ = (τu, τT , τλ), τu ∈ R1×mnu (row vector as in (25)), τT , τλ ∈ R, (26)

we can rewrite ψ in (22) as

ψ = ξHτu(u− u0) + (1− ξH)(wT τT (T − T0) + (1− wT )τλ(λ− λ0))− ds. (27)

9



Setting U = (u, T, λ), and writing (20) as G(u, T, λ) = 0, in each continuation step we thus need
to solve

H(U) :=

G(U)
φ(u)
ψ(U)

 !
=

0
0
0

 ∈ Rmnu+2, (28)

for which we use Newton’s method, i.e.,

U j+1=U j−A(U j)−1H(U j), A=

∂uG ∂TG ∂λG
∂uφ 0 0
ξHτu (1−ξH)wT τT (1−ξH)(1−wT )τλ

 . (29)

After convergence of U j to U , i.e., ‖H(U)‖ ≤”tolerance” in some suitable norm, the next tangent
τ1 with preserved orientation 〈τ0, τ1〉 > 0 can be calculated as usual from

A(U)τ1 = (0, 0, 1)T . (30)

It remains to discretize in time and assemble G in (28) and the Jacobian ∂uG. For this we use
(modifications of) routines from TOM [MT04], which assumes the unknowns in the form

u = (u1, . . . , um) = (u(t1), u(t2), . . . , u(tm)), (m time slices), (31)

Then, using the first order finite differences TOM setting we have, for j = 1, . . . ,m−1, the implicit
backwards in time finite differences

(G(u))j = −h−1
j−1M(uj − uj−1)− 1

2
T (G(uj) +G(uj−1)), (32)

where u0 := um−1, and additionally the periodicity condition

Gm(u) = um − u1. (33)

The Jacobian is ∂uG = A1, where we set, as it reappears below for the Floquet multipliers,

Aγ =



M1 0 0 0 . . . −H1 0

−H2 M2 0 0 . . . 0 0

0 −H3 M3 0 . . . 0 0
... . . .

. . .
. . .

. . .
...

...

0 . . . . . .
. . .

. . . 0 0

0 . . . . . . 0 −Hm−1 Mm−1 0

−γ I 0 . . . . . . . . . 0 I


, (34)

where Mj = −h−1
j−1M −

1

2
TGu(uj), Hj = −h−1

j−1M +
1

2
TGu(uj−1), and I is the nu × nu identity

matrix. The derivatives ∂TG, ∂λG in (29) are cheap from numerical differentiation.

Remark 2.4. An alternative to the finite differences (32) is orthogonal collocation with piecewise
polynomials, for instance used in AUTO, where also the order can be chosen. The use of TOM was
initially motivated by connecting orbit problems from optimal control, see [Uec16, GU17, Uec17],
where TOMs automatic mesh–refinement in t can deal very efficiently with sharp initial transitions.
Moreover, TOM has been easy to adapt to the mass matrix M on the left hand side of (20). It was
thus natural to also use TOM for time periodic orbits. TOM also provides options to use higher
order finite differences, but so far we only use (32). c
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Remark 2.5. A ∈ R(mnu+2)×(mnu+2) in (29), (30) consists of A = A1 = Gu ∈ Rmnu×mnu , which is
large but sparse, and borders of widths 2, i.e., symbolically,

A =

(
A B
C D

)
, with large and sparse A, with CT , B ∈ Rmnu×2, and D ∈ R2×2.

There are various methods to solve bordered systems of the form

Ax = b, b =

(
f
g

)
, (35)

see, e.g., [Gov00]. Here we use the very simple scheme

V = A−1B, x1 = A−1f, D̃ = D − CV, y1 = g − Cx1, y2 = D̃−1y1, x2 = x1 − V y2, x =

(
x2

y2

)
. (36)

The big advantage of such bordered schemes is that solving systems such as Ax1 = f (where we
either pre-factor A for repeated solves, or use a preconditioned iterative method) is usually much
cheaper due to the structure of A than solving Ax = b (either by factoring A, or by an iterative
method with some preconditioning of A).8

The scheme (36) may suffer from some instabilities, but often these can be corrected by a
simple iteration: If ‖r‖ with r = Ax − b is too large, then we solve Ax̂ = r (again by (36), which
is cheap) and update x = x− x̂, until ‖r‖ ≤ “tolerance”. We in particular sometimes obtain poor
solutions of (35) for b = (0, 0, 1)T from (30), but they typically can be improved by a few iterations.
Altogether we found the scheme (36) to work well in our problems, with a typical speedup of up
to 50 compared to the direct solution of Ax = b. Again, see [Gov00] for alternative schemes and
detailed discussion.

For the solutions of AV = B and Ax1 = f in (36) we give the option to use a preconditioned
iterative solver from ilupack [Bol11], see also [UW17].9 The number of continuation steps before
a new preconditioner is needed can be quite large, and often the iterative solvers give a significant
speedup. c

2.3.3 Natural parametrization

By keeping λ fixed during correction we cannot pass around folds, but on the other hand can
take direct advantage of further important features of TOM. TOM requires separated boundary
conditions, and thus we use a standard trick and introduce, in the notation (31), auxiliary variables
ũ = (ũ1, ũ2, . . . , ũm) and additional (dummy) ODEs ˙̃u = 0. Then setting the boundary conditions

u1 − ũ1 = 0, um − ũm = 0 (37)

corresponds via um = ũm = ũ1 = u1 to periodic boundary conditions for u. Moreover, we add the
auxiliary equation Ṫ = 0, and set up the phase condition

φ = 〈u(0), u̇0(0)〉 !
= 0 (38)

8The special structure of A from (34) can also be exploited to solve Ax = f in such a way that subsequently the
Floquet multipliers can easily be computed, see §2.4, and [Lus01] for comments on the related algorithms used in
AUTO.

9When using iterative solvers it is often advantageous to directly use them for the full system (35), since the
preconditioners and iterative solvers seem rather indifferent to the borders.
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as an additional boundary condition. Thus, the complete system to be solved isMu̇
˙̃u

Ṫ

 =

−TG(u)
0
0

 , (39)

together with (37) and (38). We may then pass an initial guess (from a predictor) at a new λ to
TOM, and let TOM solve for (u, ũ) and T . The main advantage is that for this we can directly use
the error control and adaptive mesh refinement for the temporal discretization built into TOM.10

2.4 Floquet multipliers

The (in)stability of – and possible bifurcations from – a periodic orbit uH are analyzed via the
Floquet multipliers γ. These are obtained from finding nontrivial solutions (v, γ) of the variational
boundary value problem

Mv̇(t) = −T∂uG(u(t))v(t), (40)

v(1) = γv(0). (41)

By translational invariance of (20), there always is the trivial multiplier γ1 = 1. Equivalently, the
multipliers γ are the eigenvalues of the monodromy matrix M(u0) = ∂uΦ(u0, T ), where Φ(u0, t) is
the solution of the initial value problem (4) with u(0) = u0 from uH . Thus, M(u0) depends on
u0, but the multipliers γ do not. M(u0) has the eigenvalues 1, γ2, . . . , γnu , where γ2, . . . , γnu are
the multipliers of the Poincaré map Π(·;u0), which maps a point ũ0 in a hyperplane Σ through
u0 and transversal to uH to its first return to Σ, see, e.g., [Kuz04, Theorem 1.6]. Therefore, a
necessary condition for the bifurcation from a branch λ 7→ uH(·, λ) of periodic orbits is that at
some (uH(·, λ0), λ0), additional to the trivial multiplier γ1 = 1 there is a second multiplier γ2 (or
a complex conjugate pair γ2,3) with |γ2| = 1, which generically leads to the following bifurcations
(see, e.g., [Sey10, Chapter 7] or [Kuz04] for more details):

(i) γ2 = 1, yields a fold of the periodic orbit, or a transcritical or pitchfork bifurcation of periodic
orbits.

(ii) γ2 = −1, yields a period–doubling bifurcation, i.e., the bifurcation of periodic orbits ũ(·;λ)
with approximately double the period, ũ(T̃ ;λ) = ũ(0;λ), T̃ (λ) ≈ 2T (λ) for λ near λ0.

(iii) γ2,3 = e±iϑ , ϑ 6= 0, π, yields a torus (or Naimark–Sacker) bifurcation, i.e., the bifurcation of
periodic orbits ũ(·, λ) with two “periods” T (λ) and T̃ (λ); if T (λ)/T̃ (λ) 6∈ Q, then R 3 t 7→ ũ(t)
is dense in certain tori.

Here we are first of all interested in the computation of the multipliers. Using the same dis-
cretization for v as for u, it follows that γ and v = (v1, . . . , vm) have to satisfy the matrix eigenvalue
problem

Aγv = 0, (42)

for some γ ∈ C. From this special structure it follows that M(uj0) can be obtained from certain
products involving the Mj and the Hj , for instance

M(um−1) = M−1
m−1Hm−1 · · ·M−1

1 H1. (43)

Thus, a simple way to compute the γj is to compute the product (43) and subsequently (a number
of) the eigenvalues of M(um−1). We call this FA1 (Floquet Algorithm 1), and using

errγ1 := |γ1 − 1| (44)

10For the arclength setting we do not yet provide adaptive mesh-refinement in t based on error estimates, but only
provide some ad-hoc local in t mesh-refinement, see [Uec18a].
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as a measure of accuracy we find that this works fast and accurately for our dissipative examples.
Typically errγ1 < 10−10, although at larger amplitudes of uH , and if there are large multipliers, this
may go up to errγ1 ∼ 10−8, which is the (default) tolerance we require for the computation of uH
itself. Thus, in the software we give a warning if errγ1 exceeds a certain tolerance tolfl. However,
for the optimal control example in §3.4, where we naturally have multipliers γj with |γj | > 1030

and larger11, FA1 completely fails to compute any meaningful multipliers.
More generally, in for instance [FJ91, Lus01] it is discussed that methods based directly on (43)
• may give considerable numerical errors, in particular if there are both, very small and very

large multipliers γj ;
• discard much useful information, for instance eigenvectors of M(ul), l 6= m − 1, which are

useful for branch switching.
As an alternative, [Lus01] suggests to use a periodic Schur decomposition [BGVD92] to compute
the multipliers (and subsequently pertinent eigenvectors), and gives examples that in certain cases
this gives much better accuracy, according to (44). See also [Kre01, Kre06] for similar ideas and
results.

We thus provide an algorithm FA2 (Floquet Algorithm 2), which, based on pqzschur from
[Kre01], computes a periodic Schur decomposition of the matrices involved in (43), from which we
immediately obtain the multipliers, see Remark 2.6(d). For large nu and m, FA2 gets rather slow,
and thus we rather use it in two ways. First, to validate (by example) FA1, and second to compute
the multipliers when FA1 fails, in particular for our OC example.

In summary, for small to medium sized dissipative problems, i.e., nu∗m < 50000, say, computing
(a number of) multipliers with FA1 is a matter of a seconds. For the ill-posed OC problems we
have to use FA2 which is slower and for medium sized problems can be as slow as the computation
of uH . In any case, for efficiency we also give the option to switch off the simultaneous computation
of multipliers during continuation of periodic orbits.

Remark 2.6. (a) To save the stability information on the computed branch we define

ind(uH) = number of multipliers γ with |γ| > 1 (numerically: |γ| > 1 + tolfl), (45)

such that unstable orbits are characterized by ind(uH) > 0. Thus, a change in ind(uH) signals a
possible bifurcation, and via

γcand := argmin{||γj | − 1| : j > 1}

we also get an approximation for the critical multiplier, and thus a classification of the possible
bifurcation in the sense (i)-(iii).

(b) In FA1 we compute n+ multipliers γ2, . . . , γn+ of largest modulus (recall that we reserve
γ1 for the trivial multiplier), with |γ2| ≥ |γ3| ≥ . . . ≥ |γn+ |, and count how many of these have
|γj | > 1, which gives ind(uH) if we make sure that |γn+ | < 1. For dissipative systems, typically
0 ≤ n+ � nu, and the large multipliers of M can be computed efficiently and reliably by vector
iteration. However, it does happen that some of the small multipliers do not converge, in which
case we also give a warning, and recommend to check the results with FA2.

(c) The idea of the periodic Schur decomposition is as follows. Given two collections (Ai), (Bi),
i = 1, . . . ,m, of matrices Ai, Bi ∈ Cn×n, pqzschur computes Qi, Zi, Ãi, B̃i ∈ Cn×n such that Ãi, B̃i
are upper triangular, Qi, Zi are orthogonal, and

A1 = Q1Ã1Z
H
m , B1 = Q1B̃1Z

H
1

A2 = Q2Ã2Z
H
1 , B2 = Q2B̃1Z

H
2

. . . , . . .

Am = QmÃmZ
H
m−1, Bm = QmB̃mZ

H
m .

11I.e., |γnu | → ∞ as nu →∞, although the orbits may still be stable in the sense of optimal control, see §3.4
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Consequently, for the product M = B−1
m Am · · ·B−1

1 A1 we have

M = ZmB̃
−1
m Ãm · · · B̃−1

1 Ã1Z
H
m ,

and similar for products with other orderings of the factors. In particular, the eigenvalues of M

are given by the products di =

m∏
j=1

ã
(j)
ii /b̃

(j)
ii , and, moreover, the associated eigenvectors can also be

extracted from the Qj , Zj , see [Kre06] for further comments.
(d) Alternatively to using Floquet multipliers, we can assess the stability of the periodic orbits

by using the time–integration routines from pde2path, which moreover has the advantage of giving
information about the evolution of perturbations of unstable solutions; see §3 for examples, where
in all cases perturbations of unstable periodic orbits lead to convergence to some other (stable)
periodic orbit. c

3 Four examples

To illustrate the performance of our algorithms we use four examples, included as demos directories
in the package download, together with the tutorial [Uec18a] explaining implementation details.
Thus, here we focus on explaining the results (i.e., the relevant plots), and on relating them to
some mathematical background of the equations. As already noted in the introduction, in these
(tutorial) examples the meshes are chosen rather coarse, to quickly get familiar with the algorithms.
In some problems we additionally switch off the simultaneous computation of Floquet multipliers,
and instead compute the multipliers a posteriori at selected points on branches. Nevertheless, even
with the coarse meshes some commands, e.g., the continuation of Hopf branches in 3+1D, may
take several minutes. All computational times given in the following are from an i7 quad-core
laptop with Linux Mint 18.1 and Matlab 2016b. Using the ilupack [Bol11] iterative linear solvers,
memory requirements are moderate (< 2GB), but using direct solvers we need about 13GB for the
largest scale problems considered here (3D cGL with about 120000 degrees of freedom).

3.1 A complex Ginzburg–Landau equation

We consider the cubic-quintic complex Ginzburg–Landau equation

∂tu = ∆u+ (r + iν)u− (c3 + iµ)|u|2u− c5|u|4u, u = u(t, x) ∈ C, (46)

with real parameters r, ν, c3, µ, c5. Equations of this type are canonical models in physics, and are
often derived as amplitude equations for more complicated pattern forming systems [AK02, Mie02].
Using real variables u1, u2 with u = u1 + iu2, (46) can be written as a real 2–component system of
the form (3), i.e.,

∂t

(
u1

u2

)
=

(
∆ + r −ν
ν ∆ + r

)(
u1

u2

)
− (u2

1 + u2
2)

(
c3u1 − µu2

µu1 + c3u2

)
− c5(u2

1 + u2
2)2

(
u1

u2

)
. (47)

We set

c3 = −1, c5 = 1, ν = 1, µ = 0.1, (48)

and use r as the main bifurcation parameter. Considering (47) on boxes

Ω = (−l1π, l1π)× · · · × (−ldπ, ldπ) (49)
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with homogeneous Dirichlet BC or Neumann BC, or with periodic BC, we can explicitly calculate
all Hopf bifurcation points from the trivial branch u = 0, and, for periodic BC, (some of) the
bifurcating time periodic branches. For this consider the traveling wave ansatz

u(x, t) = aei(ωt−k·x), with wave vector k = (k1, . . . , kd), kj ∈
1

2lj
Z, (50)

and temporal period 2π/ω, which yields

|a|2=|a(k, r)|2=− c3

2c5
±

√
c2

3

4c2
5

+ r − |k|2, ω=ω(k, r)=ν − µ|a|2, |k|2=k2
1 + . . .+ k2

d. (51)

Note that ω and hence the period T = 2π/ω depend on |a|, that u(x, t) on each branch is a
single harmonic in x and t, and that the phase of a is free. Using (48) we obtain subcritical Hopf
bifurcations of solutions (50) at

r = |k|2, with folds at r = |k|2 − 1

4
. (52)

Moreover, for these orbits we can also compute the Floquet multipliers explicitly. For instance, re-
stricting to k = 0 in (50), and also to the invariant subspace of spatially independent perturbations,

in polar-coordinates ũ(t) = ã(t)eiφ̃(t) we obtain the (here autonomous) linearized ODEs

d

dt
ã = h(r)ã,

d

dt
φ̃ = −2µaã, where h(r) = r + 3a2 − 5a4. (53)

The solution is ã(T ) = eh(r)T ã(0), φ̃(T ) = φ̃(0) + a
h(r)(eh(r)T − 1)ã(0), and therefore the analytic

monodromy matrix (in the k=0 subspace) isMk=0 =

(
eh(r)T 0

a
h(r)(eh(r)T − 1) 1

)
with multipliers γ1=1

and γ2=eh(r)T .
For periodic BC, the translational and reflection symmetry in x yield that the HBPs at r=|k|2>0

have at least double multiplicity [Hoy06, GS02]. In for instance 1D, additional to the right traveling
wave (50), left traveling waves bifurcate (k 7→ −k), and it further follows (see also the comments
after (59) for a related problem) that additional to the traveling waves, (families of) standing waves
(SW) of the form u(x, t) = b(t)φ(x) with temporal period near 2π/ν bifurcate, e.g.,

u(x, t) = b(t)(cos(kx) + higher harmonics in x). (54)

Boundary conditions that break the translational invariance, e.g., homogeneous Neumann or Dirich-
let BC, then generically make the HBPs simple again and select the standing waves. Thus, (47)
makes a nice toy problem to validate and benchmark our routines, where for simplicity we use
Neumann and Dirichlet BC. For these we still have the formula r = |k|2 for the HBPs, although
we lose the explicit traveling wave branches.

There are no real eigenvalues of ∂uG on the trivial branch u = 0 in this example. Thus, for
the HBP detection we can simply use algorithm HD1 from page 7 and postpone to §3.3 and §3.4
the discussion of problems which require HD2. In 1D we use Neumann BC, and nx = 31 spatial,
and as the lowest temporal resolution (without mesh-refinement) m = 20 discretization points. For
illustration we compute the first two bifurcating branches, b1 and b2, using the arclength setting
from the start, while for the third branch b3 we first do 5 steps in natural parametrization, where
TOM refines the starting t–mesh of 21 points to 41 points. This produces the plots in Fig. 2, where
the norm in (a) is

‖u‖∗ := ‖u‖L2(Ω×(0,T ),RN )/
√
T |Ω|, (55)
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which is our default norm for Hopf branches. The simulations run in less than 10 seconds per
branch, but the rather coarse meshes lead to some inaccuracies. For instance, the first three HBPs,
which analytically are at r = 0, 1/4, 1, are obtained at r = 6 ∗ 10−5, 0.2503, 1.0033, and the period
plot in (d) also shows some visible errors in the period T . However, these numerical errors quickly
decay if we increase nx and m, and runtimes stay small.

(a) BD, norm ‖u(·, ·; r)‖∗ (b) Example plots

(c) Multipliers at b1/pt8 (ind = 1) and b2/pt5 (ind = 3)
(left), and at b1/pt27 (ind = 0) (right)

(d) left: BD, period T (r). Right: numerical
periods (for m = 20, 40, 60) and analytical
period (black dots) on the 1st branch

0 0.5 1

r

6.5

7

7.5

T

27

19

17

0.6 0.8 1

r

7.3

7.35

7.4

7.45

7.5

T

Figure 2: Numerical bifurcation diagrams (BD), example plots and (leading 20) Floquet multipliers for (47)

on the domain Ω = (−π, π) with Neumann BC, 31 grid–points in x. Parameters (ν, µ, c3, c5) = (1, 0.1,−1, 1),

hence bifurcations at (restricting to the first three branches) r = 0 (k = 0, spatially homogeneous branch,

black), r = 1/4 (k = 1/2, blue) and r = 1 (k = 1, red), see (52). The thick part of the black line in (a)

indicates the only stable periodic solutions. The black dots in (a) and (d) are from the k = 0 analytical

solution (51) (which also holds for Neumann BC in the k = 0 subspace). For m = 20 there is a visible error

in T . The right panel of (d) shows the numerical T for different m (m = 20 black, m = 40 red-dashed,

m = 60 blue-dotted), which illustrates the convergence of the numerical solution towards the analytical

solution (51). Similarly, the periods also converge on the other branches.

On b1, initially there is one unstable multiplier γ2, i.e., ind(uH) = 1, cf. (45), which passes
through 1 to enter the unit circle at the fold. Its numerical value is 10−5 close to the analytical result
from (53), and this error decreases upon refining the t–mesh. On b2 we start with ind(uH) = 3, and
have ind(uH) = 2 after the fold. Near r = 0.45 another multiplier moves through 1 into the unit
circle, such that afterwards we have ind(uH) = 1, with, for instance γ2 ≈ 167 at r = 1. Thus, we
may expect a type (i) bifurcation (cf. p. 12) near r = 0.45, and similarly we can identify a number
of possible bifurcation on b3 and other branches. The trivial multiplier γ1 is 10−12 close to 1 in all
these computations, using FA1.

The basic 1D setup has to be modified only slightly for 2D and 3D. In 2D we choose homogeneous
Dirichlet BC for u1, u2. Then the first two HBPs are at r1 = 5/4 (k = (1/2, 1), and r2 = 2
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(k = (1, 1)). Figure 3(a,b) shows some results obtained with m = 20 temporal points and a
coarse mesh of 41 × 21 spatial points, hence nu = 1722 spatial unknowns, yielding the numerical
values r1 = 1.2526 and r2 = 2.01. Again, the numerical HBPs converge to the exact values when
decreasing the mesh width, but at the prize of longer computations for the Hopf branches. Table 1
gives some timing and convergence indications in dependence of m, which in particular illustrates
an advantage of the iterative solver for large total DoF. For the Floquet multipliers we obtain
a similar picture as in 1D. The first branch has ind(uH) = 1 up to the fold, and ind(uH) = 0
afterwards, and on b2 ind(uH) decreases from 3 to 2 at the fold and to 1 near r = 7.2.

(a) bif. diagr. 2D (b) solutions at b1/pt20 (top) and b2/pt15 (bottom)
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(c) bif. diagr. 3D (d) solution at t = 0 and t = T/2 at b2/pt15
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Figure 3: (a) Bifurcation diagrams of the first 2 Hopf branches for (47) in 2D. (b) Solution snapshot from

b1/pt20 and b2/pt15, at t = 0, 4
19T,

8
19T,

12
19T . (c),(d) Bifurcation diagram and solution snapshot in 3D,

t = 0 and t = 9T/19.

Table 1: Timing (in seconds) and convergence information for (47) in 2D. tLU is the time for computing 20

points on b1 (without Floquet computations) via (36) with LU prefactorization of A; tGMRES corresponds to

solving via ilupack (total time, including preconditioning), and tprec is the time for preconditioning (same

preconditioner works for all 20 points). tfl is the time for computing the (leading 20) Floquet multipliers at

r = 2 via FA1 (FA2 is a factor 10 slower). δT |r=2 is the period minus the period at the coarser mesh, and

indicates the convergence. See [Uec18a] and in particular cmds2d.m in the demo directory hopfdemos/cGL

for the precise settings of numerical switches (drop-tolerance for ilupack etc).

m DoF tLU(s) tGMRES(s) tprec(s) tfl(s) δTr=2

20 34440 120 50 20 7 *
30 51660 270 65 30 13 -0.038
40 68880 935 120 55 18 -0.013

In 3D, we consider (47) over Ω = (−π, π) × (−π/2, π/2) × (−π/4, π/4). Here we use a very
coarse tetrahedral mesh of np = 2912 points, thus 5824 DoF in space. Analytically, the first 2 HBPs
are r1 = 21/4 (k = (1/2, 1, 2)) and r2 = 6 (k = (1, 1, 2), but with the coarse mesh we numerically
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obtain r0 = 5.47 and r1 = 6.29. Again, this can be greatly improved by, e.g., halving the spatial
mesh width, but then the Hopf branches become very expensive. Using m = 20 (116480 total DoF)
and ilupack, the computation of the branches (with 15 continuation steps each) in Fig. 3(c) takes
about 450 seconds, with 250 seconds for preconditioning12, and using FA1 to a posteriori compute
the Floquet multipliers about 40 seconds per orbit. Again, on b1, ind(uH) = 1 up to the fold and
ind(uH) = 0 afterwards, while on b2 ind(uH) decreases from 3 to 2 at the fold and to 1 at the end
of the branch, and time integration from an IC from b2 yields convergence to a periodic solution
from b1.

Additional to the code for the plots in Fig. 2 (and Fig. 3), [Uec18a] explains the basic steps for
• switching to continuation in another parameter,
• ad hoc mesh refinement in t for the arclength parametrization,
• using pde2path’s time integration routines to assess the stability of periodic solutions, and

in particular obtain the time evolution of perturbations of unstable orbits.

3.2 Spiral waves on a disk

While the Hopf bifurcations presented in §3.1 have been to (standing) oscillatory patterns, another
interesting class is the Hopf bifurcation to rotating patterns, in particular to spiral waves. Such
spirals are ubiquitous in 2D reaction diffusion problems, see, e.g., [Pis06, CG09]. Over bounded do-
mains, spiral waves are usually found numerically via time integration, see in particular EZSPIRAL
[Bar91], with anO(1) amplitude, i.e., far from bifurcation. On the other hand, the bifurcation of spi-
ral waves from a homogeneous solution is usually analyzed over all of R2, e.g., [KH81, Hag82, Sch98].
Moreover, spiral waves often undergo secondary bifurcations such as drift, meandering and period
doubling, see [Bar95, SSW99, SS07] and the references therein. Two exceptions to the rule of find-
ing spirals numerically by time integration are [BE07, Tsa10]. In [BE07] they are found by growing
them from a thin annulus towards the core using AUTO, i.e., by continuation in the inner radius of
the annulus. Continuation in other parameters is then done as well, but always at O(1) amplitude.
In [Tsa10] rather general λ− ω systems (see (58)) with homogeneous Neumann BC are considered
on finite disks, and the existence of spiral waves is shown by a spiral wave ansatz, which lead to
1D ODE boundary value problem, which are treated by a shooting method.

Here we study, on the unit disk, the bifurcation of standing and rotating waves from the zero
solution in a slight modification of a real two component reaction diffusion system from [GKS00],
see also [GS02, §4.6,§4.7]. The system is somewhat similar to the cGL equation, but with Robin
BC. It reads

∂tu = d1∆u+ (β + r)u+ v − (u2 + v2)(u− αv),

∂tv = d2∆v + rv − u− (u2 + v2)(v + αu),
(56)

∂nu+ 10u = 0, ∂nv + 0.01v = 0, (57)

where n is the outer normal, with parameters α, β, r ∈ R and d1, d2 > 0. For β = 0 and d1 = d2,
(56) is a so called λ− ω system [KH81, Hag82, Tsa10], i.e., of the form

∂tu = d∆u+ λ(z)u− ω(z)v, ∂tv = d∆v + ω(z)u+ λ(z)v, z = u2 + v2, (58)

which is a prominent class of 2–component reaction diffusion systems (including the cGL equation)
yielding spiral waves. For β 6= 0 and/or d1 6= d2 we thus have a perturbed λ−ω system. Addition-
ally, even for β = 0 and d1 = d2 the typical (u, v) 7→ (−v, u) symmetry of λ− ω systems is already
broken by the BC (57). We follow [GKS00] and set β = 0.5 throughout and at first (§3.2.1)

12using (36) with LU prefactorization of A leads to about 1800s runtime, and, importantly, much higher memory
requirements of about 13GB instead of 2GB with ilupack;
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additionally set α = 0, d1 = 0.01, d2 = 0.015, and take r as the main bifurcation parameter. Then
(§3.2.2) we set α = 1, let (d1, d2) = δ(0.01, 0.015), and also vary δ which corresponds to changing
the domain size by 1/

√
δ.

The eigenfunctions of the linearization around (u, v) = (0, 0) are build from Fourier Bessel
functions

φm(ρ, ϑ, t) = Re(ei(ωt+mϑ)Jm(qρ)), m ∈ Z, (59)

where (ρ, ϑ) are polar-coordinates, and with, due to the BC (57), in general complex q ∈ C \ R.
Then the modes are growing in ρ, which is a key idea of [GKS00] to find modes bifurcating from
(u, v) = (0, 0) which resemble spiral waves near their core.

Additional to time translation, the symmetry group of (56),(57) is O(2), acting by rotations and
reflections in x. The modes (59) with m 6= 0 have the symmetry of rotating waves (RW), and Hopf
bifurcations with m 6= 0 in (59) are double. The bifurcating branches are branches of clockwise and
counterclockwise RW, and branches of standing waves (SW) given by equal amplitude superposi-
tions of clockwise and counterclockwise RW. This follows from the equivariant Hopf theorem, see,
e.g., [Hoy06, §4.4 and §5.7], and [GS02, §4.6, 4.7], or [Kno94] and the references therein for earlier
and illustrative results in physical applications. For 2π time–periodic solutions (after rescaling t),
the equivariance group of (56),(57) is Γ = O(2)× S1, with fixed point subspace Fix(Γ) = {u ≡ 0},
and an isotropy subgroup is

Σ1 = {γ = (ϑ, ϑ) : 0 ≤ ϑ < 2π}, where U((ϑ1, ϑ2)(x, t)) = U(Rϑ1x, t− ϑ2), U = (u, v),

with Rϑ =

(
cosϑ sinϑ
− sinϑ cosϑ

)
, i.e., the action of γ ∈ Σ1 is rotation in x and time shift by ϑ.

The associated fixed-point subspace Fix(Σ1) consists of counterclockwise RW, and the conjugate
subgroup Σ2 = {γ = (−ϑ, ϑ) : 0 ≤ ϑ < 2π} has Fix(Σ2) consisting of clockwise RW.

Our default branch switching (19) only applies to simple Hopf bifurcations. Nevertheless, if we
apply (19) at a double Hopf bifurcation in the present example, then it turns out that the initial
guess is sufficiently close to a RW, either from Fix(Σ1) or from Fix(Σ2), for the subsequent Newton
loop to converge to this RW. On the other hand, to switch to SW, we use a modified ad hoc ansatz

u(t) = u0 + 2εαRe((z1e−iωH t + z2eiωH t)Ψ) (60)

with user provided z1, z2 ∈ C, which thus generalizes (19) (z1 = 1, z2 = 0). Using z1 = 1, z2 = i at
the HBPs with m ≥ 1 yields bifurcation to SW. However, the continuation of SW is more expensive
than that of RW, because the phase condition (21) fixes the rotational invariance for RW (as time-
shifts correspond to rotations), but not for SW. The continuation of SW works, because the FEM
discretization destroys the (strict) rotational invariance, but it initially needs small stepsizes due
to small eigenvalues, and in the initial continuation steps the orientation of the SW pattern slightly
shifts.13 Steps towards a more systematic treatment of equivariant Hopf bifurcations are intended
for the next version of pde2path.

3.2.1 Bifurcations to rotating and standing waves

For β = 0.5, the trivial homogeneous branch (u, v) = (0, 0) is stable up to r ≈ −0.21, and
Fig. 4(a) shows the spatial modes at the first six Hopf bifurcation points, with mode numbers
m = 0, 1, 2, 0, 3, 2. (b) shows a basic bifurcation diagram. The RW branches are plotted as full
lines, and the standing waves, which for m = 0 are also called target patterns, obtained from (60)
are plotted as dashed lines. (c) shows selected snapshots of rotating waves from the last points on

13The loss of true rotational invariance can also be seen in the RW, which show small deviations from rigid rotations.
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the RW branches in (b), with T near 2π for all branches, while (d) shows similar snapshots from
SW branches. We discretized (56), (57) with a mesh of 1272 points, hence nu = 2544 DoF, and
a temporal discretization of 15 points, which yields about 1 minute for the computation of each
branch, with 10 points on each.

(a) Spatial mode structure at bifurcation, HBP1,. . . ,HBP6

(b) Bifurcation diagram (c) snapshots from rotating waves rw2,rw3 (top) and rw5,rw6 (bottom)
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(d) snapshots from standing waves sw2 and sw3

Figure 4: (a) Modes at the first six Hopf bifurcations. (b) Basic bifurcation diagram for rotating waves (full

lines rw2, rw3, rw5, rw6, rw7), and standing waves (dashed lines sw1,. . . , sw7) for (56), (57), 10 continuation

steps for each. On sw1 and the RW branches we mark the points 5 and 10. (c) Snapshots of u from the RW

branches at the last points, t = 0, Tj/9, 2Tj/9, Tj/3, with Tj the actual period. (d) Snapshots of u from the

RW branches sw2 and sw3.

To assess the numerical accuracy, in Table 2 we compare the numerical values for the Hopf
points and the temporal wave number ω with the values from [GKS00], who compute HBP5,
HBP6, HBP7, (and three more Hopf points at larger r) using semi analytical methods, and some
numerics based on the Matlab pdetoolbox with fine meshes. Given our coarse mesh we find our
results reasonably close, and again our values converge to the values from [GKS00] under mesh
refinement.

The last two rows of Table 2 give the Floquet indices of points on sw1, sw4, and the RW branches,
where errγ1 (cf. (44)) is around 10−10 for each computation. All branches except sw1 are unstable,
and the instability indices increase from left to right, and also vary along the unstable branches.
The stability of sw2, sw3, sw5, sw6, and sw7, is never better than that of the corresponding RW
branches, i.e, their index is always at least as large as that of the corresponding RW at the same r
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Table 2: Comparison of HBPs with [GKS00] (starred values), and Floquet indices at points on the bifur-

cating branches (SW (target patterns) for m = 0 and RW for m 6= 0).

HBP number HBP1 HBP2 HBP3 HBP4 HBP5 HBP6 HBP7
r -0.210 -0.141 -0.044 0.001 0.079 0.182 0.236
ω 0.957 0.967 0.965 0.961 0.961 0.953 0.957
m 0 1 2 0 3 1 4

multiplicity 1 2 2 1 2 2 2
r∗ NA NA NA NA 0.080 0.179 0.234
ω∗ NA NA NA NA 0.961 0.953 0.957

ind(uH), pt5 0 2 6 12 12 16 20
ind(uH), pt10 0 2 4 18 8 18 16

value.
Altogether (56),(57) with (α, δ) = (0, 1) does not appear to be very interesting from a dynamical

and pattern forming point of view, as time–integration yields that for r > r0 = −0.21 solutions
to generic initial conditions converge to a periodic orbit from h1. Thus, we next choose α = 1 to
switch on a rotation also in the nonlinearity, and decrease d1, d2 to consider larger domains where
the spiral nature of RW becomes more visible.

3.2.2 Spiral waves

We now let α = 1 and (d1, d2) = δ(0.01, 0.015). For (α, δ) = (1, 1) the linearization around
(u, v) = (0, 0) is as in in §3.2.1, and thus also yields the same Hopf bifurcation points. However,
the nonlinear rotation (due to α > 0) yields a spiral wave structure on the branches sp2, sp3, sp5,
sp6, and sp7, bifurcating at the points with m ≥ 1, see Fig. 5(b), where we only give snapshots of
u(·, 0), at r = 1 and at r = 3 for sp2, and at r = 3 for the remaining branches.

(a) bifurcation diagram (b) profiles at selected points (c) multipliers

sp2/pt12

sp2/pt15

Figure 5: Bifurcation diagram (a) with branches sp1,. . . ,sp7 left to right, and selected profiles (b) and

Floquet spectra (c). The (non–rotational) branch sp1 is stable for all r but plotted as a thin line (first

blue line in (a)) for graphical reasons. The first two plots in (b) are both from sp2, indicating the more

pronounced spiral nature for larger r (on all branches); remaining plots all at r = 3. T in (b) indicates the

period, which decreases in r and increases with the number m of arms of the spirals.

On sp2, sp3, sp5, and sp7 the solutions rotate in counterclockwise direction with the indicated
period T , while on sp6 we have a clockwise rotation. Thus, on sp2, sp3, sp5 and sp7 we have
inwardly moving spirals, also called anti-spirals [VE01]. Moreover, again sp1 (with m = 0) is stable
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for all r > rh1, but additionally sp2 becomes stable for r > r1 ≈ 1, see Fig. 5(c), while sp4,sp6 and
the m–armed spirals with m > 1 on sp3, sp5, sp7 are unstable, as should be expected [Hag82]; also
note how the core becomes flatter with an increasing number of arms, again cf. [Hag82] and the
references therein.

In Fig. 6(a) we first continue (u, v) from sp2 at r = 3 in δ to δ = 0.1, i.e., to domain radius
√

10
(branch sp2d). As expected, with the growing domain the spirals become more pronounced. The
solutions stay stable down to δ = δ1 ≈ 0.15, as illustrated in (b). In (c) we continue the solution
from sp2d/pt29 (with δ = 0.2) again in r down to r = r∗h2 ≈ −0.22, which is the associated Hopf
bifurcation point over a circle of radius

√
5, see also the last plot in (c), which is very close to

bifurcation. Now the 1-armed spiral like solution is stable also for rather small amplitude.

(a) continuation in δ, r = 3, (b) multipliers (c) continuation in r, δ = 0.2

s2d/pt29

s2d/pt44

Figure 6: (a) Continuation of the one armed spiral in δ (inverse domain-size). Over a larger domain the

spiral nature (of all spirals) is more visible. (b) Multipliers for points in (a). (c) Continuation of pt29 from

(a) in r; over a larger domain the “one-armed spiral” is stable for lower amplitudes.

The model with (r, α, δ) = (3, 1, 0.1) (and β = 0.5) is also quite rich dynamically. Besides
solutions converging to sp1, the 1-armed spiral sp2 has a significant domain of attraction, but there
are also various at least meta-stable solutions, i.e., almost stable solutions with very weakly unstable
directions, which consist of long-lived oscillations (with or without rotations). These results fully
agree with those from [Tsa10], where the stability of spirals in some cGL-type λ − ω systems on
the unit disk is studied by dynamical simulations. Like in our system, the 1-armed spiral waves
are unstable at bifurcation and become stable at some finite amplitude (for suitable parameters).
See [Uec18a] for comments on how to run such dynamical simulations in pde2path.

3.3 An extended Brusselator

As an example with an interesting interplay between stationary patterns and Hopf bifurcations we
consider an “extended Brusselator” problem from [YDZE02]. Relatedly, in this example there are
many eigenvalues with small real parts, and therefore detecting HBPs without first setting a guess
for a shift ω1 is problematic. The system is given by

∂tu = Du∆u+ f(u, v)− cu+ dw, ∂tv = Dv∆v + g(u, v), ∂tw = Dw∆w + cu− dw, (61)

where f(u, v) = a−(1+b)u+u2v, g(u, v) = bu−u2v, with kinetic parameters a, b, c, d and diffusion
constants Du, Dv, Dw. We consider (61) on rectangular domains in 1D and 2D, with homogeneous
Neumann BC for all three components. The system has the spatially homogeneous steady state

Us = (u, v, w) := (a, b/a, ac/d),
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and in suitable parameter regimes it shows co-dimension 2 points between Hopf, Turing–Hopf (aka
wave), and (stationary) Turing bifurcations from Us. We follow [YDZE02] and fix the parameters

(c, d,Du, Dv, Dw) = (1, 1, 0.01, 0.1, 1). (62)

(a) Bifurcation lines in parameter plane (b) spectral plots (c) Bifurcation diagram and zoom
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Figure 7: (a) Parameter plane with Hopf, Turing–Hopf (wave) and Turing instability lines for (61), reprinted

with permission from [YDZE02], copyright 2002, AIP Publishing LLC. (b) Spectra for increasing b at a =

0.95. Contrary to the pde2path convention that due to ∂tu = −G(u) eigenvalues with negative real parts

yield instabilities, here we directly plot the spectra of −∂uG, such that instability occurs for eigenvalues with

positive real parts. The first instability (Turing–Hopf) occurs at b ≈ 2.794, with kc ≈ 0.7. The admissible

wave-numbers k on a domain (−lx, lx) with lx = 0.5π/kc are indicated by the dots. (c) (partial) bifurcation

diagram and zoom. (d) example plots. The branches h1,h3 are from Turing Hopf bifurcations, h2 is pure

Hopf (k = 0), s1 is pure Turing, and in s1h1 we obtain a TH modulation of the s1 Turing pattern.

Figure 7(a) then shows a characterization of the pertinent instabilities of Us in the a, b plane.
Us is stable in region I, and can loose stability by (a, b) crossing the Turing line, which yields the
bifurcation of stationary Turing patterns, or the wave (or Turing–Hopf) line, which yields oscillatory
Turing patterns. Moreover, there is the “Hopf line” which corresponds to Hopf–bifurcation with
spatial wave number k = 0.14

In the following we fix a = 0.95 and take b as the primary bifurcation parameter. Figure 7(b)
illustrates the different instabilities from (a). As we increase b from 2.75, we first cross the Turing–

14See also [Uec18a] for new functions for the computation of these lines by branch point continuation and Hopf
point continuation in pde2path.
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Hopf line, with first instability at critical spatial wave number kTH ≈ 0.7, then the Hopf line, and
finally the Turing line with critical wave number kT ≈ 6.4. To investigate the bifurcating solutions
(and some secondary bifurcations) with pde2path, we need to choose a domain Ω = (−lx/2, lx/2)
(1D), where due to the Neumann BC lx should be chosen as a (half integer) multiple of π/kTH. For
simplicity we take the minimal choice lx = 0.5π/kTH, which restricts the allowed wave numbers to
multiples of kTH, as indicated by the black dots in Figure 7(b). Looking at the sequence of spectral
plots for increasing b, we may then expect first the Turing–Hopf branch h1 with k = kTH, then
a Hopf branch h2 with k = 0, then two Turing branches s1, s2 with k = 6.3 and k = 7, then a
Turing–Hopf branch h3 with k = 2kTH, and so on, and this is what we obtain from the numerics,
as illustrated in (c) and (d), using a coarse mesh with 101 grid points, hence 3× 101 = 303 DoF in
space.

Besides stationary secondary bifurcations we also get a rather large number of Hopf points on
the Turing branches, and just as an example we plot the (Turing)Hopf branch s1h1 bifurcating
from the first Hopf point on s1. The example plots in (d) illustrate that solutions on s1h1 look
like a superposition of solutions on s1 and h1. Such solutions were already obtained in [YDZE02]
from time integration, which is only possible because some solutions of this kind are stable, see also
[YE03] for similar phenomena. By following the model’s various bifurcations, this can be studied
in a more systematic way.

(a) h1/pt10, ind = 0 (b) h2/pt5, ind = 2 (c) h2/pt10, ind = 0 (d) h3/pt5, ind = 5

(e) “error” time series (f) initial evolution (g) transient near h3 (h) convergence to h1

Figure 8: (a)-(d) A small sample of Floquet spectra of periodic orbits from Fig. 7 (200 largest multipliers

computed via floq), illustrating that a Neimark–Sacker bifurcation should be expected near h2/pt5, and

similar eigenvalue transitions occur on all other Hopf branches except h1. (e)-(h) Evolution of a perturbation

of s1h1/pt10. After a rather long transient near h3 the solution converges to an orbit on h1.

It turns out that h1 is stable up to rather large amplitude15, and that (the spatially homogeneous
branch) h2 is initially unstable with ind(uH) = 2, but close to pt5 on h2 we find a Neimark–Sacker
bifurcation, after which solutions on h2 are stable. Similarly, solutions on h3 start with ind(uH) = 5,

15see [Uec18a] for the (pitchfork) bifurcations from h1 occuring near b = 3.01 and b = 3.15, and the continuation
of the periodic orbits bifurcating there
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but after a Neimark–Sacker bifurcation, and a real multiplier going through 1 at b ≈ 3.35 we find
ind(uH) = 2, before ind(uH) increases again for larger b. Also note that there are always many
multipliers close to −1, but we did not find indications for period–doubling bifurcations. Finally,
in Fig. 8(e)–(h) we illustrate the evolution of perturbations of s1h1/pt10. After a transient near
h3/pt5 (g) the solution converges to a solution from the primary Hopf branch h1 (h), which however
itself also shows some short wave structure at this relatively large distance from bifurcation.

In 1D we may still use HD1 to detect (and localize) the Hopf bifurcations. In 2D this is
unfeasible, because even over small domains we obtain many wave vectors k = (k1, k2) with modulus
|k| ∈ (5, 8), which give leading eigenvalues µ1(k) with small Reµ(k) and Imµ(k) = 0. This is
illustrated in Fig. 9, which shows that for Ω = (−0.5π/kTH, 0.5π/kTH)2 even for neig = 200 (which
is quite slow already) we do not even see any Hopf eigenvalues, which become “visible” at, e.g.,
neig = 300. Thus, here we use HD2 which runs fast and reliably, even with just computing 3
eigenvalues both near 0 and ω1, obtained from (14).

(a) neig = 200 (b) neig = 300 (c) |g| from (14) (d)
neig = (3, 3) with
ω1 = 0.9375

Figure 9: (a,b) neig smallest eigenvalues of the linearization of (61) around Us at b = 2.75, remaining

parameters from (62); HD1 with neig = 200 will not detect any Hopf points. (c) (14) yields a guess

ω1 = 0.9375 for the ω value at Hopf bifurcation, and then HD2 with neig = (3, 3) is reliable and fast: (d)

shows the three eigenvalues closest to 0 in blue, and the three eigenvalues closest to iω1 in red.

In Fig. 10 we give examples of just four of the many branches which can be obtained for (61)
in 2D, even over quite small domains. We use Ω = (−lx, lx)× (−ly, ly), lx = π/2, ly = π/8, with a
mesh of 961 gridpoints, hence 2883 spatial degrees of freedom, and for the Hopf orbits we use 15
gridpoints in t. The domain means that admissible wave vectors are (k1, k2) = (n, 4m), n,m ∈ N0.
Consequently, no spatial structure in y direction occurs in the primary Hopf branches (cf. Fig. 7b),
i.e., the first three are just analogous to those in Fig. 7 and occur at b = 2.818 (with k = (1, 0)),
b = 2.859 (with k = (0, 0), i.e., spatially homogeneous, and hence b independent of the domain)
and b = 3.202 (with k = (2, 0)); see (b1) for an example plot on the first Hopf branch. The first
stationary bifurcation (at b = 2.912) is now to a spotted branch 2ds1, and stripe branches analogous
to s1 from Fig. 7 bifurcate at larger b. Interestingly, after some stationary and Hopf bifurcations
the 2ds1 branch becomes stable at b = bb ≈ 2.785, which illustrates that it is often worthwhile
to follow unstable branches, as they may become stable, or stable branches may bifurcate off.16

Figure 10(b2) shows an example plot from the first secondary Hopf branch. This is analogous to
s1h1 from Fig. 7, i.e., the solutions look like superpositions of the stationary pattern and solutions
on the primary Hopf branch h1.

Concerning the multipliers we find that ind(uH) = 0 on 2dh1, and, e.g., ind(uH) = 5 at
2ds1h1/pt5, where as in 1D (Fig. 9) there are multipliers suggesting Neimark–Sacker bifurcations.
Figure 10 (c) illustrates the instability of the spotted Hopf solutions; the spots stay visible for

16For continuing this branch we also use a few additional features of pde2path such as adaptive spatial mesh-
refinement and pmcont, see [Uec18a]
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about 4 periods, and subsequently the solution converges to a periodic orbit from the primary Hopf
branch, as in Fig. 8.

(a) BD, and u at first HBP on
2ds1 branch

(b) Hopf example plots (u) (c) Convergence to the primary
Hopf branch 2dh1

1) 2dh1/pt5 at t = 0, T/2

2) 2ds1h1/pt5 at t=0, . . . , 3T/4

Figure 10: (a) Example bifurcations for (61) over a small 2D domain Ω = (−π/2, π/2)× (−π/8, π/8), and

example plots of u at 2nd Hopf point on the blue branch. (b) Example plots: solutions on primary Hopf

branch (1), and on the secondary Hopf branch (2) (the amplitude at t = 1.4 and t = 4.19 is about 0.2). (c)

Time integration with u(·, 0) from 2ds1h1/pt5, snapshots at 0, T, 2T, . . . , 8T .

3.4 A canonical system from optimal control

In [Uec16, GU17], pde2path has been used to study so called canonical steady states and canonical
paths for infinite time horizon distributed optimal control (OC) problems. As an example for such
problems with Hopf bifurcations we consider

V (v0(·)) !
= max

k(·,·)
J(v0(·), k(·, ·)), J(v0(·), k(·, ·)) :=

∫ ∞
0

e−ρtJca(v(t), k(t)) dt, (63a)

where Jca(v(·, t), k(·, t)) =
1

|Ω|

∫
Ω
Jc(v(x, t), k(x, t)) dx is the spatially averaged current value func-

tion, with

Jc(v, k) = pv1 − βv2 − C(k) the local current value, C(k) = k +
1

2γ
k2, (63b)

where ρ > 0 is the discount rate (long-term investment rate), and where the state evolution is

∂tv1 = −k + d1∆v1, ∂tv2 = v1 − α(v2) + d2∆v2, α(v2) = v2(1− v2) (63c)

with Neumann BC ∂nv = 0 on ∂Ω. Here, v1 = v1(t, x) are the emissions of some firms, v2 = v2(t, x)
is the pollution stock, and the control k = k(t, x) models the firms’ abatement policies.17 The terms

17We use the letter k for the control instead of the more custom u, because u = (v1, v2, λ1, λ2) shall denote the
vector of states (v1, v2) and co-states (λ1, λ2).
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pv1 and βv2 in Jc are the firms’ value of emissions and costs of pollution, C(k) are the costs for
abatement, and α(v2) is the recovery function of the environment. The discounted time integral
in (63a) is typical for economic problems, where “profits now” weight more than mid or far future
profits. Finally, the max in (63a) runs over all admissible controls k; this essentially means that
k ∈ L∞((0,∞)× Ω,R), and we do not consider active control or state constraints.

The associated ODE OC problem (no x–dependence of v, k) was set up and analyzed in [TW96,
Wir00]; in suitable parameter regimes it shows Hopf bifurcations of periodic orbits for the associated
so called canonical (ODE) system. See also, e.g., [DF91, Wir96, GCF+08] for general results about
the occurrence of Hopf bifurcations and optimal periodic solutions in ODE OC problems.

Setting g1(v, k) = (−k, v1−α(v2))T , D = diag(d1, d2), and introducing the co–states (Lagrange
multipliers)

λ : Ω× (0,∞)→ R2,

we define the (local current value) Hamiltonian H = H(v, λ, k) = Jc(v, k) + 〈λ,D∆v + g1(v, k)〉,
where 〈λ, v〉 = λ1v1 + λ2v2 denotes the standard scalar product in R2. By Pontryagin’s Maximum
Principle for

H̃ =

∫ ∞
0

e−ρtH(t) dt with H(t) =

∫
Ω
H(v(x, t), λ(x, t), k(x, t)) dx,

an optimal solution (v, λ) has to solve the canonical system (first order necessary optimality con-
ditions)

∂tv = ∂λH = D∆v + g1(v, k), v|t=0 = v0, (64a)

∂tλ = ρλ− ∂vH = ρλ+ g2(v, k)−D∆λ, (64b)

where ∂nλ = 0 on ∂Ω, and g2 = (∂vg1)λ = (−p − λ2, α
′(v2)λ2 + β). The control k fulfills

k= argmaxk̃H(v, λ, k̃). Under suitable concavity assumptions on Jc, and in the absence of con-
trol constraints, k is obtained from solving ∂kH(v, λ, k)=0, thus here

k = k(λ1) = −(1 + λ1)/γ. (65)

Remark 3.1. The use of the Hamiltonian H̃ is the standard way of dealing with intertemporal
OC problems in economics. Equivalently, the canonical system (64) is formally obtained as the
first variation of the Lagrangian

L =
1

|Ω|

∫ ∞
0

e−ρt
(∫

Ω
Jc(v, k)− 〈λ, ∂tv +G1(v, k)〉 dx

)
dt, (66)

where G1(v, k) = −D∆v − g1, and where λ = (λ1, λ2) can directly be identified as Lagrange
multipliers to the constraint (63c), i.e., ∂tv + G1(v, k) = 0. Using integration by parts in x with
the Neumann BC ∂nv = 0 and ∂nλ = 0 we have

∫
Ω 〈λ,D∆v〉 dx =

∫
Ω 〈D∆λ, v〉 dx, and using

integration by parts in t with the intertemporal transversality condition

lim
t→∞

e−ρt
∫

Ω
〈v, λ〉 dx = 0 (67)

yields −
∫∞

0 e−ρt
∫

Ω 〈λ, ∂tv〉 dx dt =
∫

Ω 〈λ(x, 0), v(x, 0)〉 dx +
∫∞

0 e−ρt 〈∂tλ− ρλ, v〉 dx dt. Thus, L
can also be written as

L =
1

|Ω|

[∫
Ω
〈λ(x, 0), v(x, 0)〉 dx (68)

+

∫ ∞
0

e−ρt
(∫

Ω
Jc(v, k)+ 〈∂tλ+ρλ+D∆λ, v〉+ 〈λ, g1(v, k)〉 dx

)
dt

]
,
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and (64) are the first variations of L with respect to λ (using (66)) and v (using (68)) with v(0, x) =
v0(x). However, both computations (with H̃ and L) are somewhat formal, and the rigorous necessity
of canonical systems such as (64) for infinite time horizons, and in particular the transversality
condition (67), are matters of active research; see, e.g., [AV12, Tau15, GU17] and the references
therein. c

Clearly, (64) is ill–posed as an initial value problem due to the backward diffusion in the co–
states λ. Thus it seems unlikely that periodic orbits for (64) can be obtained via shooting methods.
For convenience we set u(t, ·) := (v(t, ·), λ(t, ·)) : Ω→ R4, and write (64) as

∂tu = −G(u) := D∆u+ f(u), (69)

where D =diag(d1, d2,−d1,−d2), f(u) =
(
−k, v1 − α(v2), ρλ1 − p− λ2, (ρ+ α′(v2))λ2 + β

)T
.

A solution u of the canonical system (69) is called a canonical path, and a steady state of
(69) (which automatically fulfills (67)) is called a canonical steady state (CSS). A first step for OC
problems of type (63) is to find canonical steady states and canonical paths connecting to some CSS
u∗. To find such connecting orbits to u∗ we may choose a cut–off time T1 and require that u(·, T1)
is in the stable manifold Ws(u

∗) of u∗, which we approximate by the associated stable eigenspace
Es(u

∗). If we consider (64) after spatial discretization, then, since we have nu/2 initial conditions,
this requires that dimEs(u

∗) = nu/2. Defining the defect d(u∗) of a CSS as

d(u∗) =
nu
2
− dimEs(u

∗), (70)

it turns out (see [GU17, Appendix A]) that always d(u∗) ≥ 0, and we call a u∗ with d(u∗) =
0 a saddle–point CSS. See [GCF+08, GU17] for more formal definitions, and further comments
on the notions of optimal systems, the significance of the transversality condition (67), and the
(mesh-independent) defect d(u∗). For a saddle point CSS u∗ we can then compute canonical
paths to u∗, and this has for instance been carried out for a vegetation problem in [Uec16], with
some surprising results, including the bifurcation of patterned optimal steady states and associated
patterned optimal paths.

A natural next step is to search for time–periodic solutions uH of canonical systems, which
obviously also fulfill (67). The natural generalization of (70) is

d(uH) = ind(uH)− nu
2
. (71)

In the (low–dimensional) ODE case, there then exist methods to compute connecting orbits to
(saddle point) periodic orbits uH with d(uH) = 0, see [BPS01, GCF+08], which require compre-
hensive information on the Floquet multipliers and the associated eigenspace of uH . Our (longer
term) aim is to extend these methods to periodic orbits of PDE OC systems.

However, a detailed numerical analysis of (63) and similar PDE optimal control problems with
Hopf bifurcations, and economic interpretation of the results, will appear elsewhere. Here we only
illustrate that
• Hopf orbits can appear as candidates for optimal solutions in OC problems of the form (63),
• the computation of multipliers via the periodic Schur decomposition (FA2) can yield accurate

results, even when the computation directly based on the product (43) (FA1) completely fails.
For all parameter values, (69) has the spatially homogeneous CSS

u∗ = (z∗(1− z∗), z∗,−1,−(p+ ρ)), where z∗ =
1

2

(
1 + ρ− β

p+ ρ

)
.

We use similar parameter ranges as in [Wir00], namely

(p, β, γ) = (1, 0.2, 300), and ρ ∈ [0.5, 0.65] as a continuation parameter, (72)
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consider (69) over Ω = (−π/2, π/2), and set the diffusion constants to d1 = 0.001, d2 = 0.2.18

(a) spectrum of
∂uG(u∗), ρ = 0.5

(b) bif. diagram, J , (c) time series on h2/pt14
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Figure 11: (a) full spectrum of the linearization of (69) around u∗ at ρ = 0.5 on a coarse mesh with np = 17.

(b) Bifurcation diagram, value J over ρ. Black: u∗; blue: h1, red: h2, J(uH ; 0) (full line) and J(uH ;T/2)

(dashed line). (c) Time series of a spatially homogeneous solution, including current value Jc, control k, and

co–states λ1,2. (d,f,g) Example plots and and multipliers of uH at h1/pt4, which shows that ind(uH) = 0.

(h) multipliers at h2/pt4, which shows that ind(uH) = 3 at this point, while solutions on h2 become saddles

after the fold.

In Figure 11 we give some basic results for (69) with a spatial mesh of np = 41 points (and thus
nu = 164). (a) shows the full spectrum of the linearization of (69) around u∗ at ρ = 0.5, illustrating
the ill-posedness of (69) as an initial value problem. (b) shows a basic bifurcation diagram. At
ρ = ρ1 ≈ 0.53 a Hopf branch h1 with spatial wave number l = 1 bifurcates, and at ρ = ρ2 ≈ 0.58

18The motivation for this choice is to have the first (for increasing ρ) Hopf bifurcation to a spatially patterned
branch, and the second to a spatially uniform Hopf branch, because the former is more interesting. We use that the
HBPs for the model (69) can be analyzed by a simple modification of [Wir00, Appendix A]. We find that for branches
with spatial wave number l ∈ N the necessary condition for Hopf bifurcation, K > 0 from [Wir00, (A.5)], becomes
K = −(α′ + d2l

2)(ρ+ α′ + d2l
2)− d1l2(ρ+ d1l

2) > 0. Since α′ = α′(z∗) < 0, a convenient way to first fulfill K > 0
for l = 1 is to choose 0 < d1 � d2 < 1, such that for l = 0, 1 the factor ρ+ α′ + d2l

2 is the crucial one.
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a spatially homogeneous (l = 0) Hopf branch h2 bifurcates and shows a fold at ρ = ρf ≈ 0.55. (c)
shows the pertinent time series on h2/pt14. As should be expected, Jc is large when the pollution
stock is low and emissions are high, and the pollution stock follows the emissions with some delay.

Since ultimately we are interested in the values J of solutions of (69), in (b) we plot J over
ρ. For the CSS u∗ this is simply J(u∗) = 1

ρJc,a(u
∗), but for the periodic orbits we have to take

into account the phase, which is free for (69). If uH is a time periodic solution of (69), then, for
φ ∈ [0, T ), we consider

J(uH ;φ) :=

∫ ∞
0

e−ρtJc,a(uH(t+ φ)) dt =
1

1− e−ρT

∫ T

0
e−ρtJc,a(uH(t+ φ)) dt,

which in general may depend on the phase, and for h2 in (c) we plot J(uH ;φ) for φ = 0 (full red
line) and φ = T/2 (dashed red line). For the spatially periodic branch h1, Jc,a(t) averages out in
x and hence J(uH ;φ) only weakly depends on φ. Thus, we first conclude that for ρ ∈ (ρ1, ρf ) the
spatially patterned periodic orbits from h1 give the highest J , while for ρ ≥ ρf this is obtained
from h2 with the correct phase. The example plots (c) at h1/pt4 illustrate how the spatio-temporal
dependence of k should be chosen, and the resulting behaviors of v and Jc.

It remains to compute the defects d(u∗) of the CSS and d(uH) of periodic orbits on the bifurcat-
ing branches. For d(u∗) we find that it starts with 0 at ρ = 0.5, and, as expected, increases by 2 at
each Hopf point. On the Hopf branches we always have n+ ≥ nu/2 unstable multipliers (computed
with FA2, which yields errγ1 < 10−8 for all computations, and hence we trust it), and the leading
multipliers are very large, i.e., on the order of 1040, even for the coarse space discretization. Thus,
we may expect FA1 to fail, and indeed it does so completely. For instance, calling floq to compute
all multipliers typically returns 10 and larger for the modulus of the smallest multiplier (which from
FA2 is on the order of 10−25).

On h1 we find d(uH) = 0 up to pt4, see (e) for the nu/2 smallest multipliers, and (f) for |γj | for
the large ones, which are mostly real, and d(uH) ≥ 1 for larger ρ. On h2 we start with d(uH) = 3,
see (h), but d(uH) = 0 after the fold until ρ = ρ1 ≈ 0.6, after which d(uH) increases again by
multipliers going though 1. Since on h1 we have that J(uH) is larger than J(u∗), and since uH is
a saddle point up to pt4, we expect that these uH are at least locally optimal, and similarly we
expect uH from h2 after the fold until ρ1 to be locally, and probably globally, optimal. However,
as already said, for definite answers and, e.g., to characterize the domains of attractions, we need
to compute canonical paths connecting to these periodic orbits, and this will be studied elsewhere.

4 Summary and outlook

With the hopf library of pde2path we provide some basic functionality for Hopf bifurcations and
periodic orbit continuation for the class (3) of PDEs over 1D, 2D and 3D domains. The user
interfaces reuse the standard pde2path setup, and no new user functions are necessary. For the
detection of Hopf points we check for eigenvalues crossing the imaginary axis near guesses iωj , where
the ωj can either be set by the user (if such a priori information is available), or can be estimated
using the function g from (14). An initial guess for a bifurcating periodic orbit is then obtained
from the normal form (15), and the continuation of the periodic orbits is based on modifications of
routines from TOM [MT04].

Floquet multipliers of periodic orbits can be computed from the monodromy matrix M (43)
(FA1), or via a periodic Schur decomposition of the block matrices of M (FA2). The former is
suitable for dissipative systems, and computes a user chosen number of largest multipliers of M.
This definitely fails for problems of the type considered in §3.4, and in general we recommend to
monitor errγ1 = |γ1 − 1| to detect further possible inaccuracies. The periodic Schur decomposition
is expensive, but has distinct advantages: It can be used to efficiently compute eigenspaces at all
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time–slices and hence bifurcation information in case of critical multipliers, and, presently most
importantly for us, it accurately (measured by errγ1) computes the multipliers also for ill posed
problems.

We tested our algorithms on four example problems, where we believe that the second, third
and fourth are close to interesting research problems. For instance, in §3.4 we give an outlook on
the widely unexplored field of Hopf bifurcations and time periodic orbits in infinite time horizon
distributed optimal control PDE problems. For this, as a next step we plan to implement routines
to compute canonical paths connecting to periodic orbits. Another important point on our agenda
are is the branch switching at multiple Hopf points, see Remark 2.1. For the example (56),(57), we
so far treat the bifurcations from double Hopf points under O(2) symmetry only in an ad hoc way.

Note added in proof (August 31, 2018). A number of further algorithms is now implemented in
pde2path, namely: Hopf–and branch point localization and continuation via extended systems, and
simple methods for bifurcation from periodic orbits. Besides the application to (61), see footnotes
14 and 15, [Uec18a] also contains an example of a period doubling bifurcation of breathers. Further
examples how to treat bifurcations with continuous symmetries in pde2path are also given in [RU17]
and [Uec18a].

References

[AK02] I. S. Aranson and L. Kramer. The world of the complex Ginzburg-Landau equation. Rev.
Modern Phys., 74(1):99–143, 2002.

[AV12] S. Aseev and V. Veliov. Maximum principle for infinite-horizon optimal control problems with
dominating discount. Dyn. Contin. Discrete Impuls. Syst. Ser. B, 19(1-2):43–63, 2012.

[Bar91] D. Barkley. A model for fast computer simulation of waves in excitable media. Physica D,
49:61–70, 1991.

[Bar95] D. Barkley. Spiral meandering. In Chemical Waves and Patterns, edited by R. Kapral and K.
Showalter. Kluwer, 1995.

[BE07] G. Bordyugov and H. Engel. Continuation of spiral waves. Physica D, 228(1):49–58, 2007.

[BFG+14] D. Bindel, M. Friedman, W. Govaerts, J. Hughes, and Yu.A. Kuznetsov. Numerical com-
putation of bifurcations in large equilibrium systems in matlab. J. Comput. Appl. Math.,
261:232–248, 2014.

[BGVD92] A. Bojanczyk, G.H. Golub, and P. Van Dooren. The periodic Schur decomposition; algorithm
and applications. In Proc. SPIE Conference, Volume 1770, pages 31–42. 1992.
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