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MATHEMATICAL THEORY FOR THE GINZBURG-LANDAU APPROXIMATIO N
IN SEMILINEAR PATTERN FORMING SYSTEMS WITH TIME-PERIODIC

FORCING APPLIED TO ELECTRO-CONVECTION
IN NEMATIC LIQUID CRYSTALS ∗

NORBERT BREINDL, GUIDO SCHNEIDER AND HANNES UECKER†

Abstract. Electro-convection in nematic liquid crystals and the Faraday problem are paradigms for pattern for-
mation in systems with external time-periodic forcing. Close to the first instability the bifurcating solutions can be
described via perturbation analysis by a Ginzburg-Landau equation. This formal procedure can be justified mathe-
matically through approximation and attractivity theorems. In this paper this theory is explained for a regularized
standard model describing electro-convection in nematic liquid crystals.
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1. Introduction. In the experiments for electro-convection in nematic liquid crystals a
thin layer of such a material is contained in between two spatially extended electrode plates.
When an alternating current is applied to the electrodes an electro-hydrodynamic instabil-
ity can occur if the voltage is above a certain threshold. Thetrivial spatially homogeneous
solution becomes unstable and bifurcates into non-trivialpattern [4, 12]. This experiment to-
gether with the Faraday problem is a paradigm for pattern formation in systems with external
time-periodic forcing.

The mathematical description of the dynamics of the bifurcating patterns is based very
often on the reduction of the governing partial differential equations to finite or infinite-
dimensional amplitude equations. The most famous amplitude equation occurring in such
a setup is the so called Ginzburg-Landau equation (GLe)

∂TA = c0A+ c1∂
2
XA+ c2A|A|2 (1.1)

withA = A(X,T ) ∈ C depending onX ∈ R andT ≥ 0 and with coefficientsc0, c1, c2 ∈ C.
It is derived by multiple scaling analysis and describes slow modulations in time and space of
the amplitude of the linearly most unstable modes. Our interest is in the justification of GLes
for pattern forming systems with time periodic forcing.

The GLe has been derived for example for reaction-diffusionsystems and hydrodynam-
ical stability problems, as the Bénard and the Taylor-Couette problem. For these examples
the GLe has been justified as an amplitude equation by a numberof mathematical results:
so called approximation and attractivity theorems have been established by a number of au-
thors for model problems, but also for general systems including the Navier-Stokes equa-
tion, cf. [3, 26, 6, 15, 13, 16, 22]. Nowadays the theory is a well established mathematical
tool which can be used to prove stability results [25, 21], upper semi-continuity of attractors
[10, 20] and global existence results [14, 19]. Equations ofGinzburg-Landau type have also
been used extensively to describe pattern formation in nematic liquid crystals [23, 12, 28, 1].

However, the literature cited above about the mathematicaljustification of GLes is re-
stricted so far to autonomous systems and is not covering thesituation of nematic liquid
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crystals due to the time-periodic forcing which has to be applied in the experiment in order
to avoid the destruction of the experiment through electrolysis. In [2] we restricted the dis-
cussion of the validity question for time-periodic systemsto a scalar model equation. Here
we improve the results from [2] in such a way that all approximation and attractivity results
from the autonomous to the time-periodic case transfer almost one to one. As a consequence
no longer the analyticity of the solutions of the GLe as in [2]is needed. The main steps of the
theory are explained for the standard model describing electro-convection in nematic liquid
crystals. However, we circumvent the problem of the local existence and uniqueness of solu-
tions of the standard model by considering a regularized version. In order to avoid some ad-
ditional functional analytic difficulties with the Navier-Stokes equations with two unbounded
space directions based on the non-differentiability of thesymbol of the Helmholtz projection
in more than one unbounded space direction in the following the problem is considered in an
infinitely extended strip.

The plan of this paper is as follows. In Section 2 we describe the standard model. In
Section 3 this (fully nonlinear) evolutionary system is modified by some regularizing terms
to obtain a semilinear system. In Section 4 we explain the spectral situation necessary for a
Ginzburg-Landau approximation. In Section 5 we give an approximation and an attractivity
result for the Ginzburg-Landau approximation and discuss the consequences of these results,
and in Section 6 we explain how the ideas from the autonomous to the time-periodic case
transfer. In Section 7 we show how to derive the autonomous GLe from the time-periodic
system. In Section 8 we discuss with the Faraday problem another pattern forming system
with time-periodic forcing.

Notation. The spaceHm
l,u of m-times weakly differentiable uniformly local Sobolev-

functionsR × Σ → R, is equipped with the norm

‖u‖Hm
l,u

(R×Σ) = sup
x1∈R

m
∑

|j|=0

‖∂j
xu‖L2((x,x+1)×Σ) with ‖u‖2

L2(Ω) =

∫

Ω

|u(x)|2dx.

Throughout the paper we denote possibly different constantsC with the same symbol if they
can be chosen independent of the small bifurcation parameter 0 < ε≪ 1.

2. The standard model. There are essentially two models for the mathematical de-
scription of electro-convection in nematic liquid crystals. These are the standard model ([29]
and the references therein) and the weak electrolyte model.The latter has been introduced
by Kramer and Treiber in [24, 23] to overcome some insufficiencies of the standard model.
Analytic and numerical investigations of the standard model with the physical parameters of
the nematic liquids used in experiments show no Hopf bifurcation at the threshold of the first
instability of the trivial solution in contrast to traveling wave solutions observed in experi-
ments. For simplicity we restrict ourselves to the consideration of the standard model. The
following presentation and non-dimensionalization of thestandard model is similar to [5].

The continuum theory of Ericksen [7] and Leslie [9] treats nematic liquid crystals as
incompressible fluids with the average molecular axis described locally by a director field
n of unit vectors. For a layer of nematic liquid crystals in between two horizontal plates,
the Leslie-Erickson equations forn and the generalized Navier-Stokes equations for the fluid
velocityv and the pressurep in the presence of an electric fieldE are given by

(∂t + v · ∇)n = ω × n+ δ⊥(λAn− h) , (2.1)

P2(∂t + v · ∇)v = −∇p−∇ · (T visc + Π) + π2ρE , (2.2)

∇ · v = 0 , (2.3)
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for (x, z) in the infinitely extended stripR× (0, π). Hereω = (∇× v)/2 is the vorticity. The
molecular fieldh is given by

h = 2

(

∂f

∂n
−∇ · ∂f

∂∇n

)

− εaπ
2(n · E)E (2.4)

where

2f = (∇ · n)2 +K2[n× (∇× n)]2 +K3[n · (∇× n)]2 , (2.5)

is the elastic energy density describing splay, twist (K2), and bend (K3) deformations. We
refer to [5] for a physical interpretation of the constantsP2, λ, K2, K3, andεa. The electric
field E = E(x, z, t) ∈ R2 is considered to be quasistationary, i.e. rotE = 0. It is then split
into an external forcing and some potential part, i.e.

E =

√
2

π
E0 cosω0t

(

1
0

)

−∇φ , (2.6)

The tensorsA, andT visc are, respectively, the shear flow tensor

Aij = (∂ivj + ∂jvi)/2 (2.7)

and the viscous stress tensor

−T visc
ij =

3
∑

k=1

(α1ninjnknlAkl + α2njmi + α3nimj (2.8)

+α4Aij + α5njnkAki + α6ninkAkj)

wherem = δ⊥(λAn − h) and with coefficientsα1, . . . , α6. The tensorΠ is the nonlinear
Ericksen stress tensor

Πij =

3
∑

k=1

∂f

∂nk,j
nk,i. (2.9)

The projection tensorδ⊥ij = δij −ninj in (2.1) guarantees that|n| = 1 as long as the solution
exists.

In the standard model for electro-convection the continuumtheory of Ericksen and Leslie
is combined with the quasi-static Maxwell equations under the assumption of an ohmic resis-
tivity, i.e. for the charge densityρ

P1(∂t + v · ∇)ρ = −∇ · (σEσ) . (2.10)

Finally the system is closed by Poisson’s law

ρ = ∇ · (εE) . (2.11)

The dielectric tensorε and conductivity tensorσ are given byεij = ε⊥δij + εaninj and
σij = σ⊥δij + σaninj , respectively. The parametersP1 andP2 are Prandtl-type time scale
ratios. Again we refer to [5] for a physical interpretation of the constantsP1, σ·, ε·, α, andr.

Using Poisson’s law,E resp. φ can be expressed in terms ofρ and so (2.1)-(2.3) and
(2.10) can be rewritten as a system of dynamical equations for n, v, andρ.
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The standard model is invariant under arbitrary translations inx and under the reflection

(x, n2, v1) → −(x, n2, v1).

We assume rigid vertical boundary conditions derived from ideal conducting plate con-
ditions, rigid anchoring for the director, and finite viscosity. This means

n2 = v1 = v2 = φ = 0 (2.12)

at z = 0, π, i.e. the coordinate system is chosen such thatn = (1, 0) at the upper and lower
plates located atz = 0, π.

3. The regularized standard model.Sincen2
1+n2

2 = 1 for our purposes it is sufficient
to considern2. System (2.1)-(2.3) and (2.10) forn2, v, andρ is fully nonlinear and a mixture
of different types of PDEs as quasilinear parabolic equations and balance laws. We are not
aware of any local existence and uniqueness result for this system in the literature. Since such
a theorem is fundamental for any approximation result we consider a regularized version of
the standard model. In order to obtain a semilinear system, we add artificially a regularizing
differential operator−β∆2. For smallβ > 0 the regularized system and the original system
show qualitatively the same bifurcation behavior. Thus we consider

∂tn2 = 〈e2,−(v · ∇)n+ ω × n+ δ⊥(λA− h)〉 − β∆2n2, (3.1)

∂tv = P−1
2 Q(−(v · ∇)v −∇ · (T visc + Π) + π2ρE) − βQ∆2v, (3.2)

∂tρ = −v · ∇ρ− P−1
1 ∇ · (µEσ) − β∆2ρ , (3.3)

whereQ is the projection on the divergence-free vector fields{v | ∇ · v = 0}, cf. [13, 19],
and whereE is defined through (2.6) and (2.11) in terms ofρ, n, andE0. The extension of
Q by identity to theρ andn variables is also denoted byQ. The system is equipped with the
boundary conditions from the non-regularized system

n2 = v1 = v2 = φ = 0 (3.4)

for z = 0, π, and additional artificial boundary conditions due to the regularization

∂2
zn2 = ∂2

zv1 = ∂2
zv2 = ρ = ∂2

zρ = 0, (3.5)

for z = 0, π. In the following (3.1)-(3.3) is abbreviated as

∂tV = M(t)V + Ñ(t, V ) (3.6)

whereM(t)V stands for the linear and̃N(t, V ) for the nonlinear terms with respect toV =
(n2, v1, v2, ρ).

4. Linear stability analysis. In order to analyze the stability of the trivial solution, i.e.
of V = 0 in (3.6), we consider the linearized system

∂tV = M(t)V. (4.1)

Due to the translation invariance of the problem the solutions are given by Floquet-Fourier
modes

V = ϕ̂m(k, z, t)eikxeλm(k)t (4.2)
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with k ∈ R,m ∈ N, andϕ̂m periodic int, i.e.

ϕ̂m(·, ·, t) = ϕ̂m(·, ·, t+ 2π/ω0).

ForV = 0 asymptotically stable, we have for allm ∈ N andk ∈ R that Reλm(k) < 0. If
V = 0 becomes unstable through increasingE0, then there exists one curve of eigenvalues
λ1 satisfyingReλ1(kc) = 0 if the amplitudeE0 of the external alternate current equals
a critical valueE0,crit. Due to the fact that we have a real-valued problem we also have
Reλ1(−kc) = 0. We assume that fork close tokc the curve of eigenvaluesλ1 is simple. Due
to the reflection symmetry forx → −x this impliesλ1(k) = λ1(−k) and soImλ1(k) = 0
for all wave numbersk whereλ1 is simple. ForE0 = E0,crit we assume that all Floquet
exponents possess a real part strictly less than−σ0 for a σ0 > 0, except ofλ1(k) for k in
small neighborhoods of±kc. Since there is no possibility of confusion with the dielectric
tensor we denote the bifurcation parameter as usual byε. It is defined byε2 = E0 − E0,crit.
Then by continuity forε > 0 we have that the spectrum is only changed slightly, cf. Figure
4.1.

all other eigenvalues

k

- σ

Reλ

λ

ε2

1
c

k

FIG. 4.1.The real part of the spectrum as a function over the Fourier wave numbersk.

5. Mathematical theory for the Ginzburg-Landau approximation. The ansatz for
the derivation of the GLe is

εψA(x, z, t) = εA(X,T )eikcxϕ̂1(kc, z, t) + c.c.+ O(ε2), (5.1)

where

X = εx and T = ε2t,

andϕ̂1 is the critical mode belonging tom = 1 in (4.2). Inserting (5.1) into (3.6) shows that
A has to satisfy the GLe (1.1), see Sec. 7 for details.

In the following we formulate an approximation and an attractivity result for the Ginzburg-
Landau approximation and explain the consequences of the validity of such results. In the
subsequent sections we explain how to conclude these theorems from the autonomous case.

5.1. An approximation result. The formal approximation (5.1) is only useful if the
dynamics known for (1.1) can be found approximately in the original system (3.6), too, i.e.
the error (in Theorem 5.1 of orderO(ε2)) should be much smaller than the approximation
εψA and the solutionV which are both of orderO(ε) for all T ∈ [0, T0] or t ∈ [0, T0/ε

2],
respectively. It turns out that this is true also in the time-periodic case.

THEOREM 5.1. Let m ≥ 8 andA = A(X,T ) be a solution of the GLe (1.1) for
T ∈ [0, T0], satisfying

sup
T∈[0,T0]

‖A(T )‖Hm
l,u
<∞.
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Then there areε0 > 0 andC > 0, such that for allε ∈ (0, ε0) we have solutionsV of (3.6)
satisfying

sup
t∈[0,T0/ε2]

sup
(x,z)∈R×(0,π)

|V (x, z, t) − εψA(x, z, t)| ≤ Cε2.

We remark that there are other amplitude equations [17] which although derived by a formal
perturbation analysis do not reflect the true dynamics of theoriginal equations. Moreover,
the proof of Theorem 5.1 is not trivial since solutions of orderO(ε) have to be bounded on
a time interval of lengthO(1/ε2). Theorem 5.1 can be improved in a number of directions.
The error can be made smaller by adding higher order terms to the approximation. However
the time scale cannot be extended [26]. By a more involved analysis [14] less regularity for
the solutions of the GLe is needed.

5.2. An attractivity result. The following attractivity theorem shows that solutions to
orderO(ε) initial conditions develop in such a way that after a timeO(1/ε2) they can be
approximated by the solutions of the GLe (1.1). Thus, the GLedescribes the solutions in the
attracting set of the system, i.e. the interesting dynamicsof the standard model close to the
threshold of the first instability.

THEOREM 5.2. Let s ≥ 4. For everym ≥ 0, C1 > 0 there existT0 > 0, ε0 > 0 and
C2 > 0 such that the following is true. LetU0 ∈ Hs

l,u satisfying‖U0‖Hs
l,u

≤ C1ε. Then for

all ε ∈ (0, ε0) the associated solutionV of (3.6) at timet = T0/ε
2 can be written as

V (x, z, T0/ε
2) = εA(X)eikcxϕ̂1(kc, z, t) + c.c.+ ε2R(x, z)

where‖Â‖Hm
l,u

≤ C2 and‖R‖Hs
l,u

≤ C2.
This is only one possible version of such an attractivity theorem. See [6, 16, 19] for other

more advanced versions of attractivity theorems.

5.3. Global existence and upper semi-continuity of attractors. As already said the
above versions of the approximation and of the attractivitytheorem can be improved such
that the outcome from the attractivity theorem can be used asinput for the approximation
theorem. The combination of the two theorems allows for instance to transfer the global
existence of solutions from the GLe to the original system, cf. [14, 19]. Moreover, the upper
semi-continuity of attractors holds, cf. [10, 20]. Since the proofs of these results are only
based on a suitable approximation and on a suitable attractivity theorem the global existence
and upper semi-continuity of attractors also hold in the time-periodic case. Hence, the GLe
really gives a proper description of these systems near the bifurcation point also in case of a
time-periodic forcing.

We summarize this as follows:
Abstract theorem. Suppose that the assumptions (A1)-(A3), (B1), (B3), and (C1) and

either (B2) I or (B2) II of [19] hold for (3.6) with the following modifications. The operator
M(t) is a sum of the sectorial operatorΛ from (A2) and a time-periodic operatorB(t) :
Z → Z∗ whereZ andZ∗ are the Banach spaces from (A1). Moreover, (B2) I or (B2) II hold
for the Floquet exponents ofM(t). Then the approximation and attractivity result from [19]
remain valid if the Fourier modes in the approximation are replaced by the Floquet-Fourier
modes.

6. How to transfer the ideas from the autonomous to the time-periodic case. In
the following we sketch all modifications from the autonomous case to the time-periodic
case such that the reader will be able to check the validity ofthe above approximation resp.
attractivity result by reading parallel for instance [13, 2] or [19].
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The main problem in the proofs of the approximation and attractivity results is the long
time scaleO(1/ε2) which is much longer thanO(1/ε) which can be obtained by a simple
application of Gronwall’s inequality due to theO(ε) magnitude of the solutions. Only by a
separation of the modes with positive or slightly negative growth rates from the ones with
strictly negative growth rates in the linearized system thelong time scale can be approached.
However, there is no spectral gap and so like in the autonomous case it turned out that it
is essential for the mathematical analysis to consider the Fourier transformed system with
respect to the unbounded spatial variable. In Fourier space(3.6) yields

∂tV̂ (k, t) = M̂(k, t)V̂ (k, t) + N̂(V̂ )(k, t), (6.1)

with k ∈ R andV̂ (k, t) a vector-valued function ofz. For fixed wave numberk ∈ R close to
kc there are spectral gaps and so by [8, Theorem 7.2.3] a separation in so called critical and
non-critical modes is possible. Using again [8, Theorem 7.2.3] which is applicable due to the
regularization shows that the non-critical part of the evolution operator associated tôM(k, t)
is damping with some exponential rate. Moreover, [8, Theorem 7.2.3] allows to transform
the critical part ofM̂(k, t) which is one-dimensional with some bounded transformationinto
an autonomous operator, i.e. into a multiplication withλ1. Sinceλ1 is simple the associated
semigroup shows growth rates of orderO(eε2t). Using the multiplier theorem inHm

l,u-spaces
from [13] shows that the associated evolution operators hasthis growth rate in physical space
in theHm

l,u-spaces, too. Since the estimates for the nonlinear terms are exactly the same in
the autonomous and in the time-periodic case the proof of theapproximation result then goes
along the lines of the autonomous case, cf. [13, 19]. Here, the nonlinearity is a Lipschitz
continuous mapping from some interpolation spaceXα with α ∈ (3/4, 1) into X = H0

l,u ∩
{V = QV }, whereX 1 is the domain of definition of−βQ∆2. The error is then bounded
in Xα using Gronwall’s inequality, now in the system for the critical and noncritical modes.
Xα can be embedded by [8, Theorem 1.6.1] intoH3

l,u which can be embedded by Sobolev’s
embedding theorem into the spaceC0

b of uniformly bounded, continuous functions.
Similarly the proof of the attractivity result also goes along the lines of the autonomous

case, cf. [19].

7. Derivation of the Ginzburg-Landau equation. For the subsequent analysis it is
sufficient that the critical Floquet exponentsλ1 nearkc of M̂(k, t) are simple. However, in
order to make things a little bit less abstract we assume thatthe linear operatorM̂(k, t)
with M̂(k, t) = M̂(k, t + 2π/ω0) yields for everyk ∈ R and t ∈ [0, 2π/ω0) a Flo-
quet Schauder basis(ϕ̂j(k, t))j∈N of L2((0, π),C4) of 2π/ω0-periodic functionŝϕj(k, t) =
ϕ̂j(k, t+ 2π/ω0) solving

∂tϕ̂j(k, t) = M̂(k, t)ϕ̂j(k, t) − λj(k)ϕ̂j(k, t),

i.e. the Floquet functionseλ̂j(k)tϕ̂j(k, t) are solution of∂tV̂ (k, t) = M̂(k, t)V̂ (k, t) and
λj(k) are the associated Floquet exponents. This means that we assume that there are no
Jordan blocks in the monodromy operator forM̂(t). The functionsϕ̂j are normalized by
setting‖ϕ̂j(k, 0)‖L2=1. For defining projections onto thêϕj(k, t) we consider the adjoint
problem−∂tV̂ (k, t) = M̂∗(k, t)V̂ (k, t). Consequently also this problem has for everyk ∈ R

and t ∈ [0, 2π/ω0) a Floquet Schauder basis(ϕ̂∗
j (k, t))j∈N of L2((0, π),C4) of 2π/ω0-

periodic functionŝϕ∗
j (k, t) = ϕ̂∗

j (k, t+ 2π/ω0) solving

−∂tϕ̂
∗
j (k, t) = M̂∗(k, t)ϕ̂∗

j (k, t) − λj(k)ϕ̂
∗
j (k, t),

and satisfying the orthogonality

〈ϕ̂∗
i , ϕ̂j〉 = δij . (7.1)
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A solutionV̂ (k, t) of (6.1) is expanded in terms of the Floquet functionsϕ̂j(k, t), i.e.

V̂ (k, t) =
∑

j∈N

âj(k, t)ϕ̂j(k, t) with âj(k, t) ∈ C, (7.2)

such that

∂t





∑

j∈N

âj(k, t)ϕ̂j(k, t)



 =
∑

j∈N

((∂tâj(k, t))ϕ̂j(k, t) + âj(k, t)∂tϕ̂j(k, t))

=
∑

j∈N

âj(k, t)M̂(k, t)ϕ̂j(k, t) + N̂(V̂ )(k, t).

In order to find the equations for the coefficient functionsâj(k, t) we apply the adjoint eigen-
functionϕ̂∗

j (k, t) and find

∂tâj(k, t) = λ̂j(k)âj(k, t) + 〈ϕ̂∗
j (k, t), N̂(k, t)〉 (7.3)

for j ∈ N where we used (7.1) and

−〈ϕ̂∗
j (k, t), ∂tϕ̂i(k, t)〉+〈ϕ̂∗

j (k, t), M̂(k, t)ϕ̂i(k, t)〉
= 〈ϕ̂∗

j (k, t), λ̂j(k)ϕ̂i(k, t)〉 = λ̂j(k)δij .

Our derivation of the GLe is now based on (7.3). For notational simplicity we avoid the
explicit notation of the small parameterε in the following. We make the ansatz

a1(x, t) = εA1(X,T )eikcx + ε2A2,1(X,T )e2ikcx + ε2A0,1(X,T ) + c.c.,

aj(x, t) = ε2A2,j(X,T )e2ikcx + ε2A0,j(X,T ) + c.c.

wherej ∈ N \ {1},X = εx ∈ R2, andT = ε2t. With this ansatz we derive formally a GLe
with time periodic coefficients. We write the nonlinearity of (3.6) in the form

N(V ) = B(t, V, V ) + C(t, V, V, V ) + O(V 4), (7.4)

with bilinear and trilinear symmetric termsB andC and introduce the abbreviations

B̂j(t, k, k −m,m) = e−ikxB(t, ϕ̂1(k −m, t)ei(k−m)x, ϕ̂j(m, t)e
imx),

Ĉ(t, k, k − l1, l1 − l2, l2)

= e−ikxC(t, ϕ̂1(k − l1, t)e
i(k−l1)x, ϕ̂1(l1 − l2, t)e

i(l1−l2)x, ϕ̂1(l2, t)e
il2x).

Forε2e0ix in thej-the equation we obtain

λj(0, 0)A0,j = −2〈ϕ̂∗
j , B̂1(t, 0, kc,−kc〉|A1|2, (7.5)

and forε2e2ikcx in thej-th equation

λj(2kc, 0)A2,j = −〈ϕ̂∗
j , B̂1(t, 2kc, kc, kc)〉A2

1. (7.6)

Forε3eikcx in the equation forj = 1 we obtain

∂TA1 = d0A1 + d1∂
2
XA1 (7.7)

+ 2〈ϕ̂∗
1,

∑

j∈N\{1}

B̂j(t, kc, kc, 0)〉A1A0,j

+ 2〈ϕ̂∗
1,

∑

j∈N\{1}

B̂j(t, kc,−kc, 2kc)〉A−1A2,j

+ 3〈ϕ̂∗
1, Ĉ(t, kc, kc, kc,−kc)〉A1|A1|2,
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with d0 = ∂ε2λ1(kc, 0) and2d1 = ∂2
kλ1(kc, 0). In (7.7) we replaceA0,j through (7.5) and

A2,j through (7.6) and obtain the GLe

∂TA1 = d0(ε)A1 + d1(ε)∂
2
XA1 + γ(t, ε)A1|A1|2, (7.8)

with a time-periodic coefficientγ(t, ε). Since all coefficientsdj andγ depend smoothly on
ε2 we have the existence of limitscj andγ0(t) with

dj(ε) = cj + O(ε2) and γ(t, ε) = γ0(t) + O(ε2).

In the limit ε2 → 0 we obtain a GLe

∂TA1 = c0A1 + c1∂
2
XA1 + γ0(T/ε

2)A1|A1|2. (7.9)

Averaging over the highly oscillating cubic coefficientγ0(T/ε
2) shows that for the dynamics

only the mean valuec2 is essential in lowest order. So we finally come to the autonomous
GLe

∂TA1 = c0A1 + c1∂
2
XA1 + c2A1|A1|2. (7.10)

8. Another example. When a container of fluid is shaken vertically with sufficient
strength, pattern develop on the the free surface. This pattern forming system is known as
the Faraday problem. If this problem is considered in an infinitely extended strip the trivial
solution, i.e. the flat surface, becomes unstable exactly asdescribed in Section 4, cf. [11, 27].
The first pattern to appear is sub-harmonic with half the external frequency. One model to
describe the Faraday problem are the Zhang-Vinals equations [27] which are derived in the
limit of weak damping and a deep container and which are givenin case of two unbounded
dimensions by

∂th = γ∆h+Dφ−∇ · (h∇φ) +
1

2
∇2(h2Dφ) −D(h(Dφ) (8.1)

+D(hD(hDφ) +
1

2
h2∆φ,

∂tφ = γ∆φ+ Γ0∆h−G(t)h+
1

2
(Dφ)2 − 1

2
(∇φ)2 (8.2)

−(Dφ)(h∆φ +D(hDφ)) − 1

2
Γ0∇ · ((∇h)(∇h)2),

whereh(x, t) is the surface height andφ(x, t) a velocity potential.D is a multiplication
operator withD̂(k) = |k|. The external forcing is given byG(t) = G0 cos(ω0t) and the
parametersγ andΓ0 correspond to viscosity and surface tension respectively [27]. In case of
a strip we have∇ → ∂x and∆ → ∂2

x. The Zhang-Vinals equations are fully nonlinear and
so our theory also only applies to a regularized version, i.e. if −β∆2h and−β∆2φ, with a
smallβ > 0, are added to the right hand side of (8.1) and (8.2), respectively.
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