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Dryland vegetation can survive water stress by forming spatial patterns but is often subjected to
an additional stress that puts it at risk of desertification – herbivory. Understanding the mutual
relationships between vegetation patterning and herbivory is crucial for securing food production
in drylands, which constitute the majority of rangelands worldwide. In this paper, we introduce
a novel vegetation-herbivore model that captures pattern-forming feedbacks associated with water
and herbivory stress and a behavioral aspect of herbivores representing an exploitation strategy.
Applying numerical continuation methods, we analyze the bifurcation structure of uniform and
patterned vegetation-herbivore solutions, and use direct numerical simulations to study various
forms of collective herbivore dynamics in patterned landscapes. We find that herbivory stress can
induce traveling vegetation-herbivore waves and uncover the ecological mechanism that drives their
formation. In the traveling-wave state, the herbivore distribution is asymmetric with higher density
on one side of each vegetation patch. At low precipitation values their distribution is localized,
while at high precipitation the herbivores are spread over the entire landscape. Importantly, their
asymmetric distribution results in uneven herbivory stress, strong on one side of each vegetation
patch and weak on the opposing side – weaker than the stress exerted in spatially uniform herbivore
distribution. Consequently, the formation of traveling waves results in increased sustainability to
herbivory stress. We conclude that vegetation-herbivore traveling waves play an essential role in
sustaining herbivore populations under conditions of combined water and herbivory stress, thereby
contributing to food security in endangered regions threatened by droughts and population growth.

I. INTRODUCTION

Understanding the response of ecosystems to climate
change is crucial for maintaining essential provisioning
services that ecosystems provide to humans. Of these,
feeding livestock by grazing in dryland pastures stands
out in its scope; drylands constitute 78% of rangelands
worldwide and are home to about billion people who rely
on grazing as a critical source of protein and income [1].
Grazing, in turn, may have complex positive and neg-
ative feedback effects on dryland vegetation in terms of
carbon stocks [2, 3], species diversity and ecosystem func-
tioning [4–7].

One of the hallmarks of dryland landscapes is their
patchy nature, often appearing as mosaics of vegetation
and “bare-soil” patches, devoid of vegetation but not of
other life forms. This is a pattern formation phenomenon
driven by positive feedback loops between vegetation
growth and water transport [8, 9]. In homogeneous areas,
these patterns can be strikingly ordered, in line with the

∗Electronic address: joydeep@post.bgu.ac.il

predictions of pattern formation theory [10, 11]. Well-
reported examples are the so-called “tiger bush” pat-
terns, consisting of parallel stripes of woody vegetation
on sloped terrains oriented perpendicular to the slope
direction [12–15], and “fairy circles”, which are hexago-
nal patterns of bare-soil gaps in grasslands, observed in
flat terrains [16–21]. Vegetation pattern formation is a
mechanism by which plant populations or communities
tolerate water stress, as vegetation patches benefit from
an additional water resource – the unutilized rain that
falls in adjacent bare-soil patches [9]. This mechanism
is likely to apply to non-dryland ecosystems as well, as
many of them are experiencing a drying trend [22].

Herbivores exert additional stress on already water-
stressed dryland pastures, putting these ecosystems at
risk of desertification and loss of function [1]. However,
despite this concern and the high interest in understand-
ing plant-herbivore interactions [23], very little is known
about the mutual relationships between vegetation pat-
terning and behavioral aspects of herbivore dynamics.
Basic questions, such as how herbivore grazing or brows-
ing affects vegetation patterns or how foraging strategies
in patterned-vegetation landscapes affect herbivore sur-
vival, have hardly been addressed.
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Mathematical models have been highly instrumental
in understanding the mechanisms that drive vegetation
pattern formation [24–31] and the roles these patterns
play in maintaining ecosystem resilience to droughts [32–
34] and biodiversity [35–37]. The importance of model
studies stems in part from the difficulty of conducting
controlled laboratory experiments on dynamical behav-
iors, such as instabilities and state transitions, because of
the long time and space scales associated with vegetation
patterning.

Mathematical models can be equally instrumental in
unraveling the complex relationships between vegetation
patterning and herbivore dynamics, and their implica-
tions for biodiversity and ecosystem function. To this
end, the models should capture water-vegetation feed-
backs capable of inducing vegetation patterns, and spa-
tially explicit herbivore dynamics that include behavioral
elements, such as foraging strategy [38]. A few spatially-
explicit vegetation-herbivore models have been proposed
and studied recently, but none of them meets both re-
quirements [39–42].

In this paper, we introduce a novel vegetation-
herbivore model (Section II) that captures pattern-
forming water-vegetation feedback and a behavioral ele-
ment – preferential herbivore movement to nearby areas
of denser vegetation [43], reflecting an exploitation strat-
egy [44]. We refer to this behavior as “vegetaxis”, in anal-
ogy to chemotaxis – the movement of micro-organisms up
gradients of chemical stimuli [45, 46], and prey-taxis [47].
Using this model, we study the impacts of herbivore dy-
namics on vegetation patterning (Section III), and the
reciprocal effects of vegetation patterning on herbivore
survival in water-stressed landscapes (Section IV). We
conclude with a discussion of the implications of our re-
sults to plant-species diversity and ecosystem functioning
(Section V).

II. A SPATIALLY EXPLICIT MODEL FOR
VEGETATION-WATER-HERBIVORE

DYNAMICS

Several scale-dependent feedbacks capable of inducing
vegetation patterns in water-limited flat terrains have
been proposed [9]. They differ by the dominant form of
water transport through which plants draw water from
their surroundings: overland water flow, water conduc-
tion by laterally spread roots, and lateral soil-water dif-
fusion [8, 37]. For simplicity, we consider here the lat-
ter water-transport form – lateral soil-water diffusion –
which applies to ecosystems with sandy soil and plant
species with laterally confined root zones. This choice al-
lows us to reduce the water-vegetation equations to a sys-
tem of two local partial-differential equations for the veg-
etation above-ground biomass density B(X, T )[kg/m2]
and the soil-water content W (X, T )[kg/m2] [48], where
X = (X,Y ) represents the spatial coordinates and T
is the time coordinate. The main results reported here

are not expected to depend on this particular choice of
water transport form. Complementing the equations for
the vegetation biomass and water variables is an equa-
tion for the herbivore biomass density, H(X, T )[kg/m2].
The model then reads:

∂TB = ΛBW (1 + EB)2(1−B/KB)−MBB +DB∇2B

−G(B)H,

∂TW = P − NW

1 +RB/KB
− ΓBW (1 + EB)2 +DW∇2W,

∂TH = −MHH +AG(B)H(1−H/KH)−∇ · JH ,

(1)

where ∇ = x̂∂X + ŷ∂Y and x̂, ŷ are unit vectors in the
X,Y directions, respectively. We refer the reader to Ta-
ble 1 for a brief description of all model parameters, and
their values unless otherwise is stated. Plant biomass (B)
grows due to water-dependent reproduction, enhanced by
root growth (ΛW (1 +EB)2) and attenuated by limiting
factors such as pathogens (1−B/KB). Plant biomass de-
creases due to natural mortality (−MB) and herbivory
(−G(B)H), and is distributed in space by short-range
seed dispersal (DB∇2B). Soil water content increases
due to precipitation (P ), and decreases due to biomass-
dependent evaporation, which captures the effect of shad-
ing (NW/(1+RB/K)) and water uptake by plants’ roots
(−ΓBW (1 + EB)2). Soil-water content is distributed in
space by lateral diffusion (DW∇2W ).
The new elements in the model are related to the her-

bivore dynamics. Herbivore biomass (H) grows due to
biomass-dependent reproduction (AG(B)H(1−H/KH))
and decreases due to natural mortality (−MHH). The
herbivore per-capita grazing or browsing rate, G(B), is
biomass-dependent to account for biomass-limited her-
bivory at low plant-biomass densities and satiation at
higher densities and is given by

G(B) =
αB

β +B
, (2)

where α is the maximal consumption rate of vegetation
biomass per unit herbivore density and β is the character-
istic vegetation biomass for herbivore satiation. Smaller
values of Mh, α and β account for circumstances where
herbivore feeding is increasingly dependent on fodder as
a supplementary food resource. As two herbivores can-
not occupy the same location, there is a limit to their
density, quantified by KH .
The spatial distribution of herbivores is described by

the flux

JH = −DR(B)∇H +HDV (B)∇B . (3)

The first term describes random walk with a motility rate
that depends on the vegetation biomass and is given by

DR(B) = DHH
ξ2

ξ2 +B2
, (4)
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where DHH and ξ are constants (see Table 1). This form
accounts for the slowing down of herbivore movement in
areas where herbivores begin to sense nearby vegetation
patches. The second term in (3) describes vegetaxis, that
is, herbivore motion up gradients of vegetation biomass,
with a motility rate

DV (B) = DHB
κ

κ+B
. (5)

The consideration of vegetaxis is motivated by the find-
ing that the size and height of plants are good predictors
of species’ sensitivity to grazing [5, 43, 49]. The biomass
dependence of the motility DV (B) reflects the assump-
tion that the herbivores slow down their search once they
sense tails of vegetation-biomass distributions: B ≈ κ.
We study the model equations (1) using numerical con-

tinuation methods in one space dimensions (1D) and di-
rect numerical simulations in 1D and 2D. We use the con-
tinuation software MatCont [50] for ordinary differential
equations to obtain the bifurcation diagrams in Fig. 2
of spatially uniform solutions, and the continuation soft-
ware pde2path [51] for partial differential equations to
obtain the bifurcation diagrams in Fig. 3, 5, 12, 13 and
8b. The stability of solution branches was calculated by
extracting the solutions and applying numerical stability
analysis. The phase diagrams in Fig. 7 and 8a were com-
puted using numerical fold-,branch- and Hopf-point con-
tinuation in pde2path. Direct numerical simulations to
produce Fig. 9 and 10 were carried out using two Python
packages for solving partial differential equations, py-pde

[52] and Dedalus [53]. Table 1 displays the parameter val-
ues used in these numerical studies. Since our goal in this
study is to highlight general behaviors, such as bifurca-
tion structures, shared by many different systems, we do
not attempt in this choice of parameter values to model
any particular system.

The model equations (1) represent an activator-two-
inhibitors system. The activator is the vegetation
biomass and the two inhibitors are water scarcity and
herbivores. As the solid lines in Fig. 1 illustrate, vegeta-
tion growth is an autocatalytic process that enhances it-
self by reproduction, drives soil water depletion by water
uptake, and herbivore-population growth by herbivory.
Depleted water and herbivory, in turn, inhibit vegeta-
tion growth. The dashed line in Fig. 1 represents the
indirect effect herbivores have on soil-water content; by
reducing vegetation biomass (leaf area) herbivores de-
crease soil-water uptake and thereby increase soil-water
content (decrease soil-water depletion).

At low precipitation values, soil-water content is ex-
pected to be the dominant inhibitor of vegetation growth,
while at high precipitation values, herbivores are ex-
pected to be the dominant inhibitor. Since both in-
hibitors diffuse much faster than seed dispersal, scale-
dependent feedbacks capable of forming spatial patterns,
may emerge.

A dimensional analysis leading to a non-dimensional
form of the model equations (1) is described in Appendix
A.

Table 1. List of the parameters, their description, their values, and their units.
P Precipitation rate variable, mm · y−1

Λ Growth rate per unit soil water 0.5 m2 · kg−1 · y−1

E Root to shoot ratio 10 m2 · kg−1

KB Maximal standing vegetation biomass 0.9 kg ·m−2

MB Plant mortality rate in dry soil in the absence of herbivores 11.4 y−1

DB Seed dispersal rate 1.2 m2 · y−1

N Evaporation rate 20 y−1

R Reduced evaporation due to shading 0.01
Γ Soil-water consumption rate per unit biomass 10 m2 · kg−1 · y−1

DW Lateral soil water diffusion coefficient 150 m2 · y−1

MH Herbivore mortality rate in the absence of herbivory 0.06 y−1

A Fraction of consumed vegetation used for herbivore growth 0.3
α Maximal vegetation-consumption rate per unit herbivore density variable, y−1

β Satiation biomass 0.82 kg ·m−2

KH Maximal herbivore biomass 175 kg ·m−2

DHH Maximal random motility 400 m2 · y−1

ξ Reference vegetation biomass at which random motility drops by 50% 10−3 kg ·m−2

DHB Maximal vegetaxis motility 700 m2 · kg−1 · y−1

κ Reference vegetation biomass at which vegetaxis motility drops by 50% 10−4 kg ·m−2

III. HERBIVORES CAN INDUCE TRAVELING
VEGETATION WAVES

According to vegetation pattern formation theory, veg-
etation patterns in flat terrains and constant environ-

ments are stationary, arising from a nonuniform (Tur-
ing) instability of uniform vegetation as the precipita-
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FIG. 1: An illustration of the model as an activator-two-inhibitors
system. Vegetation (activator), enhances its own growth via repro-
duction (green loop), creates water scarcity via water uptake (pos-
itive brown feedback), and enhances herbivore growth by provid-
ing food (positive orange feedback). Water scarcity (1st inhibitor)
and herbivores (2nd inhibitor) inhibit vegetation growth (negative
brown and orange feedbacks); the former by water uptake and the
latter by herbivory. The negative feedback of herbivores on vege-
tation, combined with the positive feedback of vegetation on water
scarcity result in a negative feedback of herbivores on water scarcity
(dashed black line).

tion P drops below a critical value PT [9, 54]. In this
section, we show that herbivores can induce traveling
vegetation-herbivore waves in two distinct ways. At low
herbivory stress, the traveling waves emerge from an
oscillatory instability of stationary vegetation patterns,
with herbivores localized at one side of each vegetation
patch. At sufficiently higher herbivory stress, the trav-
eling waves emerge from a non-uniform oscillatory in-
stability of uniform vegetation-herbivore state. In this
case, the herbivores are non-uniformly spread all over
the system, attaining maximal density values at one side
of each vegetation patch. We further explain the ecolog-
ical mechanism by which traveling vegetation-herbivore
waves appear and demonstrate richer traveling-wave be-
haviors that the model predicts. We begin with analyz-
ing spatially uniform solutions from which stationary and
traveling patterns emerge.

A. Spatially uniform model solutions

The model (1) has three stationary uniform solutions
(B,W,H) describing bare soil BS : (0,WBS , 0), uni-
form vegetation without herbivores UV : (BUV ,WUV , 0),
and uniform vegetation with herbivores UH :
(BUH ,WUH , HUH). The BS solution is given by WBS =
P/N . Analytic expressions for the UV and UH solutions
are lengthy as they involve solving a quartic equation for
B and are not displayed here. We, therefore, resort to
numerical bifurcation analysis.

Figure 2 shows bifurcation diagrams of the stationary
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FIG. 2: Bifurcation diagrams of stationary uniform solutions of
Eq. (1) along the rainfall gradient. (a) A diagram showing the
vegetation biomass B, (b) a diagram showing the soil-water con-
tent W . The labels BS, UH, UV denote, respectively, the bare
soil solution and uniform vegetation solutions with and without
herbivores. Solid (dashed) lines denote stable (unstable) solutions.
The label PB denotes the precipitation threshold where the BS
solution bifurcates to the UV solution, while the label PH denotes
the precipitation threshold where the UV solution bifurcates to the
UH. Parameters: α = 0.6 y−1 and as in Table 1.

uniform solutions BS, UV, UH where the bifurcation
parameter is the precipitation rate P . Figure 2a shows
the biomass component of the solutions whereas Fig. 2b
shows the soil-water component. The diagrams show the
existence and stability ranges of the solutions, uncovering
the following sequence of stable states as precipitation in-
creases: BS at precipitation rates too low to sustain veg-
etation, UV at precipitation rates high enough to sustain
vegetation but not sufficiently high to sustain herbivores
and UH at precipitation rates high enough to sustain
both vegetation and herbivores. They further reveal a
bistability range of BS and UV at low precipitation and
a bistability range of BS and UH at higher precipitation.
The latter range terminates at the bare-soil instability
threshold P = PB = NM/Λ. Beyond this threshold UH
is the only stable uniform state. The soil-water diagram
(Fig. 2b) reveals a significant aspect of the UH solution;
the presence of herbivores increases the soil water content
(WUH > WUV ). This is because of the lower water up-
take rate of grazed vegetation, which has lower biomass
density, as Fig. 2a shows (BUH < BUV ). In nature, this
is a result of reduced transpiration due to a smaller total
leaf area [55].
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FIG. 3: Bifurcation diagrams of uniform and 1D nonuniform solutions of Eq. (1) for low herbivory stress. (a) At sufficiently low maximal-
consumption rates α, the uniform vegetation solution (UV , light green) loses stability to the uniform vegetation-herbivore state (UH,
blue) at P = PH and to stationary periodic vegetation patterns devoid of herbivores (SP0, dark green) at P = PT < PH . (b) At higher
α, the stationary vegetation patterns SP0 lose stability to stationary vegetation patterns with low herbivore density (SPH , light blue)
as P exceeds PHS , which at a slightly higher threshold, PHT , lose stability to traveling vegetation-herbivore waves (TWW , magenta).
(c) At yet higher α, the uniform vegetation-herbivore state (UH, blue) loses stability to a different traveling vegetation-herbivore wave
solution (TWH , magenta). This solution is unstable when it appears but becomes stable at higher P values (see Fig. 5). The vertical axis
represents the L2 norm of the biomass. Solid (dashed) lines denote stable (unstable) solutions. The panels on the right show examples
of the four spatially periodic solutions that appear in panel c, over one period: (c) SP0 (P = 114 mm/y), (d) SPH (P = 116 mm/y), (e)
TWW (P = 153.2 mm/y), and (f) TWH (P = 262.24 mm/y). The black arrows in panels e,f denote the traveling wave direction. Their
different length reflects the higher speed of the TWH solution compared to the TWW solution. Parameters are as indicated and as in
Table 1.

B. The onset of periodic traveling
vegetation-herbivores waves

In the absence of herbivores, the scale-dependent
water-vegetation feedback that the model captures can
induce a Turing instability of uniform vegetation to sta-
tionary periodic patterns, as the precipitation rate drops
below a threshold value [54, 56]. The question we ad-
dress here is whether and how the presence of herbivores
affects vegetation patterning given the assumptions we
have made on herbivore movement as formulated mathe-
matically by the herbivore flux JH (Eq. (3-5)). That
is, herbivores move fast and randomly in bare-soil or
sparsely-vegetated areas, move preferentially to areas of

denser vegetation, and slow down as the vegetation be-
comes denser [43, 49]. Other factors that may affect her-
bivore movement are discussed in section V. We address
this question by considering increasing levels of herbivory
stress.

Herbivores stress in the model can be quantified by the
maximal vegetation-consumption rate α (see Eq. (2)).
Figure 3 shows bifurcation diagrams of spatially uniform
and nonuniform solutions of Eq. (1) in one space dimen-
sion (1d), with the precipitation rate P as a bifurcation
parameter. At sufficiently low α values (Fig. 3a), spatial
vegetation patterns do not involve herbivores (H = 0);
they emerge as a stationary periodic pattern (SP0) in a
Turing instability of the uniform vegetation state (UV )
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FIG. 4: A schematic illustration of the mechanism that drives the formation of traveling vegetation-herbivore waves. Herbivory on the
right side (XR) of a vegetation patch induces a series of negative (-) and positive (+) feedbacks, as the loop of cause-and-effect processes
at the top right part of the figure illustrates, resulting in a displacement of the patch to the left. The blue arrows and their lengths denote
increased soil-water flux from the right patch side to the patch center and decreased flux from the left side to the center. A detailed
explanation appears in the text.

when P decreases below a threshold value PT (Fig. 3a),
as vegetation models without herbivores predict. How-
ever, at higher α values (Fig. 3b), the stationary periodic
vegetation patterns without herbivores (SP0) lose stabil-
ity to stationary periodic vegetation patterns with low
herbivore density (SPH) as P is increased past a thresh-
old PHS . The latter persists as a stable solution in a
very small precipitation interval PHS < P < PHT , and
at P = PHT it loses stability to traveling-wave patterns
(TWW ). As P is increased, the TWW solution branch
follows very closely the unstable SP0 branch (Fig. 3b).

The mechanism that drives the formation of traveling
waves from stationary patterns is illustrated in Fig. 4.
Grazing or browsing at the right edge of a vegetation

patch, xR, reduce the vegetation biomass there, B(xR),
and consequently the rate of water uptake. The higher
soil-water content at XR increases soil-water diffusion to
the drier patch center. As a result, the left edge of the
patch, XL, benefits from reduced water loss by diffusion
to the patch center, which favors vegetation growth at
that edge. Thus, while vegetation biomass at the right
edge decreases, it increases at the left edge, leading to a
traveling vegetation-herbivore wave. These processes are
summarized in the loop of negative and positive feed-
backs illustrated at the top right part of Fig. 4.

At higher precipitation values and higher maximal con-
sumption rates α, another solution branch of traveling
waves appears, as Fig. 3c shows. We denote it as TWH ,
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to distinguish it from the traveling-wave solution at low
precipitation, denoted by TWW . This traveling-wave so-
lution (TWH) emerges in a non-uniform oscillatory in-
stability of the uniform UH state, even when the water-
vegetation scale-dependent feedback is too weak to form
patterns, indicating it is a result of a scale-dependent
feedback associated with herbivores as the dominant in-
hibitor. At these intermediate α values, the TWH solu-
tion is unstable and complex dynamics set in as discussed
in Section III C.

A major difference between the TWW and TWH so-
lutions is the much higher herbivore density and spatial
spread in the latter. This is because of the wetter condi-
tions that promote vegetation growth and thus support
denser herbivore populations. In addition, the traveling-
wave speeds of the TWH solutions are an order of mag-
nitude higher than those of TWW solutions (typically
0.4m/y vs. 0.06m/y for the parameter values in Table
1), as the sizes of the arrows in Fig. 3e,f indicate.

According to the bifurcation diagram in Fig. 3a, the
herbivore-free uniform vegetation state UV loses stabil-
ity to the uniform vegetation-herbivore state (UH) at PH

and to stationary periodic patterns (SP0) at PT < PH .
As the herbivory stress (α) increases, the stability range
of UV , PT < P < PH , diminishes and disappears when
the two bifurcation points collide (PT = PH). Beyond
that point, that is, at yet higher α values, the two
traveling-wave solutions, TWW and TWH , merge to form
a single solution branch, as Fig. 5 shows. We denote the
merged solution branch TWW ∪ TWH , as TW . A closer
look at the bifurcation structure across the merging of
the two traveling wave solutions is given in Appendix
B. Beyond but close to the merging point of the two
traveling-wave solutions, the solutions still retain their
identity as panels (b) and (d) in Fig. 3 show; localized
herbivore distribution (black circle) vs. wide TWH -like
distribution (red circle).

C. Complex traveling-wave dynamics

The traveling-wave solutions TWH , which bifurcate
from the uniform vegetation-herbivore state UH, are un-
stable when they appear, as Fig. 3c shows. This bifur-
cation results in a precipitation range where both UH
and TWH coexist as unstable solutions. Although the
bare-soil solution BS is stable in this range, the system
does not necessarily collapse to bare soil but rather ex-
hibits complex oscillations as Fig. 6 shows. These os-
cillations involve alternating phases of spatially uniform
biomass distributions and traveling waves. During the
uniform-distribution phase the herbivore biomass density
increases in time. The herbivory stress that builds up in-
duces a transition to traveling waves (similar to the effect
of increasing α in Fig. 3). However, the increasing her-
bivory stress also results in reduced vegetation biomass,
which, in turn, leads to a decline in the herbivore biomass
density. The consequent reduction in herbivory stress
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FIG. 5: Bifurcation diagrams of uniform and 1d nonuniform solu-
tions of Eq. (1) for intermediate herbivory stress. (a) Merging of
the two traveling-wave solutions TWW and TWH (see Fig.3c) into
a united solution branch TWW ∪ TWH . (b) At higher α value the
transition between the two solutions becomes smooth, yet with a
pretty sharp change in the herbivore density and the traveling-wave
speed, as the solutions displayed in panels (d) show. The united
solution becomes unstable as the precipitation exceeds a threshold
value, but that threshold is pushed to higher precipitation values
when α is increased, as the bifurcation diagram in (c) shows. Pa-
rameters are as indicated and as in Table 1.

favors a transition back to a uniform distribution and
completes an oscillation cycle. The traveling-wave phase
involves uneven combinations of left and right traveling
waves.

IV. PATTERNING AND VEGETAXIS
IMPROVE HERBIVORES’ SURVIVAL IN

WATER-LIMITED SYSTEMS

The sustainability of herbivores in drylands depends
to a large extent on the ability of vegetation to tolerate
water stress. Water stress increases as the precipitation
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FIG. 6: Space-time plots showing complex oscillations at interme-
diate precipitation range where both the uniform (UH) and trav-
eling (TWH) vegetation-herbivore states are unstable. The oscilla-
tions involve repeated instances of uniform vegetation UH followed
by instances of traveling waves TWH . The color bars on the right
denote the values of B, W and H in units of kg/m2. Parameter
values: P = 350mm/y, α = 0.608y−1 and as in Table 1.

drops down, but vegetation patterning acts to relax that
stress [9, 34], and therefore may contribute to the sus-
tainability of herbivores. The sustainability may also be
affected by the foraging strategy of the herbivores, quan-
tified in the model by the strength of vegetaxis. In the
following sections we analyze these two factors, vegeta-
tion patterning and vegetaxis.

A. Vegetation patterning

The role of vegetation patterning in sustaining herbi-
vores at low precipitation P is clearly evident from the bi-
furcation diagrams shown in Figs. 3 and 5: while uniform
vegetation can stably sustain herbivores only for P > PH ,
patterned vegetation can sustain herbivores at signifi-

cantly lower precipitation values, P < PT < PH . This
conclusion is demonstrated in a more transparent way by
the low α range of the phase diagram of stable ecosystem
states shown in Fig. 7a and its non-spatial counterpart
(with no spatial derivative terms) for which patterns are
excluded. Traveling vegetation-herbivore waves (TW -
magenta domain in Fig. 7a) persist at significantly lower
precipitation values than uniform vegetation-herbivore
distributions (UH - blue domain in Fig. 7b).
More striking is the effect of patterning at higher α val-

ues; traveling vegetation-herbivore waves (magenta do-
main) occupy the entire α range considered in Fig. 7a,
and a wide range beyond it, with the exception of an
intermediate behavior (dark-magenta domain) where the
system alternates periodically in time between uniform
and traveling-wave vegetation-herbivore states (see Fig.
6). By contrast, when vegetation patterning is ruled out,
collapse to bare soil occurs at relatively low α values, as
Fig. 7b shows. The positive role traveling waves play in
sustaining a functional vegetation-herbivore state at high
herbivory stress is a consequence of the uneven stress
across each vegetation patch – high on the trailing side
and low on the leading side. The latter is lower than
the herbivory stress in the uniform vegetation-herbivore
state, and therefore traveling waves sustain higher α val-
ues.
We note that the bare-soil state remains stable

throughout the whole precipitation range considered in
Fig. 7, implying wide bistability ranges, as well as trista-
bility ranges where UV and TWW are alternative stable
states and where UH and TWH are alternative stable
states. We also note that α values of order unity, as used
in Fig. 7, represent low consumption rates that can be
realized when fodder is supplied as supplementary food.
Higher consumption rates describe increasing reliance on
herbivory as the primary food resource.

B. Vegetaxis

The assumed tendency of herbivores to move toward
denser vegetation, a behavior we termed ‘vegetaxis’, af-
fects the onset of stationary and traveling patterns in-
volving herbivores. This tendency can be quantified by
the parameterDHB that appears in the expression (5) for
the herbivores’ motility up vegetation-biomss gradients,
DV (B). Figure 8a shows a phase diagram of ecosystem
states in the plane spanned by DHB and P in the low
precipitation range (P < 250mm/y). It shows extended
stability ranges, toward lower P values, of the herbivore
states TWW and SPH , as DHB increases. This finding
highlights the positive role vegetaxis plays in the survival
of herbivores under conditions of water stress.

The positive role of vegetaxis in tolerating water stress
can be understood in the following way; in the absence of
vegetaxis (DHB = 0), herbivores perform a random walk,
accounted for by the first term in the flux (3), and may
miss nearby vegetation patches. The longer time they
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FIG. 7: Phase diagrams of stable states in the parameter plane
spanned by the precipitation P and maximal consumption rate α.
Panel (a) shows a phase diagram for the spatial model, where both
uniform and nonuniform states are possible. Panel (b) shows, for
comparison, the diagram for a non-spatial model, where nonuni-
form states are ruled out. Shown are stationary uniform solutions
(UV , UH), stationary periodic patterns (SP0, SPH), periodic trav-
eling waves (TW ), and traveling-wave oscillations (TWO). The
bare-soil state (BS) is stable throughout the entire α and P ranges
shown, implying wide bistability ranges. Because most of the bi-
furcations are subcritical, small tristability ranges exist as well.
Parameter values are given in Table 1.

spend in bare soil, lacking food, increases their mortal-
ity. By contrast, in the presence of vegetaxis, herbivores
sense the tails of nearby vegetation patches, slow down
and move toward the patches to graze. This behavior rep-
resents an exploitation strategy [44], where the herbivores
exploit their knowledge that small vegetation-biomass
values are indicative of nearby vegetation patches and
slow down to graze even though there might be bigger
and denser vegetation patches farther away.

Another outcome of vegetaxis is an increased traveling-
wave speed, as Fig. 8b,c shows. As DHB increases more
herbivores accumulate at the edge of a vegetation patch.
The resulting higher herbivore intensity and its posi-
tive effect on the soil-water content by reduced uptake
act to increase the traveling-wave speed. The increased
traveling-wave speed may have significant implications
for biodiversity, as discussed in Section V.

C. Collective herbivore dynamics

The time-dependent spatial distribution of the herbi-
vores, represented by H(X,Y, T ), provides information
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FIG. 8: Effects of vegetaxis. (a) A phase diagram of stable ecosys-
tem states in the plane spanned by DHB and P . The extended
range of TWW (magenta domain) to lower P values as DHB in-
creases highlights the positive effect that vegetaxis has on herbivore
survival. (b) Traveling-wave speed increases as DHB increases.
This positive relation is due to the higher herbivore density at
larger DHB values, as the two insets show. Parameters: α = 0.6
y−1 and as in Table 1. What is the value of P in part (b)?

about collective herbivore dynamics in a mean-field sense.
The major processes that shape these dynamics in the
model are herbivore diffusion (random walk) and veg-
etaxis with biomass-dependent motilities, as the expres-
sion (3) for the herbivore flux JH shows, and the increase
of herbivory stress as herbivores reproduce and their den-
sity increases.
We consider first the dynamics of herbivore aggrega-

tion at vegetation patches for low herbivory stress for
which the asymptotic herbivore distribution is localized
at one side of the patch (see Fig. 3e). We start with
a single vegetation patch and localized herbivore distri-
bution sufficiently far from the patch, not to “sense” its
existence as Fig. 9a shows. Four stages can be distin-
guished in the subsequent dynamics: (i) symmetric herbi-
vore spread by random walk (diffusion), (ii) vegetaxis by
a low-density population of herbivores who sense the veg-
etation patch, (iii) further herbivore accumulation and
growth at the vegetation patch, (iv) vegetation-patch dis-
placement (Fig. 4) as the herbivores’ density increases,
leading to a constant-speed traveling wave. These stages
and the transitions from one stage to another are demon-
strated in Fig. 9.
In two space dimensions (2d), the 1d traveling-wave

solutions discussed so far represent constant-speed trav-
eling stripe patterns. These patterns appear at inter-
mediate precipitation values, as Fig. 10 shows. At
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FIG. 9: Space-time plots of herbivore biomass (left) and vegeta-
tion biomass (right), depicting the different processes that shape
their dynamics. The green dashed lines on the left show the bound-
aries of the vegetation patch. (a) Starting with localized herbivore
distributions away from vegetation patches (periodic boundary con-
ditions are used), symmetric herbivore diffusion, representing ran-
dom walk, takes place as the inset shows. At later times vegetaxis
begins. (b) Vegetaxis leads to the accumulation of herbivores at
the vegetation-patch boundaries, but more on the (right) boundary
that is closer to the initial herbivore distribution. In the course of
time, reproduction increases the herbivore density at the bound-
aries. (c) The increased herbivore density by reproduction induces
a transition to a traveling wave. Parameters: α = 0.6 y−1, P=110
mm/y, and as in Table 1. Joy, please change ”stage” to ”stages”
in the titles of each panel.

lower precipitation, traveling spot patterns emerge, while
at higher precipitation, oscillations between uniform
vegetation-herbivore distributions and traveling gap pat-
terns emerge, corresponding to the TWO solution in 1d.
At yet higher precipitation traveling gap patterns appear
(not shown in Fig. 10 but similar to the traveling gap
pattern shown in Fig. 10k). In all simulations shown, the
initial conditions are uniform vegetation-herbivore distri-
butions subject to random spatial perturbations.

The simulations reveal several aspects of vegetation-
herbivore dynamics. At low precipitation (P = 120
mm/y and 180 mm/y), vegetation patterns appear be-
fore herbivore patterning, while at high precipitation
(P = 345 mm/y), these patterns appear simultaneously.
Furthermore, at low precipitation, the asymptotic herbi-
vore distributions are localized at patch edges with very
sparse distribution elsewhere, while at high precipita-
tion the herbivore distribution is more spatially extended.
These behaviors are consistent with the 1d continuation

results shown in Fig. 5d. They reflect the different pat-
tern formation mechanisms that prevail at low and high
precipitation; patterning driven by water stress at low
precipitation and by herbivory stress at high precipita-
tion, as the denser vegetation at high precipitation sup-
ports denser herbivore populations.
The simulations shown in Fig. 10 also reveal two inter-

esting aspects of herbivore dynamics. At first, herbivores
appear to approach the entire edge of each vegetation
patch (Fig. 10b,f,j) but then concentrate on one side,
forming a traveling patch (Fig. 10c,g,k). These behav-
iors lead to disordered dynamics as different vegetation
patches generally move in different directions, but even-
tually, the dynamics are synchronized, forming patterns
that travel as a whole in one direction (Fig. 10d,h,k).
The symmetry breaking associated with herbivore con-
centration on one side of each vegetation patch is further
investigated in Fig. 11, where a comparison between the
dynamics of a perturbed and unperturbed circular veg-
etation patch is made. While symmetric herbivory at
the edges of an unperturbed circular patch results in col-
lapse to bare soil, asymmetric herbivory in the perturbed
patch results in patch survival in the form of a traveling
vegetation-herbivore patch.

V. DISCUSSION

We introduced here a new model that allows studying
the sustainability of dryland pastures under conditions
of increased water and herbivory stress. Water stress in-
creases as drier climates develop, and herbivory stress
increases as the demand for food production due to pop-
ulation growth extends. The formation of stationary veg-
etation patterns is crucial in sustaining water stress. Us-
ing the model, we find that the formation of traveling
waves plays a similar role in sustaining combined water-
herbivory stress.
Two types of traveling-wave solutions are identified:

(i) Nearly stationary slow traveling solutions, appear-
ing in an oscillatory instability of stationary vegetation
patterns at low precipitation rates (TWW ) and describ-
ing small-amplitude localized herbivore distributions. (ii)
Fast traveling solutions, appearing in an oscillatory insta-
bility of stationary uniform vegetation at higher precipi-
tation rates (TWH) and describing large amplitude spa-
tially extended herbivore distributions. As the grazing
stress is increased, the two solution branches merge into
a single branch along which the traveling-wave speed and
the herbivore distribution sharply change but in a contin-
uous manner. The traveling-wave nature of vegetation-
herbivore patterns may have significant implications for
biodiversity, ecosystem function, and ecosystem manage-
ment, as discussed below.
Traveling vegetation-herbivore waves may affect

species diversity in two ways. Unlike stationary pat-
terns that provide ample time for high-fitness plant
species to out-compete lower-fitness species, traveling
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FIG. 10: Formation of traveling-wave patterns for low herbivory stress (low α). In all simulations the initial state is randomly perturbed
uniform vegetation and herbivore distributions. (a-d) Formation of traveling spot pattern at P = 125mm/y. (e-h) Formation of traveling
stripe patterns at P = 180mm/y. In both cases, initially, a nearly stationary vegetation pattern forms while the herbivore distribution
is still fairly uniform (a,e). Then, herbivores in sparse vegetation areas move toward the denser vegetation patches (spots or stripes),
accumulating at their edges (b,f). At later times, the herbivores concentrate at one edge, forming patches (spots, stripe segments) that
travel in different directions, indicated by the arrows (c,g). At yet later times a traveling-wave pattern forms moving as a whole in one
direction (d,h). (i-l) Development of disordered dynamics involving oscillations between uniform vegetation-herbivore distributions and
traveling gap patterns at P = 345mm/y. Unlike the dynamics at lower precipitation values (a-h), vegetation and herbivore patterns
emerge simultaneously from uniform distributions (j), and the herbivore distributions are spatially extended rather than localized (i-l).
See text for further explanations. Time values are given in years. Parameter values are as in Table 1.

waves provide a limited period of competition time at
any given location and, therefore, are expected to support
higher species diversity. Another way by which traveling
vegetation-herbivore waves may affect species diversity is
through ameliorated growth conditions associated with
plant mortality and the formation of temporal bare-soil
patches. Increased dead organic matter and soil biota [57]
in these patches may favor the growth of faster-growing
species that would not grow in eroded permanent bare-
soil patches associated with stationary patterns [58].

A variety of stable uniform states and periodic pat-
terns, stationary and traveling, exist in precipitation
ranges where bare soil is also a stable state (P < PB),
as the bifurcation diagrams in Fig. 3 and the phase di-
agram in Fig. 7 show. In these ranges, early tipping to
the dysfunctional bare-soil state is possible, despite the
co-existence of stable functional vegetation-herbivores
states. A possible scenario of early tipping is a severe
and prolonged drought developing over a relatively short
time that pushes the system out of the attraction basin

of its state. Interfering with this so-called rate-dependent
tipping or R-tipping [59, 60] are invariant manifolds as-
sociated with unstable states that may constrain the re-
sponse and prevent tipping [33]. A deeper understanding
of these dynamics is needed for devising effective inter-
vention forms to evade tipping, such as managing graz-
ing non-uniformly in space, or grazing-stress control [61].
Figure 11 hints at an intervention form that favors con-
vergence to a functional vegetation-herbivore traveling
state over collapse to bare soil, namely, managing her-
bivory in a way that breaks the symmetry along the edges
of vegetation patches.

The model presented here provides a platform of model
variants that can be used to study a variety of additional
questions. Vegetaxis, as modeled here, represents an ex-
ploitation strategy, where herbivores use the information
they acquire by sensing vegetation-density gradients to
identify nearby vegetation patches and graze or browse
there, even though denser patches may exist farther away.
A simple model variant can also capture elements of ex-
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FIG. 11: Vegetation-patch survival by asymmetric grazing that leads to a traveling patch. (a-d) A symmetric herbivore distribution
(gray) around a vegetation patch (green) results in complete consumption and collapse of both plant and herbivore populations. (e-h)
Breaking the circular symmetry by increasing the herbivore density on one side of the vegetation patch results in a vegetation patch of
fixed size traveling at a constant speed, as the arrow indicates. Time values are given in years. Parameter values are as in Table 1.

ploration strategy, whereby herbivores do not necessarily
graze or browse at their first encounter with a vegeta-
tion patch but rather explore the area for denser veg-
etation patches. Modeling this combined exploration-
exploitation strategy may require modification of the veg-
etaxis term DV (B) in Eq. (5) or its parameters’ val-
ues, and the introduction of soil heterogeneity, e.g., to
model soil-rock mosaics [62], that results in vegetation
patches of different densities. A question of interest here
is how different exploration-exploitation strategies affect
the sustainability of the system under combined water-
herbivory stress. Another question that can be studied is
the effect of traveling vegetation-herbivore waves on the
diversity of the plant community. To this end, the model
can be extended to include a trait subspace representing
the pool of functional traits that characterize the com-

munity [35]. These and other examples point toward the
model’s utility to study various new questions associated
with dryland pastures at risk of desertification.
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Appendix A: Non-dimensional form of the model
equations

It is instructive to transform the model equations (1)
to a non-dimensional form in order to uncover equiva-
lence aspects of different parameters. The model repre-
sents an LMT system, where L, M, and T stand for the
dimensions of length, mass, and time, respectively [11].
To rescale all model quantities to non-dimensional forms,
we need to choose three dimensionally-independent pa-
rameters. The choice we make is MH , Λ, and DB ,
whose independent dimensions are T −1, L2M−1T −1,
and L2T −1, respectively. In terms of these dimensions,
the dimensions of all other quantities in the model can
be expressed as described below. We choose to de-
note the non-dimensional forms of the independent vari-
ables (X,Y, T ) and the dependent variables (B,W,H)
by the corresponding lower-case letters, and the non-
dimensional forms of the parameters by adding a tilde
sign.

The non-dimensional model then reads:

∂tb = bw(1 + Ẽb)2(1− b/K̃B)− M̃Bb−
α̃bh

β̃ + b
+∇2b ,

∂tw = P̃ − Ñw

1 +Rb/K̃B

− Γ̃bw(1 + Ẽb)2 + D̃W∇2w ,

∂th = −h+A
α̃bh

β̃ + b

(
1− h/K̃H

)
−∇ · J̃H ,

(A1)

where

J̃H = −D̃HH
ξ̃2

ξ̃2 + b2
∇h+ hD̃HB

κ̃

κ̃+ b
∇b ,

with ∇ = x̂∂x + ŷ∂y, where x̂, ŷ are unit vectors in the
x, y directions. The non-dimensional independent vari-
ables are given by

t = MHT, x =
√
MH/DBX, y =

√
MH/DBY ,

and the non-dimensional dependent variables by

b = ΛB/MH , w = ΛW/MH , h = ΛH/MH .

The non-dimensional parameters are given by:

Ẽ = MHE/Λ, K̃B = ΛKB/MH , M̃B = MB/MH ,

α̃ = α/MH , β̃ = Λβ/MH , P̃ = ΛP/M2
H ,

Ñ = N/MH , Γ̃ = Γ/Λ, D̃W = DW /DB ,

K̃H = ΛKH/MH , D̃HH = DHH/DB , ξ̃ = Λξ/MH ,

D̃HB = MHDHB/(ΛDB), κ̃ = Λκ/MH .

The non-dimensional forms of the model parameters sug-
gest possible similarities in the effects of different param-
eters on the bifurcation structure and dynamic behaviors.
For example, the form of α̃ suggests that decreasing MH
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FIG. 12: Herbivore mortality has the opposite effect on the bifur-
cation structure that herbivory stress has. Shown are bifurcation
diagrams of uniform and 1d nonuniform solutions of Eq. (1) at de-
creasing MH values. The two separate traveling solution branches,
TWW and TWH , at high MH values merge to form a single solu-
tion branch, TW = TWW ∪ TWH , at sufficiently low MH values,
similarly to the solutions merge as α is increased (see Figs. 3 and
5 and Appendix B).

may have a similar effect to increasing α. The bifurcation
diagrams in Fig. 12, obtained by decreasing MH , indeed
show the same structures and structure changes as the
bifurcation diagrams shown in Figs. 3 and 5, which were
obtained by increasing α.
Similarly, the non-dimensional form, β̃, suggests that

increasing the reference vegetation biomass for herbivore
satiation, β, has a similar effect to decreasing MH or
increasing α.

Appendix B: The merging of traveling-wave
solutions

Two traveling-wave solutions are distinguished at low
herbivory stress (low α values): TWW at low precipi-
tation rates, where water scarcity is the dominant in-
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FIG. 13: A closer look at the merging of the separate traveling
solution branches, TWW and TWH , at low herbivory stress into
a single solution branch, TW = TWW ∪ TWH , at high herbivory
stress. The merge occurs as the bifurcation points PT and PH

exchange locations. See the text in Appendix B for further details.

hibitor, and TWH at higher precipitation rates, where
herbivores are the dominant inhibitor. As α is increased,
the two solution branches merge together to form a single
branch (TW ). This behavior appears to happen when
the uniform instability of the herbivore-free uniform-
vegetation state UV to the uniform vegetation-herbivore
state UH coincides with the Turing instability of UV to
the herbivore-free stationary periodic pattern state SP0;
that is, at P = PH = PT (see Fig. 3). Figure 13 shows
a closeup of the bifurcation structure slightly below the
merging point (a), at α = 0.606, and slightly above it (b),
at α = 0.608. Below the merging point PT < PH , and
both uniform states, UV and UH, have stability ranges
(solid green and blue lines). Above the merging point
PT > PH , and no stability ranges of UV and UH ex-
ist. Furthermore, as the merging point is traversed, the
stationary vegetation-herbivore pattern solution SPH re-
connects; for PT < PH (Fig. 13a), it bifurcates from the
stationary herbivore-free periodic solution SP0, whereas
for PT > PH , it bifurcates from the uniform vegetation-
herbivore solution UH (Fig. 13b).
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