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Abstract

We consider cubic Klein-Gordon equations on infinite two-dimensional periodic metric

graphs having for instance the form of graphene. At non-Dirac points of the spectrum,

with a multiple scaling expansion Nonlinear Schrödinger (NLS) equations can be derived

in order to describe slow modulations in time and space of traveling wave packets. Here

we justify this reduction by proving error estimates between solutions of the cubic Klein-

Gordon equations and the associated NLS approximations. Moreover, we discuss the

validity of the modulation equations appearing by the same procedure at the Dirac points

of the spectrum.

1 Introduction

In [GPS16], with a multiple scaling expansion the NLS equation and the Dirac equations have

been derived as effective equations for the description of slow modulations in time and space

of traveling oscillating wave packets on infinite one-dimensional periodic metric graphs such as

the necklace graph. The associated NLS approximation and Dirac approximation have been

justified by error estimates.

It is the goal of this paper to transfer the results from [GPS16] from one-dimensional (1D)

to two-dimensional (2D) periodic metric graphs, where we concentrate on the most prominent

2D periodic metric graph, namely the honeycomb graph, which reminds of the hexagonal form

of graphene. The approximation result for the NLS approximation is given in Theorem 7.1 and

the approximation result for the counterpart to the Dirac approximation is given in Theorem

8.1. At a first view the transfer seems rather straightforward, but on a second view various

new challenges occur.

First, in 1D the spectral curves at the Dirac points are smooth and a Taylor expansion of

those is possible, whereas in 2D the spectral surfaces at the Dirac points form a cone and so
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no Taylor expansion of the spectral surfaces is possible. In Section 8 we get rid of this problem

by extracting other smooth two-dimensional structures.

Secondly, for the derivation and justification of modulation equations, such as the NLS

equation and the Dirac equations, in periodic media Bloch transform turned out to be a

fundamental tool. For the 1D necklace graph it is straightforward how to Bloch transform

the original nonlinear PDE posed on the 1D necklace graph. However, in order to apply the

existing theory for the derivation and justification of modulation equations in periodic media

to the 2D honeycomb graph we have to Bloch transform the original nonlinear PDE over a

Brillouin zone which is a torus. For the hexagonal graph the standard cell is trapezoidal. Since

we work with metric graphs, we can use the fact that with this respect the honeycomb graph

is equivalent to the brick graph which easily can be Bloch transformed over a 2D torus as

Brillouin zone. See Section 2 and Section 6.

Thirdly, since our theory is L2-based, due to the scaling property of the L2-norm, in 1D

we lose O(ε−1/2) in the residual estimates, but in 2D we lose O(ε−1), where 0 < ε � 1 is the

small perturbation parameter occurring in the derivation of the modulation equations. As a

consequence of this loss, higher order terms have to be added to the approximation. One has

to be careful in doing so for metric graphs due to the Kirchhoff boundary conditions at the

vertices, cf. Section 2, in order to avoid an unwanted loss of regularity. See Section 7.3.

Finally, we consider a cubic Klein-Gordon (cKG) equation instead of a NLS equation as

in [GPS16] as original system on the metric graph and to our knowledge prove a first local

existence and uniqueness result for the cKG equation posed on a periodic metric graph, see

Section 5.

The plan of the paper is as follows. In Section 2 we define what is meant by posing the cKG

equation on a honeycomb graph and explain that it is advantageous to consider the associated

nonlinear initial value problem on the equivalent brick graph. In Section 3 we recall spectral

properties of the Laplacian on the honeycomb/brick graph. We explain in Section 4 for two

other 2D periodic metric graphs how they can be handled with our approach. In Section 5

we use semigroup theory and suitable function spaces for a local existence and uniqueness

result. In Section 6 we derive a Bloch wave representation of the cKG equation on the periodic

brick graph. This representation is the basis of the derivation of effective amplitude equations

in Section 7 for non-Dirac points of the spectrum and in Section 8 for Dirac points of the

spectrum.

Notation. We denote with Hs(Rd) the Sobolev space of s-times weakly differentiable func-

tions whose derivatives up to order s are in L2(Rd). The norm ‖u‖Hs for u in the Sobolev space

Hs(Rd) is equivalent to the norm ‖(1−∆)s/2u‖L2 in the Lebesgue space L2(Rd). Throughout

this paper, many different constants are denoted by C, if they can be chosen independently of

the small perturbation parameter 0 < ε� 1.
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the Deutsche Forschungsgemeinschaft DFG through the Research Training Center GRK 1838

“Spectral Theory and Dynamics of Quantum Systems”.
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2 The cKG equation on a honeycomb/brick graph

We are interested in the nonlinear dynamics of modulated waves on graphene like quantum

graphs. We consider the cubic Klein-Gordon (cKG) equation

∂2
t u = ∆u− u− u3, t ∈ R, ξ ∈ Γ, u : R× Γ→ R, (1)

on the periodic metric graph Γ̃ in Figure 1(a). Equation (1) can be seen a phenomenological

model describing electromagnetic waves on graphene like wave guides.

A metric graph is a network of one-dimensional bonds (or edges) of certain lengths, con-

nected at the vertices. As a metric graph, Γ̃ is equivalent to the brick graph Γ plotted in Figure

1(b), because angles between bonds are irrelevant in this context. The hexagonal geometry of

Γ̃ motivates coordinates that allow a simple analytical solution of spectral problems for typical

Schrödinger operators on Γ̃, see [KP07] and below. Our representation Γ makes such spectral

problems somewhat more complicated, because we essentially have to choose a fundamental

cell which is four times bigger than the one for Γ̃, but we believe that the nonlinear problems

we consider are more transparent in the rectangular coordinates used in Γ. See Remark 3.3

for further comments.

The graph Γ can be described as

Γ = Γx ⊕ Γy, with Γx = ⊕n∈Z,m∈Z,m+n∈2Z+1Γxm,n and Γy = ⊕n∈Z,m∈ZΓym,n,

where Γxm,n is the horizontal link of length π between the points ξ = (x, y) = (mπ, nπ) and

ξ = ((m+1)π, nπ), and Γym,n is the vertical link of length π between the points (mπ, nπ) and

(mπ, (n+ 1)π). For a function u : Γ→ C, we denote the part on Γxm,n with uxm,n and the part

on Γym,n with uym,n.

(a) (b)

(0, 0) •
(0, π)•

Figure 1: (a) A graphene like metric graph, and (b) the associated equivalent metric “brick”

graph with the indices of two vertex points. For both graphs we take the edge lengths π

The second-order differential operator L = −∆ + 1 is given by −∂2
x + 1 on Γxm,n, and by

−∂2
y + 1 on Γym,n. We use Kirchhoff conditions at the vertex points V = {(x, y) = (mπ, nπ) :

m,n ∈ Z}, which are given by the continuity of the functions and of the fluxes at the vertices.

For m+ n odd we have

uxm,n(mπ, nπ) = uym,n(mπ, nπ) = uym,n−1(mπ, nπ), and (2)

∂xu
x
m,n(mπ, nπ) + ∂yu

y
m,n(mπ, nπ)− ∂yuym,n−1(mπ, nπ) = 0. (3)
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For m+ n even we have

uxm−1,n(mπ, nπ) = uym,n(mπ, nπ) = uym,n−1(mπ, nπ), and (4)

∂xu
x
m−1,n(mπ, nπ)− ∂yuym,n(mπ, nπ) + ∂yu

y
m,n−1(mπ, nπ) = 0. (5)

We introduce the functions

ux(x, y) =

{
uxm,n(x, y), (x, y) ∈ Γxm,n, m+ n odd,

0, elsewhere,

uy(x, y) =

{
uym,n(x, y), (x, y) ∈ Γym,n,

0, elsewhere,

collect ux and uy in the vector U = (ux, uy), and rewrite the evolutionary problem (1) as

∂2
tU = ∆U − U − U3, t ∈ R, ξ ∈ Γ \ V , (6)

with the conditions (2)-(5) at the vertex points. The cubic nonlinear term U3 stands for the

vector ((ux)3, (uy)3).

3 The spectral problem

We are interested in the dynamics of modulated waves of small amplitude. Thus in the deriva-

tion of effective equations the linearized problem plays a fundamental role. The linearization

of (6) at U = 0 reads

∂2
tU = −LU := ∆U − U, (7)

i.e., LU = −∆U+U together with the vertex conditions (2)–(5). Linear Schrödinger operators

on metric graphs, such as L and more general versions, have been studied extensively, see, e.g.,

[BK13]. Here we consider L in the space

L2 = {U = (ux, uy) ∈ (L2(Γ))2},

with the domain of definition

H2 := {U ∈ L2 : uζn1,n2
∈ H2(Γζn1,n2

), (2)− (5) are satisfied}.

We also need the intermediate space

H1 := {U ∈ L2 : uζn1,n2
∈ H1(Γζn1,n2

), (2) and (4) hold}.

The Hs norms on these spaces are

‖U‖Hs :=

( ∑
(ζ,n1,n2)

‖uζn1,n2
‖2

Hs(Γζn1,n2
)

)1/2

.

Problem (7) is solved by so called Bloch modes

U(t, x, y) = eiωteikxeilyf(k, l, x, y), k, l ∈ R, (x, y) ∈ Γ, (8)
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where f = (fx, f y) satisfies

f(k, l, x, y) = f(k, l, x+ 2π, y) = f(k, l, x, y + 2π), (9)

f(k, l, x, y) = f(k + 1, l, x, y)eix = f(k, l + 1, x, y)eiy. (10)

Due to (9) and (10) we can restrict ourselves to the Brillouin zone (k, l) ∈ T2
1, and for fx to

x ∈ T2π and y ∈ {0, π}, and for f y to y ∈ T2π and x ∈ {0, π}. The torus T1 is isometrically

parameterized with k or l ∈ [−1/2, 1/2] and the torus T2π with x or y ∈ [0, 2π], where the

endpoints of the intervals are identified to be the same. Hence, f can be found as a solution

of the eigenvalue problem

−(∂x + ik)2fx(k, l, x, y) + fx(k, l, x, y) = ω2(k, l)fx(k, l, x, y), for x ∈ T2π, (11)

−(∂y + il)2f y(k, l, x, y) + f y(k, l, x, y) = ω2(k, l)f y(k, l, x, y), for y ∈ T2π, (12)

subject to the following vertex conditions. For odd m+ n we have

fxm,n(k, l,mπ, nπ) = f ym,n(k, l,mπ, nπ) = f ym,n−1(k, l,mπ, nπ), and (13)

(∂x + ik)fxm,n(k, l,mπ, nπ) + (∂y + il)f ym,n(k, l,mπ, nπ)

− (∂y + il)f ym,n−1(k, l,mπ, nπ) = 0, (14)

and for even m+ n we have

fxm−1,n(k, l,mπ, nπ) = f ym,n(k, l,mπ, nπ) = f ym,n−1(k, l,mπ, nπ), and (15)

(∂x + ik)fxm−1,n(k, l,mπ, nπ)− (∂y + il)f ym,n(k, l,mπ, nπ)

+ (∂y + il)f ym,n−1(k, l,mπ, nπ) = 0. (16)

Due to (9) and (10) we can restrict the function f to the (fundamental) cell

Γb = ⊕(ζ,n1,n2)∈IbΓ
ζ
n1,n2

,

cf. Figure 1 and Figure 2(a), with the index set

Ib = {(x, 1, 0), (x, 0, 1), (y, 1, 0), (y, 1, 1), (y, 2, 0), (y, 2, 1)}. (17)

Together, for fixed k, l ∈ T1, (11)–(16) define the eigenvalue problem

L̃(k, l)f = λ(k, l)f, (18)

where λ(k, l) = ω2(k, l). For fixed k, l ∈ T1, we define

L2
Γ := {Ũ = (ũζn1,n2

)(ζ,n1,n2)∈Ib ∈ (L2(T2π))6 : supp(ũζn1,n2
)⊂Γζn1,n2

} (19)

and

H2
Γ(k, l) := {Ũ ∈ L2

Γ : ũj ∈ H2(Γζn1,n2
), (ζ, n1, n2) ∈ Ib, (13)− (16) are satisfied},

equipped with the norm

‖Ũ‖H2
Γ(k,l) =

 ∑
(ζ,n1,n2)∈Ib

‖ũζn1,n2
‖2

H2(Γζn1,n2
)

1/2

.

Similar to [GPS16, Lemma 2.2] we obtain the following result.
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Lemma 3.1. For fixed k, l ∈ T1, the operator L̃(k, l) : H2
Γ(k, l) → L2

Γ is self-adjoint, positive

definite, and has compact resolvents.

By Lemma 3.1 and the spectral theorem for self-adjoint operators with compact resolvents,

for each k, l ∈ T1 there exists a Schauder basis {f (m)(k, l, ·, ·)}m∈N of L2
Γ consisting of eigen-

functions of L̃(k, l) with positive eigenvalues {λm(k, l)}m∈N, ordered as λm(k, l) ≤ λm+1(k, l).

By construction, the λm are periodic w.r.t. k and l, and the Bloch wave functions satisfy (9)

and (10), and the orthogonality and normalization relations

〈f (m)(k, l, ·, ·), f (m′)(k, l, ·, ·)〉L2
Γ

= δm,m′ , k, l ∈ T1. (20)

Via the λm we find ω = ω(±m) with ω(m) =
√
λm and ω(−m) = −ω(m).

(a) (b) (c)

Γx0,1

Γy1,0 Γy2,0

Γy1,1 Γy2,1

Γx1,0e

e

e

e
2

3

4

5

6

7

(k
,l
)

0.5

l
0.5-0.5

k
-0.5

Figure 2: (a) The basic cell. (b) A selection of spectral surfaces λm, and the flat band λ ≡ 5,

showing in particular five Dirac points, two at λ ≈ 3.25, one at λ = 5, and two at λ ≈ 7.25.

The colors of the bands are chosen to be consistent with those in (c), and the Brillouin zone T2
1

is slightly cut off in l for graphical reasons. (c) The spectral surfaces λ̃m, m = 0 (black), m = 1

(blue), and m = −1, associated to a minimal trapezoidal fundamental cell and associated

Brillouin zone T2
2, cf. (21), again with the flat band λ ≡ 5, cf. Remark 3.3 for a more detailed

explanation.

Additionally, let ΣD = {λ = k2 + 1 : k ∈ N} denote the set of Dirichlet eigenvalues of

−∂2
x + 1 on (0, π). Then each λ ∈ ΣD yields an eigenvalue λ of L of infinite multiplicity, with

eigenspaces generated by so called simple loops which are localized in a single hexagon, see

[KP07, Lemma 3.5]. By linear combinations of these localized eigenfunctions an associated

Bloch mode representation can be constructed. Therefore, horizontal planes occur in the

spectral picture plotted in Fig. 2(b), which shows a selection of spectral surfaces λm(k, l). For

some λm there appear conical singularities at certain so called Dirac points (k, l) ∈ T2
1. See

Remark 3.3 for further comments. In summary, we have, cf. [KP07, Theorem 3.6].

Theorem 3.2. The spectrum σ(L) consists of the spectral surfaces T2
1 3 (k, l) 7→ λm(k, l),

m ∈ N (absolutely continous spectrum), and the eigenvalues ΣD of infinite multiplicity.
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Remark 3.3. a) As already said above, the spectral problem can be analyzed more efficiently

on the original hexagonal graph Γ̃ by choosing a minimal trapezoidal fundamental cell [KP07].

Transfering the analysis from [KP07] to our case (bond lengths π, potential q0 = 1, cf. d)), we

obtain that the spectral surfaces λ 6∈ ΣD are given by

λm(k, l) = 1 +

(
1

π
arccos(F (k, l)/3) +m

)2

, m ∈ Z, (21)

see Fig. 2(c), where F (k, l) = |1 + eiπk + eiπl|, and k, l are quasimomenta associated to non–

orthogonal directions, e.g., e1 = (
√

3/2, 1/2) and e2 = (0, 1). The function F has range [0, 3]

with minima at (k, l)min = ±(2/3,−2/3) and a maximum at (k, l)max = (0, 0), yielding Dirac

points. Similar fairly explicit results on dispersion relations for other periodic quantum graphs

associated to tilings of the plane such as triangular graphs and trihexagonal (or Kagome)

graphs are given in [LJL19], again based on non-rectangular fundamental cells.

However, such non-orthogonal coordinates make the treatment of nonlinear terms (see

below) in momentum space somewhat inconvenient, and we believe that our results on the

nonlinear problems are easier interpreted in the orthogonal coordinates x, y. For these reasons

we prefer to work on Γ. We remark that ’distorted’ hexagonal graphs (of unequal side-length)

also fit into this framework via rescaling of side-lengths, and that subsequently we comment

on two other periodic quantum graphs which can be treated similarly, namely the rectangular

graph (trivially), and the triangular graph, cf. Examples 4.1 and 4.2.

b) To (numerically) compute the dispersion relation in Fig. 2(b) we proceed as follows.

On Γx0,1 and Γx1,0 we have the ODE (11), while on the remaining bonds (12) applies. For (11)

we choose a fundamental system φ0, φ1, and for (12) we choose ψ0, ψ1, which depend on k

and l, respectively. The solutions fx0,1, f
y
1,1, . . . , f

y
2,1 are then written as fx0,1 = α1φ0 + β1φ1,

f y1,1 = α2ψ0 + β2ψ1, . . . , f
y
2,1 = α6ψ0 + β6ψ1, such that the vertex conditions (13)–(16) lead to

a 12-dimensional system M(k, l, ω)Φ = 0 for the unknown coefficients Φ = (α1, β1, . . . , α6, β6)

with nontrivial solutions if and only if

detM(k, l, ω) = 0. (22)

This can be simplified considerably, starting with a smart choice of the fundamental system(s).

For the different and simpler choice of the fundamental cell, this is done in [KP07], leading

to the analytic solution in (21), and similarly in [LJL19]. However, to obtain Fig. 2(b) we

simply solve (22) numerically, starting with different initial guesses for λ(k, l) to obtain the

given selection of surfaces.

c) Alternatively to (8) one can consider Bloch modes of the form f(k, l, x, y) with cyclic

boundary conditions

f(k, l, x+ 2π, y) = e2πikxf(k, l, x, y) and f(k, l, x, y + 2π) = e2πilyf(k, l, x, y),

f(k + 1, l, x, y) = f(k, l + 1, x, y) = f(k, l, x, y),
(23)

in which case the associated linear problem is (11)–(16) with ∂x + ik and ∂y + il reset to ∂x
and ∂y, respectively. This for instance yields a slightly simpler calculus for the fundamental

systems on the edges. One advantage of our ansatz (8) is a simpler isomorphism property of

the associated Bloch transform stated in Lemma 6.1.
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d) Instead of −∂2
x + 1 on the edges we could also consider −∂2

x + q0 with a potential q0 ≥ 0,

or even more generally q0 ∈ L2((0, 2π)) non-negative and even, i.e., q0(2π − x) = q0(x), see

[KP07]. The numerics as in b) work as long as we can find a fundamental system for the ODEs

on the bonds. However, in order to not proliferate symbols we set q0 = 1.

e) The flux vertex conditions (3) and (5) are often generalized to so called δ vertex conditions

[BK13] of the form
∑N

j=1 u
′
j = δu, assuming that N edges meet in a vertex with suitable

orientations of x for incoming and outgoing edges. This can also be modified to so called δ′

vertex conditions, and the only restriction is that L stays self–adjoint. In many of these cases,

a similar spectral analysis as above holds. However, here we are interested in the nonlinear

problem (6), and for δ 6= 0 the corresponding space H2
Γ is no longer closed under multiplication,

and therefore we stick to (3), (5), i.e., δ = 0.

4 Two other examples

We give two more examples of 2D periodic metric graphs for which the analysis of the present

paper applies. For the first one this is trivial, but the second one shows that a treatment with

rectangular fundamental cells is possible for, e.g., all the metric graphs treated in [LJL19], i.e.,

for instance also for the trihexagonal (Kagome) graph. We emphazise that the procedure is

useless for the linear problems, which can be treated more efficiently using non-rectangular

fundamental cells, and that our transform to axis-parallel bonds is exclusively motivated by

the nonlinear problems.

Example 4.1. (The square graph) The periodic metric graph Γ from Fig. 3(a) can be

expressed as

Γ = Γx ⊕ Γy, with Γx = ⊕n∈Z,m∈ZΓxm,n and Γy = ⊕n∈Z,m∈ZΓym,n,

where Γxm,n represents the horizontal link of length 2π between the points (2πm, 2πn) and

(2π(m + 1), 2πn) and where Γym,n represents the vertical link of length 2π between the points

(2πm, 2πn) and (2πm, 2π(n+ 1)). For a function u : Γ→ C, we denote the part on Γxm,n with

uxm,n and the parts on Γym,n with uym,n.

The second-order differential operator −∆+q0, with q0 ≥ 0 a constant, is given by −∂2
x+q0

on Γxm,n and by −∂2
y + q0 on Γym,n. The Kirchhoff boundary conditions at the vertex points

{(x, y)=(2πm, 2πn) : m,n∈Z} are now

uxm,n(2πm, 2πn) = uxm−1,n(2πm, 2πn) = uym,n(2πm, 2πn) = uym,n−1(2πm, 2πn), (24)

∂xu
x
m,n(2πm, 2πn)−∂xuxm−1,n(2πm, 2πn)+∂yu

y
m,n(2πm, 2πn)−∂yuym,n−1(2πm, 2πn)=0. (25)

Again we introduce the functions

ux(x, y) =

{
uxm,n(x, y), (x, y) ∈ Γxm,n,

0, elsewhere,
uy(x, y) =

{
uym,n(x, y), (x, y) ∈ Γym,n,

0, elsewhere,

collect ux and uy in the vector U = (ux, uy), and rewrite the evolutionary problem (1) as

∂2
tU = ∆U − q0U − U3 = 0, t ∈ R, (x, y) ∈ Γ \ (2πZ)2, (26)
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(a) (b)

Figure 3: A square periodic metric graph Γ (a), and exampe spectral surfaces (b), see (27).

subject to the conditions (24)-(25) at the vertex points (x, y) ∈ (2πZ)2, and where the cubic

nonlinear term stands for the vector U3 = ((ux)3, (uy)3). Now we can proceed exactly as above.

For instance, for q0 = 0 (cf. Remark 3.3(d)), the spectral surfaces λm = ω2
m are obtained from

ωm(k, l) =
1

2π
arccos(

1

2
(cos(2πk) + cos(2πl))) +

m

2
, m ∈ N, (27)

together with flat bands λ = (m/2)2,m ∈ N, see [Exn95], and Fig. 3(b) for a sketch. Obviously,

rectangular graphs can be treated in the same way.

Example 4.2. (The triangle graph) Figure 4 shows a triangle graph and a possible rep-

resentation in rectangular coordinates, for which we choose as fundamental cell Γ1 ∪ . . . ∪ Γ6

consisting of Γ1 connecting (0, 0) with (2π, 0), Γ2 connecting (0, 0) with (0, 2π), Γ3 connect-

ing (0, 0) with (π, 0), Γ4 connecting (π, 0) with (π, π), Γ5 connecting (π, π) with (2π, π), and

Γ6 connecting (2π, π) with (2π, 2π). The parts Γ1 and Γ2 will be identified with the interval

[0, 2π], the parts Γ3 and Γ4 with the interval [0, π], and the parts Γ5 and Γ6 with the interval

[π, 2π]. The part of the solution living on Γj is denoted by uj. We obtain the following Bloch

transformed eigenvalue problem

(∂x + ik)2u1 − u1 = −ω2u1, on Γ1,

(∂y + il)2u2 − u2 = −ω2u2, on Γ2,

(
√

2∂x + ik)2u3,5 − u3,5 = −ω2u3,5, on Γ3,5,

(
√

2∂y + il)2u4,6 − u4,6 = −ω2u4,6, on Γ4,6,

where the scaling in the last two equations comes from the scaling of the diagonal to come

from the original graph to the equivalent graph, i.e., x̃ =
√

2x implies ∂x̃ =
√

2∂x. The vertex

conditions then are

u1(0, 0) = u2(0, 0) = u3(0, 0) = u1(2π, 0) = u2(0, 2π) = u6(2π, 2π),

u3(π, 0) = u4(π, 0), u4(π, π) = u5(π, π), u5(2π, π) = u6(2π, π),

∂xu3(π, 0) = ∂yu4(π, 0), ∂yu4(π, π) = ∂xu5(π, π), ∂xu5(2π, π) = ∂yu6(2π, π), and

∂xu1(0, 0) + ∂yu2(0, 0) +
√

2∂xu3(0, 0)− ∂xu1(2π, 0)− ∂yu2(0, 2π)−
√

2∂yu6(2π, 2π) = 0.
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Figure 4: (a),(b) The triangle graph and its fundamental cell. (c),(d) An equivalent metric

triangle graph and its basic cell. Since we have metric graphs it does not matter which path

we choose on the diagonal. However, since we changed the length from (b) to (d) we have to

rescale the differential operator on the diagonal elements in (d). See the explanations above.

5 Local existence and uniqueness

In this section we prove that the cKG equation (6) defines a well-posed initial value problem.

The functional analytic frame which we use for the local existence and uniqueness of solutions

of the cKG equation (6) will also be used as the basics for establishing the error estimates for

the two approximations introduced in the subsequent sections.

From Theorem 3.2 we obtain the existence of a self-adjoint and positive definite root Ω of

L. Thus, setting V = −Ω−1∂tU we can rewrite (6) as

∂tW = ΛW +N(W ), (28)

with

W =

(
U

V

)
, Λ =

(
0 −Ω

Ω 0

)
, and N(W ) =

(
0

Ω−1U3

)
.

As a consequence of classical semigroup theory [Paz83], we have

Corollary 5.1. The skew symmetric operator Λ with domain D(Λ) = D(Ω)×D(Ω) defines a

unitary group (eΛt)t∈R in L2 such that ‖eΛtW‖L2 = ‖W‖L2 for every t ∈ R.

Another direct consequence of classical semigroup theory is

Corollary 5.2. There exists a positive constant CL such that

‖eΛtW‖(H2)2 ≤ CL‖W‖(H2)2 (29)

for every W ∈ (H2)2 and every t ∈ R.

Proof. We find

‖eΛtW‖(H2)2 ≤ C‖Λ2eΛtW‖(L2)2 ≤ C‖eΛtΛ2W‖(L2)2 = C‖Λ2W‖(L2)2 ≤ C‖W‖(H2)2 ,

where we used the equivalence of the norms ‖ · ‖(H2)2 and ‖Λ2 · ‖(L2)2 = ‖diag(L,L) · ‖(L2)2 ,

that Λ2 and eΛt commute, and that eΛt is a unitary group, cf. Corollary 5.1.
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Using additionally that the space H2 is closed under multiplication, cf. [GPS16, Lemma

3.1], allows us to proceed with the general theory for semilinear dynamical systems [Paz83] in

proving the local existence and uniqueness of solutions of the initial value problem associated

with the cKG equation (28) in the phase space (H2)2.

Theorem 5.3. For every W0 ∈ (H2)2, there exists a t0 = t0(‖W0‖(H2)2) > 0 and a unique

solution W ∈ C([−t0, t0], (H2)2) of the cKG equation (28) with the initial data W |t=0 = W0.

Proof. From U ∈ H2 it follows that U3 ∈ H2, cf. [GPS16, Lemma 3.1]. Moreover, we have

‖Ω−1U3‖H2 = ‖ΩU3‖L2 ≤ C‖Ω2U3‖L2 ≤ ‖U3‖H2 ≤ C‖W‖3
(H2)2 ,

such that the nonlinearity is locally Lipschitz continuous from (H2)2 to (H2)2. Then we use

the variation of constant formula to rewrite the initial value problem associated with (28) as

W (t, ·) = eΛtW0 +

∫ t

0

eΛ(t−τ)N(W )(τ)dτ, (30)

and seek the solution in the space

M := {W ∈ C([−t0, t0], (H2)2) : sup
t∈[−t0,t0]

‖W (t, ·)− eΛtW0‖(H2)2 ≤ C3},

for a constant C3 > 0 arbitrary, but fixed. For every W0 ∈ (H2)2, there is a sufficiently

small t0 = t0(‖W0‖(H2)2) > 0 such that the right-hand side of (30) is a contraction in the

space M. Therefore, Banach’s fixed-point theorem implies the existence of a unique solution

W ∈ C([−t0, t0], (H2)2).

Remark 5.4. Theorem 5.3 implies that there exists a unique solution U ∈ C ([−t0, t0],H2) ∩
C1 ([−t0, t0],H1) of the original system (6) with the initial conditions W0 = (U0, ∂tU0) ∈
H2 ×H1 = D(L)×D(L1/2).

6 The system in Bloch space

In order to apply the existing theory for the derivation and justification of modulation equa-

tions in periodic media to the 2D honeycomb graph, we have to Bloch transform the original

nonlinear PDE over a Brillouin zone which is a torus. Since we work with metric graphs, we use

the fact that the honeycomb graph is equivalent to the brick graph which easily can be Bloch

transformed over a 2D torus as Brillouin zone. We briefly recall the main properties of Bloch

transform T but refer to [GPS16] and [SU17, §11.6.3] for further details. See also [Kuc16] for a

very useful extensive summary and guide to the literature, based on a somewhat more general

approach but also including many pointers to applications in the context of quantum graphs

and otherwise.

Bloch transform T is the counterpart to Fourier transform F for spatially periodic problems.

Bloch transform in Rd for media which is 2π-periodic in every direction is defined by

ũ(`, ξ) = (T u)(`, ξ) =
∑
j∈Zd

eij·ξû(`+ j), (31)
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where û(κ) = (Fu) (κ), κ ∈ Rd, is the Fourier transform of u. The inverse Bloch transform is

given by

u(ξ) = (T −1ũ)(ξ) =

∫
Td1
ei`·ξũ(`, ξ)d`. (32)

By construction, ũ(`, ξ) is extended from (`, ξ) ∈ Td1×Td2π to (`, ξ) ∈ Rd×Rd according to the

continuation conditions

ũ(`, ξ) = ũ(`, ξ + 2πej) and ũ(`, ξ) = ũ(`+ ej, ξ)e
iξj , (33)

where ej is the j-th unit vector in Rd. The following lemma [BSTU06, GPS16] allows to

transfer estimates from Bloch space into physical space and vice versa.

Lemma 6.1. The Bloch transform T is an isomorphism between Hs(Rd) and L2(Td1, Hs(Td2π)),

where L2(Td1, Hs(Td2π)) is equipped with the norm ‖ũ‖L2(Td1,Hs(Td2π)) =
(∫

Td1
‖ũ(`, ·)‖2

Hs(Td2π)
d`
)1/2

.

Multiplication of two functions u and v in physical space corresponds to convolution in

Bloch space, i.e.,

T (uv)(`, ξ) = (ũ ? ṽ)(`, ξ) =

∫
Td1

ũ(`−m, ξ)ṽ(m, ξ)dm, (34)

where the continuation conditions (33) have to be used for |`j −mj| ≥ 1. If χ : Rd → Rd is

2π-periodic in every ej-direction, then

T (χu)(`, ξ) = χ(ξ)(T u)(`, ξ). (35)

The relations (34) and (35) are well-known and can be proved directly from the definition (31).

We apply the Bloch transform T to (6) and obtain

∂2
t Ũ(t, k, l, x, y) = −L̃(k, l)Ũ(t, k, l, x, y)− (Ũ ? Ũ ? Ũ)(t, k, l, x, y), (36)

where the operator L̃(k, l) := −(∂x + ik)2 − (∂y + il)2 + 1 is as in Lemma 3.1. The function

Ũ(t, k, l, x, y) = (ũx, ũy)(t, k, l, x, y) satisfies

Ũ(t, k, l, x, y) = Ũ(t, k, l, x+ 2π, y) = Ũ(t, k, l, x, y + 2π) and (37)

Ũ(t, k, l, x, y) = Ũ(t, k + 1, l, x, y)eix = Ũ(t, k, l + 1, x, y)eiy, (38)

and the convolution integrals Ũ ? Ũ ? Ũ = (ũx ? ũx ? ũx, ũy ? ũy ? ũy) are applied component-

wise.

The Bloch transform ũx consists of ũx1,0 and ũx0,1 which for fixed t, k, l have supports in Γx1,0
and Γx0,1, and similarly ũy consists of ũy1,0, ũy1,1, ũy2,0 and ũy2,1 which for fixed t, k, l have supports

in Γy1,0, Γy1,1, Γy2,0 and Γy2,1. This is a direct consequence of applying (35) to the function

uζ,
∑

m,n(x, y) =

{
uζm,n(x, y), (x, y) ∈ Γym̃,ñ,m− m̃ ∈ 2Z, n− ñ ∈ 2Z,

0, elsewhere,
(39)

for (ζ,m, n) ∈ Ib (cf. 17) and with suitably chosen periodic cut-off functions χ.

12



We proved the local existence and uniqueness of solutions of the cKG equation in H2, which

is the domain of definition of the operator L in L2. Its counterpart in Bloch space is given by

H̃2 = {Ũ ∈ L2(T2
1, L

2
Γ) : ũζm,n ∈ L2(T2

1, H
2(Γζm,n)), (ζ,m, n) ∈ Ib, (13)− (16) are satisfied},

which is the domain of definition of the operator L̃(k, l) from (18) in the space L2(T1, L
2
Γ),

where L2
Γ is defined by (19). H̃2 is equipped with the norm

‖Ũ‖H̃2 =

 ∑
(ζ,m,n)∈Ib

∫ 1/2

−1/2

∫ 1/2

−1/2

∥∥ũζm,n(k, l, ·, ·)
∥∥2

H2(Γζm,n)
dkdl

1/2

,

and the Bloch transform T is an isomorphism between the spaces H2 and H̃2, cf. [GPS16,

Lemma 4.2].

7 Effective dynamics at non-Dirac points

At non-Dirac points of the spectrum with a multiple scaling expansion Nonlinear Schrödinger

(NLS) equations can be derived in order to describe slow modulations in time and space of

traveling wave packets. It is the purpose of this section to prove the validity of the NLS

approximation for the cKG equation posed on the honeycomb graph.

7.1 The result

We start by choosing a Bloch mode as underlying carrier wave with a Bloch wave vector (k0, l0)

which is not a Dirac point. Slow modulations in time and space of a small-amplitude modulated

wave packet with this Bloch mode are described by the perturbation ansatz

U(t, x, y) = εΨnls(t, x, y) + higher order terms, (40)

with

εΨnls(t, x, y) = εA(T,X, Y )f (m0)(k0, l0, x, y)eik0xeil0yeiω(m0)(k0,l0)t + c.c., (41)

where 0 < ε � 1 is a small perturbation parameter, T = ε2t is the slow time variable,

X = ε(x−cg,xt) and Y = ε(y−cg,yt) are long space variables, A(T,X, Y ) ∈ C is the amplitude

function, and c.c. stands for the complex conjugate of the preceding terms. The vector

(cg,x, cg,y) := (∂kω
(m0)(k0, l0), ∂lω

(m0)(k0, l0)) (42)

is the group velocity associated with the Bloch wave vector (k0, l0). In particular, while (x, y)

are always coordinates on the graph Γ, and thus ’partially discrete’, i.e., either x = mπ for

some m, or y = nπ for some n, the large scale vector (X, Y ) runs continuously through all of

R2. It turns out, cf. §3, that in the lowest order w.r.t. ε the amplitude function A satisfies the

NLS equation

i∂TA = −(ν20∂
2
XA+ ν11∂X∂YA+ ν02∂

2
YA)− ν|A|2A, (43)

13



with, due to our rectilinear coordinates x, y,

ν20 =
1

2
∂2
kω

(m0)(k0, l0), ν11 = ∂k∂lω
(m0)(k0, l0), ν02 =

1

2
∂2
l ω

(m0)(k0, l0), (44)

and cubic coefficient

ν =
3γ

2iω(m0)(k0, l0)
, where γ =

∫
Γb

|f (m0)(k0, l0, x, y)|4dxdy. (45)

Our goal is the mathematical justification of the effective equation (43) by error estimates.

Theorem 7.1. Choose m0 ∈ Z and k0, l0 ∈ T1 such that the non-resonance conditions

ω(m)(k0, l0) 6= ω(m0)(k0, l0) for all m 6= m0 (46)

and

ω(m)(3k0, 3l0) 6= 3ω(m0)(k0, l0) for all m (47)

are satisfied, where in (47) the periodicity of the ω(m) has to be used. Then for every ϑ ∈
(1, 2], C0, C1 > 0 and T0 > 0 there exist ε0 > 0 and C2 > 0 such that for all solutions

A ∈ C([0, T0], H4(R2)) of the NLS equation (43) with

sup
T∈[0,T0]

‖A(T, ·)‖H4 ≤ C0

and all ε ∈ (0, ε0) the following holds. If

‖U0(·, ·)− εΨnls(0, ·, ·)‖H2 + ‖U1(·, ·)− ε d

dt
Ψnls(0, ·, ·)‖H1 ≤ C1ε

ϑ, (48)

where εΨnls has been defined in (41), then there exists a unique solution U ∈ C([−t0, t0],H2) of

the cKG equation, t0 = T0/ε
2, with initial conditions (U, ∂tU)t=0 = (U0, U1), and this solution

satisfies

sup
t∈[0,T0/ε2]

(
‖U(t, ·, ·)− εΨnls(t, ·, ·)‖H2 + ‖∂tU(t, ·, ·)− ε d

dt
Ψnls(t, ·, ·)‖H1

)
≤ C2ε

ϑ. (49)

Remark 7.2. a) (49) in particular implies

sup
t∈[0,T0/ε2]

sup
(x,y)∈Γ

|U(t, x, y)− εΨnls(t, x, y)| ≤ Cεϑ. (50)

b) It will be obvious that Theorem 7.1 remains valid if the rate εϑ is replaced by a rate

o(ε) for ε→ 0.

c) The coefficients in (44) and (45) and the non-resonance conditions (46) and (47) are

defined in terms of the eigenvalues and modes ω(m) and f (m). Hence, the NLS equation (43)

can be derived and justified whenever the spectral surfaces λm can be computed and (46)

and (47) hold. In this limit, the specifics of the problem condense in the coefficients νij, ν.

Adding higher order nonlinear terms such as u5 to (1) does not change the effective equation

(43) or the justification result Theorem 7.1 as they only produce higher order terms in the

residual, which contains the terms that do not cancel on insertion of the approximation into
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the cKG equation. On the other hand, the case of quadratic nonlinearities is considerably

more complicated already in the spatially homogeneous or smooth spatially periodic case,

cf. [BSTU06], and is open for the case of graphs.

d) The non-resonance conditions (46) and (47) are used for defining an improved approx-

imation which makes the residual sufficiently small. Although formally these are infinitely

many conditions, for elliptic operators as above we only have finitely many ’dangerous’ ones,

which in practice can be checked. Additionally, (46) is already used in the derivation of ν in

(45) to have a well defined γ, which requires some regularity of (k, l) 7→ f (m0)(k, l, ·, ·), cf. (59).

In particular, (46) excludes intersection points of the spectral surfaces, and thus here especially

the Dirac points, cf. Figure 2.

e) This approximation has successfully been used as a universal envelope or modulation

equation in many fields, such as in nonlinear optics [Agr01], for the description of water waves

[Zak68], for waves in DNA [SH94], for Bose-Einstein condensates [Pel11], or in plasma physics

[Deb05].

f) The justification of the NLS approximation for the spatially homogeneous cKG equa-

tion is rather trivial and follows by a simple application of Gronwall’s inequality [KSM92].

See [SU17, Chapter 11] for an introduction into the mathematical validity theory of NLS ap-

proximations. In the context of smooth spatially periodic coefficients the justification of the

NLS approximation has been carried out in [BSTU06]. In [GPS16] the validity of the NLS

approximation for the NLS equation posed on a 1D necklace graph has been proven.

g) We finally remark that in contrast to the 1D NLS equation there is the possibility of

finite time blow up in the 2D NLS equation, cf. [?].

7.2 Derivation of the NLS equation

In Bloch space we split the solution to the evolution problem (36) into two parts. We introduce

the Bloch wave vector ` = (k, l), and the coordinate vector ξ = (x, y),

and write

Ũ(t, `, ξ) = Ṽ (t, `)f (m0)(`, ξ) + Ũ⊥(t, `, ξ), (51)

where the orthogonality condition 〈f (m0)(`, ·), Ũ⊥(t, `, ·)〉L2
Γ

= 0 is used for uniqueness of the

decomposition. We find

∂2
t Ṽ (t, `) = −(ω(m0)(`))2Ṽ (t, `)−NV (Ṽ , Ũ⊥)(t, `), (52)

∂2
t Ũ
⊥(t, `, ξ) = −L̃(k, `)Ũ⊥(t, `, ξ)−N⊥(Ṽ , Ũ⊥)(t, `, ξ), (53)

where

NV (Ṽ , Ũ⊥)(t, `) = 〈f (m0)(`, ·), (Ũ ? Ũ ? Ũ)(t, `, ·)〉L2
Γ
,

N⊥(Ṽ , Ũ⊥)(`, ξ) = (Ũ ? Ũ ? Ũ)(`, ξ)−NV (Ṽ , Ũ⊥)(t, `)f (m0)(`, ξ).

Since we have an original system (1) without quadratic terms, for the derivation of the NLS

equation it is sufficient to consider (52) and to set there Ũ⊥ = 0. The nonlinear terms in (52)
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are of the form

NV (Ṽ , Ũ⊥)(t, `) =

∫
T2

1

∫
T2

1

β(`, `− `1, `1 − `2, `2) (54)

×Ṽ (t, `− `1)Ṽ (t, `1 − `2)Ṽ (t, `2)d`2d`1 +NV,rest(Ṽ , Ũ
⊥)(t, `),

where the kernel β is given by

β(`, `− `1, `1 − `2, `2) =
〈
f (m0)(`, ·), f (m0)(`− `1, ·)f (m0)(`1 − `2, ·)f (m0)(`2, ·)

〉
L2

Γ
, (55)

and where NV,rest(Ṽ , 0) = 0.

For the formal derivation of the NLS equation in Bloch space we make the ansatz

Ṽapp(t, `) = εε−2Ã1

(
ε2t,

`− `0

ε

)
E1(t, `) + εε−2Ã−1

(
ε2t,

`+ `0

ε

)
E−1(t, `), (56)

with

Ej(t, `) = e−jiω
(m0)(`0)te−i∂`ω

(m0)(`0)(`−j`0)t, where ∂`ω
(m0) := (∂kω

(m0), ∂lω
(m0)).

Remark 7.3. If A(·) is defined on Rd and if it is scaled with the small parameter ε, then the

Fourier transform of A(ε·) is ε−dÂ(ε−1·). Therefore, a small term of the formal order O(εr) in

physical space corresponds to a small term of the formal order O(εr−d) in Fourier space. The

same holds in Bloch space, which explains the scaling and somewhat unusual notation εε−2 in

(56) and henceforth.

However, there is a problem with (56), namely that the support of the scaled Ã±1 gets

bigger with ε > 0 getting smaller, and becomes the whole infinite plane for ε→ 0. Moreover,

since the Ã±1 should satisfy in physical space a NLS equation on the infinite plane, the Ã±1

will be taken in Fourier space and not in Bloch space. So let Â1 be the solution of the Fourier

transformed NLS equation (43).

In order to bring together the Fourier space representation of the NLS equation with the

Bloch wave representation (36) of the cKG equation we introduce a number of operators. We

start with a cut-off operator χ ∈ C∞0 (R2,R) with χ(`) ∈ [0, 1], χ(`) = 1 for |`| ≤ 1/5, and

χ(`) = 0 for |`| ≥ 2/5, and an extension operator P which extends a function with length of

support less than 1 in the k- and the l-direction to a function on R2 with period 1 in the k-

and the l-direction. With these operators we modify the previous ansatz (56) to

Ṽ (`, t) =εε−2P(χ(· − `0)Â1

(
ε2t,
· − `0

ε

)
E1(t, ·))(`)

+ εε−2P(χ(·+ `0)Â−1

(
ε2t,
·+ `0

ε

)
E−1(t, ·))(`). (57)

Plugging (57) into (52) we find that all terms at εε−2E and ε2ε−2E cancel, and at ε3ε−2E we

obtain the NLS equation

−2iω(m0)(`0)∂T Â1 =
1

2
(∂2
`λ

m0(`0)− 2(∂`ω
(m0)(`0))(∂`ω

(m0)(`0))T )|κ|2Â1

−3γÂ1 ∗ Â1 ∗ Â−1, (58)
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where T = ε2t, κ = ε−1(` − `0) and γ = β(`0, `0, `0,−`0) ∈ R, while A−1 = F−1Â−1 satisfies

the complex conjugate NLS equation. In order to obtain (58) we used

∂2
t (εε

−2P(χ(· − `0)Â1

(
ε2t,
· − `0

ε

)
E1(t, ·))(`))

= ∂2
t (εε

−2P(χ(· − `0)Â1

(
ε2t,
· − `0

ε

)
e−iω(m0)(`0)te−i∂`ω

(m0)(`0)(`−`0)t)

= E1(t, ·))(`))(−iω(m0)(`0)− εi∂`ω(m0)(`0)κ)2Â1 (T, κ)

+E1(t, ·))(`))2ε2(−iω(m0)(`0)− εi∂`ω(m0)(`0)κ)∂T Â1 (T, κ) +O(ε3)

and

−(ω(m0)(`))2(εε−2P(χ(· − `0)Â1

(
ε2t,
· − `0

ε

)
E1(t, ·))(`))

= −(ω(m0)(`0 + εκ))2(εε−2P(χ( εκ)Â1 (T, κ) E1(t, ·))(`))

= −(ω(m0)(`0) + ε∂`ω
(m0)(`0)κ+

1

2
ε2κT∂2

`ω
(m0)(`0)κ+O(ε3))2Â1 (T, κ) E1(t, ·))(`)) +O(ε3),

and that formally

ε−4

∫
T2

1/ε

∫
T2

1/ε

β(`0 + εκ, `0 + ε(κ− κ1), `0 + ε(κ1 − κ2),−`0 + εκ2)

× Ã1(κ− κ1)Ã1(κ1 − κ2)Ã−1(κ2)dκ2dκ1

−→ γ

∫
R2

∫
R2

Â1(κ− κ1)Â1(κ1 − κ2)Â−1(κ2)dκ2dκ1 (59)

for ε→ 0, and the symmetry of the kernel. Division by 2iω(m0)(`0) yields (43).

Remark 7.4. This derivation of (43) from (58) is consistent with the derivation from the

associated first order system, cf. [DLP+11, Chapter 5], since for instance

(∂2
`λ

m0(`0)− 2(∂`ω
(m0)(`0))(∂`ω

(m0)(`0))T )/(4iω(m0)(`0))

= −(∂2
` (ω

(m0)(`0)2)− 2(∂`ω
(m0)(`0))(∂`ω

(m0)(`0))T )/(4iω(m0)(`0)) = i∂2
`ω

(m0)(`0)/2.

7.3 The improved approximation and estimates for the residual

terms

The approximation (56) produces a number of terms in (53) which are of the formal order

O(ε3) in physical space. These terms are collected together in the so called residual. However,

in order to subsequently bound the error with a simple application of Gronwall’s inequality,

we need the residual to be of the formal order O(ε4+δ) in physical space for a δ > 0. This can

be achieved by adding higher order terms to the approximation (56) such that all terms up to

formal order O(ε4) in physical space cancel.

In order to obtain a not too restrictive set of non-resonance conditions we modify our

previous separation of the modes. Again we set

Ũ(`, ξ, t) = Ṽ (`, t)f (m0)(`, ξ) + Ũ⊥(`, ξ, t),
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with 〈(f (m0)(`, ·), Ũ⊥(`, ·, t)〉L2
Γ

= 0, but now the two functions Ṽ (`, t) and Ũ⊥(`, ξ, t) are defined

to satisfy

∂2
t Ṽ (`, t) = −λm0(`)Ṽ (`, t) + Ec(`)〈f (m0)(`, ·), Ũ?3(`, ·, t)〉L2

Γ
,

∂2
t Ũ
⊥(`, ξ, t) = −L̃(`, ∂ξ)Ũ

⊥(`, ξ, t) + Ũ?3(`, ξ)− Ec(`)〈f (m0)(`, ·), Ũ?3(`, ·, t)〉L2
Γ
f (m0)(`, ξ),

where the so called mode-filter Ec is in C∞(T2
1,R) and fulfills Ec(`) ∈ [0, 1] with Ec(`) = 1 for

` ∈ Uρ(−`0) ∪ Uρ(`0) for a small ρ > 0, Ec(`) = 0 elsewhere. Thus, the support of Ṽ (`, t) can

and will be chosen to be contained in the support of Ec.

We add higher order terms to the ansatz to make the residual smaller, i.e., we consider

Ṽ (`, t) =
∑
j=0,1

(
ε1+jε−2P(χ(· − `0)Â1,j

(
· − `0

ε
, ε2t

)
E1)(`)

+ε1+jε−2P(χ(·+ `0)Â−1,j

(
·+ `0

ε
, ε2t

)
E−1)(`)

+ε3+jε−2P(χ(· − 3`0)Â3,j

(
· − 3`0

ε
, ε2t

)
E3)(`)

+ε3+jε−2P(χ(·+ 3`0)Â−3,j

(
·+ 3`0

ε
, ε2t

)
E−3)(`)

)
,

Ũ⊥(`, ξ) = ε3ε−2Ũ⊥1 (
`− `0

ε
, ξ, ε2t)E1 + ε3ε−2Ũ⊥−1(

`+ `0

ε
, ξ, ε2t)E−1

+ε3ε−2Ũ⊥3 (
`− 3`0

ε
, ξ, ε2t)E3 + ε3ε−2Ũ⊥−3(

`+ 3`0

ε
, ξ, ε2t)E−3.

As before we find Â1,0 as a solution of the NLS equation (58) and Â−1,0 as a solution of the

complex conjugate equation. The Â±1,j, j 6= 0, satisfy linearized Schrödinger equations with

an inhomogeneity which contains third derivatives of ω(m0) in `0 and first derivatives of the

kernel β. For instance Â1,1 satisfies

−2iω(m0)(`0)∂T Â1,1 =
1

2
(∂2
`λ

m0(`0)− 2(∂`ω
(m0)(`0))(∂`ω

(m0)(`0))T )|κ|2Â1,1

−6γÂ1,1 ∗ Â1 ∗ Â−1 − 3γÂ1 ∗ Â1 ∗ Â−1,1 + g1,1,

where the inhomogeneity g1,1 here only depend on the Â±1 and contains terms such as the

linear term 1
6
(∂3
kλ

m0(`0)κ3
(1)Â1 or the nonlinear term∫

R2

∫
R2

(∂1β(`0, `0, `0,−`0) · κ)Â1(κ− κ1)Â1(κ1 − κ2)Â−1(κ2)dκ2dκ1.

Using appropriate non–resonance conditions (see below), we choose Â3,0 as the solution of

0 = 9(ω(m0))2(`0)Â3,0(κ, T )− λm0(3`0)Â3,0(κ, T ) + 〈f (m0)(3`0, ·), (f (m0)(`0, ·))3〉L2
Γ
Â∗31,0(κ, T ),

and Â3,1 as the solution of the linearized equation with an inhomogeneity which contains first

derivatives of ω(m0) in 3`0 and first order derivatives of the kernel β. We choose the Â−3,j as

the solutions of the associated complex conjugate equations. All this is well documented in the
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literature, cf. [DLP+11, Chapter 5]. Here we concentrate on new aspects having to do with

non-smoothness w.r.t. ξ. We choose Ũ⊥1 and Ũ⊥3 as the solutions of

0 = (ω(m0))2(`0)Ũ⊥1 (`, ξ, t)− L̃(`0 + εκ, ∂ξ)Ũ
⊥
1 (κ, ξ, T ) +N⊥1 (A±1,j),

0 = 9(ω(m0))2(`0)Ũ⊥3 (`, ξ, t)− L̃(3`0 + εκ, ∂ξ)Ũ
⊥
3 (κ, ξ, T ) +N⊥3 (A±1,j),

respectively, where N⊥1 and N⊥3 contain all nonlinear terms concentrated at `0 and 3`0 and

which solely depend on A±1,j. By this choice formally all terms of O(ε3) and O(ε4) cancel.

This choice has the advantage that we do not have to expand the operator L̃(`0 + εκ, ∂ξ) w.r.t.

κ which would lead to a loss of regularity w.r.t. ξ. We choose Ũ⊥−1 and Ũ⊥−3 as the solutions of

the associated complex conjugate equations.

In order to solve the equations for Â3, Ũ⊥1 , and Ũ⊥3 , a number of non-resonance conditions

are needed. By making the support of Ec smaller these condense in

(ω(m0))2(`0) 6∈ spec(L̃(`0, ∂ξ))|{f (m0)(`0,·)}⊥ , (60)

which corresponds to (46), and

9(ω(m0))2(`0) 6= λ(m0)(3`0), and 9(ω(m0))2(`0) 6∈ spec(L̃(3`0, ∂ξ))|{f (m0)(3`0,·)}⊥ , (61)

which corresponds to (47). Then we have that

R̃es(εΨ̃) = −∂2
t Ũ(t, `, ξ)− L̃(`)Ũ(t, `, ξ)− (Ũ ? Ũ ? Ũ)(t, `, ξ)

is of order O(ε4) in H2 in physical space:

Lemma 7.5. Let A ∈ C([0, T0], H4) be a solution of the effective equation (43) for some

T0 > 0. Then there exists a CRes > 0 that only depends on the norm of the solution A such

that

sup
t∈[0,T0/ε2]

‖R̃es(εΨ̃)‖H̃2 ≤ CResε
4, (62)

or equivalently,

sup
t∈[0,T0/ε2]

‖Res(εΨ)‖H2 ≤ CResε
4. (63)

Proof. The proof is straightforward and follows [GPS16, Section 5.3] almost line for line.

Remark 7.6. Compared to Remark 7.3 on the formal order in physical (O(ε5)) and Bloch

space (O(ε3)), we note that bounds (62) and (63) are identical in physical and Bloch space.

This is because we gain ε in the H̃2-norm due to the concentration, and lose ε−1 in theH2-norm

due to the long wave scaling.

7.4 Estimates for the error

The remainder of the proof of Theorem 7.1 is based on energy estimates and an application

of Gronwall’s inequality. To do so we introduce another space. By construction, the leading-

order approximation Ṽappf
(m0) is of the order O(1) in H̃2 due to the scaling properties of the
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L2-norm, and thus we lose ε−1 in naive convolution estimates in H̃2. In order to avoid this, we

introduce as in [GPS16] an L1-based space, namely

C̃2 = {Ũ ∈ L1(T2
1, L

2
Γ) : ũζm,n ∈ L1(T2

1, H
2(Γζm,n)), (ζ,m, n) ∈ Ib, (13)− (16) are satisfied},

equipped with the norm

‖Ũ‖C̃2 =
∑

(ζ,m,n)∈Ib

∫ 1/2

−1/2

∫ 1/2

−1/2

∥∥ũζm,n(k, l, ·, ·)
∥∥
H2(Γζm,n)

dkdl.

By Young’s inequality we have ‖Ṽ ?W̃‖H̃2≤‖Ṽ ‖C̃2‖W̃‖H̃2 , and, similar to [GPS16, Lemma 5.7]:

Lemma 7.7. Let A ∈ C([0, T0], H4) be a solution of the NLS equation (43) for some T0 > 0.

Then there exist C,CΨ > 0 that only depend on the norm of the solution A such that

sup
t∈[0,T0/ε2]

‖εΨ̃‖C̃2 ≤ CΨε (64)

and

sup
t∈[0,T0/ε2]

‖εΨ− εΨnls‖L∞ ≤ Cε3/2. (65)

In order to establish the error estimates we write the solution U of (6) as a sum of the

approximation εΨ and an error εϑR, i.e.,

U = εΨ + εϑR, (66)

and obtain

∂2
tR = −LR +G(Ψ, R), (67)

with the linear operator L = −∆ + 1 and the remainder

G(Ψ, R) = ε−ϑRes(εΨ) + 3ε2Ψ2R + 3ε1+ϑΨR2 + ε2ϑR3.

The product terms in the definition of G(Ψ, R) have to be understood componentwise with

R = (rx, ry) and Ψ = (ψx, ψy). Using

‖ΨR‖H2 ≤ C‖Ψ̃ ∗ R̃‖H̃2 ≤ C‖Ψ̃‖C̃2‖R̃‖H̃2 ≤ CCΨ‖R̃‖H̃2 ≤ C2CΨ‖R‖H2 ,

we estimate the terms of G as

‖ε−ϑRes(εΨ)‖H2 ≤ CResε
2, ‖3ε2Ψ2R‖H2 ≤ 3C3ε

2‖R‖H2 ,

‖3ε1+ϑΨR2‖H2 ≤ 3C3ε
1+ϑ‖R‖2

H2 , ‖ε2ϑR3‖H2 ≤ C3ε
2ϑ‖R‖3

H2 ,

where C3 is a constant independent of ‖R‖H2 and the small parameter ε > 0. Therefore,

‖G(Ψ, R)‖H2 ≤ CResε
2 + 3C3ε

2‖R‖H2 + 3C3ε
1+ϑ‖R‖2

H2 + C3ε
2ϑ‖R‖3

H2 . (68)

The local existence and uniqueness of solutions R of (67) works exactly as for the original

cKG equation in §5, cf. Remark 5.4. Our goal is to use energy estimates to show that R stays
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O(1) bounded on the long time interval 0 ≤ t ≤ t0 = T0/ε
2. Let ER = 〈LR,LR〉L2 +‖∂tΩR‖2

L2

be the energy, which is equivalent to the H2 ×H1 norm, i.e., there exists CE,1 and CE,2 such

that

CE,1

(
‖∂tR‖2

H1(Γξm,n)
+ ‖R‖2

H2(Γξm,n)

)
≤ ER ≤ CE,2

(
‖∂tR‖2

H1(Γξm,n)
+ ‖R‖2

H2(Γξm,n)

)
. (69)

We take the L2 scalar product of (67) with ∂tLR and obtain

∂t〈∂tΩR, ∂tΩR〉L2 + ∂t〈LR,LR〉L2 = 2〈∂tΩR,ΩG(Ψ, R)〉L2 .

Since 〈LR,LR〉L2 = ‖LR‖2
L2 = ‖R‖2

H2 and since

|〈∂tΩR,ΩG(Ψ, R)〉L2| ≤ ‖∂tΩR‖L2‖G(Ψ, R)‖H2 ,

we obtain

d

dt
ER ≤ 2E

1/2
R

(
CResε

2 + 3C3ε
2E

1/2
R + 3C3ε

1+ϑER + C3ε
2ϑE

3/2
R

)
≤ 2CResε

2 + 2(3C3 + CRes)ε
2ER + 6C3ε

1+ϑE
3/2
R + 2C3ε

2ϑE2
R.

From (48) and (69) we obtain ER(0) ≤ CE,2C1, and as long as

6C3ε
ϑ−1E

1/2
R + 2C3ε

2ϑ−2ER ≤ 1 (70)

we obtain

d

dt
ER ≤ 2CResε

2 + βε2ER (71)

with β = (6C3 + CRes + 1). Gronwall’s inequality, see, e.g., [SU17, Lemma 2.2.8] yields, for

0 ≤ t ≤ t0 = T0/ε
2,

ER(t) ≤ ER(0)eβε
2t +

2CRes

β
(eβε

2t − 1) ≤ (ER(0) +
2CRes

β
)eβT0 =: M. (72)

Now choosing ε0 > 0 so small that 6C3ε
ϑ−1M1/2+2C3ε

2ϑ−2M ≤ 1 yields (72) for all 0 < ε ≤ ε0.

Sobolev’s embedding theorem, bound (65), and the decomposition (66) complete the proof of

Theorem 7.1.

8 Effective equations at the Dirac points

The Dirac points are of high relevance from a physical point of view and attracted recently a lot

of interest, cf. [FLTW18, LTWZ19]. In [GPS16], effective equations describing the dynamics

of solutions which are concentrated in Bloch space near the Dirac points have been derived

via multiple scaling analysis in the 1D case. The validity question of this so called Dirac

approximation for 2D quantum graphs is more involved and has not been discussed before.

Similar results in the above sense also exist for linear and nonlinear Schrödinger equations

over R2 with honeycomb symmetric potentials. For the linear case it has been shown in [FW14]

that a linear Dirac equation makes correct predictions about the dynamics over a long time
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scale. For the nonlinear case, a nonlinear Dirac system has been derived in [FW12], and an

approach to prove its validity has been discussed. A rigorous approximation result with the

NLS equation as original system has been established in [AS18], and similar to that result, we

derive effective equations for the dynamics near the Dirac points and prove their validity for

the cKG equation on 2D quantum graphs.

Suppose now that `D = (kD, lD) is a Dirac point, cf. Figure 2 and Figure 5. For a Dirac

approximation we assume that the Bloch transform of the solution is concentrated in an O(ε2)-

neighborhood of `D = (kD, lD). In this point the two surfaces of eigenvalues λmD and λmD+1 of

L̃(`) meet and form approximately a cone. In contrast to the NLS equation as original system

where due to the −U |U |2 nonlinearity no other modes are amplified by nonlinear coupling,

for the cKG equation, with its real-valued solutions and its U3 nonlinearity, other modes, in

particular the second Dirac point at `D = −`D, cf. Figure 2, have to be taken into account

when deriving the Dirac approximation.

In contrast to all other points ` = (k, l), in a Dirac point no smooth expansion of the surfaces

of eigenvalues is possible. This is fundamentally different from the 1D case where by relabeling

the curves of eigenvalues the non-smooth curves of eigenvalues and the non-smooth kernels in

the nonlinear convolution integrals, can be made smooth at the Dirac points, cf. Figure 5 and

Remark 8.6. Hence, we have to proceed differently than in the derivation of the Dirac system

in the 1D case or than in the derivation of the NLS equations above.

(a) (b) (c)

Figure 5: At the Dirac points the non smooth curves in (a) obtained for the 1D dispersion

relation can be made smooth by relabeling the curves leading to (b). This is not possible in

the 2D case (c). Only directional smoothness can be obtained.

The starting point for the derivation of the approximation equations is again system (36)

in Bloch space, namely

∂2
t Ũ(t, `) = −L̃(`)Ũ(t, `)− (Ũ ? Ũ ? Ũ)(t, `). (73)

In this representation we obviously have smoothness of all linear and nonlinear operators w.r.t.

the Bloch wave numbers. We recall that resolvents and spectral projections on isolated subsets

of the spectrum are smooth w.r.t. `, cf. [Kat95].

For extracting the Dirac modes at the cone around `D we define an L̃(`)-invariant projection

P̃D(`) on the two-dimensional subspace associated to the two eigenvalues λmD(`) and λmD+1(`)

which are separated from the rest of the spectrum of L̃(`) for |` − `D| sufficiently small. For

fixed ` in a neighborhood of `D we set

P̃D(`) =
1

2π

∫
Γ

(λ− L̃(`))−1dλ,
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where for this fixed ` the smooth curve Γ surrounds the two eigenvalues λmD(`) and λmD+1(`).

By Neumann’s series we have a smooth expansion of P̃D(`) near `D, i.e.,

P̃D(`) = P̃D(`D) +O(|`− `D|),

cf. [Kat95]. Similarly, we define projections P̃D in a neighborhood of `D. We extend these

projections by zero outside their domain of definitions in the set of wave vectors. We use these

projections to split (73) into three parts. We set Ũ = ŨD + ŨD + Ũ⊥, where ŨD = P̃DŨ ,

ŨD = P̃DŨ , and Ũ⊥ = P̃⊥Ũ = (1− P̃D − P̃D)Ũ , and obtain

∂2
t ŨD(t, `) = −L̃(`)ŨD(t, `)− P̃D(`)(ŨD + ŨD + Ũ⊥)?3(t, `), (74)

∂2
t ŨD(t, `) = −L̃(`)ŨD(t, `)− P̃D(`)(ŨD + ŨD + Ũ⊥)?3(t, `), (75)

∂2
t Ũ⊥(t, `) = −L̃(`)Ũ⊥(t, `)− P̃⊥(`)(ŨD + ŨD + Ũ⊥)?3(t, `). (76)

Since ŨD and ŨD will be of order O(ε), and Ũ⊥ of order O(ε3), for the derivation of the effective

equations we set Ũ⊥ = 0 and make the ansatz

ŨD(t, `) = ε−4εṼ +
D (t, `)

(
ε2t, ε−2(`− `D)

)
eiωmD (`D)t (77)

+ε−4εṼ −D (t, `)
(
ε2t, ε−2(`− `D)

)
e−iωmD (`D)t,

ŨD(t, `) = ε−4εṼ +

D
(t, `)

(
ε2t, ε−2(`+ `D)

)
eiωmD (`D)t (78)

+ε−4εṼ −
D

(t, `)
(
ε2t, ε−2(`+ `D)

)
e−iωmD (`D)t,

where ωm =
√
−λm as above and with Ṽ ±D = P̃DṼ

±
D and Ṽ ±

D
= P̃DṼ

±
D

. The pre-factor ε−4

comes from the Bloch transform, cf. Remark 7.3. We find with T = ε2t, k = ε−2(k − kD),

l = ε−2(l − lD), and ` = (k, l) the effective equations

2iωmD(`D)∂T Ṽ
+
D (T, `) = (ikP̃D(`D)∂kL̃(`D) + ilP̃D(`D)∂lL̃(`D))Ṽ +

D (T, `) (79)

+P̃D(`D)(3Ṽ +
D ∗ Ṽ

+
D ∗ Ṽ

−
D

+ 6Ṽ +
D ∗ Ṽ

−
D ∗ Ṽ

+

D
)(T, `),

−2iω±(`D)∂T Ṽ
−
D (T, `) = (ikP̃D(`D)∂kL̃(`D) + ilP̃D(`D)∂lL̃(`D))Ṽ −D (T, `) (80)

+P̃−D (`D)(3Ṽ −D ∗ Ṽ
−
D ∗ Ṽ

+

D
+ 6Ṽ −D ∗ Ṽ

+
+ ∗ Ṽ −D )(T, `),

and complex conjugate equations for Ṽ +

D
and Ṽ −

D
. Like for the NLS approximation the limit

equations no longer live in Bloch space, but in Fourier space.

Our approximation theorem is as follows.

Theorem 8.1. For every C0 > 0 and T0 > 0, there exist ε0 > 0 and C > 0 such that for all

solutions (Ṽ +
D , Ṽ

−
D ) ∈ C([0, T0], H2(R)2)) of the effective equations (79)-(80) with

sup
T∈[0,T0]

‖Ṽ ±D (T, ·)‖H2 ≤ C0

the following holds. For all ε ∈ (0, ε0) there are solutions U ∈ C([0, T0/ε
2], L∞(R)) of the

original system (73) satisfying the bound

sup
t∈[0,T0/ε2]

sup
(x,y)∈Γ

|U(t, x, y)− εΨdirac(t, x, y)| ≤ Cε5/2

where εΨdirac is defined through (77)-(78).
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Proof. Since the original system contains no quadratic terms the proof is straightforward and

goes along the lines of Theorem 7.1 given in Section 7.3 and in Section 7.4. Since we expand

L̃(`) only up to linear order, we only need H2 in the Dirac case instead of H3 in the NLS case.

Moreover, due do the different scaling, every power of |`− `D| gains ε2 instead of only ε. The

computation of the higher order approximation as in Section 7.3 is possible due to the validity

of the non-resonance conditions

ω(m)(`D) 6= ω(mD)(`D) for all |m| 6∈ {mD,mD + 1} (81)

and

ω(m)(3`D) 6= 3ω(mD)(`D) for all m. (82)

The equations for the error have exactly the same form as (67) in Section 7.4.

Remark 8.2. For fixed ` the function Ṽ +
D (`, ·) is two-dimensional. Hence, up to an error of

order O(|`− `D|) it can be represented as a linear combination of two eigenvectors which span

the two-dimensional subspace at the apex of the cone. We choose two such eigenfunctions

which are called Φ1 and Φ2 in the following, i.e., L̃(`D)Φj = −ω2
mD

(`D)Φj. Then we set

Ṽ +
D (T, `) = Ã1(T, `)Φ1 + Ã2(T, `)Φ2,

Ṽ −D (T, `) = B̃1(T, `)Φ1 + B̃2(T, `)Φ2,

with Ã1(T, `), . . . , B̃2(T, `) ∈ C. For such Φ1 and Φ2 we have

P̃D(`D)u =
1

det
(〈Φ2,Φ2〉〈Φ1, u〉 − 〈Φ1,Φ2〉〈Φ2, u〉),

where det = 〈Φ1,Φ1〉〈Φ2,Φ2〉 − 〈Φ1,Φ2〉〈Φ2,Φ1〉. In these coordinates the effective equation

(79) is given by

2iωmD(`D)∂T Ã1(T, `) = (ikα11 + ilα21)Ã1(T, `) + (ikα12 + ilα22)Ã2(T, `)

+

(
3β111Ã1 ∗ Ã1 ∗ Ã1 + 3β112Ã1 ∗ Ã1 ∗ A2 + 3β121Ã1 ∗ Ã2 ∗ Ã1

+3β122Ã1 ∗ Ã2 ∗ Ã2 + 3β221Ã2 ∗ Ã2 ∗ Ã1 + 3β222Ã2 ∗ Ã2 ∗ Ã2

+6γ111Ã1 ∗ B̃1 ∗ B̃1 + 6γ112Ã1 ∗ B̃1 ∗ B̃2 + 6γ121Ã1 ∗ B̃2 ∗ B̃1

+6γ122Ã1 ∗ B̃2 ∗ B̃2 + 6γ221Ã2 ∗ B̃2 ∗ B̃1 + 6γ222Ã2 ∗ B̃2 ∗ B̃2

)
(T, `),

where

α1j =
1

det
(〈Φ2,Φ2〉〈Φ1, ∂kL̃(`D)Φj〉 − 〈Φ1,Φ2〉〈Φ2, ∂kL̃(`D)Φj〉),

α2j =
1

det
(〈Φ2,Φ2〉〈Φ1, ∂lL̃(`D)Φj〉 − 〈Φ1,Φ2〉〈Φ2, ∂lL̃(`D)Φj〉),

βj1j2j3 =
1

det
(〈Φ2,Φ2〉〈Φ1,Φj1Φj2Φj3〉 − 〈Φ1,Φ2〉〈Φ2,Φj1Φj2Φj3〉),

γj1j2j3 =
1

det
(〈Φ2,Φ2〉〈Φ1,Φj1Φj2Φj3〉 − 〈Φ1,Φ2〉〈Φ2,Φj1Φj2Φj3〉).
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A similar equation is obtained for (80). In physical space these equations are given by

2iωmD(`D)∂TA1 = (α11∂X + α21∂Y )A1 + (α12∂X + α22∂Y )A2

+

(
3β111A1A1A1 + 3β112A1A1A2 + 3β121A1A2A1

+3β122A1A2A2 + 3β221A2A2A1 + 3β222A2A2A2

+6γ111A1B1B1 + 6γ112A1B1B2 + 6γ121A1B2B1

+6γ122A1B2B2 + 6γ221A2B2B1 + 6γ222A2B2B2

)
,

For suitable chosen Φ1 and Φ2 the representation [AS18, eq. (1.6)] of (79) in [AS18] is sim-

pler. There, various coefficients α·, β·, and γ· can be shown to vanish by using the hexagonal

symmetry of the NLS equation on R2 with the honeycomb symmetric potential. Since we have

chosen our coordinate system for (1) parallel to the x- and y-axis the existence of eigenfunc-

tions Φ1 and Φ2 with similar properties as used in [AS18] is not obvious. Even for a hexagonal

coordinate system this is not obvious, since the results from [FLTW18, LTWZ19] have to be

transferred to quantum graphs, first.

Remark 8.3. By making the ansatz

ŨD(t, `) = ε−4εαṼ +
D (t, `)

(
ε2t, ε−2(`− `D)

)
eiωmD (`D)t (83)

+ε−4εαṼ −D (t, `)
(
ε2t, ε−2(`− `D)

)
e−iωmD (`D)t,

and similar for ŨD, with α > 1, the nonlinear terms are of higher order. We then obtain the

linear effective equations

2iω±(`D)∂T Ã1(T, `) = (ikα11 + ilα21)Ã1(T, `) + (ikα12 + ilα22)Ã2(T, `),

2iω±(`D)∂T Ã2(T, `) = (ikα∗11 + ilα∗21)Ã1(T, `) + (ikα∗12 + ilα∗22)Ã2(T, `),

with

α∗1j =
1

det
(〈Φ2,Φ2〉〈Φ1, P̃D(`D)∂kL̃(`D)Φj〉 − 〈Φ1,Φ2〉〈Φ2, P̃D(`D)∂kL̃(`D)Φj〉),

α∗2j =
1

det
(〈Φ2,Φ1〉〈Φ1, P̃D(`D)∂lL̃(`D)Φj〉+ 〈Φ1,Φ1〉〈Φ2, P̃D(`D)∂lL̃(`D)Φj〉).

The system can be diagonalized into

i∂T Ã+(T, `) + Ω+(`)Ã+(T, `) = 0,

i∂T Ã−(T, `) + Ω−(`)Ã−(T, `) = 0,
(84)

where the Ω± are the roots of a quadratic equation in Ω±, k, and l. Since in the apex of the

cone the directional derivatives exist, we have Ω−(`) = −Ω+(−`).
We have the following approximation result which is formulated in physical space.

Theorem 8.4. For every α > 1, C0 > 0 and T0 > 0, there exist ε0 > 0 and C > 0 such that

for all solutions Ã± ∈ C(R, H2(R)) of (84) with

sup
T∈[0,T0]

‖Ã±(T, ·)‖H2 ≤ C0
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and for all ε ∈ (0, ε0), there are solutions U ∈ C([0, T0/ε
2], L∞(R)) of the original system (73)

satisfying the bound

sup
t∈[0,T0/ε2]

sup
(x,y)∈Γ

|U(t, x, y)− εαΨdirac(t, x, y)| ≤ Cεmin(α+3/2,3α−2)),

where εαΨdirac is defined through (83).

The proof works like for the NLS approximation except for the fact that the surfaces ωmD
and ωmD+1 are not smooth in the center. However, we have the estimate

|ωmD(`)− ωmD(`D)− Ω+(`− `D)| ≤ C|`− `D|2

which is sufficient for the residual estimates.

Remark 8.5. The linear equations (84) can be transferred into the massless Dirac equations.

By construction, the functions Ω± in (84) are of the form

Ω±(k, l) = s±

(
k√

k2 + l2
,

l√
k2 + l2

)√
k2 + l2,

with s± : S1 → R+. We introduce new coordinates

k̃± = ks±

(
k√

k2 + l2
,

l√
k2 + l2

)
, l̃± = ls±

(
k√

k2 + l2
,

l√
k2 + l2

)
and set

Ω̃±(k̃±, l̃±) = Ω±(k, l) = s±

(
k√

k2 + l2
,

l√
k2 + l2

)√
(
k̃±
s±

)2 + (
l̃±
s±

)2 =

√
k̃

2

± + l̃
2

±.

Since the two equations for Â+ and Â− decouple w.r.t. these coordinates we can write

i∂T Â+(T, k̃, l̃) +

√
k̃

2
+ l̃

2
Â+(T, k̃, l̃) = 0, (85)

i∂T Â−(T, k̃, l̃)−
√
k̃

2
+ l̃

2
Â−(T, k̃, l̃) = 0. (86)

The new system (85)-(86) can be replaced by equations which are local in physical space,

having the same spectral surfaces, such as ∂2
Tφ = ∆φ or the massless Dirac equation

∂Tψ = −(σx∂Xψ + σy∂Y ψ),

with σx =

(
0 1

1 0

)
and σy =

(
0 i

−i 0

)
.

Remark 8.6. The motivation for the approach chosen in this section was that in a Dirac

point no smooth expansion of the surfaces of eigenvalues is possible. We finally remark that

the situation for the nonlinear kernels

βjj1,j2,j3(`, `− `1, `1 − `2, `2) = 〈f j(`, ·), f j1(`− `1, ·)f j2(`1 − `2, ·)f j3(`2, ·)〉L2
Γ
.

with j, j1, j2, j3 ∈ {mD,mD + 1} at the apex of the cone is even worse. They even do not have

a limit at the Dirac points; instead a continuum of accumulation points occurs.
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