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Abstract

Numerical continuation and bifurcation methods can be used to explore the set of steady
and time–periodic solutions of parameter dependent nonlinear ODEs or PDEs. For PDEs, a
basic idea is to first convert the PDE into a system of algebraic equations or ODEs via a spatial
discretization. However, the large class of possible PDE bifurcation problems makes developing
a general and user–friendly software a challenge, and the often needed large number of degrees of
freedom, and the typically large set of solutions, often require adapted methods. Here we review
some of these methods, and illustrate the approach by application of the package pde2path to
some advanced pattern formation problems, including the interaction of Hopf and Turing modes,
patterns on disks, and an experimental setting of dead core pattern formation.
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1 Introduction
Ordinary differential equation (ODE) models and partial differential equation (PDE) models usually
come with a number of parameters λ (growth factors, diffusion constants . . . ), and an important task
is to characterize the dependence of solutions on parameters. Numerical continuation aims to trace
branches

R 3 s 7→ (u(s),λ (s)) ∈ X×R (1)
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of solutions u of nonlinear equations G(u,λ ) = 0 ∈ Y through parameter space, where X ,Y are Ba-
nach spaces and G : X ×R→ Y has some smoothness detailed below, and where s is an arclength
along the solution branch, which may fold back and forth in λ . If u is a steady solution (fixed
point) of an ODE d

dt u = −G(u,λ ), then X = Y = Rn and G(u,λ ) = 0 is an algebraic system, and if
u : Ω→ RN is a steady solution of a PDE ∂tu =−G(u,λ ), Ω⊂Rd a bounded domain, then X and Y
are function spaces and G(u,λ ) = 0 is a boundary value problem. Additionally, often time periodic
orbits u = u(t) with u(t +T ) = u(t) of ODEs and PDEs are of special interest.

If ∂uG(u(s0),λ (s0)) ∈ L(X ,Y ) is invertible, then the implicit function theorem yields that the
branch (s0− δ ,s0 + δ ) 3 s 7→ (u(s),λ (s)) is locally unique. Of special interest are singular points
where ∂uG(u(s0),λ (s0)) is not invertible and hence other branches may bifurcate. At such points
we may aim to switch to bifurcating branches, obtaining so–called bifurcation diagrams, altogether
aiming at an as complete as possible description of the set of solutions of a given problem.

Numerical continuation and bifurcation methods have been an active field over the last 50 years,
see, e.g., [Kel87, Gov00, Mei00, Kuz04] for textbooks and research monographs, and, e.g., [Doe07,
MDO12, DWC+14, SN16, Tuc20] for reviews. One main starting point is the (pseudo-)arclength
parametrization of solution branches [Kel77], leading to algorithms implemented in many packages
such as AUTO [DCF+97], matcont [DGK03], xppaut [Erm02], aimed (primarily) at the numerical
bifurcation analysis of ODEs, and coco [DS13], which is a rather general toolbox. See also [Vel20]
for a recent Julia package. For PDEs, the first step is often a spatial discretization, which turns the
PDE into a large ODE system, such that in principle the above software can be applied. However,
the possibly large number of degrees of freedom (DoF), in particular for spatially two– or three–
dimensional problems, often requires adapted algorithms. Software aimed at PDEs includes LOCA

[Sal16] and oomph [HH17].
Here we give an overview of the numerical computation of bifurcation diagrams for nonlinear

PDEs, first reviewing some basics, and then giving examples using the MATLAB package pde2path

[Uec21f, Uec21a]. This is aimed at PDEs of the form

Md∂tu =−G(u,λ ), (2)

where Md ∈ RN×N is the (dynamical) mass matrix, Md = Id in many cases, and

G(u,λ ) :=−∇ · (c⊗∇u)+au−b⊗∇u− f , (3)

with u=u(x, t)∈RN (N components), x∈Ω⊂Rd some bounded domain, d∈{1,2,3} (the 1D, 2D and
3D case, respectively), and time t ≥ 0, and where (2) can be complemented with various boundary
conditions (BCs). In (3), c is a diffusion tensor, b describes advection, and a ∈ RN×N and f ∈ RN

should be thought as describing linear and nonlinear terms without spatial derivatives. The mass
matrix Md ∈ RN×N in (2) may be singular, and this gives much flexibility to (2), for instance to also
implement parabolic–elliptic coupled problems. All the tensors/vectors in (3) can depend on x and
u, although mostly we restrict to semilinear problems, where c does not depend on u. A focus of
pde2path is on bifurcations of solution branches of the steady state problem

G(u,λ ) = 0, (4)

but we also consider Hopf bifurcations and time–periodic orbits and their bifurcations in (2). The
default setting of pde2path uses the finite element method (FEM), essentially as provided by the
package OOPDE [Prü21], to first discretize u in space, in 1D, 2D, or 3D, using Lagrangian P1 elements.
However, some higher order FEM is also provided, and for instance [Uec21d] contains examples of
FEM–free implementation of various right hand sides G, mostly based on Chebychev and Fourier
methods.
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The three main design goals of pde2path are versatility, easy usage, and easy customization.
Therefore, in [UWR14, Uec19] and [Uec21a] we explain the usage of pde2path via a rather large
number of working examples included in the software download at [Uec21f], where we also provide
tutorials which include further comments on implementations. Here we proceed similarly, in a con-
densed form: In §2 we explain some basic notions of bifurcations, and a few algorithms of numerical
continuation and bifurcation. In §3 we then give some examples of applications of pde2path, first
to rather standard PDE bifurcation problems, which however do not seem to have been treated in this
way before, namely:

1. In §3.1 we consider the Reaction–Diffusion type system

∂tu1 = ∂
2
x u1 +

u2−u1

(u2−u1)2 +1
− τu1,

∂tu2 = d∂
2
x u2 +α( j0− (u2−u1)),

(5)

over the interval Ω = (−l, l) with Neumann BCs for u1 and u2, taken from [MDWBS97]. The
system describes charge transport in a layered semiconductor; u1 is an interface charge in the
device, u2 a normalized voltage across it, and (τ, j0,α,d) ∈ R4 is a parameter vector. There is

the trivial (spatially homogeneous) branch u∗1 =
j0

τ( j2
0 +1)

,u∗2 = j0 + u∗1, which may undergo

Turing instabilities (bifurcation to finite wave number spatially periodic steady states) and Hopf
instabilities (bifurcation to spatially homogeneous time–periodic orbits). In particular, there are
codimension–two points, near which both instabilities occur, and their interaction may lead to
a variety of states, including Turing–Hopf mixed modes, i.e. localized Hopf modes embedded
in Turing structures, or vice versa. Similar results have been obtained in [DWLDB96] for the
so–called Brusselator system instead of (5). Some of these patterns can be studied via ampli-
tude equations, but for larger amplitudes [MDWBS97] and [DWLDB96] use direct numerical
simulation (DNS), aka time integration. Here we shall study these patterns via numerical con-
tinuation and bifurcation in a complementing way.

2. Following [VKU21], we consider the cubic-quintic Swift-Hohenberg (SH) equation

∂tu =−(1+∆)2u+ εu+νu3−u5, parameters ε,ν ∈ R, (6)

on a disk domain Ω = {(x1,x2) : ‖x‖ =
√

x2
1 + x2

2 < R}, where ∆ = ∂ 2
x1
+∂ 2

x2
is the Laplacian,

with Neumann BCs ∂nu = ∂n∆u = 0, where n is the outer normal at ‖x‖= R. Equations of type
(6) (with various nonlinearities, for instance f (u) = νu2−u3 instead of f (u) = νu3−u5 in (6))
are prototypical examples for finite wave number (Turing) pattern formation, and are thus also
studied as model problems in [Uec21a], over 1D, 2D and 3D boxes (intervals, rectangles and
cuboids). The new feature in [VKU21] is the disk domain. The problem has the trivial branch
u≡ 0, and for small ε > 0 we find various subcritical bifurcating patterns, and also study some
of their secondary (and tertiary) bifurcations.

Our third class of examples is genuinely “experimental” in the sense that standard bifurcation theory
does not apply. It deals with

3. Dead core patterns, for instance in scalar equations of type

∂tu = c∆u−λ f (u) in Ω, u = 1 on ∂Ω, (7)

with f (u)∼ uγ

+ at u = 0, u+ = max(u,0), where 0 < γ < 1 and hence f (u) is not differentiable
(and not even Lipschitz) at u = 0. For large λ , such equations can have dead core solutions
which feature a subdomain Ω0 ⊂ Ω where u ≡ 0, which is not possible for Lipschitz nonlin-
earities. The non-differentiability of f means that standard bifurcation analysis does not apply
to (7). However, using minor modifications of the standard pde2path setup we can still treat
(7) and generalizations of (7) numerically, and find various branches with dead core solutions.
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Our main aim with these examples is to present interesting bifurcation problems and how they can be
studied by numerical continuation and bifurcation. Other recent applications of pde2path are given
in, e.g., [KS20, EKS20, Sie20, UW20, WW20, ZZS+21, OKGT21, UUHB21, Uec21b, BKS21,
CRS21, WKG21, KPLW21]. In Table 1 we collect some acronyms frequently used in PDEs and
bifurcation theory, and some specific for this paper.

Table 1: Acronyms.

BC Boundary Condition BD Bifurcation Diagram
BP Branch Point DC Dead Core
DNS Direct Numerical Simulation FP/HP Fold Point / Hopf Point
FEM Finite Element Method IFT Implicit Function Theorem
PC Phase Condition PO Periodic Orbit

Acknowledgments. pde2path started as joint work with Daniel Wetzel and Jens Rademacher,
with major contributions by Tomas Dohnal and Hannes deWitt following soon. Some recent ma-
jor revisions have been mostly my work. pde2path heavily relies on the MATLAB FEM package
OOPDE [Prü21] by Uwe Prüfert, and uses some further packages such as TOM by Francesca Mazzia
[MT04], pqzschur [Kre01] by Daniel Kressner, trullekrul by Kristian Eijebjerg Jensen [Jen17],
and ilupack [Bol11] by Matthias Bollhöfer; of course, AUTO [DCF+97] by Eusebius Doedel et al
has been a role model. A big thank you to the authors of these packages.

Initially, pde2path was planned as an in–house tool to quickly enable students to study steady
state bifurcations for 2D reaction–diffusion systems, based on the MATLAB pdetoolbox (see also
[Uec21f] for octave compatibility). As it was well received by students and colleagues, in 2013 we
decided to go public with a basic version, after just a few months of development, and only treating
2D steady state problems (and simple bifurcation points). At the time I was not quite aware of what
we were getting into. Ever since, I have learned a lot about bifurcations, the FEM, and software
organization, and one experience I’d like to share is: even if you just have a small starting version of
a software that might be useful, try to make it simple for others, provide working examples, and go
public. If the software turns out to be useful, the feedback and requests by users are a tremendous
help and motivation. Therefore, also thanks to all the users, and please keep sending bug reports,
feedback, and requests.

2 Continuation and bifurcation
In [Uec21a, Part I], I give a brief discussion of the theoretical background underlying continuation
and bifurcation. For convenience, here I summarize the main ideas; although none of this is original,
I give only a few references, and instead refer to [Uec21a] for further background and references.
Readers familiar with (numerical) bifurcation theory can skip directly to §3 and come back to §2
when needed.

The fundamental result underlying all bifurcation theory is the Implicit Function Theorem (IFT),
which can be proved via the contraction mapping theorem. See, e.g., [Zei89, §4.7] for precise state-
ments and a thorough discussion, while here we just recall the main ideas. As an example, consider

G(u,λ ) := u2−2u−λ
!
= 0. (8)

For each λ ≥ −1 we have the two solutions u = u±(λ ) = 1±
√

1+λ , and together we have the
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solution branch

λ = u2−2u, (9)

showing that here it is useful to see λ as a function of u. However, all we want to use now is that for
λ0 = 0 we can “guess” the solution u0 = 0. We treat λ as a parameter and seek zeros of G(u,λ ) near
(u,λ ) = (u0,λ0) = (0,0) in form of a (smooth) resolution u = u(λ ). Implicit differentiation yields

0 =
d

dλ
G(u(λ ),λ ) = ∂uG(u,λ )u′(λ )+∂λ G(u,λ ).

If ∂uG(u0,λ0) 6= 0, then we can solve for

u′(λ0) =−[∂uG(u0,λ0)]
−1

∂λ G(u0,λ0). (10)

Similarly, 0 =
d2

dλ 2 G(u(λ ),λ ) = ∂
2
u G(u,λ )u′2 +∂uG(u,λ )u′′+2∂u∂λ G(u,λ )u′+∂

2
λ

G(u,λ ), which

yields, with G0
u = ∂uG(u0,λ0),

u′′(λ0)=−[G0
u]
−1(∂ 2

u G(u0,λ0)u′(λ0)
2+2∂u∂λ G(u0,λ0)u′(λ0)+∂

2
λ

G(u0,λ0)), (11)

and altogether we can formally obtain the Taylor expansion of u(λ ) around λ0. In the example we
have u′(0) =−1/2, u′′(0) = 1/4, and hence

u(λ ) =−λ/2+λ
2/8+ . . . . (12)

Two natural question are: a) Does the Taylor expansion (12) converge (near λ = 0) ? Are there
other solutions of G(u,λ ) = 0 near (u,λ ) = (0,0), not given by u(λ ) ? Of course, for our example
we know all the answers because we explicitly know the solution: Clearly, (12) can only converge
locally, as near (u,λ ) = (1,−1) there does not exists a resolution u = u(λ ). Instead, a so–called
saddle–node bifurcation occurs, which is also called a fold or a turning point. The theory behind
(12) (and much more) is summarized in the IFT: Let X ,Y and Λ be Banach spaces, and let BX

ε (u0)
denote the open ε–ball around u0 in X , and L(X ,Y ) the Banach space of continuous linear operators
A : X → Y .

Theorem 2.1. Implicit Function Theorem. Assume that W is open in X×Λ, G∈C0(W,Y ), and that

• (u0,λ0)
wlog
= (0,0) ∈W with G(u0,λ0) = 0;

• G is continuously differentiable in u, and A0=∂uG(u0,λ0) is invertible with A−1
0 ∈L(Y,X).

Then the following holds:
i) There exist ε,δ > 0 and H ∈ C(BΛ

δ
(λ0),BX

ε (u0)) such that (H(λ ),λ ) is the unique solution of
G(u,λ ) = 0 in BX

ε (u0)×BΛ

δ
(λ0).

ii) If G ∈Ck(W,Y ), then H ∈Ck(BΛ

δ
(λ0),X).

iii) If G is analytic, then H is analytic.

Remark 2.2. a) The results in ii) and iii) justify Taylor expansions, and the proof of Theorem 2.1 is
constructive in the sense that it yields formulas for the Taylor expansion of H, like in (12).

b) Concerning example (8), i) gives the local uniqueness, and ii) gives the local convergence.
From the proof of the IFT (or directly from the calculus leading to (12)) we can estimate the conver-
gence radius, namely |λ |< 1, but in practice we are satisfied with the local results. In particular, the
branch (u(λ ),λ ) through (0,0) can be continued as long as ∂uG(u,λ ) 6= 0. As already indicated in
(9), it may be useful to switch the roles of u and λ . In (8) we have ∂λ G(u,λ )=−1 6=0 (independent
of (u,λ )), and hence we can always find a (local, and in fact global) resolution λ=λ (u) (namely (9)).
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c) The condition that ∂uG is invertible is sufficient for the resolution u = u(λ ), but not necessary.
An example is G(u,λ ) = u3− λ . The (unique) resolution u = h(λ ) = sign(λ )|λ |1/3 exists for all
λ ∈ R, even though ∂uG(0,0) = 0. However, ii) and iii) here indeed do not hold at (u,λ ) = (0,0). c

2.1 Standard bifurcation examples for ODEs
To explain the notion of bifurcation and the meaning of bifurcation diagrams, we consider the three
so–called normal forms of elementary steady bifurcations, and a simple Hopf bifurcation example.

Example 2.3. a) Saddle–node (or fold) bifurcation, G(u,λ ) = λ−u2. Here the two solution branches
u = u±(λ ) = ±

√
λ exist for λ ≥ 0, see Fig. 1(a1). Of course, equivalently λ = u2, but for now we

stick to the u = u(λ ) point of view. For any λ > 0 we have ∂uG(u±(λ ),λ ) = ±2
√

λ 6= 0, such
that the solutions are locally unique by the IFT. Plots of solutions as functions of the parameter as in
Fig. 1(a1) are called bifurcation diagrams (BDs). In (a2) we show the same branches and additionally
sketch the flow of the associated ODE d

dt u = G(u,λ ). Moreover, as custom in bifurcation diagrams,
stable branches (see below) are plotted in full (or thick) lines, while unstable branches as dashed (or
thin) lines.

b) Transcritical bifurcation, G(u,λ ) = λu+u2. For all λ ∈ R we have the trivial solution u = 0.
The linearization ∂uG(0,λ ) = λ is only singular at λ = 0, such that the IFT cannot be applied at
λ = 0. The “non–trivial” branch u =−λ bifurcates at the bifurcation point (u,λ ) = (0,0), exists on
“both sides” of the critical point λ = 0, and there is an exchange of stability. See Fig. 1(b).

c) Pitchfork bifurcation, G(u,λ ) = λu−u3. As in b), the trivial solution u = 0 is locally unique,
except at λ = 0. The “non–trivial” solutions u = ±

√
λ bifurcate at the bifurcation point (u,λ ) =

(0,0) and exist for λ ≥ 0. For G(u,λ ) = λu+u3 the bifurcating branches are u =±
√
−λ and exist

for λ < 0. See Fig. 1(c). c

(a1) fold, BD (a2) BD with flow (b) transcritical bif. (c) supercritical and subcritical
pitchforks

u u u

u u

Figure 1: Elementary steady bifurcations. Here and in the following, full lines indicate branches of stable
solutions (stable branches in short). In (a1) we show a pure BD for a fold bifurcation, while in (a2) (and (b,c))
the arrows indicate the flow of the associated ODEs d

dt u = G(u,λ ).

The point (u,λ )∗ = (0,0) in all three cases is called a bifurcation point. In b) and c) the point
(u,λ )∗ is also called a branch point, as two branches intersect there. At the saddle–node bifurca-
tion there is no “branching off”, and we rather prefer to call (u,λ )∗ a fold point, or simply a fold.
Importantly, the transcritical bifurcation and the pitchfork bifurcation are non–generic. This means
that they require some special structure (or symmetries) of a nonlinear problem G(u,λ ) = 0 to occur
at all, but such symmetries are often enforced by physics. See [Uec21a, §1.2] (and the references
therein) for more on genericity (or structural stability), co–dimensions, and imperfections.

By the IFT, a necessary condition for all three bifurcations is that ∂uG(u∗,λ∗) is not invertible,
i.e., has a zero eigenvalue. Additionally, the eigenvalues of the Jacobian A = ∂uG(u∗,λ∗) at a steady
state u∗ often determine the stability of u∗. The fixed point u∗ is called stable for d

dt u = −G(u,λ ),
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if solutions to nearby initial conditions u0 stay close to u∗, i.e., if for all ε > 0 there exists a δ > 0
such that ‖u0− u∗‖ < δ implies ‖u(t)− u∗‖ < ε . If additionally ‖u(t)− u∗‖ → 0, then u∗ is called
asymptotically stable. If u∗ is not stable, then it is called unstable. Bifurcating branches are often
classified as super–or subcritical. Supercritical means that the bifurcating branch exists in the λ–
range where the original (trivial) branch has lost stability, while subcritical means that it exists where
the trivial branch is stable.

If u∗ is a fixed point of d
dt u =−G(u,λ ), then we may consider the linearization

d
dt

v =−Av, v|t=0 = v0 ∈ Rn, A = ∂uG(u∗,λ ) ∈ Rn×n (13)

at u∗. This can be solved explicitly by an exponential ansatz v(t) = ce−µtφ , where µ ∈ C is an
eigenvalue of A and φ the associated eigenvector (for semisimple eigenvalues, i.e., same algebraic
and geometric multiplicity, to be generalized in case that A has Jordan blocks), and from this it
follows that u∗ is

(i) asymptotically stable, if all eigenvalues µ of A fulfill Reµ > 0;
(ii) unstable, if at least one eigenvalue µ has Reµ < 0, or if there are Jordan blocks to a zero

eigenvalue.
The remaining cases, that there is a semisimple eigenvalue µ = 0, or that there are purely imaginary
eigenvalues µ = ±iω , are associated to possible bifurcations, and the dynamics close to u∗ must
be studied in detail, for instance via center–manifold reduction. A similar principle of linearized
stability also holds for many evolutionary PDEs, see, e.g., [SU17, Theorem 5.2.23].

Example 2.4. Hopf bifurcation. Consider

d
dt

u1 = λu1 +u2−u1(u2
1 +u2

2) and
d
dt

u2 =−u1 +λu2−u2(u2
1 +u2

2), (14)

with u j(t) ∈ R and λ ∈ R. The linearization A =
(

λ 1
−1 λ

)
at u = 0 has the eigenvalues µ1,2 = λ ± i.

Thus, two complex conjugate eigenvalues cross the imaginary axis at λ = 0. Introducing polar
coordinates (u1,u2) = r(sinφ ,cosφ) with r ≥ 0 and φ ∈ R/(2πZ) gives

d
dt

r = λ r− r3 and
d
dt

φ = 1.

For λ > 0 we obtain the (stable) fixed point r =
√

λ of the d
dt r equation, and hence a family of (stable)

periodic orbits (POs)

{u = uper(t,λ ,φ0) : u1 =
√

λ sin(t +φ0), u2 =
√

λ cos(t +φ0)}

bifurcates from the trivial branch u=0 at λ=0, see Fig. 2. This is called a Hopf bifurcation. For fixed
λ > 0 the family attracts every solution with an exponential rate O(exp(−2λ t)). c

Remark 2.5. The stability of POs is somewhat less straightforward to define (via Poincaré sections
and maps) than the stability of steady states, and more difficult to analyze (via Floquet multipliers).
Similarly, bifurcations from POs (nontrivial Floquet multipliers µ with |µ| = 1) are more difficult,
both analytically and numerically, than steady bifurcations, or (Hopf–) bifurcations of POs from
steady states, and we refer to [Uec21a, Chapter 1] for details and references. c
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0

||
u
||

Figure 2: Hopf bifurcation of POs for λ > 0 in (14). In the BD we now need to plot some norm of u.

2.2 The Crandall–Rabinowitz theorem, and remarks
From the examples in §2.1 we may expect that the crossing of a simple eigenvalue through 0 gener-
ically leads to steady bifurcations, while a pair of nonzero eigenvalues crossing the imaginary axis
leads to Hopf bifurcations. This is true, under some technical assumptions, and can be proved via
Liapunov–Schmidt reduction, where again we refer to [Uec21a, §2.2], and here only state a proto-
type bifurcation theorem for steady bifurcation from simple eigenvalues [CR71].1 We consider (4),
i.e., G(u,λ ) = 0, and for simplicity assume that this has the trivial branch u = 0, λ ∈ R, and without
loss of generality consider a bifurcation at (u,λ ) = (0,0). Let A0 = ∂uG(0,0), denote the kernel
(null-space) of A0 by N(A0) = {u ∈ X : A0u = 0}, the range by R(A0) = {A0u : u ∈ X}, and assume
that
(H1) dimN(A0) = codimR(A0) = 1; (A0 is Fredholm with ind(A0) = 0 and 0 is a simple eigenvalue)
(H2) G ∈C3(W ×Λ,Y ), where W ×Λ is an open neighborhood of (0,0) in X×R.

Theorem 2.6. Crandall–Rabinowitz. Consider (4) and assume that additional to (H1),(H2) we
have the transversality condition

∂λ ∂uG(0,0)φ 6∈ R(A0), (15)

where N(A0) = lin{φ},‖φ‖= 1. Then (0,0) is a branch point (BP) for (4), and the nontrivial branch
bifurcating at (0,0) is given locally by a C1 curve

γ = {(u(s),λ (s)) : s ∈ (−s0,s0),(u(0),λ (0)) = (0,0)}, (16)

where u(s) = sφ +O(s2). All solutions of G(u,λ ) = 0 in a neighborhood of (0,0) are either on γ or
on the trivial branch.

Like the proof of the IFT, the proof of Theorem 2.6 is constructive in the sense that it yields bifurca-
tion formulas, i.e., formulas for λ ′(0), λ ′′(0), . . . (if desired). Moreover, there are various extensions
of Theorem 2.6, concerning, e.g., the exchange of stability at a BP, and possible global behaviors of
bifurcating branches (Rabinowitz alternative).

The assumption that 0 is a simple eigenvalue is crucial; in case of higher multiplicity, different
things can happen: no bifurcation, or bifurcation of higher dimensional ’leaves’, or bifurcation of
several branches (often more than the multiplicity of the zero eigenvalue). In principle, one must
then derive and solve the so–called (leading order) algebraic bifurcation equations. In this, often
symmetry (which usually creates the higher multiplicity of the eigenvalue) can be heavily exploited
to simplify the problem. This comes under the name of equivariant branching, and is often crucial
for bifurcations in PDEs, but here we refer to [GS02, Hoy06] and the references therein for details,
and [Uec21a, §2.5] for an overlook.

1Hopf bifurcation theorems require more technical assumptions, see [Uec21a, §2.4] and the references there.
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2.3 Basic numerical algorithms
The general bifurcation theory, of which Theorem 2.6 is one example, works in Banach spaces, while
the examples in §2.1 were for simple scalar (resp. 2–component for the Hopf case) ODEs. For the
numerical continuation and bifurcation in pde2path we first discretize PDEs (of the form (2)) in
space, yielding (high dimensional) algebraic problems (with a slight abuse of notation)

G(u,λ ) = 0, G : Rn×R→ Rn, (17)

or ODEs (or, if the dynamical mass matrix Md ∈ Rn×n is singular, differential algebraic systems)

Md
d
dt

u =−G(u,λ ), Md ∈ Rn×n, G : Rn×R→ Rn. (18)

For the computation of branches (and bifurcations) for (17) and (18), some special parametrizations
and methods have been established. Here we recall the basic ideas of arclength continuation, focusing
on methods which are implemented in pde2path. Besides the algorithms for (one parameter) branch
continuation and steady bifurcations, we shall give some remarks on multiple-parameter continuation
of, e.g., fold points (FPs), branch points (BPs), and Hopf bifurcation points (HPs). To some extent,
these methods can be formulated in general Banach spaces X , but for convenience we restrict to
X = Rn. In particular, ∂uG(u,λ ) ∈ Rn×n is always Fredholm of index 0. We essentially present
the algorithms in an abstract mathematical way, but where useful add comments pertaining to the
pde2path implementation.

Remark 2.7. a) We emphasize that the notation G(u,λ ) = 0 ∈ Rn is motivated by u ∈ Rn cor-
responding to the values of the field u : Ω → RN at the np mesh points, hence n = Nnp, while
λ ∈ R is one “active” scalar parameter. Strictly speaking, for the computation of solution branches
s 7→ (u(s),λ (s)) ∈ Rn+1 there is no reason to distinguish (in notation or in substance) between the
field values u = (u1, . . . ,un) ∈ Rn and the parameter λ ∈ R. The only thing that matters is that we
have n equations in the n+1 unknowns (u,λ ). Thus, we could as well rename λ = un+1, and essen-
tially this is what is done in pde2path, i.e., all parameters are appended to the vector u= (u,pars),
and the active parameter “λ” (or several active ones) is (are) marked by a pointer.

b) Often we meet situations where the system of PDEs must be extended by additional equations,
for instance so–called phase conditions (PCs). Each additional such equation Qi = 0, i = 1, . . . ,q,
naturally requires to free (“activate”) one more parameter, such that we obtain one primary active
parameter λ , and a number of secondary active parameters w ∈ Rq. Similarly, the continuation of
POs typically requires to free at least one additional active parameter, usually the period T , and to set
a PC as at least one additional equation. In principle, we could put the additional equations into the
present framework by extending u to (u,λ ,w) ∈ Rn+1+q and G to (G,Q1, . . . ,Qq) : Rn+1+q×R→
Rn+q, but in practice we find it more transparent to keep the distinction between the field u and
the parameter(s) (λ ,w), and between the “PDE” G(u,λ ) = 0 or ∂tu = −G(u,λ ) and the auxiliary
equations Q1 = 0, . . . ,Qnq = 0. Thus, we essentially first focus on the 1–parameter case (q = 0), and
come back to fold-point–, branch-point–, and Hopf-point–continuation in §2.4. c

Arclength continuation. A standard method for numerical continuation of branches of G(u,λ )=0,
where G : X×R→X is at least C1, is (pseudo)arclength continuation. Consider a branch

z(s) := (u(s),λ (s)) ∈ X×R

9



parameterized by s ∈ R and the extended system

H(u,λ ) =
(

G(u,λ )
p(u,λ ,s)

)
=

(
0
0

)
∈ X×R= Rn+1, (19)

where p is used to make s an approximation of arclength on the solution branch. Given s0 and a point
(u0,λ0) := (u(s0),λ (s0)), and additionally a tangent vector

τ0 := (u′0,λ
′
0) :=

d
ds
(u(s),λ (s))|s=s0,

the standard choice is

p(u,λ ,s) := ξ
〈
u′0,u(s)−u0

〉
+(1−ξ )λ ′0(λ (s)−λ0)− (s− s0). (20)

Here 0 < ξ < 1 is a weight, typically chosen as ξ = 1/nu, and τ0 is assumed to be normalized in the
weighted norm

‖τ‖ξ :=
√
〈τ,τ〉

ξ
,

〈(
u
λ

)
,

(
v
µ

)〉
ξ

:= ξ 〈u,v〉+(1−ξ )λ µ. (21)

For fixed s and ‖τ0‖ξ = 1, p(u,λ ,s) = 0 thus defines a hyperplane perpendicular (in the inner product
〈·, ·〉

ξ
) to τ0 at distance ds := s− s0 from (u0,λ0). We may then use a predictor(

u1

λ 1

)
=

(
u0
λ0

)
+ds

(
u′0
λ ′0

)
(22a)

for a solution of (19) on that hyperplane, followed by a corrector using Newton’s method in the form(
ul+1

λ l+1

)
= N(ul,λ l) :=

(
ul

λ l

)
−A (ul,λ l)−1H(ul,λ l), A =

(
Gu Gλ

ξ u′0 (1−ξ )λ ′0

)
, (22b)

where z = A −1b stands for the solution of the linear system A z = b, see Fig. 3.2 Since ∂s p = −1,

z2
z3 (Newton 

 corrections)

ds (step length)

(Predictor)

z
1

n

=z  +dsn τ

λ

u
Solution arc

n+1

z

z

Figure 3: The idea of arclength continuation.

2For large n, the choice of the linear system solver is important for speed and stability; in pde2path, besides MATLAB’s
highly optimized \ solver we provide a number of further solver, for instance preconditioned iterative solvers, or bordered
elimination solvers which take advantage of the bordered nature of A .
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on a smooth solution arc we have

A (s)
(

u′(s)
λ ′(s)

)
=−

(
0

∂s p

)
=

(
0
1

)
. (23)

Thus, after convergence of (22b) yields a new point (u1,λ1) with Jacobian A , the tangent direction
τ1 at (u1,λ1) with conserved orientation, i.e., sign〈τ0,τ1〉= 1, can be computed from

A τ1 =

(
0
1

)
, with normalization ‖τ1‖ξ = 1. (24)

Although A (s) is singular at (steady) BPs, the convergence of the Newton loop near a branch follows
from the Newton–Kantorovich theorem and the so–called Bordering Lemma [DK80, Lemma 3.1],
which deals with the structure of A ∈ R(n+1)×(n+1), which consists of the main part Gu ∈ Rn×n and
the borders Gλ ∈ Rn×1, ξ u′0 ∈ R1×n, and (1− ξ )λ ′0 ∈ R. Similar bordered structures appear again
and again in continuation and bifurcation analysis and numerics. Algorithm 2.1 summarizes the basic
continuation idea, already including some elementary stepsize ds control.

Algorithm 2.1: Branch continuation p=cont(p,aux). Here and in the following the input/output argument p
(as in problem) is the pde2path matlab struct which contains all the problem data, and aux stands for auxiliary
arguments.

1. Predictor. Set (u1,λ 1) = (u0,λ0)+dsτ0 as in (22a).
2. Newton–corrector. Iterate (22b) until convergence; decrease ds if (22b) fails to converge and

return to 1; increase ds for the next step if (22b) converges quickly;
3. Postprocessing. Plot, save, check stability, detect/localize bifurcations. Compute τ1 by (24),

set (u0,λ0,τ0)=(u1,λ1,τ1) and go to 1.

Algebraic bifurcation equations. In the following discussion of numerical branch switching of
steady states, (u0,λ0) is called a BP, if two or more smooth branches intersect non-tangentially in
(u0,λ0). (u0,λ0) is called a simple BP if exactly two branches intersect. At a BP (u0,λ0) we have

(a) dimN(G0
u) = codimR(G0

u) = m, (b) G0
λ
∈ R(G0

u), (25)

where here and in the following G0
u = ∂uG(u0,λ0) and G0

λ
= ∂λ G(u0,λ0). From (a) we have

N(G0
u) = lin{φ1, . . . ,φm}, N(G0T

u ) = lin{ψ1, . . . ,ψm} with
〈
φi,ψ j

〉
= δi j,

and by (b) there exists a unique φ0 ∈N(G0
u)
⊥ such that G0

uφ0+G0
λ
= 0 and

〈
φ0,ψ j

〉
= 0, j = 1, . . . ,m.

If s 7→ (u(s),λ (s)) is a smooth branch with G(u(s),λ (s))≡ 0 and (u,λ )(s0) = (u0,λ0), then

G0
uu′(s0)+G0

λ
λ
′(s0) = 0

by implicit differentiation, and hence

u′(s0) =
m

∑
j=0

α jφ j, α0 = λ
′(s0), (26)
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where α j =
〈
φ j,u′(s0)

〉
,1≤ j ≤ m. By differentiating again,

G0
uu′′+G0

λ
λ
′′ =−

(
G0

uu[u
′,u′]+2G0

uλ
u′λ ′+G0

λλ
λ
′2). (27)

all evaluated at s = s0. Since the left hand side is in R(G0
u), so is the right hand side, and apply-

ing
〈
·,ψ j

〉
, j = 1, . . . ,m yields a system of m quadratic bifurcation equations (QBE) for the m+ 1

coefficients {α0,α1, . . . ,αm} (really m coefficients, because (28) is homogeneous), namely

B(α0,α) = 0 ∈ Rm, (28)

Bi(α0,α) :=
m

∑
j=1

m

∑
k=1

ai jkα jαk +2
m

∑
j=1

bi jα jα0 + ciα
2
0 , 1≤ i≤ m,

ai jk =
〈
ψi,G0

uu[φ j,φk]
〉
, bi j =

〈
ψi,G0

uu[φ0,φ j]+G0
uλ

φ j
〉
,

ci =
〈
ψi,G0

uu[φ0,φ0]+2G0
uλ

φ0 +G0
λλ

〉
.

In summary, the tangent (u′0,λ
′
0) to a branch through (u0,λ0) is of the form (26) with α0,α1, . . . ,αm

a solution of (28), unique up to a multiplicative constant γ . Thus, (28) gives a necessary condition
to determine bifurcating branches. Conversely, each distinct isolated zero (α0,α) gives a distinct
solution branch of G(u,λ ) [KL72]. Here (α0,α

∗) is called isolated if for fixed α0 and some δ > 0
the only solution in URm

δ
(α∗) is α∗. By the IFT, a sufficient condition for this is that ∂αB(α0,α) is

non-singular.

Simple branch points. In general, only for m = 1 the QBE determine all (i.e., both) branches
through (u0,λ0). In this case, (28) reduces to

aα
2
1 +2bα1α0 + cα

2
0 = 0, a = a111, b = b11, c = c1, (29)

and if (α0,α1) is one solution, then the other is distinct (linear independent) if aα1+bα0 6= 0. For the
branch switching, let (α0,α1) with α0 = λ ′0 and α1 =

〈
ψ,u′0

〉
be determined by the branch already

computed, and, assuming the generic case α0 6= 0, let φ0 = 1
α0
(u′0−α1φ1). Then the other root

of (29) is (α0,α1) with
α1

α0
= −

(
α1

α0
+

2b
a

)
, and the tangent to the bifurcating branch is τ1 =

(α1φ1 +α0φ0,α0). For normalization we choose α0 = a, and thus obtain Algorithm 2.2.

Algorithm 2.2: Branch-switching at a simple BP via p=swibra(dir,ptnr), and subsequent continuation of
the new branch by p=cont(p). Here the arguments dir,ptnr stand for the pde2path setting that the BP has
filename ptnr.mat in directory dir.

1. Compute φ1,ψ1 with G0
uφ1 = 0,G0

u
T

ψ1 = 0, ‖φ1‖ = 1, 〈ψ1,φ1〉 = 1, let α0 = λ ′0, α1 =〈
ψ,u′0

〉
, φ0 = α

−1
0 (u′0−α1φ1), with (λ ′0,u

′
0) from the branch already computed, and com-

pute a,b,c from (29).

If α0 6= 0, set α1 =−
(

aα1

α0
+2b

)
and τ1 =

(
α1φ1 +aφ0

a

)
.

If α0 = 0, then choose τ =

(
0
ds

)
as a guess for the bifurcation direction.

Choose a weight ξ and a stepsize ds, and normalize τ0 = τ1/‖τ1‖ξ .

2. Use p=cont(p) to continue the new branch.
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Detection of BPs, exchange of stability. m = 1 in (25) together with aα1 + bα0 6= 0 are the gen-
eral bifurcation conditions for simple BPs, also for X a general Banach space, cf. [CR71]. In our
restriction X = Rn we further obtain the following results:
(B1) [Kel87, §5.8]. If µ1(s0) = 0 is an algebraically simple eigenvalue of A , and µ1(s) changes

sign at s0, then (u0,λ0) is a simple BP. This yields a simple but efficient criterion to detect BPs:
BDT1 (bifurcation detection test 1). To detect simple BPs in G : Rn+1→Rn we monitor sign
changes of detA . This can be done efficiently if we already have an LU–decomposition of
A, as detA = detAdet(D−CA−1B), and as detA = (Πn

i=1Lii)(Π
n
i=1Uii) and A−1B is obtained

from back-substitution.
(B2) [Kel87, §5.21]. Under the same assumptions as in (B1), det Gu(s) changes sign at s0 on the

branches through (u0,λ0) for which µ ′1(s0) 6= 0.
BDT1 excludes FPs, where a simple eigenvalue of A reaches zero but detA does not change

sign. Moreover, BDT1 detects an odd number (counting multiplicities) of eigenvalues crossing, but
excludes bifurcations via even numbers of eigenvalues crossing. This excludes Hopf bifurcations,
but also, e.g., steady BPs of even multiplicity. Thus, in pde2path we also provide an alternative
algorithm BDT2 to detect BPs (and Hopf bifurcation points), which is based on computing a few
eigenvalues of Gu.

After detection of a bifurcation between sk and sk+1, the bifurcation can be localized by a bi-
section method, with a secant, tangent, or quadratic predictor. Although this is a slow method for
finding roots of continuous real functions, in the setting of calculating sign changes of detA via LU
decomposition (BDT1), and also for BDT2, it seems difficult to improve. Alternatively, see §2.4 for
so–called extended systems for fold–, branch– and Hopf–point localization and continuation.

From (B2) we obtain that bifurcations with λ ′(s0) 6= 0 from stable branches for d
dt u =−G(u,λ )

necessarily lead to an exchange of stability: if u(s) is stable for s < s0, i.e., all eigenvalues of
Gu(u(s),λ (s)) have positive real parts3 , then µ1(s0) = 0 and µ ′1(s0) < 0 such that Gu(u(s),λ (s))
has one negative eigenvalue and u(s) is unstable for s > s0 and |s− s0| sufficiently small. The pitch-
fork example d

dt u = λu−u3 shows that the condition that λ ′(s0) 6= 0 cannot be dropped: there is no
loss of stability on the nontrivial branch (u,λ )(s) = (s,s2) at the bifurcation point (u,λ ) = (0,0) with
s = 0.

Higher multiplicity. The case m ≥ 2 is more difficult, and the QBE (28) may (and typically will)
not yield (all) bifurcating branches. The question which order of Taylor expansion in the sense of
(27) is needed is called determinacy. In a loose sense, see [Mei00, §6.4] for precise definitions,
a given system of algebraic bifurcations equations in α (such as (28)) is called k–determined if
any small perturbation of order k+ 1 does not qualitatively change the set of (small) solutions. In
this sense, transcritical bifurcations are (generically, i.e., unless some special structure occurs) 2–
determined, and pitchfork bifurcations are generically 3–determined. Thus, to compute the α for
pitchfork branches we need to at least consider the associated cubic bifurcation equations (CBE).
In principle, in case of higher order indeterminacies, this must be further continued to higher order,
which quickly becomes rather complicated.

In pde2path, we take a practical approach and proceed as follows. The function qswibra

searches for solutions (α0,α) of the QBE (28) with α0 6= 0 (transcritical bifurcations).4 All solu-
tions found are stored in p.mat.qtau, and an orthonormal base of the kernel is stored in p.mat.ker,

3recall that the time dependent problem is Md∂tu=−G(u,λ ), and that when discussing eigenvalues of Gu=∂uG(u,λ ),
we always mean the generalized eigenvalue problem

µMdφ=−Guφ , (30)

4Similarly, cswibra derives and solves the cubic bifurcation equations (CBE), which describe generic pitchforks.
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where as in Algorithm 2.2 p is used as the name of the pde2path struct which stores the problem
data. Subsequently, we can either select (via seltau) a bifurcating direction from p.mat.qtau, or
generate (via gentau) a guess for a bifurcating direction as a linear combination of p.mat.ker, and
afterwards call cont.

The approach is summarized in Algorithm 2.3. It is only theoretically sound for 2-determined
branches and (in the form cswibra) for 3-determined pitchforks, but it works well and robustly
for all the problems we considered so far in pde2path, though some fine tuning (via the optional
argument aux, containing tolerances and initial guesses for Newton loops) is sometimes needed. In
case of continuous symmetries, further preparatory steps must be taken; see [Uec21a] for details.

Algorithm 2.3: qswibra, and subsequent seltau/gentau for branch-switching at multiple bifurcation
points, then cont. Otherwise same meaning of arguments dir,pt as in Algorithm 2.2.

1. Call p0=qswibra(dir,pt,aux) to find nontrivial solutions of the QBE (28); store these in
p0.mat.qtau. Additionally, store a base of the kernel of Gu in p0.mat.ker.

2a. If 1 yields nontrivial solutions of the QBE: use p=seltau(p0,nr,2) to choose tangent nr
as a predictor to the new branch.

2b. Use p=cont(p) to continue the new branch, return to 2a to follow more branches.

3. For (possible) branches additional to those found in 1.,2. (and similarly via cswibra):
use p=gentau(p0,gamma) to generate guesses for tangents to new branches according to
τ = ∑i γi p.mat.ker(i), where the sum runs from 1 to length(gamma). Afterwards call
p=cont(p).

Hopf bifurcation and PO continuation. A Hopf bifurcation generically occurs if a pair µ±(s) =
µr(s)± iµi(s) of eigenvalues for the linearization Md

d
dt v=−Gu(u,λ )v crosses the imaginary axis,

µi(s0) 6= 0, µr(0) = 0 and µ
′
r(s0) 6= 0. (31)

Unfortunately, there is no general method to detect (31) which can be used for large nu. If (30)
comes from a dissipative problem, where most eigenvalues of Gu are in the right complex half plane
and bounded away from the imaginary axis, then we may try to just compute neig eigenvalues of Gu
of smallest modulus, which for moderate neig can be done efficiently (by inverse vector iteration).
Extending this idea, we can also use spectral shifts iω j, j = 1, . . . ,neig, near which we expect eigen-
values to cross the imaginary axis and compute and inspect a few eigenvalues near each iω j. The
method, called BDT2 in pde2path, is ad hoc, but with suitable care works quite robustly.

If (via BDT2 and, e.g., bisection) we have localized a (simple) HP, then we may want to compute
the bifurcating branch of POs, Hopf branch or PO branch in short. Letting µ j(λ )= iωH +O(λ−λH),
the first order predictor for the bifurcating branch is, from general results on Hopf bifurcations,

λ = λH , u(t) = u0 +2dsRe(e−iωH t
ψ), (32)

with step length ds, where ψ is the eigenvector associated to iωH . The continuation of the PO branch
is again a predictor–corrector method. First we rescale t = Tt in (18) to obtain

Md u̇ =−T G(u,λ ), u(·,0) = u(·,1), (33)

with unknown period T , but with initial guess T = 2π/ωH at bifurcation. Since (33) is autonomous
(does not explicitly depend on time t), if uH is a PO of (33), then so is any time translate ũH(t) =
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uH(t +δ ) of uH . Thus, to obtain unique solutions of (33) we use a PC, for which we choose

φ :=
∫ 1

0
〈u(t), u̇0(t)〉 dt !

= 0, (34)

where 〈·, ·〉 is the scalar product in Rnu and u̇0(t) is from the previous continuation step. For the step
length condition we choose

0 !
= ψ :=ξH

m

∑
j=1

〈
u(t j)−u0(t j),u′0(t j)

〉
+(1−ξH)

[
wT (T−T0)T ′0 +(1−wT )(λ−λ0)λ

′
0
]
−ds, (35)

where again T0,λ0 are from the previous step, ds is the step–length, ′ = d
ds denotes differentiation

with respect to arclength, ξH and wT denote weights for the u and T components of the unknown
solution, and t0 = 0 < t1 < .. . < tm = 1 is the temporal discretization. Thus, the step length is ds in
the weighted norm

‖(u,T,λ )‖ξ =

√√√√ξH

(
m

∑
j=1
‖u(t j)‖2

2

)
+(1−ξH)

[
wT T 2 +(1−wT )λ 2

]
. (36)

Setting U = (u,T,λ ), in each continuation step we need to solve the extended system

H(U) :=

G (U)

φ(u)
ψ(U)

 !
=

0
0
0

 ∈ Rmnu+2, (37)

where G (U) = 0 is the discretization of (33), including the periodicity condition um−u1 = 0. Using
Newton’s method for (37) we have

U j+1=U j−A (U j)−1H(U j), A =

∂uG ∂T G ∂λ G
∂uφ 0 0
ξHτu (1−ξH)wT τT (1−ξH)(1−wT )τλ

 . (38)

In (38), ∂uG ∈ Rmnu×mnu is a large (but sparse) matrix, and A is bordered with border–width 2, and
bordered elimination solvers such as lssbel [Uec21a, §4.5] may yield order of magnitude speedups.

Floquet multipliers and PO bifurcations. The (in)stability of a PO uH , and possible bifurcations,
are analyzed via the Floquet multipliers γ j, obtained from finding nontrivial solutions (v,γ) of the
variational boundary value problem (in time)

Md
d
dt

v(t) =−T ∂uG(u(t))v(t), v(1) = γv(0). (39)

The map v(0) 7→ v(1) = M v(0) defines the so–called monodromy matrix M ∈ Rnu×nu , and the
multipliers γ j are the eigenvalues of M . By translational invariance of (33), there always is the
trivial multiplier γ1 = 1, with associated solution v = d

dt uH of (39). A simple test for the accuracy of
the multiplier computation is the numerical error of the trivial multiplier γ1, i.e.

errγ1 := |γ1−1|. (40)
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We define the index of a PO by

ind(uH) = number of multipliers γ with |γ|> 1 (numerically: |γ|> 1+ tolfl), (41)

such that unstable orbits are characterized by ind(uH) > 0. Based on the IFT for (37), a necessary
condition for the bifurcation from a branch λ 7→ uH(·,λ ) of POs, a PO bifurcation in short, is that
at some (uH(·,λ0),λ0), additional to the trivial multiplier γ1 = 1 there is a second multiplier γ2 (or a
complex conjugate pair γ2,3) with |γ2|= 1, which may lead to the following PO bifurcations:

(i) γ2 = 1, yielding a periodic orbit fold (PO fold), or periodic orbit BP (PO BP).
(ii) γ2 =−1, yielding a period–doubling (PD) bifurcation, i.e., the bifurcation of POs ũ(·;λ ) with

approximately double the period, ũ(T̃ ;λ ) = ũ(0;λ ), T̃ (λ )≈ 2T (λ ) for λ near λ0.
(iii) γ2,3 = e±iϑ , ϑ 6= 0,π , yielding a torus (or Naimark–Sacker) bifurcation, i.e., the bifurcation of

POs ũ(·,λ ) with two “periods” T (λ ) and T̃ (λ ); if T (λ )/T̃ (λ ) 6∈Q, then R 3 t 7→ ũ(t) is dense
in certain tori.

Using the same t–discretization for v in (39) as for u in (33), the multipliers γ j can be computed from
the Jacobian A in (38), but this must be done with care, as discussed in, e.g., [FJ91, Lus01], see
also [Uec21a, §3.4] for more comments, including the pde2path implementation and subsequent
PO branch switching.

2.4 Further algorithms and comments
The algorithms from §2.3 are the basis of arclength continuation of steady states and periodic orbits,
including bifurcation detection and localization, and branch switching. Here we comment on two fur-
ther classes of algorithms, namely extended systems for special point localization and continuation,
and PCs, which both play an important role in practical applications of continuation methods.

Extended systems. An alternative to bisection for FP, BP and HP localization is to set up appro-
priate extended systems. Assume that a FP has been detected between (u,λ )(sa) and (u,λ )(sb),
i.e., near (u0,λ0) = (u,λ )(s0) where for instance we may use just one or two bisection step(s) to
approximate (u,λ )(s0) between (u,λ )(sa) and (u,λ )(sb). We then set up the extended system

H(U) =

 G(u,λ )
∂uG(u,λ )φ
〈φ ,φ〉−1

= 0, U = (u,φ ,λ ), (42)

so that φ is in the kernel of Gu with 〈φ ,φ〉 = 1. The bordering lemma [DK80, Lemma 3.1] yields
that the Jacobian

∂U H(U) =

 Gu 0 Gλ

∂u(Guφ) ∂uG ∂λ (Guφ)

0 2φ T 0

 (43)

is non-singular at a (generic, i.e., quadratic) FP, and hence we may run a Newton loop on (42), using
(u0,λ0) and the eigenvector φ0 belonging to the eigenvalue µ0 of smallest modulus at (u0,λ0) as a
starting guess, which upon convergence gives us the fold point (u∗,λ ∗). Similarly, in many problems
it is useful to continue FPs in a second parameter to obtain fold curves. Thus freeing a second
parameter β , say, and writing w = (λ ,β ) we set up the extended system

H(U) =

(
G(u,w),Gu(u,w)φ ,〈φ ,φ〉−1, p(U,s)

)T

= 0, U = (u,φ ,w), (44)
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where p(U,s) is the analog of the arclength (20), i.e., now

p(u,w,s) := ξ

〈(
u′0
φ ′0

)
,

(
u(s)−u0
φ(s)−φ0

)〉
+(1−ξ )

〈
w′0,w(s)−w0

〉
− (s− s0). (45)

Now (44) can be used for fold continuation. This means the continuation of a FP (u∗,λ ∗) as a
function of β , and as (44) is again in arclength parametrization (u,λ ,β ) = (u,λ ,β )(s) we can for
instance continue around folds of folds. Similarly, there are extended systems for the localization and
continuation of BPs and HPs, and associated functions in pde2path, again see [Uec21a, Chapter 3],
and §3.1 and §3.2 for examples.

More on phase conditions. As noted in Remark 2.7b), in continuation often the PDE M∂tu =
−G(u,λ ) must be extended by further equations Q(u,λ ) = 0, additional to the arclength condition
p(u,λ ,s) = 0 as in (19) with p given in (20), modified to ψ(u,λ ,T,s) = 0 in (35) for the Hopf case.
Two examples of additional equations are already given in in (42) for FP continuation, and in (34) as
a phase condition (PC) to remove the time–shift of POs from the continuation.

Similar PCs are also needed to remove other continuous symmetries, e.g., for spatially transla-
tionally invariant problems, which occur for periodic BCs. For instance, over a 1D interval Ω with
periodic BCs, a constant coefficient PDE M∂tu = −G(u) is translationally invariant, and if u with
∂xu 6≡ 0 is a solution of G(u,λ ) = 0, so is u(·−ξ ) for any ξ ∈Ω. Hence

0 =
d

dξ
G(u(·−ξ ),λ )|ξ=0 = ∂uG(u,λ )∂xu, (46)

and ∂uG always has ∂xu in its kernel, which is problematic for, e.g., robust convergence of Newton
loops, and bifurcation detection. To remove the continuous translational symmetry we add a PC
Q(u,λ ) = 0, here of the form

Q(u,λ ) = 〈∂xuold,u−uold〉L2 , (47)

where uold is either a fixed profile, or the solution from the previous continuation step. Since
〈∂xuold,uold〉 = 1

2
∫

Ω
∂xu2

old dx = 0 we can simplify Q(u,λ ) = 〈∂xuold,u〉L2 , but this makes no dif-
ference for the implementation. Moreover, ∂uQ(u,λ )v = 〈∂xuold,v〉L2 has a simple form and can be
easily provided. The additional equation (47) requires to free an additional parameter η , which may
be seen as a Lagrange multiplier for the constraint Q(u,λ ) = 0, and we add the generator of the
underlying symmetry group to G, i.e., here,

G̃(u,λ ,η) = G(u,λ )+η∂xu. (48)

Similar PCs for instance occur as mass–conservation in the Cahn–Hilliard problem [Uec21a, §6.9],
or as rotational invariance for problems over disks [Uec21a, §6.8], and §3.2. Moreover, PCs are often
also useful for problems which are only approximately invariant. For instance, problems with Dirich-
let BCs or Neumann BCs are not invariant wrt spatial translations, but strongly localized solutions
(peaks) which do not “see” the boundaries may be almost translationally invariant, which generates
almost zero eigenvalues, which should be removed via PCs. See §3.2.

3 Applications
The MATLAB package pde2path is designed to apply the algorithms from §2, and several more, in a
user friendly way to the large class of PDE systems of type (2). Many worked out examples are given
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in [UWR14, Uec19, Uec21a] and in the tutorials at [Uec21f], and are included as demos in the soft-
ware download. See also [dWDR+20] for a quickstart guide (download and installation instructions),
reference card, and an overview of the pde2path demos.5 Here we apply pde2path to the example
problems (5), (6), and (7) and further dead core problems, with the respective demos again available
at [Uec21f]. These demos follow some standard setup, and here we only give minimal comments
on implementations; for details including commented code see the accompagnying supplementary
information [Uec21e].

3.1 Turing and Hopf bifurcations in a 2–component system
We start with the system (5), i.e.,

∂tu1 = ∂
2
x u1 +

u2−u1

(u2−u1)2 +1
− τu1,

∂tu2 = d∂
2
x u2 +α( j0− (u2−u1)).

(49)

Throughout we fix (τ,d) = (8,0.05), and initially also α = 0.02, and take j0 as the primary con-
tinuation/bifurcation parameter. For all ( j0,α), (49) has the unique spatially homogeneous steady
state

u∗ = (u∗1,u
∗
2), u∗1 =

j0
τ( j2

0 +1)
, u∗2 = j0 +u∗1. (50)

Denoting the terms without derivatives in (49) by f , the linearization of (49) at u∗ has the form

∂tv = L(∂x)v := D∂
2
x v+∂u f (u∗)v (51)

with constant coefficient differential operator L(∂x), where D =diag(1,d). Over R, (51) has solutions
of the form

v(t,x) = eµ(k)t+ikx
φ(k), (52)

where k ∈ R is called wave number, eikxφ(k) is called a (Fourier–)mode, and (µ(k),φ(k)) ∈ C×C2

is an eigenpair of L̂(ik) :=−k2D+∂u f (u∗) ∈ R2×2. The function(s)

k 7→ µ1,2(k), (53)

is called the dispersion relation, where for each k we sort the eigenvalues such that Reµ2(k) ≤
Reµ1(k) (here we use the more standard sign convention that Reµ > 0 means instability). Over
Ω = (−lx, lx) we additionally have to fulfill the Neumann BCs, which restricts k to the (dual) lattice
L = πZ/(2lx). The solution u∗ is stable if Reµ1(k) < 0 for all k ∈ L , unstable if there exists a
k such that Reµ1(k) > 0, and instabilities and bifurcations may occur if there is a k = kc such that
Reµ1(kc) = 0. The instability is called a long wave instability if kc = 0 and Imµ1(kc) = Imµ2(kc) = 0;
it is a Hopf instability if kc = 0 and Imµ1(kc) = Imµ2(kc) 6= 0, while for kc 6= 0 (and consequently
Imµ1(kc) = 0) it is called a Turing instability.6

5In the basic setup, pde2path needs no installation. You only need to download and unpack the software to some
directory, and call setpde2path in MATLAB there to set the MATLAB paths. Some additional features such as ilupack
for preconditioned GMRES linear system solvers, or pqzschur for periodic Schur decompositions can then be linked
via Mex–files.

6An instability with kc 6= 0 and Imµ1(kc) = −Imµ2(kc) 6= 0 is called a wave (or Turing–Hopf) instability, but in
reaction–diffusion systems this requires at least 3 components.
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Figure 4: Turing and Hopf Bifurcation lines in the j0–α plane as obtained from BP and HP continuation (a),
and dispersion relations in the stable case (b), Turing unstable case (c), and Hopf unstable case (d), ( j0,α) as
indicated. The ∗ in (b–d) show the allowed wave numbers on the interval Ω = (−lx, lx) with lx = 4π/kc and
Neumann BCs.

Figure 5(a) shows the Turing and Hopf lines in the j0–α plane, where the respective instabilities
first occur. These lines can be computed analytically, see [MDWBS97] (for Ω = R), but here we
compute them numerically by BP and HP continuation (see §2.4) on Ω = (−lx, lx), lx = 8π/kc, with
kc = (ατ/D)1/4.7 In Fig. 4(b–d) we show the dispersion relations k 7→ µ1(k) at different values
of ( j0,α), where the ∗ illustrate the allowed k over Ω. For given j0, the steady state u∗ is stable
for α above the max of the red and blue lines. As we decrease α , (or decreasing j0 from 3.5 for
fixed α = 0.05, say) we either first cross the blue line, meaning that u∗ looses stability to a Turing
mode, or the red line, meaning that u∗ loses stability to a Hopf mode. Moreover, after crossing into
the ’instability region’, there are typically further (Hopf or Turing) instabilities in quick succession.
There are two codimension–2–points, at ( j0,α)∗≈ (2.85,0.036) and ( j0,α)?≈ (1.25,0.035). In any
neighborhood of these, the first instability can be either to a Hopf or to a Turing mode.

Some first results. To plot BDs for (49), we use the “norm” ‖u‖2 defined as

(a) ‖u‖2
2 =

1
|Ω|

∫
(u(x)−u∗)2 dx, or (b) ‖u‖2

2 =
1

T |Ω|

∫ T

0

∫
(u(t,x)−u∗)2 dxdt (54)

for steady states (a), and POs (b), respectively, such that ‖u‖2 = 0 means u ≡ u∗. This gives better
graphical separation of branches in the BDs.

In Fig. 5(a) we show steady state (Turing) branches (T1, blue, to T4, green) bifurcating from the
trivial branch u≡ u∗, a secondary steady branch (T1-1 orange), and two secondary Hopf bifurcations
(T1-1-h10, red, from the 10th HP on the T1-1 branch, and similarly T1-1-h18 from the 18th HP).8

7kc is the critical wave number at the (right) codimension–2 point, taken from [MDWBS97], but this exact value is
only taken for convenience and not crucial for us. What matters below is that we take a sufficiently large domain to
capture the instabilities, i.e., to have a sufficiently dense lattice L .

8The BDs we show are essentially verbatim outputs of the pde2path scripts (see the plotbra and plotsol com-
mands in cmds1.m in [Uec21e]), with minor adjustment of the label placement via click and drag. For instance, the
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The blue branch T1 bifurcates subcritically, and becomes stable in the fold near pt30. The further
Turing branches (with sideband wave numbers) behave similarly, and branch T4 goes furthest to the
right. Moreover, on all the Turing branches there are secondary bifurcations to localized (steady)
patterns, and also some Hopf bifurcations to patterns modulated in time. Here we first follow the 1st
secondary branch (T1-1, orange) which contains (steady) fronts between u = u∗ and Turing patterns,
snaking up by adding one oscillation for every two folds, and with stable segments in direction SE
to NW. By even extension of solutions over the left boundary (based on the Neumann BCs), we can
also regard such fronts as localized patterns.

(a) Partial BD (b1) sample steady states

(b2) sample POs and their Floquet spectra

(c) HP8 on second snake, Hopf branch, and samples

Figure 5: Results for (5) from cmds1, (α,τ,D) = (0.02,0.05,8) fixed, using j0 as continuation parameter,
starting with j0 = 3.3 on the trivial branch. Domain Ω = (−lx, lx) with lx = 8π/kc, with critical wave number
kc. (a) partial BD: first 4 Turing branches (blue and green), snake of T1-front (T1-1, orange), two Hopf
branches (T1-1-h10, brown, and T1-1-h18, red) bifurcating from the snake. (b) sample solutions from (a).
(c) zoom into a snake of localized Turing patterns (again orange), with one bifurcating Hopf branch.

First indicated in [Pom86], such snaking branches of localized patterns (“homoclinic snaking”,
in 1D, 2D and 3D) have seen much interest in recent years, see [BK06, BBKM08, Kno08, CK09,

label “30” on the blue branch “T1” means the 30th continuation point. The data is also saved to file accordingly, i.e., as
pt30.mat in (sub)directory T1, and we use the same labeling for solution plots (and Floquet multipliers) in (b) and (c).
Steady BPs are indicated by ◦, HPs by �, and FPs by ×.
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ALB+10, UW14, Kno15, UW20], and [Uec21a, Ch. 8 and 9] for various examples illustrated with
pde2path. In Fig. 5(a), the stable segments of the snake are bounded by folds on the right and HPs
on the left, and the red branches are the PO branches bifurcating at the HPs 10 and 18. The solutions
on these branches essentially consist of the (steady) Turing pattern on the left, and (small amplitude)
oscillations in time around u∗ on the right. These PO branches connect pairs of HPs on the orange
branch, and all only contain unstable solutions, see panel (b2) for two samples.9 The orange snake
connects to the 4th Turing branch T4 near its fold, and thus connects patterns of different wave
lengths. Panel (c) gives a partial illustration of the next snake bifurcating from the T1 branch, and
one example Hopf branch bifurcating from this second snake, which all again only contain unstable
solutions. Finally, there are many further BPs on all the Turing branches, giving a hint of the very
rich bifurcation structure of steady states for (49), near the codimension–2 point.

Large amplitude mixed modes. In Fig. 6 we (re)start with the primary Hopf bifurcation of a
spatially homogeneous PO (blue branch) from the trivial branch (for graphical reasons plotted after
the 15th point). The branch bifurcates subcritically, and becomes stable at large amplitude after the
fold, see, e.g., pt22. The Floquet spectrum at H1/pt16 in (b) illustrates that at lower amplitude there
are many unstable directions, and consequently many PO bifurcations before the branch becomes
stable. Finally, we consider a mixed mode branch that is not obtained by bifurcation from an already
known branch, but by splicing together the Turing pattern T1/pt35 on part of the domain, with the
PO from H1/pt25 on the complement. This is just an initial guess for subsequent Newton loops to
get on a solution branch, and depending on the choice of, e.g., the “splitpoint” (by trial and error),
there may be very large initial residuals and the Newton loop may fail. However, here we get to
pt1 on the red branch, called lh1a, which happens to be stable.10 Continuing in one direction, the
oscillating parts of the solutions shrink, e.g., lh1a/pt40, while in the other direction they grow in a
snaking fashion, with stable segments. However, ultimately the branch becomes and stays unstable
in both directions, and goes back and forth in j0, with solutions loosing more and more structure, and
we were not able to determine where it bifurcates from/connects to. This is somewhat unsatisfying,
and unfortunately not altogether untypical. Essentially, it means that we have to accept that there
are “too many branches” to get a complete picture, but on the other hand Figures 5 and 6 show that
continuation and bifurcation are useful tools to understand big parts of the organization of sets of
solutions.

Comments. Where does the multitude of solution branches (of which we only give a small sample
in Fig. 5 and Fig. 6) come from? And what do we learn from the continuation/bifurcation approach
compared to just finding (stable) solutions (steady or time-periodic) from DNS as in [MDWBS97] ?

Regarding the first question, the dispersion relation(s) Reµ(k) of eigenvalues as a function of
wave number k are rather flat. As a consequence, over non–small domains Ω there are many eigen-
values (Turing and/or Hopf) crossing the imaginary axis near criticality in short succession, and there
can be sub–harmonic (half wave number or frequency) Turing and/or Hopf modes. This explains the
multiplicity of patterns close to bifurcation, which for a similar situation are also analyzed via am-
plitude equations in [DWLDB96]; [MDWBS97] and [DWLDB96] then use DNS to find a variety of
(stable) patterns further away from the primary bifurcation, including some not discussed here, e.g.,
spiking of subharmonic Turing-Hopf modes. See also [YDZE02] for DNS in related systems and
a discussion of the role of subcritical bifurcations in localized oscillating patterns. Here we study
patterns far from the primary bifurcation via continuation, which for instance allows the computation

9One might call these solutions “mixed modes”, but following [MDWBS97] we reserve this term to mixes of Turing
patterns and large amplitude Hopf oscillations, which can be stable, see Fig. 6.

10This is not required by the method. However, splicing together a Turing pattern and some constant value and taking
this as an initial condition for DNS also works to go to a stable PO of the form lh1a/pt1.
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(a) partial BD, primary Hopf (b) samples of spat.homogeneous POs
branch (blue), and loc.Hopf

(c) sample mixed modes

(d) Further sample solutions on magenta branch

Figure 6: Selected outputs from cmds2.m. (a) BD of primary Hopf branch H1 (blue) and mixed modes lh1a
and lh1b (red and magenta). (b) Samples of spatially homogeneous periodic orbits. (c,d) Samples of solutions
from mixed mode branch; solutions lh1a/1, lh1b/20, lh1b/110 stable, remaining samples unstable.

of the localized steady patterns in the snakes in Fig. 5 in a very efficient way, and which gives further
information about how different patterns are connected. Thus, both approaches complement each
other. Finally, we may expect a still much richer solution space for (49) in 2D, where already the
steady states allow a much richer variety of spots vs stripes (see also §3.2).

3.2 Pattern formation on disks
Our second example deals with somewhat non–standard patterns due to geometric constraints, and
with (spatial) PCs. The SH equation (6), i.e., ∂tu = −(1+∆)2u+ εu+ νu3− u5, is a prototypical
model for pattern formation. See [SH77] and, e.g., [CH93, Pis06, CG09, SU17] for reviews. We
assume Neumann BCs ∂nu = ∂n∆u = 0 for u and ∆u, and rewrite the 4th order equation (6), as a
parabolic–elliptic system,

Md∂t

(
u1
u2

)
=

(
−∆u2−2u2− (1−ε)u1+ f (u1)

−∆u1 +u2

)
, (55)
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with a singular dynamical mass matrix Md =
(

1 0
0 0

)
, f (u1) = νu3

1− u5
1, and Neumann BCs for u1

and u2. See, e.g., [Uec21a, Remark 8.1] for the equivalence of (6) and (55) over convex Lipschitz
domains, or general domains with a smooth boundary. We first fix ν > 0, and use ε ∈R as the primary
bifurcation parameter. Over Rd , the trivial branch u ≡ 0 loses stability at ε = 0 to modes ei~k·~x with
wave number k = ‖~k‖ ≈ 1 and growth rate µ(k) = −(1− k2)2 + ε . Essentially the same holds over
bounded boxes with Neumann BCs or periodic BCs, with~k from the pertinent lattice, depending on
the box size. For both, the cubic-quintic case (6) and the quadratic-cubic case with f (u) = νu2−
u3 with ν > 0, there are subcritical bifurcations of branches of patterned states, and subsequent
secondary bifurcations to snaking branches of localized patterns, and loosely speaking, one difference
between the quadratic-cubic and the cubic-quintic case is that the former favors hexagons, while the
latter favors stripes. See, e.g., [Uec21a, Chapter 8], and the references therein.

Here we report a few results for (55) on a disk, referring to [VKU21] for further details. The SH
equation (6), and hence the system (55), is variational with respect to the energy

F [u]≡
∫

Ω

(
1
2
[(1+∆)u]2−ε

2
u2−ν

4
u4+

1
6

u6
)

dx. (56)

Using integration by parts and the boundary conditions we obtain

d
dt

F =
∫

Ω

[
−εu−νu3 +u5 +(1+∆)u

]
(∂tu)dx+

∫
Ω

((1+∆)u)∆(∂tu)dx =−
∫

Ω

(∂tu)2dx. (57)

Hence F decreases along orbits of (6), and since F [u] is bounded from below and since for fixed
(ε,ν) we have a discrete set of steady states, every solution converges to a steady state, and in partic-
ular there are no Hopf bifurcations and no POs. Introducing polar coordinates (x,y) = ρ(cosφ ,sinφ),
the primary bifurcation directions (from the trivial branch) are given by Fourier–Bessel modes

φm,k(ρ,φ) = (amJm(k+ρ)+bmJm(k−ρ))sin(mφ +α), (58)

where m ∈ N0 is the azimuthal wave number, Jm is the mth Bessel function of the first kind, α = 0
or α = π/2, and the constants am,bm (with a2

m +b2
m = 1) and k± are from a discrete set determined

by the boundary conditions. Even for rather small disk radius R, there is a rather large number of
instabilities for small ε , see Fig. 7(a), and the order in which they appear depends sensitively on the
radius R, see [VKU21].

In a first classification, the modes can be distinguished into axisymmetric ones m = 0 and non-
axisymmetric ones m 6= 0, and additionally into localized ones (large near the center of the disk)
and wall modes (large near the boundary). Following the remarks in §2.4, for the localized modes
(axisymmetric or not) it turns out to be useful to switch on translational PCs, while for the non-
axisymmetric modes on the full disk we need rotational PCs due to the rotational invariance of the
Laplacian and of the disk.

In the following we shall briefly report, for R = 14, on the branches corresponding to the first
axisymmetric mode φ5 and the D−4 mode φ6 (Fig. 7(b)), on some secondary bifurcations from the ra-
dial branch (Fig. 8), and on “daisy” branches corresponding to the wall mode φ3, and their secondary
bifurcations to localized daisies. This focus on the 5th, 6th and 3rd bifurcating branches may appear
arbitrary, but these are prototypical branches, and, as already said, the sequence of the bifurcations
from u ≡ 0 strongly depends on the radius R. Again, the goal is to obtain a basic understanding of
the organization of the set of steady states.

Remark 3.1. a) Due to the already large number of close–together patterned solutions on rather
small disks, potential branch–jumping during continuation becomes a problem, in particular in the
neighborhood of bifurcation points. By this we mean the uncontrolled and undetected switching of
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states from one solution branch to another, typically coming with a loss of symmetry. Obvious ways
to mitigate this are choosing a smaller domain (see (b)), and carefully choosing a radially symmetric
mesh, see also [Uec21a, §4.2]. Additionally, it turns out that choosing a piecewise quadratic (La-
grangian P2) FEM, see [Uec21c], instead of the default piecewise linear P1 FEM helps to mitigate
branch jumping.

b) Following [VKU21] and the tutorial at [Ver21] we present our results only on the half disk,
where also at x1 = 0 we impose Neumann BCs for (u1,u2). The solutions can then be mirrored to
the full disk. This simplifies the numerics, as we need less degrees of freedom for the discretization,
and as for localized solutions (see below) we do not need a PC in x1, and, equally importantly,
keeping symmetry of solution branches is easier on the smaller domain. However, the half disk also
reduces the number of allowed modes to α = 0 in (58). Therefore, when below discussing stability
of nontrivial solutions, we always first extend them to the full disk and then compute the spectrum. c

(a) (b)

Figure 7: (a) The first six bifurcation directions from u = 0 on the half-disk with R = 14 and ε values
(0.003,0.279,0.292,0.732,8.8,13.2)×10−3. (b) Bifurcation diagram of the 5th branch (axisymmetric, black)
and the 6th branch (D−4 mode), and sample solutions as indicated by the numbers; ν = 2.

Some results. In Fig. 7(b) we present a bifurcation diagram of the branches from φ5 and φ6, for
ν = 2.11 The black branch bifurcates at ε = ε5 ≈ 0.88×10−2 in direction φ5, and contains axisym-
metric states which start as a spot at small norm; the branch then snakes in ε , containing short stable
segments, before turning into a domain filling stable target state in the last fold. However, this be-
havior depends in a very sensitive and interesting way on the disk radius. For instance, for R = 15
the primary spot branch does not connect to a target state, but instead reconnects to u = 0 at slightly
larger ε , as discussed in detail in [VKU21]. The red branch in Fig. 7(b) is an example of states
with D−m symmetry, which means that the states are invariant under rotation by 2π/m together with a
sign change u 7→ −u. The branch starts with localized D−4 states (hence again needs a y–PC); along
the branch, the arms first extend towards the wall (state 90), and then broaden, and the SW→NE
segments of this branch contain stable segments.

Figure 8 shows some secondary bifurcations from the radial branch, starting with 2–arms, 3–
arms and 4–arms branches (with Dm symmetry, i.e., invariance under rotation by 2π/m) bifurcating

11The bifurcation points ε j and modes φ j do not depend on ν , and in Fig. 9 we shall consider the “daisy” branch from
ε3 at ν = 1.4, where its secondary bifurcation will have more structure.
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Figure 8: Branches of multiarm solutions for R = 14, ν = 2. (a)–(c) m = 2,3,4 branches bifurcating from an
axisymmetric spot at low ‖u‖2. (d) Zoom of the bifurcation diagram with the m = 12 crown branch (magenta)
and the branches of 1-arm (orange), 2-arm (blue), 3-arm (red), and 4-arm (green) states that bifurcate from
it; the m = 3,4-arm states connect to the corresponding branches in panels (b) and (c). The four critical
eigenfunctions on the m = 12 crown branch are shown alongside, together with the solution profile at location
5 on this branch.

at small norm (a–c). Again the arms grow towards the wall, and the 3-arms and 4–arms branches
broaden as they reach the wall, and seem to reconnect to the axisymmetric black branch near its
upper left fold. The 2-arms branch in (a) behaves differently and rather loses spots after point 4. In
(d) we look at the reconnection more closely. It turns out that the 3-arms and 4-arms branches do not
connect directly to the target, but to a “crown” state which bifurcates from the radial branch near its
last fold, and has D12 angular structure at the wall; see sample 5 in Fig. 8(d). Conversely, there are
1–arm and 2–arm states bifurcating from the crown branch; see the critical eigenvectors at BPs 1 and
2 in (d), and the further discussion of these bifurcating branches in [VKU21].

In Fig. 9(a) we set ν = 1.4 and consider the blue branch bifurcating at ε = ε3 ≈ 0.292× 10−3

in direction of the wall mode φ3. Following [LPRT96] we call these solutions daisy states. At the
first BP on the daisy branch, a branch (green) of localized daisies bifurcates, snakes up by adding
a petal at every other fold, and reconnects to the blue daisy branch near its top left fold, where the
daisies become stable. This is very similar to the snaking of the T1-1 branch in Fig. 5, or to the
snaking of localized periodic patterns in the 1D SH equation [BK07]; like there, here we also have
an intertwined 2nd branch of odd localized daisies, and the two are connected by rungs, cf. [VKU21,
Fig.12].

However, the quasi 1D snaking on the R = 14 disk only holds at moderate subcriticality, i.e.,
moderate ν . For instance, for ν = 2 there also bifurcates a localized 1–petal daisy branch from the
daisy branch at low norm, and a 1–hole “plucked” daisy branch near the fold, but the two do not
connect. To understand this breakup, in [VKU21] we use some fold continuation in ν of the folds
as in Fig. 9(a). It turns out that these folds do not continue to ν = 2, but the fold continuation folds
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(a) (b)

Figure 9: (a) The daisy branch (blue) and a localized daisy branch (green), R = 14, ν = 1.4. (b) Breakup of
the localized daisy snake after continuationof FP12 from (a) to ν = 1.5. See text for details.

back at some ν < 2. In Fig. 9(b) we continued FP12 from (a) to ν = 1.5, and then switch back
to continuation in ε . In the “up” direction, the branch (in green) behaves as in (a), but in “down”
direction the branch (in red) does not loose further petals to connect to the daisy branch at low norm.
Instead, the petals start to grow towards the center of the domain. Such states of patches of stripes
are also known for the SH equation in the plane (without boundary) and called worms. Thus, in
[VKU21] we term states like 100 “boundary worms”.

Here we end the review of [VKU21], which discusses the above results and a number of further
patterns in more detail. One crucial point is that continuation and bifurcation software helps to
uncover the very rich solution structure in a more systematic way than just DNS. All of the above
branches (and many more in [VKU21]) start out unstable, but later contain stable segments, and
(secondary, tertiary, ..) bifurcations to further branches with stable parts.

3.3 Experiments on dead core pattern formation
Our last (class of) example(s) is “experimental”, in the sense that the standard analytical bifurcation
theory does not apply because the problems are not smooth, and not even piecewise Lipschitz. This
also reflects in the need to modify some of the pde2path algorithms.

A classical example of a dead core (DC) problem is given by the elliptic equation

0 = ∆u−λ f (u) in Ω, u = 1 on ∂Ω, (59)

where Ω⊂ Rd is a bounded domain, λ > 0 a parameter, and f : R→ R a function such that

f (u)=0 if u≤ 0, f (u)> 0 if u > 0, and f (u)∼ uγ as u↘ 0 with 0 < γ < 1. (60)
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The associated parabolic problem is

∂tu = ∆u−λ f (u) in Ω, u = 1 on ∂Ω, u|t=0 = u0. (61)

Setting v= uγ , (61) with f (u)= uγ

+, u+=max(u,0), is equivalent to the degenerate diffusion problem

δvδ−1
∂tv = ∆(vδ )−λ f (vδ ), δ = 1/γ > 1, (62)

where f (vδ ) = v, which however does not seem simpler to analyze than (61).
For large λ , (59) has DC solutions which feature a subdomain Ω0 ⊂ Ω where u ≡ 0. The mo-

tivation comes from reaction–diffusion problems where the reaction is so fast near u = 0 that the
diffusion cannot supply further reactants and a DC without reactants develops. For (59) in 1D with
f (u) = uγ

+ and wlog Ω = (0,1), DC solutions can be computed explicitly. For instance, for γ = 1/2
the ansatz

u =

{
α(x−1/2+δ )β for 0≤ x < 1/2−δ ,

0 for 1/2−δ ≤ x≤ 1/2,
and symmetric for x > 1/2, (63)

yields β = 4, α = λ 2/144 and δ = 1/2−
√

12/λ , i.e., a DC for λ > 48, which turns out to be
the unique non–negative solution for λ > 48, while for λ < 48 the unique solution is positive. The
DC grows as λ → ∞, and the solution is a classical one and in fact in C3([0,1]), while the positive
solutions for λ < 48 are C∞. Similar computations can also be done for balls in d = 2,3 (2D, 3D
cases), and are useful for numerical checks.

Problems of this kind, in d space dimensions and under various BCs and general assumptions,
have been studied analytically in detail, including also the case of degenerate diffusion and quasilin-
ear cases. We refer to [FP84] and the references therein for various older results on (59), which can
be summarized as follows: DC solutions exist for many problem classes, and are generally rather
smooth, i.e., at least classical solutions; the dead cores Ω0 = {x ∈ Ω : u(x) = 0} are convex if Ω

is convex, and their “free boundaries” ∂Ω0 determined together with the solution itself are C2+γ if
∂Ω is smooth. See also [LWY05, DHM09, Tei16] for more recent results and, e.g., [DHM09] for
a comprehensive review of the physical background including the case of systems of equations, for
which we also refer to, e.g., [DS00].

For (59), some results on multiplicity of solutions are available, see for instance [GMRSdL07]
and the references therein. These yield that for small λ (relative to the domain size) there is a unique
positive solution, and for λ sufficiently large there is a unique DC solution, while [GMRSdL07] also
discusses uniqueness vs non–uniqueness in DC problems with BCs depending on a parameter λ .
However, a genuine bifurcation analysis of DC solutions seems to be largely lacking. The existing
theory for bifurcations in nonsmooth dynamical systems, e.g., [Lei06, dBBCK08, dBBC+08, ML12],
does not apply as it deals with at least piecewise Lipschitz systems, with the notable exception of
[Kue09] where scaling laws near folds in non–Lipschitz systems are derived.

Numerical issues and implementation. In the demo acdc, available at [Uec21f], we numerically
study slight modifications of (59) in 1D and 2D, which (via x–dependent nonlinearities [AMPP87])
allow various stable branches with multiple interfaces bifurcating from u ≡ 1, which subsequently
develop different DCs. Here we give a few general comments on modifications of pde2path needed
for DC problems, essentially sticking with (59), which then can immediately be transferred to the
DC Schnakenberg system studied below.

The convergence theory for the P1–FEM for equations of type (59) is discussed in, e.g., [Noc88]
and [BW95]. The basic idea of [Noc88] is to apply the FEM to regularized problems where f is re-
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placed by globally Lipschitz regularizations fε where ε =Ch2 depends on the FEM discretization pa-
rameter h (mesh–width). In a nutshell, this yields the a–priori estimate ‖u−uε,h‖∞ ≤C(h log(1/h))2

for h < h0. In [BW95], this is combined with a nonlinear successive–over–relaxation method to
solve the (nonsmooth, at u = 0) nonlinear algebraic systems obtained from the FEM applied to the
original equation (59). This uses either trivial (linear) steps, or Newton steps, or regula falsi steps,
depending on the residual, and the method is shown to be globally convergent to the (unique, due to
monotonicity of f (u) = uγ

+) solution of the discrete problem.
Here we aim to use the standard setup of pde2path, with small modifications of the Newton

loops un+1 = un− (∂uG(un))
−1G(un) to ensure that u≥ 0 everywhere, and we need to deal with the

non–differentiability of f at u = 0. To “approximate” ∂uG(u) (even if it does not exist) in a simple
way, we can use forward finite differences, i.e., numerical Jacobians. Alternatively, we implement an
approximate ∂uG by modifying ∂u(u

γ

+) = γuγ−1
+ to γ max(u+,δ )γ−1 with a small δ (e.g., δ = 10−12).

Thus, instead of ∞ we have some large number in ∂uG where u = 0. Adapting the Newton loops as
usual works by modifying local (in the problem directory) copies of the respective library functions.
For instance, in a local copy of nloop.m we add the command u1(1:p.nu)=max(u1(1:p.nu),0)

after computing the update u1= un+1, see [Uec21e] for details. The “approximate” ∂uG together with
the modified Newton loops then yields rather robust and fast convergence even in the presence of a
DC, and since we do not modify G itself we solve the original singular problem.12 Of course, if a DC
has formed, we then also have a wrong (numerical) ∂uG for stability and bifurcation computations,
and the consequences of this still need to be studied. From the experimental point of view, we find
the following hypotheses:
H1. The stability information obtained from the eigenvalues of the “approximate” ∂uG as formed

above appears correct in the sense that it fully agrees with DNS. Moreover, if there are unstable
eigenvalues, the associated eigenvectors have supports outside the DC.

H2. If bifurcations from states with a DC occur (notably in the Schnakenberg problem studied
next), then the bifurcation directions have supports outside the DC.

Dead core Schnakenberg. The (classical) Schnakenberg model is a 2-species predator–prey model
for cubic autocatalysis: substance u decays at rate 1, but catalyzes its own production while preying
on v, which is fed at some constant rate λ . The diffusion constants of u and v are 1 and d � 1,
respectively, and in summary a basic model is

∂tu = ∆u−u+u2v, ∂tv = d∆v+λ −u2v, (64)

usually considered with homogeneous Neumann BCs. The homogeneous steady state (u,v)=(λ ,1/λ )
is stable for large λ , but for d� 1 shows a Turing instability for λ decreasing below some (explicitly
computable) λ0. The version (64) has been a model problem for pde2path since [UWR14]. See also
[UW14] and [Uec21a, Ch.9] for numerical bifurcation analysis for (64), in 1D, 2D and 3D, including
branches of localized patterns within patterns, for instance snaking branches of localized hexagon
patches embedded in stripes, and, e.g., [TXKW17, KPLW21] for further recent results.

Here we modify (64) to

∂tu = ∆u−u1/m
+ +u2v, ∂tv = d∆v+λ −u2v, (65)

such that u1/m
+ becomes singular at u=0 for m>1. The homogeneous branch now is (u,v)=(λ m,λ 1−2m).

Its Turing (in)stability analysis is completely analogous to (64) (m = 1). Again we find Turing bifur-

12These modifications of course heavily use the a priori information that u ≡ 0 in parts of the domain is a “valid”
solution, and in some sense even the desired one. Thus, these modifications in no way go into the difficult direction of
“semismooth” (for Lipschitz functions) or “nonsmooth” Newton methods, see [Ulb11].
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cations for decreasing λ (d = 100, say, and then λ in the range 1 to 3, say, such that uhom = λ m is far
from the singular point u = 0). Here we are mostly interested in the DCs formed by Turing patterns,
and Hopf bifurcations from Turing branches with DCs at low λ .

(a) (b) sample steady states
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Figure 10: Results from schnakdc/cmds1D for (65) with (m,d)= (1.5,100) over Ω=(−12,12). (a) (partial)
BD: homogeneous branch (λ m,λ 1−2m) in black. First three Turing branches T1–T3 in blue and green, and two
secondary steady branches T1-1 (red) and T3-2 (brown). PO branches in orange. (b) u for sample steady states,
with DCs (u < 10−8) marked in magenta. The samples bp1 and hp1 are from the first BP and HP, respectively.
Last column shows samples at low λ as indicated, with DCs on 1 and 3; addtionally, T3/hp1 already has a DC.
Last row of (b) shows samples from 2ndary branches. (c,d) u for sample POs, with time series of u at the right
boundary (pt2 on top, pt8 at bottom in (c)).

Numerically, we follow the procedures explained above for (61), see [Uec21e] for details. Figure
10 shows results for (65) in 1D. The BD in (a) shows the first three Turing branches T1,T2 and T3
(blue and green), with 2, 2.5, and 1.5 waves in the domain, respectively. These are initially quite
similar to the regular case, but T1 and T3, which have longer wavelengths than T2, at low λ develop
DCs, which we numerically define as u < 10−8 and indicate by magenta crosses in (b). Additionally
we show two secondary branches T1-1 (red, connecting the first BPs on T1 and T3) and T3-2 (brown),
bifurcating at the 2nd BP from T3, where there already is a DC on T3. The critical eigenvector is
localized at the right bump of T3/bpt2, and the bifurcating branch decreases this bump.

At yet lower λ we find HPs on T1, T2 and T3, and on T3 we have two DCs at the HP, while on T1
and T3 we still have u1 > 10−8 in the valleys. In all cases, the Hopf eigenvectors are localized at the
bumps, and consequently in the bifurcating POs mostly the bumps oscillate. See (c), where the time
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series are from the right boundary point. For T3-H1, we initially keep the DCs and the oscillations
are only in the “live” part u > 0, and even at large amplitude in T3-H1/pt8, |u(12, t)| < 10−12 most
of the time.
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Figure 11: Results from schnakdc/cmds2D for (65) with (d,m)=(1.5,100) over Ω = (−lx, lx)×(−ly, ly),
lx= 12, ly=lx/

√
3 (hexagonal lattice). (a) (partial) BD of up hexagons (h1+, blue) and down hexagons (h1-,

turquoise). (b) sample states, DCs marked in magenta.

Figure 11(b) shows two DC Turing-patterns in 2D. The domain is Ω=(−lx, lx)×(−lx/
√

3, lx/
√

3)
which yields a hexagonal dual lattice [Uec21a, §2.5], and hence double BPs at λc. In pde2path, such
BPs of higher multiplicity can be handled by numerically deriving and solving the quadratic bifur-
cation equations (28), see Algorithm 2.2. Here we have two branches at the primary bifurcation,
namely stripes (1D solutions extended homogeneously in y–direction, bifurcating in a pitchfork),
and (hexagonal) spots. In Fig. 11 we focus on the (transcritical) hexagon branch, and find that in
both directions it develops DCs as essentially predicted at bifurcation. As long as u > 0 in (65) the
system altogether behaves similar to the regular case (m = 1), and hence we can also find various
sorts of patterns as described in [UW14], which as λ decreases yield various sorts of DCs.
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