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Abstract

We present results of the application of the numerical continuation and bifurcation package
pde2path to the 3D Brusselator model, focussing on snaking branches of planar fronts between
body centered cubes (BCCs) and the spatial homogeneous solution, and on planar fronts between
BCCs and tubes (also called square prisms). These solutions also yield approximations of localized
BCCs, and of BCCs embeded in a background of tubes (or vice versa). Additionally, we compute
some moving fronts between lamellas and tubes. To give some theoretical background, and to aid
the numerics for the full system, we use the Maxwell points for the cubic amplitude system over
the BCC lattice.

1 Introduction

Turing patterns [Tur52] are stationary solutions of Reaction–Diffusion PDE systems that bifurcate
from a homogeneous steady state which becomes unstable wrt perturbations with a critical wave-
length. If the bifurcation is subcritical and the bifurcating branch stabilizes in a fold, then this
gives bistability between the homogeneous state and the larger amplitude patterns in the subcrit-
ical regime, and this often yields the existence of localized patches of periodic patterns. These
localized patterns exist in extended regions in parameter space [Pom86], and come in ’snaking’
branches, i.e., the branches move back and forth in parameter space. This mechanism is well
studied in the one–dimensional and two–dimensional cases (1D and 2D, respectively), see, e.g.,
[BK06, BK07, BKL+09, ALB+10, KUW19]. For a detailed analysis using the Ginzburg-Landau
formalism and beyond all order asymptotics see [CK09, DMCK11, KC13, dW19].

1D patterns extended homogeneously into a second and third direction are also solutions over
2D and 3D domains and are then referred to as stripes and lamellas, respectively. Typical genuine
2D patterns are squares and hexagons, and extended homogeneously in a third direction these yield
(square and hexagon, respectively) tubes, while the simplest genuine 3D periodic patterns are cubes
(or balls). Turing patterns in 3D have so far been studied by direct numerical simulation (DNS, aka
numerical time integration) [WBD97, HSO07], but we are not aware of systematic numerical branch
following and bifurcation studies in 3D. Additionally, some experimental results (and associated DNS
for the Lengyel Epstein model) are reported in [BJVE11]. See also [AGH+05, GH08] for further
results and discussion.

In [UW14] we numerically study planar fronts between stripes and hexagons in the 2D Schnaken-
berg model, using the package pde2path [UWR14, Uec19c]. Such fronts (or heteroclinic connections)
can be naturally extended to localized patterns (or homoclinic cycles) by gluing together fronts and
backs (i.e., considering heteroclinic cycles). See also, e.g., [Wet16, Wet18] for various further results on
localized 2D patterns in different reaction-diffusion systems, and the Swift–Hohenberg equation as an-
other prototype pattern forming system. Moreover, [Wet16] also contains a brief outlook on branches
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of 3D patterns, and some results on 3D patterns including localized patterns are also explained in
[Uec19b], with detailed explanations on the background and usage of pde2path.

In a similar fashion as in [UW14] in 2D, here we study 3D planar fronts between cubes and the
homogeneous steady state, and between cubes and tubes, in the Brusselator model [PL68]

∂tu1 = −(B + 1)u1 + u21u2 +A+D1∆u1,

∂tu2 = Bu1 − u21u2 +D2∆u2.
(1)

The chemical concentrations u1 = u1(x, t) and u2 = u2(x, t), with space x ∈ Ω ⊂ R3 and time t ≥ 0,
correspond to an activator and inhibitor, respectively, D1 and D2 are their diffusivities, A and B are
parameters, and ∆ is the Laplacian. Instead of the coordinates (x1, x2, x3) of x we also write (x, y, z).
Moreover, (1) has to be complemented by suitable boundary conditions (BCs) on ∂Ω, and we will
restrict to homogeneous Neumann BCs, i.e.,

∂νu1 = ∂νu2 = 0 on ∂Ω, (2)

where ∂ν denotes the outer normal derivative. For the initial value problem we also need to prescribe
initial conditions u|t=0 = u0.

Homogeneous steady states of (1) are given by u∗1 = A and u∗2 = B/A. We fix the parameters

A = 2, D1 = 1, D2 = (A/R)2, (3)

where R is used as a convenient unfolding parameter, see below, and consider B as the primary
bifurcation parameter. u∗ is stable for

B < Bc = (1 +R)2, (4)

where a Turing bifurcation occurs with critical wavenumber kc =
√
R. Our focus will be on solution

branches corresponding to a so called body centered cube (BCC) lattice. Close to bifurcation, these
may be described by a system of equations for six amplitudes A = (A1, . . . , A6) ∈ C6, see (8) in
§2. This amplitude system has a variety of steady solutions A∗, which in the original system (1)
correspond to, e.g., lamellas, tubes, and cubes, henceforth called BCCs. These solution branches of
the amplitude equations have been classified and discussed in detail in [CK99, CK99], and the stability
of the associated solutions of the original system close to onset has been studied in [CK01]. See also
[GS02, Hoy06] for textbook expositions of the underlying and very important symmetry perspective.
Additionally, the (ODE) amplitude system can be formally extended to a (1D PDE) modulation
equation system by assuming a slow dependence of the amplitudes on one spatial coordinate. The
steady modulation equations have a spatially conserved quantity (the potential energy) which thus
defines Maxwell points for heteroclinics between different fixed points A∗. These results can then be
used to identify parameter regimes for the search of snaking branches of steady fronts between BCCs
and u∗, and between BCCs and tubes. For this, to keep the numerics inexpensive we choose small
Ω, e.g. boxes Ω = (−l, l)2 × (−lz, lz), where l = π/kc lz = 4l. Additionally, we briefly illustrate that
near to but outside the snaking region the dynamics of close by solutions show a stick–slip motion,
and give examples of other moving fronts, for instance between lamellas and cubes.

Remark 1.1. Our results are not specific to the Brusselator model (1), but can be expected for all
3D pattern forming systems with a subcritical Turing bifurcation, or, more generally, systems with a
bistability of patterns and the homogeneous solutions, or a bistability of different patterns. Similar
results are provided for the (quadratic–cubic) 3D Swift–Hohenberg equation in [Uec19b, §3]. There
we also give detailed explanations on a number of issues that arise for numerical branch continuation
and bifurcation in 3D pattern forming systems, including:
• The algorithm for branch switching at branch points of higher multiplicity, which naturally arise

in 3D due to symmetries, see also [Uec19a].
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• Tricks, including remarks on the choice of meshes, to avoid uncontrolled ’branch jumping’,
which is a major issue in particular in 3D due to the multitude of different branches close to
each other.

Here we focus on the Brusselator model (1) as a standard reaction–diffusion model. c

Acknowledgment. The work of DW was supported by the DFG under Grant No. 264671738.

2 The amplitude formalism

We briefly review the BCC amplitude equations for (1) close to the primary bifurcation from u∗,
focussing on the bifurcating branches pertaining to Neumann BCs over cuboids. Amplitude equations
for 3D pattern forming systems are derived and discussed in [CK97, CK99] for three lattices with
cubic symmetry, namely the simple cubic (SC), the face-centered cubic (FCC), and the body-centered
cubic (BCC).

2.1 Derivation of the amplitude system

For the BCC lattice, the critical wave vectors are given by

k1 = −k7 = kc√
2
(1, 1, 0), k2 = −k8 = kc√

2
(0, 1, 1), k3 = −k9 = kc√

2
(1, 0, 1),

k4 = −k10 = kc√
2
(1,−1, 0), k5 = −k11 = kc√

2
(0, 1,−1), k6 = −k12 = kc√

2
(−1, 0, 1),

(5)

where kc =
√
R is the critical wave number. Setting u = u∗ + w yields

∂tw = Lw +N(w), (6)

where L is the linearization around u∗ and N(W ) denotes the nonlinear terms. We make the ansatz

w(x, t) =
6∑
j=1

Aj(t)e
ikj ·xΦ + c.c. + h.o.t, (7)

where Aj ∈ C, and Φ ∈ C2 is the critical eigenvector, independent of j due to the rotational invariance
of the Laplacian, and normalized to Φ1 = 1. In (7), c.c. means the complex conjugate of the peceding
terms, and h.o.t. denotes higher order terms, which turn out to be nonlinear terms of the Aj . Plugging
(7) into (6), sorting wrt. to the modes eikj ·x, first solving for uncritical modes at, e.g., e0, e2k1 and so
on, we obtain the amplitude equations

Ȧi = fi(A1, A2, A3, A4, A5, A6), i = 1, . . . , 6. (8)

Their general form, dictated by symmetry [CK97], is

f1 =λA1 + q(A2A6 +A3A5) + c31|A1|2A1 + c32(|A2|2 + |A3|2 + |A5|2 + |A6|2)A1

+ c33|A4|2A1 + c34(A2A4A5 +A3A4A6),

f2 =λA2 + q(A1A6 +A3A4) + c31|A2|2A2 + c32(|A1|2 + |A3|2 + |A4|2 + |A6|2)A2

+ c33|A5|2A2 + c34(A1A4A5 +A3A5A6),

(9)

and the remaining fj , j = 3, . . . , 6 (we shall not need them explicitly) also follow from symmetry.
The BCC lattice supports three-wave interactions, e.g., k1 = k2 − k6 = k3 + k5, which explains the
occurence of the quadratic terms q(A2A6 + A3A5) in f1. For the coefficients λ, q and c31 we have
some analytic formulas which follow from, e.g., [VdWDB92], see also [CK99], namely

λ = δ(B −Bc) with δ =
A2

(A2 −R2)(R+ 1)
, q =

2A(1−R)

A2 −R2
, c31 =

8− 38R− 5R2 + 8R3

9R(A2 −R2)
. (10)
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Similar formulas can be derived for c32, c33 and c34, but we refrain from doing so, and instead will
use numerical values computed by the pde2path tool ampsys [UW19], which is designed to do suuch
computations with minimal user inpuut. 1

Quadratic and cubic terms are considered to be of the same order for the derivation of (8), and
this formally requires q to be small, which means R ≈ 1, cf. Remark 2.2. Moreover, [CK99]

c32/c31 → 2, c33/c31 → 2, c34/c31 → 2 as R→ 1, (11)

and c31 → −1 for the choice A = 2, which we fix in the numerics. However, we shall be interested in
1−R = O(1), and the deviations of c32, c33 and c34 from 2c31 turn out to be significant in this case.

The bifurcation diagrams for (8) with B close to Bc, have been discussed in detail in [CK97, CK99].
Here we restrict to those branches that fulfill Neumann BC on cuboid domains of the form Ω =
(−lx, lx) × (−ly, ly) × (−lz, lz) with lx = n1l, ly = n2l, lz = n3l, nj ∈ N/2 and l =

√
2π/kc. By (5)

and (7), this restricts (modulo phase-shifts, i.e., spatial translations by nl for some n ∈ N/2) the
admissible solutions to

(A1, A2, A3, A4, A5, A6) = (A1, A2, A2, A1, A2, A2),

where A1, A2 ∈ R fulfill

Ȧ1 = λA1 + 2qA2
2 + (αA2

1 + 2βA2
2)A1,

Ȧ2 = λA2 + 2qA1A2 + (βA2
1 + γA2

2)A2,
(12)

with the effective coefficients

α = c31 + c33, β = 2c32 + c34, γ = c31 + 2c32 + c33 + c34. (13)

In Table 1 we list these coefficients (together with further data explained below) for some chosen
values of R, for which we shall also run numerics on the full system (1).

Table 1: Landau coefficients and other data (see Remark 2.2) for (12), A = 2.

R δ q α β γ ε = Bc −Bf BM B̃M

1 2/3 0 -3 -6 -9 0 NA NA
0.75 0.665 0.29 -1.2 -5.95 -7.15 0.01 3.054 3.21
0.52 0.532 0.515 1.88 -5.1 -3.2 0.05 2.266 NA
0.4 0.476 0.625 4.7 -3.78 0.93 0.18 1.82 NA

Remark 2.1. We decrease R rather far from R = 1 to R = 0.4, and, moreover, will use (12) for
B − Bc = O(1). Each operation alone makes the applicability of (12) quite questionable. However,
some of the interesting results will occur in the strongly subcritical regime R = 0.4, and applying
(12) with care we get good predictions for these, while other effects cannot be captured. See, e.g.,
the discussion of Fig. 2 below, and [BMvS09] for a related discussion. c

2.2 Steady solutions

The solution A1 = A2 = Abcc
± of (12) with Abcc

± = − q
α+2β ±

√
q2

(α+2β)2
− λ

α+2β yields BCCs for (1) in

the form

wBCC = 2Abcc

[
cos(κ(x+ y)) + cos(κ(y + z) + cos(κ(x+ z))

+ cos(κ(x− y)) + cos(κ(y − z)) + cos(κ(−x+ z))

]
Φ + h.o.t.

, (14)

1In [UW19] we apply our tool to a variety of models and wave vector lattices, and cases with known coefficients such
as (10) are useful for checks of the implementation. Conversely, using ampsys on known cases is helpful to make sure
that, e.g., scalings of amplitudes are taken care of correctly. For instance, the formulas for q, c31 in [CK99] are different
from (10) because they are based on a different normalization of Φ.
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and naturally phase shifts in Aj correspond to translations in x, y, z, which we shall not distinguish
from (14). The BCC branch bifurcates supercritically if q = 0 (R = 1) and transcritically if q 6= 0
(R < 1), and has a fold in

Bf = Bc +
q2

(α+ 2β)δ
. (15)

The system (8) is equivariant under q 7→ −q and Ai 7→ −Ai, i = 1, . . . , 6, and this is naturally
inherited by (12). Depending on the sign of q, one direction of the BCCs has maxima of u1 in the
centers of the balls, and we call these ’hot’ balls, while in the other direction we have ’cold’ balls, see
Fig. 1(d,e). This classification is analogous to ’up’ and ’down’ hexagons (or ’spots’ and ’gaps’) in the
2D case.

(a) (b) tube (c) mixed (d) hot BCC (e) cold BCC

3.1 3.2 3.3

B

-0.1

0

0.1

0.2

0.3

A
1

R=0.75

10

8

Figure 1: (a) Solution branches of the amplitude system (12) for (1) with A = 2 and R = 0.75, as functions

of B, using λ = δ(B − Bc); trivial branch (blue), tubes (red), BCCs (black), and mixed modes (orange).

Stable parts in thicker lines. (b)-(d): sample solutions as reconstructed via (7) (with a phase-shift for better

illustration and h.o.t. truncated) from the labeled points in (a), i.e., from the mixed mode branch m1/pt20,

from the branch points connected by it, and from the cold BCCs. Isosurfaces w1 = −c (blue) and w1 = c (red)

on Ω = (−l, l)3, l =
√

2π/kc. c = 0.4 in (b)–(d), c = 0.1 in (e).

The other primary solution branch of (12) (i.e., of (8) and compatible with Neumann BCs) yields

’tubes’ (called ’squares’ in [CK97] and in much of the literature), i.e., A1 = Atube
± := ±

√
−λ
α , A2 = 0,

and these bifurcate in pitchforks. The associated solutions w of (6) are spatially homogeneous in z
direction, namely

wtube = 2Atube[cos(κ(x+ y)) + cos(κ(x− y))]Φ + h.o.t., (16)

see Fig. 1(b). From α in Table 1 we readily see that the bifurcation of the tubes changes from super–
to subcritical for R decreasing from 0.75 to 0.52.

For simplicity, we shall also denote the vectors ~A = (A1, A2) similarly, i.e.,

~Abcc
± := (Abcc

± , Abcc
± ) and ~Atube

± := (Atube
± , 0). (17)

For R 6= 1, both of these branches (families of branches, via symmetries), wBCC and wtube, are
unstable close to bifurcation. However, on the level of the amplitude equations, the BCCs stabilize
after the fold, and the tubes at an O(1) distance from onset, while the stable BCC branch again
destabilizes at O(1) distance, and there is an unstable mixed mode branch connecting the BCCs and
the tubes.

In Fig. 1(a) we illustrate the branching behaviour for R = 0.75 of three nontrivial branches of (12).
Additional to the BCCs (black) and tubes (red) there is the mixed mode branch (orange) connecting
tubes and BCCs between the points where these gain/loose stability, i.e., in their bistable range. In
particular, in the amplitude equations we get two bistabilities: (a) bistability of A = 0 and the Abcc

+

part below onset, and (b) bistability of Abcc
+ and Atube at O(1) distance above onset. This does in

general not mean that the associated solutions inherit these in the full system [CK01]. However, this
turns out roughly to be the case over sufficiently small domains (which may be significantly extended
in z). This motivates our main aim, i.e., to find snaking branches of localized BCCs, i.e., of fronts
between (a) BCCs and u = u∗, and (b) BCCs and tubes.
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Remark 2.2. (a) The reduced amplitude equations 12 have exactly the same structure as the am-
plitude equations for the three modes (A1, A2, A3) in the 2D case on a planar hexagonal lattice when
restricted to the subspace A2 = A3, see, e.g., [UW14, §3.1]. The 3D tubes and BCCs thus corre-
spond to 2D stripes and hexagons, respectively, and the stabilities within the amplitude system are
also equivalent. However, the stability and bifurcation structures of the associated solutions in the
original 2D vs 3D systems will in general be rather different.

(b) The 7th column of Table 1 indicates how the ’subcriticality’ ε := Bc − Bf = q2/((α + 2β)δ),
cf. (15), of the BCC branch increases with decreasing R. In, e.g., [CK09, DMCK11] it is explained
(for Swift–Hohenberg models) that the snaking width of branches of fronts connecting a subcritical
pattern and 0 is exponentially small in this subcriticallity ε, which for (1) means that we expect that
|Bl − Br| ∼ c1ε

−1e−c2/ε where c1, c2 are constants and Bl and Br denote the left and right ends of
the snaking range, respectively. Relatedly, the steepness of the fronts scales with ε, and hence the
required domain length with 1/ε. See also [UW14] for numerical illustrations of this phenomenon,
and [dW19] for further references and a transfer of the results from [CK09, DMCK11] to reaction
diffusion systems. Thus, if we assume that snaking branches between BCCs and u = u∗ exist, then
Table 1 also indicates that finding these should be more robust and less expensive at smaller R. The
8th column gives (for R < 1) the approximate Maxwell point between BCCs and 0 (see §2.3), and
the 9th column the one between BCCs and tubes (which for the used parameters only exists in the
second row). c

2.3 Maxwell points in the amplitude system

The amplitude system (12) also already contains the information to derive a necessary condition for
fronts between BCCs and zero, or BCCs and tubes to exist on the level of the amplitude equations
(12). If we assume a slow z dependence of the amplitudes A1, A2, then we can formally derive an
extension of (12) to

Ȧ1 = −d4∂4zA1 + λA1 + aA2
2 + b(32A

2
1 + 6A2)A1,

Ȧ2 = d2∂
2
zA2 + λA2 + aA1A2 + b(3A2

1 + 9
2A

2
2)A2.

(18)

The second order coefficient d2 is determined as d2 = −1
2(n(2) ·(0, 0, ∂k))2µ1(k) where n(j) = kj/‖kj‖2,

cf., e.g., [Pis06, §4.6]. For the mode A1e
ik1·x we have n(1) · (0, 0, ∂k) = 0 and hence must expand the

dispersion relation µ1(k) to 4th order around k1, yielding d4 = 1
4!∂

4
kµ1(kc). The system (18) has the

conserved quantity E = Ekin + F , i.e., d
dzE(A(z)) = 0, where

Ekin = d4

[
∂3zA1∂zA1 −

1

2
(∂2zA1)

2

]
+ d2(∂zA2)

2 (19)

can be considered as a kinetic energy, and

F =
1

2
λ(A2

1 + 2A2
2) + 2qA1A

2
2 +

α

4
A4

1 + βA2
1A

2
2 +

γ

2
A4

2 (20)

as a potential energy. Thus, a necessary condition for the existence of steady front solutions of (18),
connecting, e.g., ~Abcc

+ at z = −∞ with ~A = (0, 0) at z =∞, or ~Abcc
+ at z = −∞ with ~Atube, at z =∞,

is that the limit states (where ∂z = 0) have the same potential energy, i.e.,

F ( ~Abcc) = 0 for a heteroclinic between ~Abcc and (0, 0) (21)

F ( ~Abcc) = F ( ~Atube) for a heteroclinic between ~Abcc and ~Atube. (22)

These equalities only hold at specific points, the Maxwell points. As already said, for (1) we use B
as a bifurcation parameter, for fixed R = 0.75, R = 0.52 and R = 0.4 (and, for completeness, R = 1),
yielding the coefficients δ, q, α, β, γ from Table 1. In Fig. 2 we plot, for these vaues, F for the ~Abcc

and ~Atube branches as a function of B, which defines λ via λ = δ(B −Bc). This illustrates four main
things, and in the following section we use these (formal) results from the amplitude system (12) as
a guide to search for the associated solutions of the original system (1):
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• For R = 1, the bifurcations of the BCCs and tubes are supercritical, and the F–plots show that
no fronts between any of ~Abcc

+ , ~Atube and ~A = 0 can exist. Thus we also do not expect such
fronts in the full system, at least not near onset where we expect the amplitude equations to
make good predictions.
• For R = 0.75, there is a Maxwell point BM near B = 3.054 for a front between ~Abcc

+ and (0, 0).
However, the subcriticality is very weak and thus we should expect finding the associated fronts
(if they exists) in the original system (1) to be a delicate and expensive task, cf. Remark
2.2(b). For R = 0.75 there additionally exists a Maxwell point B̃M near B = 3.21 for a front
between ~Abcc

+ and ~Atube, and thus the possibility of steady fronts between wBCC and wtube in

this parameter regime. This prediction, in particular the quantitative value for B̃M , should only
be considered as a hint as we are relatively far from onset.
• For decreasing R the fold Bf (R) and the Maxwell points BM (R) move further away from Bc(R)

(cf. Table 1). Thus, if steady fronts between wBCC and wtube exist, then they should be easier
to find at smaller R.
• On the other hand, at R = 0.52 the pitchfork for ~Atube is subcritical, and we should not expect

the associated branch to make any reasonable predictions away from onset. In particular, while
the sub/vs supercritical branching behaviour of wtube is correctly predicted, the wtube branch
has a fold in (1) rather close to onset, and this behaviour can only be resolved by 5th order
amplitude equations, which we do not consider here.

(a) R = 1 (b) R = 0.75 (c) R = 0.52 (d) R = 0.4

4 4.1 4.2

B
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1
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3
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-3

F
bcc

F
tube
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8
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2.28 2.3

-2

0

2

4

10
-5

1.8 1.9 2

B

0

0.005

0.01

0.015

0.02

0.025

F
bcc

1.8 1.84

-2

-1

0

1

10
-3

Figure 2: Energy F for the BCCs ~Abcc
± and the tubes ~Atube (a,b) plotted as a function of B, where λ =

δ(B − Bc), values of R as indicated. The insets show a zoom near the primary bifurcation. The intersection

of F with F = 0 defines the (approximate) Maxwell points BM from Table 1, and the intersections of F in (b)

the Maxwell point B̃M . In (c,d) we omit F ( ~Atube) because any reasonable approximation of the tubes here

would need 5th order amplitude expansions.

3 Results for the full system

To illustrate/corrobate some results from the amplitude formalism, and to find snaking branches for
(1), we use pde2path [UWR14, Uec19c]. The approach is motivated by (and the results essentially
similar to) the results on snaking branches for 1D and 2D problems in [UW14, Uec19b], but as already
noted in the Introduction, the 3D case does present a number of significant numerical challenges.
Besides the obvious issue of higher numerical costs due to more degrees of freedom in the (discretized)
3D case, these challenges mainly include the branch switching at branch points of high multiplicity,
and, in particular over non-small small domains, problems with undesired ’branch jumping’ due to
many solution branches close to each other (more than in 1D and 2D). See [Uec19b, §3] for details
on how we deal with these problems. Here we only remark that:
• The branch switching proceeds by (numerically) deriving and solving the pertinent algebraic

bifurcation equations, which are essentially equivalent to the amplitude equations. No specific
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knowledge of the structure of the bifurcation problem is needed for this, but the user can (and
should) use the symmetries to make a selection of branches to be continued.
• To have reliable and fast numerics we stick to rather small domains; in particular, for fronts we

extend small x–y–squares in z–direction, i.e., choose long and slender bars. The typical number
of degrees of freedom in the results below is on the order of 105, and the residual tolerance as

Res := ‖G(u)‖∞
!
< 10−8, (23)

where G(u) is the FEM discretization of the right hand side of (1). Typical runtimes for
continuation of branches on an I7 laptop are, e.g., about 10 min for 50 points, including the
stability computation.

3.1 Fronts between BCCs and u∗

First we seek fronts between BCCs and u∗. Following Remark 2.2(b), this should be easier for smaller
R than for R close to 1. In Fig. 3 we start with R = 0.52 which is roughly the largest value for which
we find a snaking branch of a front between BCCs and u∗ on a domain as in Fig.3(e–g). We come
back to R = 0.75 in §3.2 where we consider the bistability range of BCCs and tubes.

(a) (b) (c) (d)

2.4 2.6 2.8

B

2.05

2.1

2.15

2.2

2.25

2.3

||
u

1
||

2

22

10

(e) (f) (g)

Figure 3: R = 0.52. (a) Branches of the BCCs (black) and tubes (magenta) for (1) over the cube Ω =

(−l, l)3 with l =
√

2π/kc and Neumann boundary conditions. The norm ‖u1‖2 is the normalized L2 norm(
1
|Ω|
∫

Ω
u1(x) dx

)1/2

. (b)–(d) sample plots from (a). (b) shows isosurfaces of u1, while (c,d) show u1 on the

surface on the domain. (e) Branches of the homogeneous solution (blue), the BCCs (black), and localized BCCs

(red) over the domain Ω = (−lx, lx)× (−ly, ly)× (−lz, lz) with lx = ly =
√

2π/(2kc) and lz = 4
√

2π/kc. (f) u1

for BCCs near onset. (g) u1 for point 72 in (e).

Figure 3(a) shows the bifurcation diagram of BCCs and tubes on a small cube (8 times the minimal
domain, i.e., Ω = (−l, l)3 with l =

√
2π/kc), and (b)–(d) shows sample plots. The BCC branch
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qualitatively (and also quantitatively) agrees with the predictions from (12). The tubes (magenta)
bifurcate subcritically (as predicted), but in the full system have a fold close to the bifurcation and
hence can only be approximated close to onset. In (e)–(g) we focus on the subcritical range. The
snaking red branch bifuractes from the BCCs (black branch) close to onset, and corresponds to a
front between BCCs and u∗. In the snaking region around B = 2.25, which is reasonably close to the
Maxwell point prediction BM = 2.266, it alternates between stable and unstable parts, and in each
pair of folds an additional layer of BCCs is added.

To increase the narrow snaking region in Fig. 3, we lower R further to R = 0.4 in Fig. 4. The
branch of localized BCCs bifurcates from the BCC branch near onset as before, but is now to the right
of the Maxwell point prediction BM = 1.82. However, during the snaking the localized BCCs change
their wave lengths in z direction and terminate in a pitchfork bifurcation on a branch corresponding
to cubes of the form (modulo a phase shift in x, y)

w = 4A∗[cos(κ(x+ y)) + cos(κ(x− y)) + cos(κy + κ̃z)]Φ + h.o.t. (24)

with κ = kc/
√

2 and κ̃ = 9κ/8. Such shifts to patterns with slightly different |k| (sideband patterns),
and associated shifts to different Maxwell points, are also known from 1D and 2D, cf., e.g., [UW14,
dW19] and the references therein.

(a) (b) pt1 (c) pt37 (d) pt90

Figure 4: R = 0.4. (a) Homogeneous branch (blue), BCCs (black), slightly distorted balls (grey), and localized

BCCs (red), Ω = (−l, l)2 × (−4l, 4l) with Neumann BC. The snaking red branch bifurcates from the BCCs

shortly after the primary bifurcation and reconnects to the distorted cubes. (b), (c), (d) shows sample solutions

from the labels in (a).

3.2 Fronts between BCCs and tubes

In §2.3 we explained that for R = 0.75 the amplitude equations (12) also predict mixed mode branches
(orange branch in Fig. 1(a)), and suggest the existence of fronts between BCCs and tubes, cf. Fig.2(b).
However, these occur at O(1) distance from onset, and hence such predictions should be taken with
caution. In Fig. 5(a) we show the BCCs (black), tubes (magenta) and mixed modes (orange) for (1)
with R = 0.75 over the cube Ω = (−l, l)3, l =

√
2π/kc. This confirms the predictions from Fig. 1 over

this small domain, and we may extend these periodic patterns over the boundaries to obtain the same
patterns and branches over larger domains. However, it turns out that even the reliable continuation
of the BCC branch to B − Bc = O(1) over extended domains is a delicate task, and requires fine
meshes and strict settings for the algorithm pmcont designed to mitigate undesired branch switching,
see [Uec19b, §3.3].

Therefore we proceed differently to explore the range B ≈ B̃M for fronts between BCCs and tubes
over long and slender bars, aiming to find snaking branches of fronts between BCCs and tubes. Figure

9
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Figure 5: R = 0.75. (a1) BD of (primary) BCCs (black), tubes (magenta), and mixed modes (orange) over

the cube Ω = (−l, l)3, l =
√

2π/kc, cf. Fig. 1. Here we plot max(u1) because in the ’standard norm’ ‖u1‖ the

three branches are close to each other in the bistable range 3.17 < B < 3.42. (a2) Sample plot on the mixed

mode branch. (b) Initial condition (25) for the DNS to obtain a tube–to–BCC front; Ω = (−l, l)2 × (−lz, lz),

where l = π/(
√

2kc) and lz = 12l. (c1) Initial evolution of Res(u(t)) for the DNS. (c2) BD of a narrow snake of

fronts between (distorted) BCCs and tubes. The starting point uf (pt1, see (d))) on that snake was obtained

from DNS followed by a Newton loop. (e)–(g): Sample plots from the continuation into the direction of tubes

(e,f) and spots (g).

5(b) shows an initial condition IC of the form

u1(x) =

{
uBCC,1 z > 5
utube,1 z ≤ 5

, (25)

composed of the primary BCCs above the interface at z = 5, and tubes below, while while u2 is
simply set to the homogeneous value u2 = u∗2 = B/A. The domain is Ω = (−l, l)2 × (−lz, lz), where
l = π/(

√
2kc) and lz = 12l. Additionally, we choose rather carefully (see below) the value B = 3.3633.

Starting with this initial condition, direct numerical simulation (DNS) slowly decreases the residual
Res(u(t)) defined in (23), see (c1). However, this decrease is in general not monotonous, and the
BCCs actually change their wave vector. Nevertheless, after the transient (at, e.g., t = 25) we can
run a Newton loop on the stationary problem, and converge to the solution uf illustrated in (d). This
is a (stable, as it is essentially obtained from DNS) stationary front between BCCs on top and tubes
at the bottom, but similarly to Fig. 4, the BCCs are clearly not the primary BCCs belonging to (5),
but distorted, i.e., of the form (24) with κ̃ = 1.5κ. Next we continue uf in B, and obtain the (narrow
and short) snake shown in (c2). In one direction (brown part), the spots recede (sample plots (e,f))
as the parameter varies, and in the other direction (red part), the spots expand (sample plot (g)). In
both directions, the branch eventually reconnects to the mixed mode branch between the tubes and
the BCCs with κ̃ = 1.5κ (not shown).

The snake in Fig. 5 is rather narrow, and the starting point was obtained by a careful choice of B
for the DNS. In Fig. 6 we illustrate the “typical” behaviour of DNS for ICs of the form (25), which
also explains the idea how to find B for Fig. 5. We use the same domain and IC as in Fig. 5, and in
(a,b) use B = 3.6. The initial dynamics then is very similar to that in Fig. 5, i.e., the solution evolves
towards a (distorted) BCC-tubes fronts. However, once the solution is “near the snake” from Fig. 5,
the BCC part continues to grow in time in a stick–slip motion [BK06], which can also be seen in the
time-series of the residual in (a). If we use the solution from t = 200 to start a Newton loop for the
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stat.problem, then this gives convergence to the (distorted) BCC solution. Alternatively, continuing
the DNS we also converge to this BCC after a very long transient. On the other hand, in (c,d) we
choose B = 3.3 to the left of the snake, and obtain convergence to the tubes, again with a (transient)
stick-slip dynamics, and the same happens (faster) at the Maxwell point prediction B̃M ≈ 3.21.
If snaking branches containing stable steady fronts exist, then such simulations give a hint for the
right parameters to find them, and that is how we found the B value for Fig. 5 with some trial and
error. In particular, the Maxwell point prediction B̃M ≈ 3.21 from table 1 was rather “far off”. A
certain deviation was expected a priori as we are at O(1) distance from criticality. Additionally, and
a posteriori, we see that B̃M ≈ 3.21 was irrelevant as it is the Maxwell point prediction for fronts
between BCCs and tubes, and not the κ̃ = 1.5κ distorted BCCs and tubes obtained in the DNS.
We could, e.g., a posteriori change the z wave number of the BCCs in the IC to start closer to uf .
This then also allows to directly go to uf by a Newton loop for the steady problem. However, Fig. 5
illustrates that very good initial guesses are often not necessary, and instead rather poor initial guesses
can be first improved by DNS.

In summary, the predictions from §2.3 are useful as they motivate the search for fronts and give
hints for good parameter regimes. Of course, finding such fronts via DNS needs the existence of
steady localized patterns of the desired form, and is easier and more robust if the (desired) snake is
wide. On the other hand, in pattern forming systems such as (1) we may expect a (large) variety
of (stable) steady patterns far from onset, and this increases the chances to converge towards some
localized patterns. One more example is given in the next section, where at R = 1 lamellas enter the
game.

(a) (b) (c) (d)
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Figure 6: R = 0.75. Illustration of DNS for choices of B outside the snaking range. For B = 3.6 (right of the

snake from Fig. 5) the solution converges to a BCC solution in a long transient with stick-slip motion (a,b).

For B = 3.3 (left of the snake) the tubes win (c,d).

3.3 R = 1: The comeback of the Lamellas

In Fig. 7 we illustrate some typical results for (1) at R = 1. In (a) we show the BD over the a
’moderately’ long bar. The BCCs and tubes now both bifurcate in supercritical pitchforks, with the
tubes stable. Addtionally, we show the next two bifurcating branches. The orange branch consists of
elongated cubes, and the green branch are κ = 1.5kc lamellas

wlam ∼ cos(κz) with κ = 1.5kc, (26)

which we did not consider in §2 as they do not bifurcate at the primary bifurcation, but (on the given
domain) at the third bifurcation point from the u = u∗ branch. These lamellas become stable at
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B = Bl ≈ 4.06, on this domain, but similarly also on much longer domains.
Thus, we now have a bistable range between tubes and lamellas, and the lamellas turn out to play

a crucial role in the DNS, as illustrated in (b,c). We set B = 4.2, and again use an initial condition
of type (25). Though there are no lamellas in the initial condition, the solution initially (till t = 100,
say), relaxes to a ’double–front’ from lamellas to tubes with a distinct ball like interface in between.
This front then propagates downwards in a stick–slip motion (see the lower time series in (b)) but
with essentially fixed shape.2 A similar behaviour occurs at other values of B (B > Bl) and other
initial conditions, i.e., for R = 1 the lamellas always win on domains of the type considered here.

(a) (b) (c) (d)
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Figure 7: R = 1, hence kc = 1. (a) Bifurcation diagram of BCCs (black) and tubes (magenta), over the

domain Ω = (−lx, lx)2 × (−lz, lz), lx = π/
√

2, lz = 4lx, including the next two branches on this domain, with

example plots of the 5th points in (b), the 1.5kc lamellas in green. The tubes are stable throughout, and the

lamellas are stable for B > Bb ≈ 4.06, and this remains true over longer bars, i.e., lz = mlx with m ≥ 5. (c,d)

DNS at B = 4.2 with an initial condition as in (25), Ω = (−lx, lx)2× (−lz, lz), lz = 12lx. Evolution to a moving

front between lamellas and tubes.

4 Discussion

We numerically studied patterns in the 3D Brusselator over boxes with Neumann BCs, specifically
aiming at snaking branches of steady fronts between patterns, which can also be seen as approxima-
tions of localized patterns. The basic idea is as in 1D and 2D [UW14], namely to look for bifurcations
from subcritical branches of patterns, or from mixed mode branches. However, the numerical chal-
lenges are significant. In 3D, pattern forming systems allow a much larger variety of steady patterns
than in 1D or 2D. The problem is already quite complicated near onset, but on “nice domains” (e.g.,
small cuboids with Neumann BCs) the main branches can be found from (simplified and reduced)
amplitude equations. Farther from onset, there typically is a multitude of patterns, in particular if the
domain is not very small, and this makes (numerical) continuation and bifurcation analysis (much)
harder than in 1D or 2D, essentially due to uncontrolled branch jumping in the continuation.

Therefore we focussed on the simplest situations of small domains in the form of long but slender
rods, with an underlying BCC lattice, and thus on specific localized patterns, namely localized BCCs,
and fronts between BCCs and tubes (or localized BCCs embedded in a background of tubes or vice
versa). Over larger domains we expect a huge variety of additional localized patterns, similar to but
still extending the 2D examples in, e.g., [UW14, Wet18]. However, even for the minimal domains

2The fixed shape appears to be another effect of locking due to the periodic pattern, as for double fronts between
homogeneous states one would generically expect the middle state to expand or shrink. See, e.g., [CM99] for another
striking example of such double-fronts, namely a ’roll belt’ ahead of hexagons invading the zero solution in a damped
Kuramoto-Sivashinsky equation.

12



used, the search for localized patterns via continuation and bifurcation (as we did for the localized
BCCs in Figs. 3 and 4) is rather delicate. Instead, we found it more robust and efficient to obtain
starting points for the continuation of BCC-to-tubes fronts by DNS, using the Maxwell point of the
amplitude system as guide for promising parameter regimes. Finally, we gave one example of a moving
front between lamellas and tubes. It should be interesting to see whether any such localized patterns
can be realized experimentally, as, e.g., the 3D Turing patterns presented in [BJVE11].
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