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Abstract

We give a detailed analysis of the interaction of two moduppulse solutions of
a nonlinear wave equation. These solutions consist of gildseenvelopes satisfying
approximately a Nonlinear Schrodinger equation, advanan the laboratory frame,
and modulating underlying wave-trains. We improve the loolan the possible shift of
the envelopes caused by the interaction of two well preppuésks from orde©(1) to
orderO(e). Thus we manifest the statement that there is almost naittten of pulses
with different carrier waves.

1 Introduction

The transport of information over long distances througticapfibers is encoded digitally

by sending a light pulse or not. Physically such a light pidse complicated structure. It

consists of an underlying electromagnetic carrier waveingpwith phase velocity, and of

a pulse like envelope moving with group velocifyand modulating the underlying carrier
wave. The fact that there is very few interaction of pulsas @ifferent carrier waves allows

to increase the information rate through the fiber by usiffgrint bands, cf. [Ace00].

In most theoretical descriptions the dynamics of the empestaf the modulating pulses is
approximately described by a Nonlinear Schrodinger (N&@)ation. In such a description
the envelope has an amplitude of ord#f) and a width of orde©(1/¢<), wheres > 0 is a
small perturbation parameter. See Figure 1.

O 1h
Figure 1:A modulating pulse described by the NLS-equation, see Le@ihaelow.



It is the purpose of this paper to show in detail that therelnsoat no interaction of
two such NLS-described modulating pulses if they possdésreint carrier waves. It has
been known for long time that pulses with different carriaves do not interact in lowest
order, see [PW96] for a rigorous proof and Remark 3.3 for theristic argument. Here
we improve this statement by giving & =)-bound for the possible envelope shift resulting
from the interaction. In order to do so we give a mathematcallysis of the interaction
of two such modulating pulse solutions of a nonlinear waveaéiqn. For well prepared
NLS-described modulating pulse solutions we improve thenlddor the physically relevant
possible envelope shift caused by the interaction of thegsuirom orde©(1), cf. [PW96],
to orderO(g) on anO(1/£?) time scale. The proof of the bound is based on an explicit
description of the phases and on the consideration of pelsestructed with the help of
higher order approximations.

On a0(1/¢?) time scale, the natural time scale of the NLS—approximatianodulating
pulse of widthO(1/¢) can pass at mog?(1/<) many modulating pulses of widi?(1/¢).
As a consequence of our result, the interaction of such a latidg pulse withO(1 /<) many
modulating pulses with a different carrier wave can lead@dtrto anO(1)-pulse shift. Thus,
with respect to the question of the transport of informatlmough glass fibers the influence
of different frequencies to the dynamics in one band is gdgk w.r.t. to the transport of
digital information.

The plan of the paper is as follows. In Section 2 the relevafitke NLS-equation and
the associated NLS-pulses is explained. The precise isstidtted in Section 3. The proofis
based on a number of Lemmas which are also stated in Sectiom @oved subsequently. In
Section 4.1 we construct approximate modulating pulsds thé help of the NLS-equation.
A high order formal approximation of the interaction of twd.8tdescribed modulating
pulses with different carrier waves is constructed in $ec#.2, and the validity of this
approximation on a time scal@(1/<?) is established in Section 4.3.

Although we restrict our analysis to a semilinear wave a@quawith cubic nonlinearity
the statement can be transfered to all systems where theelju&ion has been justified,
i.e. semilinear wave equations with a quadratic nonlimgaricase of no resonances [Kal88,
KSM92] and in case of resonances [Sch98b, Sch05], water madels [Sch98a] and finally
wave equations in periodic media [BSTUOQ6].

Notation. Many possibly different constants that are independent afe denoted by’
The spacd?®(m) consists of-times weakly differentiable functions for whidhu|| zs(.,) =
[up™ s = (35— [ 105 (up™)|?dx)'/? with p(x) = +/1+ a2 is finite, where we do not
distinguish beween scalar and vector—valued function®al and complex-valued func-
tions. The spac€’; consists ofs-times continuously differentiable functions for which
ullog = 32— SuDser [04ul is finite. We sometimes write, e.dlu(z)||¢; for the Cy norm
of the functionz — u(z).
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leg GRK 1294/1: Analysis, Simulation und Design nanotedbgischer Prozesse.




2 TheNLS-pulses

As a prototype of a nonlinear wave equation possessing &ippate modulating pulse solu-
tions we consider throughout this paper the semilinear eguation

Otu = O*u — u + u?, (1)

with z € R, ¢t € R, andu(x,t) € R. Itis well known that on time-scales of ordéX1/s?)
equation (1) ha®(¢)-amplitude solutions which are slow spatial and temporadateations

of an underlying carrier wave(*or—«o") ‘wheres > 0 is a small perturbation parameter and
wherek, andw are related by the linear dispersion relatigh= k2 + 1. Such solutions are
described by the formula

wa(z,t) = e(A(X, T)elkor=wob) 4 ¢ ¢ ) 4 O(e?).

Here X = ¢(z — ¢,t) andT = &t are the long spatial and temporal scales, respectively,
c, = ko/(1 + k%)"/* is the linear group velocity, and the complex enveldpsatisfies

2iwoOr A+ (1 — (c,)*)0Xx A+ 3|APA = 0. (2)

The nonlinear Schrodinger equation (2) has a three-paearfamily of time-periodic
solutions of the form . _
A(X,T) = A(X — Xg)e T eio0

in which the real-valued functiod satisfies the second-order ordinary differential equation
DA =C1A — Cy A%, (3)

whereC) = —2yowo/(1 — (¢)?), C2 = 3/(1 — (¢)?). Fory, < 0 andwy > 0 this equation
has two homoclinic solutions

2C,

1/2
—) sech (011/2X) (4)
Cy

Apal0) =

which connect the origin of theii, 8XA)-phase plane with itself and which fulfill

~ _ —27owo
< CeXl g [ T2
| Apuse(X)| < Cle T 1—(c)? (5)

This procedure therefore gives modulating pulse solutidtise nonlinear wave equation
which are described by the approximate formula

A —ivoT Li(kox—wot
Upulse :g(Apulse(X - XO)e e (ko ot) + C.C.)

= (Apuse(e(w — cit) — eg)e om0t 4 ) (6)

over time-scales of orde&?(1/<?).



3 Theresult

In contrast to the formal analysis of Section 2 the well kndmon-existence of breathers’
result [Den93, BMW94] does not allow the global existencenodulating pulse solutions,
i.e. there are no solutions to (1) of the form

u(x,t) = v(r — cgt, kor — wot),

wherev is 2r-periodic in its second argument atich, .., v(§,y) = 0. However, to any
polynomial order such solutions can be computed. This mawighere are approximate
modulating pulse solutions for which the residual

Res(u) = — Ofu + 02u — u + u?

can be made small to any poweraf The residual contains the terms which do not cancel
after inserting an approximation into (1). es(u) = 0 thenw is an exact solution of (1).
For our purposes we need the following approximate modgaiulses.

Lemma3.l Lets > 2, kg > 0 andy, < 0. For sufficiently smalk > 0 there exists a
two-dimensional family of approximate modulating pulseisons to (1) of the form

u(x, t) = evg, (x — ot + 2o, kor — Wt + @), (7)
parametrized by envelope shiff € R and phase shifp € [0, 27), whereuvy, is 27-periodic
in its second argument; = wy + 0> + O(e*) = koc,, with phase velocity,, = ¢, +~e* +
O(e*), 1 = v0/ko, and group velocity,, = ko/w = 1/¢,. Moreover,

eV, (&, y) = 6Apulse(6§)eiy + c.c. + O(3e el (8)
with flpulso andr > 0 given by the homoclinic solution of (4) and (5). The residudllls

HRes(evko)} L < Cetl2, 9)

H

Proof. See Section 4.1. [ |

Remark 3.2 For upyse defined in (6) we havé{Res(upuse ||+ = O(/?). In particular,
to achieve (9) we need th@(<*) correction to the linear group velocity = ko/w from
Section 2, i.e.¢, = ¢, + O(¢?) in (7) and in Fig.1.

To analyze the interaction of two approximate modulatingesifrom Lemma 3.1 with
different carrier waves we introduce subscrigtand B to indicate the wave numbeks #k
of each pulse, the associated group velocitjes andc, g, the envelope shifts, andzp
and so on. Note thdty # kg impliesc, 4 # ¢, . If the two pulses are separated initially,
and, sayz4 > xp andky < kg such that, 4 < ¢, p and the faster pulse is in front, then,
since the pulses are exponentially localized, it is natir&xpect that the dynamics of the
two pulses can be described by the sum of the two individuialsy at least on af¥(1/¢?)
time—scale, which is the natural time scale to approximahatiosns of (1) by solutions of
the NLS, cf. [KSM92]. However, if the two pulses are, sé),1 /<) separated initially, with
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x4 > xp andks > kg, then, since the group velocities differ §(1), the two pulses must
interact on arO(1/¢%) time—scale. Clearly this is the mathematically more irgting case.
For notational simplicity we assume that = ¢z = 0 and thus study the interaction of

eV, (T — cgat + x4, kax —wat) and evy, (v — ¢y pt +wp, kpr —wpt), ka # kg.

We prove that the form of the pulses is almost preserved atdhh interaction mainly leads
to phase-shifts(2; and to envelope shifts)4, i.e. after interaction the solution looks like

eV, (T—cgat+axa+eda, kar—wat+eQq)+evy, (x—cypt+ap+edp, kpr—wpt+eQp),
for somed 4, dp, 24,25 € R.

Remark 3.3 There is a simple argument why the evolution equationsforand vy, de-
couple in lowest order in terms ef Going into the scaling of the envelopg, andvy,, have

an amplitude and a width of ordé€?(1). But since the group velocities differ by an order
O(1/¢) in this scaling the interaction time of,, andvy,, is only of orderO(¢). Therefore,

the influence of a termy,, v;,,, on the dynamics o, andvy, is O(¢) and so in lowest order
the evolution equations far, , andv;,,, decouple. This property can be observed in a number
of problems, cf. [PW96].

However, transfering as in the subsequent Remark 3.7 tiraass from [PW96] gives an
O(1)-bound for the possible shift of the envelope for- 0. Here we improve the bound for
the physically relevant envelope shift from ordef1) to orderO(¢) in case of well prepared
approximate modulating pulses from Lemma 3.1. Thus we dfyahe statement that there
is almost no interaction of pulses with different carrierves. We do this by extracting
explicity the shift of the phase of the underlying carrievea

The idea is to construct an approximation

e (x,t) = eW(z,t) + 3h(x, 1), (10)
of the pulse interaction, where

eV(x,t) i=cvp, (v — cgat + x4, kar —wat +eQa(np))
+evgy(x — ¢t + 2B, kpr —wpt + Qp(na)), (11)

with explicit functions2 4, (2, given by

nB

3| B2 5

Qy = / ¢ dng + Q% + 0(526_”"5"), ng =¢e(x +xp — ¢y pt), (12)
wa(ca —cp)

—0o0

na
AP -
Qp = / ﬁ dija+ Q%+ O,y =e(x + 24— coat),  (13)

—00

whereB,; andA, are given by (4) with constants, g, C> p andC} 4, Cs 4, respectively, and
whereQ’ andQY, are constants which normalize the initial phases. Noteithatepends on
x—cy gt andQp onz —c, 4t as the phase shift accounts for so called cross phase miodulat
In (10), h(x, t) are higher order terms, and the ansatz leads to estimatéefresidual simi-
lar to the ones of Lemma 3.1, i.Res(e W) || - = O(e'/?), andh(z, t) isO(1)-bounded on
the naturald(1/<?) time scale. We remark th§Res(s¥)|| z = O(¢>/?) would not allow to
prove estimates for the approximation of solutions of (1}tyon theO(1/£?) time scale.
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after interaction

Figure 2: lllustration of our main result, as detailed in Lemma 3.4 diheéorem 3.6 below. Here
k4 > kg and the slower pulse is in front. Thug; — c4 < 0in (13), and2p is a decaying function
of z. The constant§Y and2% have been chosen in such a way that at 0 (upper two pictures)
there are no phase-shifts for the pulses, §)g; is exponentially small near the positienc g of vy,
while €2 4 is exponentially small near the positienc 4 of v, . Note that2 4, moves with the—pulse,
while Q5 moves with thed—pulse.

Lemma3.4 Lets > 2, ks, kp > 0, ka # kg, Y0,4.7%.8 < 0, 24,25 € Rin Lemma 3.1,
andTj, > 0. Then there exist, > 0 andC, C..s > 0 such that for alk € (0, () there exists
an approximatiorx ¥ of the pulse interaction in the form (10), where

||h(>t)| C’l‘:"*l S Ca (14)
and .
sup  ||Res(e®)|| s < Crese''/2. (15)
t€[0,To /2]
Proof. See Section 4.2. [ |

Using (15) it is easy to show that given initial data closetd, 0) the solutionu to (1)
stays close to the approximatiek of the pulse interaction.

Lemma 3.5 Under the assumptions of Lemma 3.4 there exist 0 andC;,C; > 0 such
that for all ¢ € (0, <o) the following holds: if

(-, 0) — e L3, 0)

u(-,0) — e¥(-,0) T

< Cie"? (16)

.

Hs Hs—1



with ¢ from (10), then

sup <
t€[0,Tp /2]

Proof. See Section 4.3. |
The triangle inequality with (14) and (17) and Sobolev’s ewhiing theoremH* C
C:~', immediately gives the main result, see fig. 2 for illustati

u(-,t) —eW(-,t) dyu(-,t) —s%\if(-,t)

.

) <, ()

Hs Hs—1

Theorem 3.6 Lets > 2, ka, kg > 0, ka # kg, 704,75 < 0, x4,z € R in Lemma
3.1, andTy > 0. Then there exist, > 0 and C4, Cy > 0 such that for alle € (0,¢) the
following holds: if

uw(z,0) — v, (v4 4, kaz+eQa(mpli=o)) — Vg (T4 4, kpr+Q5(1N4li=0))

HS

d
+ || O, 0) — — [vk, (2424, kaz+eQa(NBli=0)) + Vky (2424, kpr+Qp(1ali=0))]

d e
< Gy (18)

where) 4, Q5 are given by (12),(13), then

sup Hu(x, t) =k, (T—cg at+T 4, kar—wat+cQa(nE))
t€[0,Tp /2]

— Ukp (.T—Cg,Bt + B, /{:Bx—wBtJreQB(nA))‘ C,f*l S 0283. (19)
Remark 3.7 If x4 — 25 > Ce=(49 for ad > 0, then initially, i.e., at = 0, Q4 is expo-
nentially small nearz 4 and(2p is exponentially small nearz g, see fig. 2 for illustration,
and we may replace (18) by the more readable condition

u(z,0) — v, (r+xa, kat) — vy (x+2 4, kBT)
HS

d
Oyu(x,0) — — [va (x+x 4, kax) + vy (4T 4, k;B:c)} < 472, (20)

+‘ ar

Hs—1

which means that is really close to the sum of two pulses. It finally remainsgémsfer the
result (19) into an estimate for a possible shift of the eppel Suppose that the error comes
from a shift of the envelope. Then due to the long wave formhefeénvelope “vertical”
estimates of orde©(¢?) in L> can lead on a pulse of amplitude(c) only to a possible
envelope shifta of orderO(¢), due to

eg(e(z +ea)) — eg(ex) = eg'(ex)e*a + O(e(c%a)?) = O(?).

This, together with Theorem 3.6 means that there is almosttecaction of well prepared
modulating pulse solutions to carrier waves with differeatze numbers, i.e., the physically
relevant envelopes are almost not affected by the interacti



4 Theproofs

4.1 Construction of well-prepared pulses

Lemma 3.1 can be proved as in [GS01] with the help of spatiabdyics and invariant
manifold theory. In order to keep the paper as self-conthémel as simple as possible, here
we give a proof only using simple perturbation analysis. Vékethe ansatz

eV = €ALE + 2 A3E? + S AsE° + c.c.

where theA; depend on the variable = =(z — c,t) and whereE = ¢ihor=<t)  With
A_q = Al this yleldS

Res(cvy,) =e(w? — ki — 1) A E + 2e*(—iwe, + iko)Ox AL E
+ (1 — )% AL + 3A1| AP E + e°(343A% ) E
+ 3 ((9w? — 9k3 — 1) Az + A3 E? + 2% (—3iwe, + 3iko)Ox A3 E®  (21)
+2°((1 — &) 0% Az + 643 A1 ]*) E?
+ &°((25w? — 25kg — 1) A5 + 3A3AT)E° + O(°) + c.c.

We choosev? — k2 — 1 = 19e?, 72 = 2wy + €274, which cancels thé(¢)E term in
Res(vy,) and addsy, A, E to theO(¢*) E term. Next we choose, = kq/w which cancels
the O(¢?)E andO(e*) E® terms. Now we proceed in a somewhat non standard way which
however will simplify the estimates of the pulse—pulse iatéions, cf. Remark 4.1 below.
Define A5 by

(25w? — 25ks — 1)As + 343A7 = 0,

which cancels th€© (%) E° term. A3 can be defined by
Ay = —adAl —%a((1— )05 As + 6A5|AL°), a=(9w®—9k5 —1)7"

which means thatl; = A; + O(¢?), A; = —aA3. So in order to cancel terms up €@(c?)
it suffices to set

Ay = —aAl+%7((1 - )0% AT + 6A7|AL). (22)
Now this is used to defind; as the solution of

0 = (1 — 03)83(141 + ’YQAl + 3A1|A1|2 + 382143142_1
= (1= )% A; + A1 + 3A1|A | — 3e%al A" Ay.

For all value®) < ¢ < 1 and~y, < 0 this equation has two solutions homaoclinic to the origin
inthe (A;, 0x A;)-plane which yield the approximate pulse solutions.

Thus, all terms up t@(®) in the residual cancel such that formaltys(vy,) = O(g%).
We obtain||Res(sW)| zs < Ce'l/? due to||A(e-)||z2 = e V|| A|| > while |0, A(e")||z2 =
£1/2||0x Al| > and similar for the higher order derivatives, i.e., the loks'/? comes from
the way thel.2-norm scales in terms ef The exponential bound in (8) follows directly from
(5) and the definition ofvy,. [ |




4.2 Construction of aformal approximation for the pulse interaction
To prove Lemma 3.4 we make the ansatz

5@@, t) =eALE + 3 A3E? + °AsE® + eBF + By F? 4 " B F°

23
+ E3YUE + 3YRF + €3 Mpixed + C.C. (23)

whereT = £2t,
E = 6i(kAI—WAt+5QA(77B))’ F = ei(ksw—wsﬁeﬁs(m))’
na=e(@+mx4—cat), np=c(z+2zp—Cpt),

where A; and B; depend om4 resp.ng, whereY, = Ya(na,T) andYp = Yg(np,T),
and whereAs, As5, Bs, B; depend om4, ng andT'. Although only two ofn4,np andT are
independent, for notational clarity we write; = As(n4, 75, 7) and so on. In (23)A4; and
B are chosen as in Section 4.1, while, B3, A5 and B; will be small corrections compared
to (22). Thus, the first line in (23) essentially correspotedsl from (11).

The termM nixea = Mmixea(41, As, As, B, Bs, Bs, Ya, Y, E, F') accounts for terms in-
volving both £ and F, i.e., for the mixed frequencies, which are generated bytmdinear-
ity according to the formula

(eALE + 2 A3E? + P AsE° + eBIF + B3 F? + "By F° 4+ *Y,E + ’YpF + c.c.)?

3! -
R MBS TR

ki4..4ki6=3, k;>0
At 3E*F for example the termi? B, appears. To cancel this we extend the ansatz by
a9 A2 B E?F and get an algebraic equation foy; of the form
(1 + (2iwa + iwp)? + (2ika + ikp)*)aa = 3.
The procedure is essentially the same for each such teruinygel
(14 (lwa + jwp)® + (lka + jkg)*)au; = By

Now M,,ix.q CcONtains all these extensions, which means that we can ooateon the re-
maining terms of the residual.

Exactly as in Sec.4.1 we choosé — k% — 1 = y4'e? andw? — k% — 1 = 1£<2 The
group velocities can also be set analogouslyte= k4 /w4 andcg = kp/wp.

At e3E and<®F we obtain

(Q(kA_WACB)ﬁnBQA_mBl‘2)141 + (1—0?4)82AA1 + ’Y2AA1—3A1|A1‘2 + 382143142_1 = 0,
(Q(kB—wBCA)&MQB—&Al‘Z)Bl -+ (1—0%)82331 + ’YZBBl—?)BﬂBl‘Z + 36233331 = 0.

By associating the coupling termB; |2 A; resp.|A;|>B; with 9,,Q.4 resp.d,, 5 this cou-
pled system splits into a decoupled set of equations. Memdw replacingAs, Bs by
Ay = —aAandB; = —3B3, a = (9wi —9k% —1)71, 8 = (9w% — 9k% — 1)1, we choose
A, andB; as the solutions of

(1—c%)02, AL+ 75 Ay — BA A + 324347, =0,

(]_ — C2B)8727ABl + ’)/2331 — SBI|Bl|2 + 352B3331 = 0
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Thus, A, B; only depend om 4, ns, respectively. Finally we chooge, and() to satisfy,
respectively,

3| By J?

wa(ca —cp)

3| A?

0,8 -
wp(cp — ca)

MBSEA —

and 0,,Qp = (24)

Thus

nB A
By |? A2
Qy = / Ldﬁ3+ﬂg and Qp = / Ldﬁ,ﬁ—ﬁ%
walca —cp) wp(cp —ca)
with suitable constants of integratiéty, and2%, cf. Fig. 2.
At e°E3 ande® F? we choosed; and B; as

Ay = —aA} + (6] AP AT + 6| B1[PAT + (5, — 1)02, A} + 3ATYY),
By = —BB} + 8%*(6|B1|* B + 6| A1 B} + (cjy — 1)0,, By + 3B{Yp).

Compared to Section 4.1, in the equation fgrthere are new coupling termd(6|B; |2 A% +
3A2Y,), and similar forBs. As long asY, andYy areO(1) bounded, which we will show
below, these terms do not make any diffuculties as they quear in thed(£2) part and the
defining equations foA; and B; only useA; and Bs. TheO(1)-boundedness df, andYp
also yieldsA; — A3, By — By = O(e3).

At £°E ande® F we get, respectively,

2iwA0TY 4 + (1 — 03)82 Y4+ ’Y?YA + G4 =0, (25)
2zw38TYB + (1 — 03)82 YB + ’)/QBYB + GB = 0, (26)
with
Ga = 6]AYa+ ((1—c%)(0,,04)* +6Y5B_1)A;
e (i (l—cB)(82 Qa)A1 + 2i(cacg — 1)(0,,24)(0,, A1)) ,
Gp = 6|Bi*Ys+ (1 —c4)(0,,908)* + 6Y4A_1) By
)

+€_1('i(1 - ci)(@Q QB)Bl + QZ(CACB -1 ( )( Bl))
Finally, ate® £° ands® F'° we chooseds; and Bs to satisfy
(25w% — 25Kk% — 1) A5 + 343A7 =0 and (25w — 25k% — 1)Bs + 3B3 B} = 0.

Hence formally all terms up to ord€?(<°) in the residual cancel. Therefore, to prove (15)
and the second estimate in (14) it remains to show Yhaand Y are O(1) bounded for

T < Ty, where, by construction, we may chooggl;r—y = Yg|r—o = 0. This is done in
Lemma 4.2 below. Thus, the proof of Lemma 3.4 is complete.l@&gof<'/2 in (15) again
comes from the way th&?-norm scales undeX = ez. |

Remark 4.1 Here we need well prepared pulses. As already said, cf. ReBidyin lowest
order the NLS-equations fot; andB; decouple. However, ifl; resp.B; would have been
chosen to be time—dependent solutions of (2), tharresp.G  would have contained the
termss~'2¢, 4070, , A1 respe~'2¢, 501, B1, which can not be handled by the subsequent
analysis, i.e. the estimates would become worse.
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Lemma4.2 For all s > 2 there exists &' > 0 such that for alle € (0, 1] the following
holds. System (25)-(26) with zero initial data has a uniqulatoon Yy, Yz € C([0, Ty], H®).
It satisfies

sup [[(Ya, Yi)(D)llue < C.
Te[0,To]

Proof. We rewrite (25)-(26) as

Ya) Ya\ i (wi'Ga
Or (YB> =M <YB> T3 (W;IGB !
where)M is the linear part of (25),(26). The operatar: D(M) — H*® with D(M) = H**2
generates a uniformly boundéd semigroup inf%, i.e., [|e"|| L= 5=y < 1. We want to
apply the variation of constant formula and thus it remamedtimate the inhomogeneous
terms.

SinceYu (-, T) depends om,4 but G4 also contains, e.g&%BQA which depends ong
we introduce the notation

1/2
H* (mydia) *= (Z/\ )" Av (4, ))|2dnA> ;o p(na) = /1413,

Al &5 (dna)y = A1l m2(0,an.4), @and similar for|| By || gs m,dng) » | &2 (dny)- Since Ay, By
decay with some exponential rate in space we h&ve3, € H*(4). This impIies@%BQA,
92 Qp € H*(2) and so terms liké(cy, — 1)(9;,Q4)A; in G4 can be estimated as follows.

We have
/ 1007 ,24) A4 |

< / 102,
0

S/!\@Z2Q§2|Hs(dm)dTH@iBQA!Hs@) sup || As |z 2) -
TE[QT()}

[ A]

H.s dnA)dT

e @dn) 1047 05 | 12 (anaydT

H(2,dn5) || A1

Sinceoa(na)os(ns) = (14+1%)(14+(na—(ca—cp)) 2)2) the time integral is of orde®(¢).
Applying the variation of constant formula to the equatidmisY, and Yz with zero ini-
tial conditions and using Gronwall’s inequality yielisp,c i 7, | (Ya, YB)(T)||gs < C =
O(1). |

Remark 4.3 A way to increase the rate of information through the fiber®ishoose the
wave numbers, andk g close together. Foty — kg = O(e#) with 0 < p < 1 we formally
find a shift of the envelope of ordé(s!=2*) by looking at the way (24), (25), and (26) scale.
Thus we must expect a certain trade off between the wish teeds€k 4 — k| to use more
channels and the need for larger spacing of bits in a givenratai.e., the need to increase
|za1 — x.42| to account for possibly larger envelope shifts.
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4.3 Validity of the approximation

The proof of Lemma 3.5 is relatively easy due the fact thatobhwice of an original system
(1) does not contain quadratic terms, cf. [KSM92]. There araumber of mathematical
papers proving error estimates for the approximation ofdhginal system by the NLS
equation also in case of quadratic nonlinearities. Seeg&abch98b, Sch98a, Sch05] for
the spatially homogenous case and [BSTUOG6] for some firsiteem the spatially periodic
case. The following proof is an easy adaption of the one fid8M|92]. A similar adaption
holds in case of quadratic terms in the nonlinearity.

We define the deviation’/? R from the solutiorn: by

u=cU+c?R
and findR to solve
8t2R = 8§R — R+ f, Rli=o = Ro, OR|i=0 = Ry,

with |[Rollue = = /u(z,0) — 2¥(x, 0)|
€8t\11(l’, 0)| -1 < Cl, and with

o1 = e 2| 0pu(x,0) —

g < Cy and|| Ry |

f=—eT23"20%R + 38U R? + /2 R? 4 Res(e0))
satisfying
Hs S 0382”1[{’ Hs + C4(CE)€9/2HR|

/] i1+ Crese” (27)

as long ag| R||ys < Cg with C'r a constant defined below independentef ¢ < 1.
For the time derivative of

Z / +(OFIR)? + (9 R)2dx

e < (E(R))Y?,

we find, using (27) andR|

LoBR) = Z{ / (00 R)(05R — 9.R + 05 f)

2 ,
7=0

(@R O,OMR) + (DIR) (0 R) }dm

Z/ R)df dx

B(R)V2(C5e2E(R)Y? + C4(Cp)e”*B(R) + Crese?)
< (O34 Cres)E2E(R) + C4(Cg)e?E(R)*? + Crese?,

IN

as long a¥(R) < C%. If we choose:s > 0 so small that
e20,(CE)Cp < 1, (28)
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then

% OE(R) < (Cy+ Cres+ 1)22E(R) + Cress®

By Gronwall's inequality we find

C
E < E 2(C3+Crest1)To Res 2C1+Cres+)T0 _ 1) —. (02, .

(R) < B(R(0))e Y el )= Ci
Since||R||z- < E(R)'? we are done if we defing, > 0 through (28). [
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