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MATHEMATICAL THEORY FOR THE GINZBURG-LANDAU APPROXIMATIO N
IN SEMILINEAR PATTERN FORMING SYSTEMS WITH TIME-PERIODIC
FORCING APPLIED TO ELECTRO-CONVECTION
IN NEMATIC LIQUID CRYSTALS *

NORBERT BREINDL, GUIDO SCHNEIDERAND HANNES UECKERf

Abstract. Electro-convection in nematic liquid crystals and the Bagaproblem are paradigms for pattern for-
mation in systems with external time-periodic forcing. €do the first instability the bifurcating solutions can be
described via perturbation analysis by a Ginzburg-Landpwagon. This formal procedure can be justified mathe-
matically through approximation and attractivity theogenin this paper this theory is explained for a regularized
standard model describing electro-convection in nemaficd crystals.
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1. Introduction. In the experiments for electro-convection in nematic lijaiystals a
thin layer of such a material is contained in between twoiajhaextended electrode plates.
When an alternating current is applied to the electrodeslestre-hydrodynamic instabil-
ity can occur if the voltage is above a certain threshold. ffivéal spatially homogeneous
solution becomes unstable and bifurcates into non-trpastern [4, 12]. This experiment to-
gether with the Faraday problem is a paradigm for pattemmé#bion in systems with external
time-periodic forcing.

The mathematical description of the dynamics of the biftinggpatterns is based very
often on the reduction of the governing partial differeh&quations to finite or infinite-
dimensional amplitude equations. The most famous amgitgliation occurring in such
a setup is the so called Ginzburg-Landau equation (GLe)

OrA = coA+ c10% A + e A|AP? (1.1)

with A = A(X,T) € Cdepending oiX € R andT > 0 and with coefficientsy, ¢, c2 € C.
Itis derived by multiple scaling analysis and describewstmdulations in time and space of
the amplitude of the linearly most unstable modes. Our&stss in the justification of GLes
for pattern forming systems with time periodic forcing.

The GLe has been derived for example for reaction-diffusistems and hydrodynam-
ical stability problems, as the Bénard and the Taylor-@eugroblem. For these examples
the GLe has been justified as an amplitude equation by a nuaibeathematical results:
so called approximation and attractivity theorems havenlestablished by a number of au-
thors for model problems, but also for general systems dhiofuthe Navier-Stokes equa-
tion, cf.[3, 26, 6, 15, 13, 16, 22]. Nowadays the theory is #l established mathematical
tool which can be used to prove stability results [25, 21hersemi-continuity of attractors
[10, 20] and global existence results [14, 19]. EquationSiozburg-Landau type have also
been used extensively to describe pattern formation in tiefiguid crystals [23, 12, 28, 1].

However, the literature cited above about the mathemgtic#fication of GLes is re-
stricted so far to autonomous systems and is not coveringitbation of nematic liquid
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crystals due to the time-periodic forcing which has to beliadpn the experiment in order
to avoid the destruction of the experiment through elegsisl In [2] we restricted the dis-
cussion of the validity question for time-periodic systeims scalar model equation. Here
we improve the results from [2] in such a way that all apprcadion and attractivity results
from the autonomous to the time-periodic case transfer stlioime to one. As a consequence
no longer the analyticity of the solutions of the GLe as inif2jeeded. The main steps of the
theory are explained for the standard model describingrel@onvection in nematic liquid
crystals. However, we circumvent the problem of the loc#texce and uniqueness of solu-
tions of the standard model by considering a regularizesi@er In order to avoid some ad-
ditional functional analytic difficulties with the Navi&tokes equations with two unbounded
space directions based on the non-differentiability ofsyyabol of the Helmholtz projection
in more than one unbounded space direction in the followiegiroblem is considered in an
infinitely extended strip.

The plan of this paper is as follows. In Section 2 we descfilzestandard model. In
Section 3 this (fully nonlinear) evolutionary system is rifi@dl by some regularizing terms
to obtain a semilinear system. In Section 4 we explain thetsplesituation necessary for a
Ginzburg-Landau approximation. In Section 5 we give an axipration and an attractivity
result for the Ginzburg-Landau approximation and dischexbnsequences of these results,
and in Section 6 we explain how the ideas from the autononmtiset time-periodic case
transfer. In Section 7 we show how to derive the autonomous f&am the time-periodic
system. In Section 8 we discuss with the Faraday problemhangiattern forming system
with time-periodic forcing.

Notation. The spaceH;", of m-times weakly differentiable uniformly local Sobolev-
functionsR x ¥ — R, is equipped with the norm

m

[ull iy (rxs) = Sup. > 0%l e(@esyxsy  with  JulFag) = /Q u(z)[*da.
“HER =0

Throughout the paper we denote possibly different constantith the same symbol if they
can be chosen independent of the small bifurcation paramete: < 1.

2. The standard model. There are essentially two models for the mathematical de-
scription of electro-convection in nematic liquid crystaThese are the standard model ([29]
and the references therein) and the weak electrolyte mdded.latter has been introduced
by Kramer and Treiber in [24, 23] to overcome some insufficies of the standard model.
Analytic and numerical investigations of the standard nhedth the physical parameters of
the nematic liquids used in experiments show no Hopf bifiimoeaat the threshold of the first
instability of the trivial solution in contrast to travetinvave solutions observed in experi-
ments. For simplicity we restrict ourselves to the consitlen of the standard model. The
following presentation and non-dimensionalization of stendard model is similar to [5].

The continuum theory of Ericksen [7] and Leslie [9] treatsnaéic liquid crystals as
incompressible fluids with the average molecular axis desdrlocally by a director field
n of unit vectors. For a layer of nematic liquid crystals inveeén two horizontal plates,
the Leslie-Erickson equations farand the generalized Navier-Stokes equations for the fluid
velocity v and the pressunein the presence of an electric fieldare given by

(O +v-VIn=wxn+d-(A\An —h), (2.1)

Py(0y +v-V)v=—Vp— V- (T +10) + 72pE, (2.2)
V.v=0, (2.3)
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for (x, z) in the infinitely extended stri x (0, 7). Herew = (V x v)/2is the vorticity. The
molecular fieldh is given by

h=2 (% -V %) —¢eqm(n- E)E (2.4)
where
2f = (V-n)? + Ka[n x (V xn))? + Ka[n-(Vxn)?, (2.5)

is the elastic energy density describing splay, twist), and bend kK’s) deformations. We
refer to [5] for a physical interpretation of the constafis A\, K2, K3, ande,. The electric
field E = E(x, z,t) € R? is considered to be quasistationary, i.e.Eot= 0. It is then split
into an external forcing and some potential part, i.e.

2
5= Y25 cosunt ( 1 ) ~ Ve, (2.6)
s 0
The tensorsd, andTv*¢ are, respectively, the shear flow tensor
Aij = (8ﬂ)j + 8J”U2)/2 (27)
and the viscous stress tensor
3
=T = Z(alninjnknlAkl + aom;m; + azngm; (2.8)

k=1
+agAij + asningAg; + agningAgj)

wherem = §+(\An — h) and with coefficientsyy, . .., ag. The tensofl is the nonlinear
Ericksen stress tensor
3 8f
I, = i 2.9
; ; B (2.9)

The projection tensoié = §;; —n;n; in (2.1) guarantees thai| = 1 as long as the solution
exists.

In the standard model for electro-convection the continthaory of Ericksen and Leslie
is combined with the quasi-static Maxwell equations untderassumption of an ohmic resis-
tivity, i.e. for the charge density

POy +v-V)p=-V-(cE0). (2.10)
Finally the system is closed by Poisson’s law
p=V-(cE). (2.11)

The dielectric tensoe and conductivity tensos are given bye;; = €, 6;; + eonin; and
0ij = 010;5 + oqnin;, respectively. The parametePs and P, are Prandtl-type time scale
ratios. Again we refer to [5] for a physical interpretatidrilee constant$, o., €., o, andr-.

Using Poisson’s lawF resp. ¢ can be expressed in terms @fand so (2.1)-(2.3) and
(2.10) can be rewritten as a system of dynamical equatians, fg andp.
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The standard model is invariant under arbitrary transtatioz and under the reflection
(z,n2,v1) = —(x,n2,v1).

We assume rigid vertical boundary conditions derived frdeal conducting plate con-
ditions, rigid anchoring for the director, and finite visitpsThis means

n2201=v2=¢20 (212)

atz = 0,7, i.e.the coordinate system is chosen such that (1, 0) at the upper and lower
plates located at = 0, 7.

3. The regularized standard model. Sincen? +n3 = 1 for our purposes it is sufficient
to considem,. System (2.1)-(2.3) and (2.10) fas, v, andp is fully nonlinear and a mixture
of different types of PDEs as quasilinear parabolic equatand balance laws. We are not
aware of any local existence and uniqueness result forybtem in the literature. Since such
a theorem is fundamental for any approximation result wesickan a regularized version of
the standard model. In order to obtain a semilinear systeargdd artificially a regularizing
differential operator-3A2. For small3 > 0 the regularized system and the original system
show qualitatively the same bifurcation behavior. Thus wesider

Oing = (ea, —(v-V)n +w x n+ 6+ (AA — h)) — BA%n,, (3.1)
O =Py tQ(—(v- Vv — V- (T + 1) + n2pE) — BQA?v, (3.2)
dip = —v-NVp— P 'V - (uEo) — BA%p, (3.3)

whereQ is the projection on the divergence-free vector fidldg V - v = 0}, cf. [13, 19],
and whereF is defined through (2.6) and (2.11) in termsppfr, and Ey. The extension of
@ by identity to thep andn variables is also denoted I6y. The system is equipped with the
boundary conditions from the non-regularized system

ng=v1=v3=0¢=0 (3.4)
for z = 0, v, and additional artificial boundary conditions due to thgutarization
D*ng = 020y = 0%vy = p=0?p = 0, (3.5)
for z = 0, 7. In the following (3.1)-(3.3) is abbreviated as
OV = M)V 4+ N(t,V) (3.6)

whereM (t)V stands for the linear ani (¢, V') for the nonlinear terms with respect b=
(n27 U1, V2, p)

4. Linear stability analysis. In order to analyze the stability of the trivial solutiorg.i.
of V.= 0in (3.6), we consider the linearized system

YV = M(t)V. (4.1)

Due to the translation invariance of the problem the sohgiare given by Floquet-Fourier
modes

V = @m(k, z, t)eRmeAm k)t (4.2)
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with £ € R, m € N, and,,, periodic int, i.e.
‘ﬁm(w '>t) = ‘ﬁm(’ t+ 271-/"‘}0)-

ForV = 0 asymptotically stable, we have for all € N andk € R that Re\,, (k) < 0. If

V' = 0 becomes unstable through increasiig then there exists one curve of eigenvalues
A1 satisfyingReA; (k.) = 0 if the amplitudeE, of the external alternate current equals
a critical valueEy .r;:. Due to the fact that we have a real-valued problem we alse hav
ReA; (—k.) = 0. We assume that fdr close tok,. the curve of eigenvalues is simple. Due

to the reflection symmetry for — —x this impliesA; (k) = A1(—k) and solmA; (k) = 0

for all wave numberg where); is simple. ForEy = Ey .. We assume that all Floquet
exponents possess a real part strictly less than for a oy > 0, except of\; (k) for k in
small neighborhoods ofk.. Since there is no possibility of confusion with the diefact
tensor we denote the bifurcation parameter as usual liys defined bye? = Ey — Eg crit-
Then by continuity for > 0 we have that the spectrum is only changed slightly, cf. FEgur
4.1.

ReA

all other eigenvalues

Fic. 4.1.The real part of the spectrum as a function over the Fourievevaumbers.

5. Mathematical theory for the Ginzburg-Landau approximation. The ansatz for
the derivation of the GLe is

eha(x, z,t) = eA(X, T)e*%p (ke, 2, t) + c.c. + O(?), (5.1)
where
X =¢x and T = &2t

and¢, is the critical mode belonging ta = 1 in (4.2). Inserting (5.1) into (3.6) shows that
A has to satisfy the GLe (1.1), see Sec. 7 for details.

In the following we formulate an approximation and an atixéty result for the Ginzburg-
Landau approximation and explain the consequences of figityaf such results. In the
subsequent sections we explain how to conclude these thedrem the autonomous case.

5.1. An approximation result. The formal approximation (5.1) is only useful if the
dynamics known for (1.1) can be found approximately in thgioal system (3.6), too, i.e.
the error (in Theorem 5.1 of ord€?(c?)) should be much smaller than the approximation
e14 and the solutio” which are both of orde©(¢) for all T € [0,Tp] ort € [0, Ty /<2,
respectively. It turns out that this is true also in the tiperiodic case.

THEOREM 5.1. Letm > 8 and A = A(X,T) be a solution of the GLe (1.1) for
T € [0, Ty), satisfying

sup [JA(T)| gy, < oo.
T€[0,To) ’
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Then there arey > 0 andC > 0, such that for alk € (0,¢9) we have solution¥ of (3.6)
satisfying

sup sup \V(x,2,t) — epa(z, 2,t)| < Ce2
t€[0,To/2?] (2,2)€Rx (0,7)

We remark that there are other amplitude equations [17]walihough derived by a formal
perturbation analysis do not reflect the true dynamics ofottiginal equations. Moreover,
the proof of Theorem 5.1 is not trivial since solutions of@rd(¢) have to be bounded on

a time interval of lengtiO(1/£2). Theorem 5.1 can be improved in a number of directions.
The error can be made smaller by adding higher order ternfetagproximation. However
the time scale cannot be extended [26]. By a more involvetysisd14] less regularity for
the solutions of the GLe is needed.

5.2. An attractivity result. The following attractivity theorem shows that solutions to
orderO(e) initial conditions develop in such a way that after a tiél /c?) they can be
approximated by the solutions of the GLe (1.1). Thus, the @Gscribes the solutions in the
attracting set of the system, i.e. the interesting dynawfithe standard model close to the
threshold of the first instability.

THEOREM5.2. Lets > 4. For everym > 0, C7 > 0 there existly > 0, ¢y > 0 and
C> > 0 such that the following is true. Léfy € H}, satisfying||Us||n; , < Cie. Then for

all e € (0, ) the associated solutiovi of (3.6) at timet = T,/ can be written as
V(x,2,To/e%) = eA(X)e*®(y (ke, 2,t) + c.c. + 2R(x, 2)

where||Al| gy < Cy and||R||g; < Ch.
This is only one possible version of such an attractivitytieen. See [6, 16, 19] for other
more advanced versions of attractivity theorems.

5.3. Global existence and upper semi-continuity of attraairs. As already said the
above versions of the approximation and of the attractitigorem can be improved such
that the outcome from the attractivity theorem can be useidmg for the approximation
theorem. The combination of the two theorems allows forainsgé to transfer the global
existence of solutions from the GLe to the original systeinj1et, 19]. Moreover, the upper
semi-continuity of attractors holds, cf. [10, 20]. Since troofs of these results are only
based on a suitable approximation and on a suitable attitgdtieorem the global existence
and upper semi-continuity of attractors also hold in theetiperiodic case. Hence, the GLe
really gives a proper description of these systems nearithechtion point also in case of a
time-periodic forcing.

We summarize this as follows:

Abstract theorem. Suppose that the assumptions (A1)-(A3), (B1), (B3), an)l §8d

either (B2) | or (B2) Il of [19] hold for (3.6) with the followig modifications. The operator
M (t) is a sum of the sectorial operatdr from (A2) and a time-periodic operatdB(¢) :
7 — Z* whereZ and Z* are the Banach spaces from (A1). Moreover, (B2) | or (B2) Itho
for the Floquet exponents @f (¢). Then the approximation and attractivity result from [19]
remain valid if the Fourier modes in the approximation arplexced by the Floquet-Fourier
modes.

6. How to transfer the ideas from the autonomous to the time-eriodic case. In
the following we sketch all modifications from the autonomaase to the time-periodic
case such that the reader will be able to check the validith@fbove approximation resp.
attractivity result by reading parallel for instance [1Bp2[19].
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The main problem in the proofs of the approximation and etitrély results is the long
time scaleO(1/¢%) which is much longer thad(1/¢) which can be obtained by a simple
application of Gronwall’s inequality due to th®(e) magnitude of the solutions. Only by a
separation of the modes with positive or slightly negativendh rates from the ones with
strictly negative growth rates in the linearized systemlding time scale can be approached.
However, there is no spectral gap and so like in the autonsmase it turned out that it
is essential for the mathematical analysis to consider theiér transformed system with
respect to the unbounded spatial variable. In Fourier s(8a6gyields

OV (k,t) = M(k,t)V (k,t) + N(V)(k,t), (6.1)

with k € R andV (, t) a vector-valued function of. For fixed wave numbek € R close to
k. there are spectral gaps and so by [8, Theorem 7.2.3] a sipairaso called critical and
non-critical modes is possible. Using again [8, TheorenBT\&hich is applicable due to the
regularization shows that the non-critical part of the atioh operator associated M(k:, t)
is damping with some exponential rate. Moreover, [8, Theo7e2.3] allows to transform
the critical part ofV/ (k, ) which is one-dimensional with some bounded transformatitm
an autonomous operator, i.e. into a multiplication with Since); is simple the associated
semigroup shows growth rates of ordé(reEQt). Using the multiplier theorem ifl;”: -spaces
from [13] shows that the associated evolution operatorstiagrowth rate in phyéical space
in the H", -spaces, too. Since the estimates for the nonlinear terenexactly the same in
the autonomous and in the time-periodic case the proof adpipeoximation result then goes
along the lines of the autonomous case, cf. [13, 19]. Heentnlinearity is a Lipschitz
continuous mapping from some interpolation spatewith o € (3/4,1) into X = Hﬁu N
{V = QV}, whereX! is the domain of definition of-3QAZ2. The error is then bounded
in X< using Gronwall’s inequality, now in the system for the catiand noncritical modes.
X can be embedded by [8, Theorem 1.6.1] iﬁiﬁ;u which can be embedded by Sobolev’s
embedding theorem into the spac of uniformly bounded, continuous functions.
Similarly the proof of the attractivity result also goesradche lines of the autonomous
case, cf. [19].

7. Derivation of the Ginzburg-Landau equation. For the subsequent analysis it is
sufficient that the critical Floquet exponens neark,. of M(k:,t) are simple. However, in
order to make things a little bit less abstract we assumettieatinear operatof/ (k, t)
with M(k,t) = M(k,t 4+ 27/wo) yields for everyk € R andt € [0,27/wo) a Flo-
quet Schauder basi$; (k,t))jen of L2((0, ), C*) of 27 /wo-periodic functionsp; (k, t) =
@;(k,t+ 2m/wp) solving

8t¢j (kvt) = M(kvt)¢j (kvt) - )‘J(k)¢3 (kvt)»

i.e.the Floquet functions* (")t (k,t) are solution ofd,V (k,t) = M (k,t)V (k,t) and
Aj(k) are the associated Floguet exponents. This means that waadbat there are no
Jordan blocks in the monodromy operator Mr(t). The functionsp; are normalized by
setting||®;(k,0)| L2=1. For defining projections onto thg;(k, t) we consider the adjoint
problem—a,V (k,t) = M*(k,t)V (k,t). Consequently also this problem has for every R
andt € [0,27/wo) a Floquet Schauder bas{g’ (k,t))jen of L*((0,7),C*) of 2 /wo-
periodic functionsp’ (k, t) = 7 (k,t + 2m/wo) solving

— 0125 (k, 1) = M* (k, 1)@ (k. t) = A; (k)@ (K, 1),
and satisfying the orthogonality
(@7, P5) = ij. (7.1)
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A solution V(k:, t) of (6.1) is expanded in terms of the Floquet functignsk, t), i.e.
V(k,t) = a;(k,t)¢;(k,t) with a;(k,t)€C, (7.2)
jEN
such that

Oy (Z a;(k, t); (K, t)) =D (0 (k, 1)) (k1) + a (k, 1)De; (k. 1))

JEN jeN
= (k)M (k, )55 (k, 1) + N (V)(k, ).
JEN
In order to find the equations for the coefficient functianék, t) we apply the adjoint eigen-
function; (k, ) and find
Dvtay (k, t) = Aj(Rk)ay (k1) + (@5 (R, t), N(k, 1)) (7.3)

for j € N where we used (7.1) and

— (@5 (k. 1), 0 (k, 1)) +(25 (k, 1), M (k, 1) i (K )

= (P} (k. 1), Aj (k)i (k, 1)) = A;(k)di;.

Our derivation of the GLe is now based on (7.3). For notafiiraplicity we avoid the
explicit notation of the small parametein the following. We make the ansatz

ar(z,t) = e Ay (X, T)e ™ 42 Ay 1 (X, T)e**® + 2 A (X, T) + c.c.,
CLj (I, t) = €2A2’j (X, 71)62”6‘:m + €2A07j (X, T) + c.c.

wherej € N\ {1}, X = ez € R?, andT = £2¢. With this ansatz we derive formally a GLe
with time periodic coefficients. We write the nonlinearity(8.6) in the form

N(V)=B(t,V,V)+C(t,V,V,V)+O(V*?), (7.4)
with bilinear and trilinear symmetric terni$ andC' and introduce the abbreviations
Bj(t,k, k —m,m) = e~ B(t, o1 (k — m, t)e!F =™ & (m, t)eim),
Clt kb — 1,1y — o, 1o)
= e RO, @1 (k — 1y, )P 5 (1) — 1o, )l 2T 3 (15, t)elt2T),

Fors2e@ in the j-the equation we obtain

A (0,0) Ao j = —2(35, Bi(t,0, ke, —ke)| A1 |2, (7.5)
and fore2e?<* in the j-th equation
Aj(2ke,0)Az j = — (@3, Bi(t, 2ke, ke, k) ) A3 (7.6)
Fore3e?*<* in the equation foj = 1 we obtain
Or Ay = doAy + di0% A, 7.7)
+2(87, D Bylt ke, ke, 0) A1 Ao,
JEN\{1}
+2(37, Y Bilt ke, —ke, 2ke)) A1 As
JEN\{1}

+3(p7, Ct, ke, ke ey, —ke)) Ar | Ay |2,
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with dy = 9.2\1(ke,0) and2d; = 97\ (k,0). In (7.7) we replaced, ; through (7.5) and
A, ; through (7.6) and obtain the GLe

OrAr = do(e) A1 + di()0% A1 + 7(t,€) A1| A1 |?, (7.8)

with a time-periodic coefficient(t, ). Since all coefficients; and~y depend smoothly on
2 we have the existence of limits and~ () with

di(e) =c; +O(?*)  and  A(t,e) =(t) + O(e?).
In the limite2 — 0 we obtain a GLe
OorA; = CoAl + Clag(Al + Wo(T/EQ)AﬂAl‘Q. (79)

Averaging over the highly oscillating cubic coefficient 7T'/?) shows that for the dynamics
only the mean value; is essential in lowest order. So we finally come to the autansn
GLe

8TA1 = C()Al + 018§(A1 + CQAl ‘Al ‘2. (710)

8. Another example. When a container of fluid is shaken vertically with sufficient
strength, pattern develop on the the free surface. Thignmatbrming system is known as
the Faraday problem. If this problem is considered in an itefin extended strip the trivial
solution, i.e. the flat surface, becomes unstable exactigssribed in Section 4, cf. [11, 27].
The first pattern to appear is sub-harmonic with half therestefrequency. One model to
describe the Faraday problem are the Zhang-Vinals equafdt} which are derived in the
limit of weak damping and a deep container and which are givexase of two unbounded
dimensions by

Oth = yAh + D¢ — V - (hV ) + %W(h“'D(p) — D(h(D¢) (8.1)
+D(hD(hD¢) + %iﬂm,

8y = yA¢ + ToAh — G(t)h + %(D¢)2 - %(w)? (8.2)
~(DY)(hAG + D(hDG)) ~ 3To¥ - ((VK)(VA)),

whereh(z,t) is the surface height and(xz,t) a velocity potential. D is a multiplication
operator withD(k) = |k|. The external forcing is given bgi(t) = G cos(wot) and the
parameters andI’y correspond to viscosity and surface tension respecti?dly |n case of

a strip we haveV/ — 9, andA — 92. The Zhang-Vinals equations are fully nonlinear and
so our theory also only applies to a regularized version,if.e- 3A2h and —3A2¢, with a
small3 > 0, are added to the right hand side of (8.1) and (8.2), respebgti
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