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Abstract

Electro-convection in nematic liquid crystals is a paradifpr pattern formation in
anisotropic systems. In this paper we discuss the ampliégdeations obtained for this
pattern forming system close to the first instability in caf®vo unbounded space direc-
tions. We prove error estimates showing the validity of éhismal approximations for
a regularized version of the weak electrolyte model (WEMdwWNmathematical aspects
occur due to the possible instability mechanisms of the W due to the external

time-periodic forcing.
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1 Introduction

In the experiments for electro-convection in nematic lkifarystals a thin layer of such a
material is contained in between two spatially extendedtedde plates, cf. fig. 1. When an
alternating current is applied to the electrodes an eldggdyodynamic instability occurs if
the voltage is above a certain threshold. The trivial spgtimmogeneous solution becomes
unstable and bifurcates into a non-trivial pattern [Chd&B98]. In this paper we discuss the
validity of the amplitude equations obtained for this patt®rming system close to the first
instability in case of two unbounded space directions.

5600/

Figure 1: Roll solutions in nematic crystals. The director field of thematic crystals is almost
parallel to the plates. The external time-periodic eledigld is perpendicular to the plates.

We consider a layer of nematic liquid crystals in betweenitviiitely extended horizon-
tal plates of height, i.e. in the following(z, y, z) € 2 = R? x (0, 7). There are essentially
two models for the mathematical description of electroveation in nematic liquid crystals.
These are the standard model ([ZK85] and the referencesithemnd the weak electrolyte
model (WEM). The latter more advanced model is considereel hehas been introduced by
Kramer and Treiber in [Tre96, TK98] to overcome a number siifficiencies of the standard
model.

The WEM, which can be found in detail in Section A.1, is based@ continuum theory
of Ericksen [Eri61] and Leslie [Les68]. In this theory, ndiodiquid crystals are treated as in-
compressible fluids, in which the average molecular axifiefmaterial is described locally
by a director fieldn of unit vectors which satisfy the so called Leslie-Ericksmuations.
They are coupled with generalized Navier-Stokes equatmnthe fluid velocityv and the
pressure in the presence of an external time-periodic electric figl¢t) = £, coswyt. The
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liquid crystal would be destroyed by electrolysis.if is too small, especially iy, = 0. As
usual the pressure is eliminated with a projectipimto the space of divergence-free vector
fields, see Lemma A.4. The second part of the WEM comes fronmaai¢piatic approxima-
tion of Maxwell's equations describing the electromagnaspects of the experiment. The
equations fom andwv are then completed by two balance equations for the chargystde
and the deviatiowr of the local conductivity from. Sincen? + n3 + n2 = 1, for our pur-
poses it is sufficient to consides andns. Thus, the WEM can be written as an evolutionary
system for the variables

V = (ng, ns, v1, va, v3, p, 0),

see (66)-(70) in Appendix A.1. It is abbreviated in the fallng by
OV =M@tV +N(t,V) (1)

where M (t)V stands for the linear and¥ (¢, V') for the nonlinear terms with respect o
The set of partial differential equations (1) is completathwhe boundary conditions

ng=ng=v,=vy=wv3=0 at z=0,. (2)

These are derived in case of ideal conducting plates, rigahering for the director and
finite viscosity, i.e. for (2) the coordinate system is chosech that, = (1,0, 0) at the lower
and upper plates. Due to the anisotropy in the boundary tiondi(2) there is no rotational
symmetry of the WEM. However, the WEM is invariant under aidyly translations in: and
y, and under the reflections

S (f,nz,n?,,vl) — —(937712,”37”1)7 (3)
82 : (y,n2,v2) - —(y,’ng,’l}g), (4)
S (Z,n37v3) - —(277137?13)- (5)

For (1) we have the trivial solution
V = (ng,n3,v1,v9,v3, p,0) = (0,0,0,0,0,0,0). (6)
In order to analyze its stability we consider the lineariggstem
oV = M(t)V. (7)

Due to the translation invariance and the time periodicityhe problem the solutions are
given by Floquet-Fourier modés = (k, [, z, t)e’ k= +w) ARDE with k| € R and

@(‘7 ) 7t) = @(7 ) 7t+ 271—/(")0)'

Since for fixedk, ! € R the operatorV/(t) is elliptic on the compact cross sectiffh =] we
have discrete spectrum for fixed! € R, hence the modeg and multipliersA come in
families

{Gm(k,1, 2, t)eFet W AmEDE . |1 e R m e N}, (8)



The Floquet exponenss, form smooth surfaces as functions of the wave numbgdrs R as
long as they are simple. Moreover, the spectrum dependsthiy@m the control parameter
Ey.

For V' = 0 asymptotically stable we have for all € N andk,l € R that the Floquet
exponents\,, satisfy

ReA, (k, 1) < 0.

Experimental and numerical observations show that cloghedhreshold of instability of
the trivial spatially homogenous solution there are esaintwo different regions in the
(w, Ey)-plane separated by a frequengy. Forw > w;, the instability occurs at some wave

voltage

obligue /' normal
rolls . rolls

trivial solution

frequency
Figure 2:Schematic bifurcation diagram observed in experiments.

vector (k.,0) and due to the fact that we have a real-valued problem alge/at 0). This
region is called normal rolls (NR). Far < w;, the instability occurs at some wave vector
(ke, l.) and due to the symmetries of the problem also at the wavensdéio—I.), (—k., L)
and(—k., —[.). Thisregion is called oblique rolls (OR). See Figures 2 angxperimentally,

in (OR) a Turing—Hopf bifurcation is observed, while in (NB)th, Turing or Turing—Hopf
bifurcations, may occur, cf. [Tre96].

The mathematical analysis of bifurcations over unboundwedains is based very often
on the reduction of the governing partial differential etiuas to amplitude equations which
are expected to capture the essential dynamics near thedtifin. See [AK02, Mie02] for
general introductions. The most famous amplitude equaitmurring in a setup with two
unbounded space directions is the Ginzburg-Landau equ@gibe)

8TA = C()A + 0383(14 + 05632/14 + CGA‘A|2 (9)

with A = A(X,Y,T) € C and coefficientsy, c3, c5, ¢cs € C, where the indices were chosen
for later comparison with more complicated amplitude eiquat The GLe (9) is derived by
multiple scaling analysis and describes slow modulationtsnme 7" and spaceX, Y of the
amplitude of the linearly most unstable modes.

In the present paper we discuss how for a given experimemthwixes all other param-
eters of the system, the spectrum and the associated adgpéyuations have to look like
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a) Spectral surface in (NR) b) Spectral surface in (OR)
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Figure 3: Schematic sketches of the surfaces of the real parts of dgu€l exponents with largest
real part. a) In the parameter region (NR). There are neididoals of two wave vector&tk,, 0)
where we have positive real part. b) In the parameter rediiR)( There are neighborhoods of four
wave vectorg+k., +1.) where we have positive real part. The surface in a) is doubtase |1, due to
the symmetries (3) and (4) and the non vanishing imaginamg p@he surface in b) is always double.

in order to have Fig. 2 as a robust situation. In other wordsgdiscuss the scenarios which
are robust under changeswfi.e. codimension one phenomena. We do not discuss scenario
which are only stable if a second parameter is changed simedusly, i.e. codimension two
phenomena. Hence, especially the transition from (NR) te)(@as to be analysed. The
only codimension two points which we will discuss in the éoling are the transition points
(Eo,w) = (Eo i, wr) between (NR) and (OR) at the threshold of instability.

It turns out that there are two cases, in the following callede I, with a Turing bifur-
cation in (NR), and Case Il, with a Turing—Hopf bifurcatian (NR). There is no smooth
transition for the critical spectral surfaces between (HR) (OR) in Case I, but in Case II.

The single Ginzburg—Landau equation (9) also occurs in ooibblpm, namely in Case
| (NR), with ¢; € R. In the other cases we obtain more complicated amplitudatems.
They are systems of coupled equations of Ginzburg-Landael &nd they still depend in a
singular way on the small bifurcation parameter. Howewarspatially localized solutions
this singular dependence vanishes and, moreover, all adelequations decouple.

Additional to the analysis of the instability scenario weye the validity of the associ-
ated amplitude equations. The validity of (9) in a situataanCase | is already covered by
the analysis of [ BSU06] where we discussed the validity ef@inzburg-Landau approxima-
tion in pattern forming systems with external time-peroftircing described by semilinear
parabolic equations with one unbounded space directiomcélén the following we will
mainly concentrate on the other cases.

Notation. The Sobolev-spac#™((2), the space ofn-times weakly differentiable functions
Q — R, is equipped with the norfiu|| = o) = >_[7_ [|0Jul| 2(0). Throughout the paper we
denote possibly different constardtsvith the same symbol if they can be chosen independent



of the small bifurcation parametér< ¢ < 1.

Acknowledgments. The paper is partially supported by the Deutsche Forsclysmgsin-
schaft DFG under the grant Kr 690/18-1/2. The authors argefydafor discussions with
Gerhard Dangelmayr, Lorenz Kramer, and lan Melbourne.

2 Two different instability mechanisms

In order to have Figure 2 as a robust situation for a given mxyat, i.e. forE, andw, vari-
able and all other parameters of the system fixed, the speend the associated amplitude
equations have to look as follows. We define regions (NR) &l) through

(NR) There exists an (w.l.o.g.m = 1), ak = k. # 0 and aE, = Ej ., Such that

Re)\l(k‘c,O = O;

) }EOZEO,c'r‘it
(OR) There exists an (w.l.o.g letm = 1), (k,l) = (k. l.) with k. # 0, . # 0 and a
Ey = Ep ¢rit, Such that

Re A (ke, L. = 0.

) ‘EOZEO,crit

These assumptions have a number of consequences due tatttizatave have a real-
valued problem and due to the symmetries (3) and (4). For libguEt exponents; with
largest real part of the linearized system we find, since we haeal valued problem,

Rel (k1) = ReAy(=k, —1),  ImAi(k,1) = —TmA,(—k, —1).

Thus, we also havBe Al(—kc,o)\EozEO =0 for (NR) andRe A, (—k, —lc)}EOZEO =0

for (OR). Next we find ’ ’
ReAi(k, 1) = ReA(k, —1), ReAi(k, 1) = ReAi(—k, 1)

due to the reflection symmetries (3) and (4). Hence we alselhew; (k., —!.) ‘Eoon =0

andRe A\ (—k, L. = 0 for (OR). The symmetries also yield

) ‘EO:EO,C'I‘it

TmA; (—ke, L) = ImAy (ke, 1) = Im (ke, 1) = Tmy (—ke, —1.).

However, since at least in (OR) experimentally a Hopf bi&tian is observed there must be
a second surfack, with

Red(k,1) = Reda(k, 1), ImAi(k,1) = —ImAa(k, 1) # 0

close to(k,l) = (+k.,*l.) in (OR), and close tdk,l) = (£k.,0) in case of a Hopf-
bifurcation in (NR).

We assume that the associated eigenfunctions are invariaet the discrete symmetry
S5 such thatS; is irrelevant for the following considerations.
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We now discuss two generic cases, postponing the detalfeafdrivation of the respec-
tive amplitude equations to sec. 3. We refer to [DO04] for enatical investigation of the
spectral situation at the bifurcation point in a slightlyngiified model. There, for two dif-
ferent nematic crystal materials, the question which ofaih@ve bifurcations occur in which
experiment is discussed, in particular the transition (MRJOR) in Case Il.

We also mention that in [Tre96] some other, presumably memséstic, boundary condi-
tions have also been studied. For these boundary conditien EM has a time-periodic, in
x, y spatially homogeneous solution of the form

Vo(t) = Vo(t + 27 /wo) = (0,0,0,0,0, po(z, 1), 00(2, 1)) (10)

Qualitatively, this would not change our analysis, sinae lthearization around (10) again
yields a system of the form (1). Moreover, according to [Brep.38/39] the quantities
po(z,t) andoy(z, t) are small except close to the boundaries. Therefore, tharend weakly
nonlinear analysis for (10) is also quantitatively very gamto the one for (6).

2.1 Casel

(NR): Due to the fact that we have a real-valued problem we also Raxe(—k.,0) = 0.
We assume that faik, [) close to(k,, 0) the surfaceRe); is simple. Due to (3) and (4) this
implies

M (kD) =M=k, 1) = M(k,—=1) = M (=K, =)

and sdmA(k., 0) = 0 for these wave numbers. See Fig. 4. Moreover, we assumexttegite
of A\; in a neighborhood of+%., 0) the spectrum has strictly negative real part, i.e. all other
Floquet exponents have real parts less thag for ac, > 0. We introduce the bifurcation
parametee by

e = Eo — Eocrit-

Thus we obtain
M (k. + eK) = £%(co — e3K7 — esK3) + O(£%), (11)

with K = (Kl, Kg), Co = 882)\1(1{0> € R, C3 = —%8,%)\1(kc) eR andC5 = —%85)\1(1{0) € R,
while

00kA1(k.) =0 dueto Ai(k,—1) = M\ (k,1). (12)
The ansatz for the derivation of the Ginzburg-Landau equati (NR) is
epa(,y, 2,1) = cAX, Y, T)e™ @ (ke 0, 2,) + c.c. + O(e?), (13)

where
X =ex, Y = ey, and T = &%,

Inserting (13) into (1) shows that has to satisfy the Ginzburg-Landau equation (9), i.e.,

aTA = C(]A + 038§<A + 05832/14 + CﬁA‘A|2,
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I=0 ‘ k=k

Figure 4:Case | (NR): The pictures show two cross sections througbkuHace);, namely af = 0
andk = k.. The Floguet exponents; are simple and touch the ax®eA = 0 in (+k.,0). The
imaginary part of\; vanishes in a neighborhood of these wave vectors.

with cg, 3, ¢5 from (11), whilecg is determined by the nonlinearity.
(OR): Due to the symmetries (3)-(4) and the fact that we experiaillgrabtain a Hopf bifur-
cation in (OR) we get the spectral situation sketched in figHus, up taD(?) we have

\ S, ) s,
N T N T S ImA
o ImA N '
=l k=kc .,
k:‘kc 1=l
T
k |
h ’ ™. ReA
. 12
ReA |, .
A “ImA
ImA 2

2

Figure 5:Case | (OR): The pictures show two cross sections throughutfaces\; and s, namely
at! = [. andk = k.. The Floguet exponents; and A, are simple and touch the axiteA = 0 in
(+ke, £l.). The imaginary parts of; and\, are non zero in a neighborhood of these wave vectors.

M (keAeK) = iwg+ie(e K+ Ko )+e%cy — e2(es K+, K1 Ko+ K3),

Ao (koAeK) = —iwy — ie(ei K+, Ky) 626y — 26K+, K Ko+ K2),
M ((ke, —=1)+eK) = iwy + ie(c1 Ky — Ky )+e2cy — e2(es K24, K Ko+ K2),
Mo ((ke, —1)+eK) = —iwy—ie(c K —c Ko )+e%8 — (6K +c, K1 Ko +esK3).

The ansatz for the derivation of the Ginzburg-Landau equatin (OR) is

ehalz,y, z,te) = eA(X,Y,T)eerrilevtivnty (k1,2 t) (14)
—|—€A2(X, Y, T)eikcx+ilcy—int¢2(kc’ L, z, t)
—|-€A3(X, Y, T)€ikcx_ilcy+int¢1(kc, —lc, 2, t)
e Ay (X, Y, T)eher—ilev=iwnt 5y (k. —1,, 2, t) + c.c. + O(e?),

where X = e2,Y = ey andT = £2t, see fig.6 for an illustration of the distribution of
these modes. Inserting (13) into (1) shows thatAhe. . ., A, have to satisfy the set of four



Figure 6:Mode distribution in the ansatz (14).

coupled Ginzburg-Landau equations

orA, :éclaxAl + écﬁyAl + co Ay + c30% AL + c4Ox Oy Ay + c503 Ay

+ Ay (cg|AL|* + cr| Ag|? + cs| As|? + ol Agl?) + croAsAs Ay, (15)
OrAy = — éclaxAg - écQayAz + CpAs + C30% Ag + C10x Oy Ay + 505 Ay

+ Ag(Cs| Ag|? + T Ar|? + Cs| As|? + ol Ag|?) + 1041 A3 Ay, (16)
OrAs :éclaxAg — §028y143 + oAz + c30% Az + ¢,0x Oy Az + 505 As

+ As(cs| Az|* + cr| Az * + cg| Aa|? + co| A1)?) + cr0A1 Az Ay (17)
OrAy = — %c18XA4 - éczayALl + Co Ay + C30% As + c10x Oy Ay + C505 Ay

+ Au(Cs|Aal® + T7| A1 |* + 5| As]? + Co| Ao|*) + Tr0A1 A2 As, (18)

with 4; = A;(X,Y,T) € C, j = 1,...,4, depending onX,Y € Rand7 > 0 and
with coefficientsc;,co € R andcy,cs,...,ci0 € C. The form of the nonlinearity again
follows from equivariance under the two symmetres> —k and/ — —I[, see [DW99]. The
appearance of, e.g:;0A4,A43A, as the only purely mixed term in (15) follows from the fact
that this is the only combination which yield$->+icv+ivnt and similar in (16)—(18). These
combinations can be read off from fig.6.

The amplitude equations (15)—(18) still depend in a singui&y on the small perturbation
paramete) < ¢ < 1. Moreover, we have the four complex conjugate equationshier
modes concentrated gt k., —[.) and(—k, L.).

2.2 Casell

In Case Il there are two surfaces and )\, in a neighborhood of the critical wave numbers
with

Red(k,1) = Reda(k, 1) and  ImAy(k,1) = — ImAa(k, 0).
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Thus, generically we hav@ \; (k.,0) # 0 andV A, (k., [.) # 0. At the bifurcation point we
have in (NR)
Re)\l(k‘c, 0) =0 and Im)\l(k‘c, 0) 7’é 0,

see Fig. 7, while in (OR) we have the same situation as in Case |

Si .
T I N S,
" m
|:0 . e 1 ‘\‘/_\?/ Im )\ L
k=ke k=Ko e
‘ k i I
’ ) JReA,,
Re)\ 1.2 Im )\ )
‘Im A

Figure 7:Case Il (NR): The pictures show two cross sections througlstinfaces\; and s, namely
at! = 0 andk = k.. The Floquet exponents; and A\, are simple and touch the axige)\ = 0 in
(+ke,0). The imaginary parts of; and\, are non zero in neighborhoods of these wave vectors.

(NR): Due toA;(k,l) = A\ (k, —1) we again haveé)\;(k.,0) = 0 and 9y, A1 (k.,0) = 0.
Therefore,

M(ke+eK) = iwgtiee Ki+eey — e2(esKi+csK3) + O(e?),

: : 2 2 2 2 3 (19)
)\g(kc+€K) = =Wy — 1€ClK1+€ Eo — & (53K1+E5K2) + O(E ),
with ¢; € R andcy, c3, ¢5, € C. The ansatz
cpa(z,y, 2, t,e) = eA(X,Y,T)errtwnts (k. 0, 2,t) (20)

ey (X, Y, T)ero= "t p,(k,, 0, 2, t) + c.c. + O(e?)
with X = ez, Y = ey andT = %t yields
OpA, = %8XA1 +coAr + 303 Ar + es02 AL+ csAi| AL+ e A A (21)
Ordy = —C—;(?XAZ oAy + 0% Ay + T50% Ag + Aol Ao + T Au| A2, (22)

with ¢y, ¢1, ¢3, ¢5 from (19) andeg, ¢; € C,
(OR): In (OR) with the ansatz (14) we again obtain the system (18)-(

2.3 The transition points

In this subsection let;, respectively.; », denote the critical surface(s) in (NR), and let again
A12 denote those in (OR). Also, Iéi:c, 0) denote the critical wave vector in (NR).

In Case |, is not related to the surfaces and )\, in (OR). Hence there is no transition
between (NR) and (OR) on the linear level, see fig. 8a) fositltion. Thus, a weakly
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nonlinear analysis near the transition points yields aesysif 5 coupled amplitude equations,
namely (9) forA from (NR) and (15)—(18) for,, ..., A, from (OR), with coupling between,
e.g.A andA,, of the forme;;|A;|A in (9) andcis| A2 A; in (15). Near the treshhold of first
instability the transition from (NR) to (OR) then essenigdroceeds by changes of sign of
the coefficientg, (from (9) (NR)) and, (from (15)—(18), (OR)): on the (NR) side af, we
havec, > 0 andRec, < 0, while on the (OR) side af;, it is vice versa.

In Case Il there are 2 subcases, Ila and llbu,lf, are not related ta,; », Case lla, see
again fig. 8a), then we have a similar situation as in Case Ith@mweakly nonlinear level
we now obtain a system of six coupled amplitude equationsra {NR) and 4 from (OR).
Again on the (NR) side ob;, we haveRec, > 0 andRecy < 0, and vice versa on the (OR)
side ofw;..

The other subcase is Case llb with(k, 1) = u;(k, ) nearw,, and for(k, ) near(k., 0),
see fig. 8b). It follows thatk,,[.) — (l%c,O) as we approach;, and atw = w; we have
Red? )\ (k.,0) = 0. Due to, (k, —1) = X\ (k, 1) we thus altogether have

O (K., 0) = Red? A (K., 0) = 0P A (k,,0) = 0

atw = wy. Ifwe also hadmod? ) (k., 0) = 0then we could scal® = ¢!/2y in order to obtain
two amplitude equations containing fourth ordémderivatives. See [RD98] for an example
where conditions equivalent fan\(k.,0) = Imd?A(k.,0) = 0 hold due to reversibility.
However, genericallymod? \, (k.,0) # 0, fig. 8c), and therefore at the transition point with
the same ansatz as in (NR) we again obtain (21)-(22) (Wdth = 0). A consistent expansion
with Y = £'/2y in order to obtain fourth order derivative terms is therefaot possible,
and we again have to use the system of 6 coupled Ginzburg-auasguations for a weakly
nonlinear analysis.

I and lla b) Case IIb c) Case Rbs k. fixed.

',:; ImA 1: Im Ul
‘
i .:‘: :\‘\\s\ “:,,;/ \\\\\ :
s 'u\\\\

M\‘“ C | /= ]

“ N~ ////14" \\ Re), 7Rell,,
m ~ |

ImA 7 Im [,

Figure 8:Sketches oRey; 2 (from (NR)) andRe); 2 (from (OR)) for two possible scenarios at the
transition between (NR) and (OR). In a) (Cases | and lla) thiasesy.; and \; o, respectivelyu; o
and \; o, are not related to each other. In b) we have= \; near(k.,0) and (k.,1.) — (k.,0)
asw — wy, (Case IIb). Consequently}?Re\;(k.,0) = 0 atw = wy. However, in general still
O ImA (k.,0) # 0, as illustrated in thé — p;(k., ) section c).
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3 Formal derivation of the amplitude equations

In order to keep the notational complexity on a reasonabik lee concentrate on the Case
Il (NR). The Case | (NR) already has been handled in [BSUO&s&S I-11 (OR) are very
similar to the subsequent lines.

3.1 Formal expansion in eigenfunctions
In Fourier space (1) yields
OV (k,t) = Mk, t)V(k,t) + N(V)(k, 1), (23)

withk € R? andV(k, t) a vector-valued function of. We derive the GLe from (23) under the
assumptions from Case Il (NR). For the subsequent analysisufficient that the critical
Floquet exponents; of M(t) are simple neak., see Remark 4.1. However, in order to
make things less abstract, i.e., to illustrate an algotithapproach to the calculation of the
coefficients of the nonlinearity here we assume the follgwithe linear operatoM(k, t)
with M(k,t) = M(k,t + 2r/w) has for everyk € R? andt € [0,27/w,) a Floquet
Schauder basi®; (k, t))jen Of L*((—7/2,7/2), C7) of 27 /wo-periodic functionsp; (k, t) =
¢;(k,t + 2m/wp) solving

at¢j<k7 t) = M<k7 t)@j (k7 t) - )‘j (k)@J (k7 t),
i.e. the Floquet functions" ), (k, t) are solution ob, V' (k, ) = M (k, 1)V (k, t) and; (k)
are the associated Floguet exponents. In other words, wenad®r simplicity that there are
no Jordan blocks in the monodromy operatorMI(t). The functionsp; are normalized
by setting||¢;(k, 0)||.2=1. For defining projections on thg;(k, t) we consider the adjoint
problem—9,V (k,t) = M*(k, )V (k,t). Consequently also this problem has for evieryg
R* andt € [0,27/w) a Floquet Schauder basig’(k,t));en of L*((—7/2,7/2),C") of
2 /wo-periodic functionsp’ (k, t) = ¢ (k, t + 27 /wy) solving

—0i5; (k. t) = M (k, )5 (k. ) — X, (k)5 (k. 1),
and satisfying the orthogonality
(87, ¢5) = bij, (24)
where (i, 0) = [ 4(2)0(z) dz. A solutionV (k,t) of (23) is expanded in terms of the
Floquet functions; (k, t), i.e.

Vik,t) =Y a;(k t)g;(k.t) with a;(k,t) €C, (25)
such that "
) (ZN a;(k, t)p; (k, t)) = ZN((ataj(k, )5k, ) + a;(k, )0, (k, t))
) :%aj(k, tYM (k, 1), (k, t) + N(V)(k,t).
jen
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In order to find the equations for the coefficient functiang, t) we apply the adjoint eigen-
function¢(k, t) and find

diaj(k, t) = Aj(k)aj (k. t) + (@5 (k, 1), N(k, ). (26)

We used (24) and

~

_<¢j(k> t), at@l(kv t)>+<¢j(k> t)v M(k> t)@z(ka t))
= (5 (k, 1), A ()i (k, 1)) = A; (k)35

Our derivation of the GLe is now based on (26). For notatisnaplicity we avoid the
explicit notation of the small parametein the following. We make the ansatz

a1(x,t) = A (X, T)ekextivnt 4 24,, (X, T)ez(ikaHWHt) + &% Ag 1 (X, T')e?kex
+eP Ay g1 (X, T)ePhexivnt) 4 6;140,0,1()(7 T) + &*Ag o1 (X, T)e*™m + c.c.,
ay(x,t) = eA; (X, T)e ot 4 224y ,,5(X, T)eXhoxtiont) L g2 4, oo (X, T)e?>
2 Ay _g9(X, T)e2kex—twnt) 4 %ZAQO,Z(X, T) 4 e Agaa(X, T)e?™Ht 4 c.c.,
aj(x,t) = 2 Agg (X, T)e*tiont) 4 g2 4y o (X, e
+e2 Ay _y (X, T)eikex—iwnt) 4 %QAO,OJ(X, T) 4 e*Ago (X, T)e*™ut 4 c.c.,

wherewy = A\i(k.),j € N\ {1,2}, X = (X,Y) = ex = ¢(z,y) € R?, k. = (k.,0), and
T = £t. The idea of the notation is as follows; ; (4; ;) takes care of the critical modes

w
e} e}
A —2,2,* A 0,2,* A 2,2,*
[ ] [ ]
A—1,1 A1,1
A—2,O,* A 0,0,* A 2,0,* k
[ ] [ ]
A:l,—l A 1,-1
O O
A—2,—2,* A 0,-2,* A2,—2,*

Figure 9:Mode distribution and notation in the extended ansatz.

concentrated &k, in the first (second) equatior;, ;, ; with j;, j» € {0,+1,+2} andj € N
takes care of the noncritical modes in yhth equation obtained by an interactiondf ;, and
Aj. s With j; = j3+js andja = js + Je, i.€., of the noncritical modes multiplyingke+é2t

13



in the j-th equation. See fig.9. Since the are real valued we have, e.gi; ;(X,7T) =
A—l,—1<X7 T)
With this ansatz we derive formally a GLe with time periodaefficients. We write the
nonlinearity of (1) in the form
N(V) = B(tV.V)+C(t,V,V,V) + O(V?), (27)
with bilinear and trilinear symmetric term8 andC, i.e., as inf(u) = u? = b(u,u) and
g(u) = u? = c(u,u,u) with

1 1
b(u,v) = §(uv +ou) and c(u,v,w) = g(uvw + uwv + vuw + vwu + wuv + wou,).

Moreover, we introduce the abbreviations
- 1 —ikx ~ i(k—m)x ~ imx
Bj1,j2(tak>k_ m, m) = 56 B(tﬂph(k_mv t)ﬁ’ 790]'2(m7 t)ﬁ’ )7

+ B(ta @jg (k —1m, t)ei(k—m)x’ ¢j1 (m’ t)e’imx) ’

Cirn(t K k=111 — 1y 1)

]‘ —ikx ~ 1 (11— tlox
:66 § C(t,gpjl(k 117) ike=l1) >Q0J2(11_12 t) i —la)x 790]3(1 t) 12)

+C(ta @h(k 117 ) ikl 7¢j3(11 _l2>t) it ~la)x 90]2(1 t) ZlQX)
+ ...

+ Ot @, (k = 11, ) Gy, (I = 1o, 1) 7% 5 (1, 1)) |

Fore2e* in the j-the equation we obtain

(Aj(0,0) + 2wy ) Ag 25 = —2(¢], Bia(t,0,ke, —ko)) A1 Ay,
25(0,0) Ao 0 = —2(¢5, Bua(t, 0, ke, —keo)) [ Ara [, (28)
,B

J
(Aj(0,0) = 2wy) Ao, 2 = —2(P; 31 9(t,0, ke, —ko)) A1 A1 1,

where we omit the argumeftt, 0) of %, and similar in the following. For?e** in the j-th
eguation we obtain

()‘j(2k07 0) + 2wH)A272,j = _2<¢j7 BLl(ta 2k, k., kC)>A%,1>
)\j(2kc> 0)A2,0,j = _2<¢;7 31,2(1:7 2kca kc> kc)>Al,1A1,—17 (29)
()\j(2kcu 0) — 2U)H)A2,_2,j = —2<@;, 3272(15, 2kc, kc, kc)>Ai_1-

14



For e3¢’ <* in the equation foj = 1 we obtain

OrAin=MA11+2 Z <9017 B Gt ke ke, 0) A1 1400 + sz(t ke, ke, 0)A1 14 2g>

jeN
+2 Z <S01’ Bl ] kC7 2kc)A_17_1A272,j + B2,](t7 kC7 _kC7 2kC)A_171A2707j>
jeN
+2€2int Z <@>{, Blvj (t, kc7 kc; O)AI,IAO,ZJ + BQJ (tu k67 _kC7 2kC>A_171A272’j>
jeN
+26_2int Z <8017 Bl ](t kc) kc; O)Al 1A0 —2,7 + B2 2J (t kC’ kC’ O)Al 1AO 0 j>

jeN
yoeent 3 <¢ Bui(t ke, —ke, 2k ) A1 _1As; + Ba(t, ke, —ke, 2kc)A_1,1A27_27j>
jEN
2¢ it <<p1,32](t ke ko, 0)A_y 1 Ag o + Bu,(t k., —kc,2kC)A_171A27_27j>
jEN
+3{p7, Cr11(ke, ke, ke, _kc)|A1 11PA11 4 201 20(ke, ke ke, —ke) A 1] A1 1))
+3e%! <@>f, Cri2(ke, ke, ke, — A% 141 1>
+3e 2 (@], Copp(Ke, Ke, ke, —ke) AT _J Ay 1 + 2C1 1 0(ke, ke, ke, —Ke) [ A1 [PAT )
+3e M (57, Con 1 (ke ke, ke _kc)A%,_lA—l,—l> ;
and a similar equation fa#; A, _;, taking into account the symmetries of the problem. If we
eliminate theA;, ;, ;, by the time dependent algebraic equations (28) and (29) waroa
system of Ginzburg-Landau equations for := A, ; andB, := A, _; alone, namely
OrB) =coBy + c1e 7 Ox By + ¢30% B + 503 By
+ dg(t) B1| B + d7 (t) By | Ba|? + d(t) By Bo|*e ™1 (30)
+ do(t) Ba| By|e 21t - dy(t) B Bre 1" + dy, (t) B Boe*™ !,
Or By =29 By — c167'0x By + €305 By + €504 By
+d(t) Ba| Ba|* + do(t) Ba| B[* + ds(t) By | By [*e*! (31)
+ do(t) By| By|e* 1t + d1(t) B Boe' ™! + dy (t) By Bye” 2!
with co, ¢1, 3, ¢5 from (19), and with time-periodic coefficients (), j = 6,...,11. In the

next step by some averaging argument we will eliminate thagewith thee?™#t factors
and prove that only the mean values

wo
Cj :/0 di(t)dt, j=6,T,

of the highly oscillating termd;(t) = d;(T/<?) play a role, while forj = 8,...,11 we
always havef,” d;(t)e™! dt = O(e?).
Thus, finally we consider (21),(22), which we repeat for camence,
8TA1 :C()Al + 018_18)(141 + 030§(A1 + 05832/141 + 06A1|A1|2 + C7A1|A2|2, (32)
8TA2 :EOAQ — 018_18)(142 + Egag(AQ —+ 55832/142 + EﬁAQ‘A2‘2 + E7A2|A1‘2. (33)
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These equations still depend on the small bifurcation patama in a singular way. By
going into a moving frame these terms can be eliminated. Mew#, and A, then depend
on different variables, namelyX + ¢~'¢,T,Y) respectively( X — e~ !¢, T,Y). Thus it can
be expected that only the mean valuesdefand A, over large intervals play a role and so
(32),(33) can be transfered into so called mean field coupladburg-Landau equations, see
[PW96]. In case thatl; and A, are spatially localized they simplify further and decouple
completely, cf. Remark 4.7 and [Sch97].

3.2 Comparison of the Ginzburg-Landau equations

The system (32),(33) of averaged Ginzburg-Landau equatipproximates the nonaveraged
system (30),(31) of Ginzburg-Landau equations in the Yailhg sense.

Theorem 3.1 Letm > 2. Then for allC; > 0 andT, > 0 there exist’; > 0, ¢, > 0 such

that the following holds. For alt € (0,1) let (A, Ay) € C([0,Tp], H™ x H™) be a solution

of the averaged system (32),(33) satisfying
sup || A;(-, 1)

Te[0,T0]

H’HL S Cl

Then for alle € (0, ¢y) the nonaveraged system (30),(31) has a soluti®n B,) satisfying

sup || A;(-,T) — Bi(-,T)||gm < Cae®.

Te [07TO]

Proof. We write (30),(31) and (32),(33) as
By A By C(t, B, B, B)
Or = +1 - :
By Ay By Cy(t, B, B, B)
Ay A Ay Ci1(A A A)
8T = + )
A, Ay Ay Cy(A, A A)
respectively, with linear partd;, symmetric autonomous cubic pad§, and symmetric

nonautonomous cubic parcfs j=1,2,wheret = T/
Let B(T) = A(T) + &2R(T). ThenR(T) = ¢ 2(B(T) — A(T)) fulfills

OrR=AR+3C(t, A, A, R) + 3¢2C(t,A,R,R) + ¢*C(t, R, R, R) + ¢ 2I(4), (34)

where
I(A) = (t A AA)—C(A A A)

is an inhomogeneity. FaR(0) = 0 the variation of constant formula yields
T
R(T) = / eT=mA [30@, A, A R) +3£2C(t, A, R, R)
0

+e*C(t, R, R, R) + e 2I(A)|(7)dr.
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The crucial estimate is

< Cy. (35)

Hm™

T
/ eT=A21(A(7)) dr
0

For instance, the term21y; := £ %(dg(7/e%) — c)|A1|?A; in the first component; (A)
yields

T
/ e(T_T)Al |A1|2A187—96(7') dr

5_2111 = ‘
0

< H e |A1\2A196(T)}0T’

Hm™

,  (36)

Hm

T
+ / e(T_T)A1 (Al |A1 |2A1 - 20TA1 |A1 |2 - A%aTzl)g()(T) dr
0

where we seb, gs = e 2(ds(7/£?) — ¢6), hence

2

T/e
96<T> = / dG(S) — Cg dS,
0

which isO(1) bounded by definition ofs = fol/“’o dg(s) ds sincedg is 27 /w, periodic. Next,
replacingdr A, anddr A, in (36) by the right hand side of (32) we find that?l,; < C.
Similar estimates for the remaining terms yield (35), aredtbieorem now follows by a simple
application of Gronwall’'s lemma. [ |

Remark 3.2 It is easy to see that for every > 4 we have||0;B;|| gm—2 = O(1), j = 1,2
by expressing for instang&- B, by the right hand side of (30), bd§.B; = O(s72). ]

3.3 Estimates for the residual
For the proof of the approximation result we need estimatethke residual, defined by
Res(V) = =9,V + M(t)V + N(t, V),

i.e. for those terms which do not cancel after inserting thigreximation in (1). Since we
looses~! due to the scaling properties of tfié-norm inR2, we extend the above approxi-
mation as in the autonomous case [Sch99a] by higher ordasteie refrain from writing
down these terms and the lengthy calculation of the equafienthe functions appearing
in this extended ansatz. We only remark that the new amgitudctions in the ansatz sat-
isfy linearized inhomogeneous Ginzburg-Landau equatmssome inhomogeneous linear
algebraic equations.

Next we split the critical modes from the noncritical modes,the modes with positive
or slightly negative growth rates from the ones with styicttgative growth rates. In order to
do so we define

Ee = Xjk—ke|<5 T X|k+ke|<5

andFE, = 1 — E, for a small fixedd > 0 independent of.
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Remark 3.3 Due to the disjoint supports df. and B(E.V;, E.V;) in Fourier space we have
ECB(EC‘/M Ec‘/2) =0. J

Let zZA(~, t) be the approximation defined through the extended ansatz and

etha = et + €71, (37)
with F . = 0, E., = 0. Like in the autonomous case we have the following lemma.
Lemma 3.4 Fix C; > 0. Forall e € (0,1) let (A, Ay) € C([0,Ty], H¥(R?,C)) be a family

of solutions of (32,33) withsup sup ||4;(-,7)| ms < Cy. Then there exists@, > 0 such
€€[0,1] T€[0,To)]

that, Ve € [0, 1],
sup [[a(, ) =a(, t)llms < Coc®, sup ([0s( )]s + (e, )| s) < Co,
te[0,To /2] t€[0,To /2]
sup || Es(Res(eda(, )|l < Cog®s  sup  [|Ee(Res(etha, (+,1))) s < Coe™.
t€[0,To /2] t€[0,To /2]

4  The approximation results

System (1) for(ny, n3, v, p, o) is fully nonlinear and a mixture of different types of PDEs,
like quasilinear parabolic equations and balance lawss Télocal existence and uniqueness
result for (1), which is fundamental for any approximati@sult, is highly non-trivial, and
we are not aware of one in the literature. Therefore we censidegularized version of the
WEM. In order to obtain a semilinear system, i.e., for puraigthematical reasons, we add
artificially a regularizing differential operator

AV = (_6A2n2a _6A2n37 _ﬁQA2U7 _5A2p7 _/GAzg)
with small 3 > 0 to the right hand side of (1). Thus we consider
OV = AV + M)V + N(t,V) (38)

equipped with the boundary conditions from the non-regesgar system (2), and additional
artificial boundary conditions due to the regularizatioanely

O?ny = Png = 020 = Pvg = Py = 0,0 =00 =p=0p=0. (39)

For smallg > 0 the regularized system and the original system show qtiaéta the same
bifurcation behavior. In particular, all calculationsrndections 2 and 3 also apply to (38).

Remark 4.1 Setting

V(x,z,t) = A1 (X, T)e* 5y (ke, 0, 2, ) + Ao (X, T)e " 4y k., 0, 2, 1)
+c.c. + 2Wi(x, 2, 1),
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there exists & /w, periodic bounded invertible transfor@(t) : L?(R? x (—n/2,7/2)) —
L*(R? x (—m/2,7/2)) such thatV,(t) = Q(t)Z(t) and Z(t) fulfills

0 Z(t) = NZ(t) + e 2N(V, 1)

with A7t L?(R? x (—7/2,7/2)) — H*R?* x (—m/2,7/2)) bounded, see, e.g. [Hen81,
Theorem 7.2.3], which can be applied to our regularizedesystThus, the contribution of
the quadratic terms to the cubic coefficied§$t), . . ., d11(¢) via coupling with stable modes
is obtained via\; ! instead of (28) and (29). On the other hand, in practicaltations only

a finite number of stable Floquet solutiopgk, ¢) at (k,[) = (0,0) and(k, ) = (2k.,0) are
calculated and the inversion is done via (28) and (29). Thishy in sec.3 w.l.0.g. we also
used this algorithmic approach. ]

We have two kinds of approximation results. In Case | (NR)exgithe amplitude equations
are independent of the small parametahe result is as follows, see [BSUO06].

Theorem 4.2 Letm > 8 and A = A(X,Y,T) be a solution of the GLe (9) fdF € [0, Ty],
satisfying

sup ||A(T)||gm < oc.
T€[0,To]

Then there are, > 0 andC' > 0, such that for alle € (0, ¢y) we have solution$” of (38)
satisfying
sup sup V(2 y,2,t) — ealw,y, 2, t)] < Ce™
t€[0,To/e2?] (z,y,2)ERZ X (—7/2,7/2)
In case that the amplitude equations still depend on thel dnfiatcation parameter, i.e.in

the Cases | (OR) and I, the result is as follows, here fortedldor the amplitude equations
(32), (33), i.e., Case Il (NR).

Theorem 4.3 Letm > 8 and (A, As) = (A1, A2)(X, Y, T, ) be a family of solutions of the
coupled Ginzburg-Landau equations (32),(33), satisfying

sup sup (|[A(T)]
£€(0,1) T€[0,Ty)

Hm™ + ||A2(T)||Hrn) < Q.

Then there are, > 0 andC' > 0, such that for alle € (0,¢y) we have solution$” of (38)
satisfying
sup sup \V(z,y,2,t) — epalx,y, 2, t,e)| < Ce?

t€[0,Th/e2] (x,y,2)ER2 X (—7/2,7/2)
Remark 4.4 As a consequence of Theorems 4.2 and 4.3 the dynamics know8)fand
(15)-(18) can be found approximately in system (38), toce &tror of ordel?(¢?) is much
smaller than the approximatien), and the solutio” which are both of orde® (<) for alll
T € [0, Ty] ort € [0, Tp/€%], respectively. This fact should not be taken for grantedretare
modulation equations [Sch95b] which, although derived foyrimal perturbation analysis, do
not reflect the true dynamics of the original system. The poddheorem 4.2 is not trivial
since solutions of ordeP (=) have to be bounded on a time interval of len@tfl /2). |
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Remark 4.5 Ginzburg—Landau equations have been derived for exampiedation-diffus-
ion systems and hydrodynamical stability problems, as theaBd and the Taylor-Couette
problem. For these examples these GLe have been justified@gwde equation by a num-
ber of mathematical results: so called approximation ah@divity theorems have been
established by a several authors for model problems, batfaisgeneral systems including
the Navier-Stokes equation, cf.[CE90, vH91, Eck93, Sch®tth94a, Sch95a, TBM6].
Nowadays the theory is a well established mathematicaWtbath can be used to prove sta-
bility results [Uec01, SUO3], upper semi-continuity ofratitors [MS95, Sch99b] and global
existence results [Sch94b, Sch99a]. As a consequence dadppuoximation results, this
mathematical theory can be transfered almost one to onesm @fsystems with external
time periodic forcing described by semilinear parabolioans, see [BSUO06] for discus-
sion. Hence, the Ginzburg-Landau equation really giveopgrdescription of autonomous
and time-periodic systems near the bifurcation point. ]

Remark 4.6 Theorem 4.2 can be improved in a number of directions. Ther ean be
made smaller by adding higher order terms to the approximatHowever the time scale
cannot be extended [vH91]. By a more involved analysis [8bh®ss regularity for the
solutions of the Ginzburg-Landau equation is needed. InjtmeElependent case the space
H™(R x (0,7)) can be replaced by the larger spa@g, (R x (0, 7)) equipped with the
norm [|u|gm = sup,eg ||l = ((2.2+1)x 0.y Which contains constants, periodic functions, or
fronts in contrast tdZ™. The difficulties inR? x (0, 7) are due to the non smoothness of the
symbol of the inverse Stokes operator or of the projeatian case of two unbounded space
directions. See, e.g., the proof of Lemma A.4 and Remark A.5. ]

Remark 4.7 For spatially localized solutions all amplitude equatidasouple. For instance,
assume thatd;, A, € H™(2) whereH™(n) = {u € H™ : ||up"||gm < oo}, p(X) =
(1 + X%)Y/2. Then introducingX; = X + 27 and X, = X — 27T the system (21),(22)
reduces to

8TA1 = C(]Al + 038§<1A1 -+ 05632/141 + CGA1|A1‘2 (40)
3TA2 - E()Ag + 538§(2A2 + 65832/142 + EGA2|A2‘2 . (41)

The termsc; A;| A,|? andc; A;| A | from (21),(22) no longer occur since their influence on
the dynamics can be estimated to be of or@¢r). If A; and A, are spatially localized the
interaction time of these terms(®(<) due to the fact that they move with a relative velocity
of orderO(1/¢) through each other, cf. [Sch97].

Also note that the singular terms in the amplitude equati@ng., c;e='dxA; and
—c1e710x A2 in (32) and (33) are no problem for the validity result, whathrts with a given
family of solutions of (32) and (33). The singular terms dao accur in the error equations,
e.g., (44) below. ]

Remark 4.8 For non small values af, i.e. away from the bifurcation point other amplitude
equations take the role of the Ginzburg-Landau equationgelmeral the locally preferred
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patterns do not fit together globally, and so there will be sghase shifts in the pattern
which will be transported or transformed by dispersion aifidision. For the description of
the evolution of the local wavenumbegpf these pattern amplitude equations can be derived,
such as phase diffusion equations, conservation laws,fen@urgers equation. Recently,
approximation results in the above sense have been provehisaeduction, see [MS04b,
MS04a, DSSS05]. For the modulation of the associated solsith the two-dimensional real
Ginzburg-Landau equation (9) the results from [MS04b] ¢fanalmost line for line. The
rescaled phase diffusion system for the evolution of thalle@ve numbers = (¢.,q,) is
given by

0rq = Aq+ V(Y- f(q)) (42)

with coefficientsc;,c; € R and f : R? — R? a smooth mapping. Combining the trans-
fered approximation result from [MS04b] for this equatiotthaTheorem 4.2 shows that the
dynamics of (42) can be found approximately in the requéali?VEM, too. ]

Finally, we state the approximation result in case (OR).

Theorem 4.9 Letm > 8, and let(A;, A,, Az, A,) be a family of solutions of the set coupled
Ginzburg-Landau equations (15)—(18), satisfying

sup sup ([|Ay(T)[|am + [|A2(T)]

€€(0,1) T€[0,Tp]

s+ [ As(T)m + [ AG(T) 1) < o0,

Then there are, > 0 andC' > 0, such that for alle € (0,¢y) we have solution$” of (38)
satisfying

sup sup \V(z,y,2,t) — epalz,y, 2, t,e)| < Ce?
t€[0,T0/e?] (z,y,2)ERZ2X(—7/2,7/2)

5 Local existence and uniqueness

For the local existence and uniqueness of the solutionseoémilinear parabolic system
(38) we follow [Hen81]. The regularizing terrhis a sectorial operator in the space

X =L*R?*x [-7/2,7/2],R") N {Qu = u}
with domain of definition
X' = {U € H*| U satisfies the boundary conditio(® and(39)} N {Qu = u}.

ThereforeA generates an analytic semigroup in the sp&cdt is a lengthy but straightfor-
ward calculation (see Remark A.1) to prove that the remgiténmsM (t)V + N(t,V) on
the right hand side of (38) are smooth mappings fidiinto X C L2.

The interpolation spac&® can be embedded int&* for o > 3/4. Hence the term
N,em is alocally Lipschitz-continuous mapping fra* into X for o > 3/4. Therefore, all
assumptions of [Hen81, Theorem 3.3.3] are satisfied, whaldgythe following result.
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Theorem 5.1 Fix a € (3/4,1) and letV, € X®. Then there exists & > 0 and a unique
solutionV € C([0, ¢o], X*) of (38) withV'(0) = V4.

Remark 5.2 The existence of solutions to (38) and hence also to the exoations (44)
below is guaranteed as long as the solution¥'thare bounded. Thus it is sufficient to bound
the X*-norm of the error in the following. Sinc& can be embedded intd* for o > 3/4
and H? into C} in three space dimensions, the estimate in Theorem 4.2aslfoom the
associated estimate for thé&*-norm. ]

6 The proof of the error estimates

As a major step of the proof of Theorem 4.3 we show that thetisolsi of (38) can be
approximated via the solutions of the non averaged Ginzharglau equations.

Theorem 6.1 Let C; > 0. Let(By, By) = (By, B:)(X,T;¢) € C([0,To], H® x H®), be

a family of solutions of the non averaged GLe (30),(31) wittp  sup (||Bi(-,T)| us +
€€[0,1] T€[0,To)

| B1(-,T)||zs) < Cy. Then there are, > 0 andC, > 0 such that for alk € (0, ¢y) we have
solutionsV” of (1) with

sup [V (t) — epp(t)[xe < Coc™.

t€[0,To/€2]
Proof. We write (38) as
OV =MV + B(t,V,V) +C(t,V,V,V) + O(|V||}a), (43)

whereM (t) = A 4+ M(t), and whereB andC' contain the quadratic and cubic terms, respec-
tively, cf. (27). Inserting
V =ep+ s+ e*R. + Ry

with R, = E.R,, Ry = E Ry, 1. = E.t,, andiy, = Eb, gives

O R. = M(t)R. + € L(R) + > N.(R) + *Res, ,

- (44)
Ry = M(t)Ry + Ly(R.) + eN,(R) + Res, ,
where
Res. = e *E,.(Res(cvp)) , Res, = ¢ *F,(Res(eyp)) ,
L. R) =2E.(B(Rs,v¢.) + B(R.,vs)) , Ls(R.) = 2E;B(R.,¥.) ,
and whereV,.(R) and Ny (R) satisfy
IN(R) 2 < C(De, D)([[Rellve + [| Rslle)?, (45)
IN(R)llx < ClIR|xe + C(De, Do) (| Rellava + || Ryl 204)?, (46)
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as long as
|Rel|xe < D. and |Rs|lxe < Dy . (47)

HereC(D., D;) is a constant depending dn. and D, independent of) < ¢ <« 1. The
constantsD,. and D, will be chosen later on independentaf System (44) is solved with
initial datum(R.(0), Rs(0)) = (0,0). The solutions of

OR=M(Ut)R, R|—; =Ry

define viaR(t) = K(t,7)R, a linear evolution operatdC(¢, 7) which satisfiesC(t, 7) =
K(t+ 27 /w, T + 27 /w) and whose properties are summarized in the following lemma.

Lemma 6.2 There exisC, o > 0 independent of < ¢ < 1 such that for the stable part we
have
H]C(t7 T)ESHX_,Xa S C max(l, (t — T)_Cl)e—o'(t_q—)’

and for the critical part we have
() Bellamve < Cma(L (1 = 1)~ 7,

Proof. The operator) (t) is a relatively bounded perturbation of the sectorial ofmerA.
ThusM (t) generates an evolution operator whose growth propertietiad by the location
of the Floquet spectrum, see [Hen81, Theorem 7.1.3 and Breton p.197]. This spectrum
already has been discussed in Section 2 and yields the abowéhgates. The constant
can be chosen independentafue to the fact that the critical eigenvalues for fikedeark.
are semisimple. [

To conclude the proof of Theorem 6.1 we apply the variatiooarfstant formula to (44)
and obtain

RO = [ K ENCLAR) + 2NR) + Res) )i
Rs(t) = /Ot/C(t, T)E?(LS(RC) + eNg(R) + Resy)(7)dr .
Let Si(s) := supg<i<, || Ri(t)|| 1=, (i = s,c). Using Lemma 3.4, (45) and
(/Ot C max(1, T—a)e—”df) —0(1)

for all ¢ > 0, we obtain that

Ss(t) < CSe(t) + e(CSy(t) + Co(De, Ds)(Se(t) + Ss(t))?) + Ches,
< OS(t) + 1 4 Cres, (48)

provided that
e(CDy+ Cy(D,, D,)(D. + D,)?) < 1. (49)
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Similarly, we find

Se(t) §62/0 Cmax(1, (t — 7)) (Se(7) + Ss(7))
+ Cy(De, Dy)(S.(1) + Ss(7))? 4 Cresdr,

<e? /t Cmax(1, (t —7)7%)(Sc(7) + Ss(7)) + 1 + Cresdr,

provided that
eCy(D, D,)(D, + D,)?* < 1. (50)

Thus, (48) yieldsS,(t) < &2 fot Cmax(1,(t — 7)7%)(S.(7) + 1 + Cres)d7. Rescaling time,
i.e.T = %t and applying Gronwall's inequality [Hen81, Lemma 7.1.18Iis

S.(t) < C(1 4 Cres)TpeC™ =: D,

forall t € [0,Ty/e%. ThenS,(t) < CD.+ 1+ Cres =: D, by (48). Thus, Theorem 6.1
follows by choosing:, > 0 so small that for alk € (0, () the conditions (49) and (50) are
satisfied. |

It remains to conclude Theorem 4.3 from Theorem 6.1 and Hme@&.1. Lety 4 be the
approximation constructed via the solutidn= (A;, A,) of the averaged GLe (32),(33), and
let vz be the approximation constructed via the soluti®r- (B;, B,) of the non-averaged
GLe (30),(31). Moreover, leV be a solution from Theorem 6.1. Due to the embedding
X C CP we have

sup levp(-,te) = V(- t)[leo = O(?).
t€[0,Tp /2]
From Theorem 3.1 anl* C C) we havesuprc o ) [1A(+, T) — B(-, T)||co = O(£?) which
impliessupyeor, =2 €¥B(, t,€)—eva(-, t, €)llco = O(e?). Hence, by the triangle inequality
we have

sup lepa(t,e) = V(i t)llep <C sup legal-t,e) = V(- 1)y

t€[0,Tp /2] t€[0,To /2]
<C( sup lepal,te)—evp(,te)llcp +  sup |levn(-,t,e)=V (- 1)llcp)
t€[0,To /2] t€[0,Tp /2]
= O(e?).
The proof of Theorem 4.3 is complete. [

7 Discussion

The electro-hydrodynamic instabilities of nematic liquig/stals may lead to complicated
patterns. Here we analyzed three generic cases, namely @aseal rolls (NR) (single real
Ginzburg—Landau equation (9)) and Case Il NR (2 coupled ¢exr(BL equations (21),(22))
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and Case Il OR (oblique rolls) (4 coupled complex GL equatid®d)—(18)). In the latter two
cases the amplitude equations still depend in a singularonaize small bifurcation param-
etere, which however can be removed by going into (separately)oxamg frames, yielding
nonlocal amplitude equations. For spatially localizediBohs these decouple completely.

Moreover, for a regularized model we showed the validityhafse amplitude equations.
This puts studying the dynamics of the WEM using the respecmplitude equations on
firm mathematical grounds. Thus, as a next step one may studgtail the dynamics of
(21),(22) resp. (15)—(18). See [DOO04] and the referenaareiih for some first results, which
show that these dynamics are very rich. A further open probteto remove the artificial
reguarization of the WEM. This will be subject of further easch.

A Appendix

A.1 Description of the WEM

The following presentation and non-dimensionalizatiortred WEM follows [Tre96] and
[DO04]. The director fieldr of unit vectors, the fluid velocity and the pressurg in the
presence of an electric field satisfy

Oy +v-V)n = wxn+6-(AAn—h), (51)
POy +v-V)v = —Vp—V - (T +1I) +1pE, (52)
Vv =0, (53)

for (z,y,2) € Q = R? x (0, 7). Herein,
w=(Vxv)/2 (54)

is the vorticity. The molecular field is given by

o (U g 9L e
h = (a_n \Y avn) cam(n - E)E (55)
where
2f = (V-n)? + Ky[n x (V x n)]* + Ks[n - (V xn)]?, (56)

is the elastic energy density describing splay, twist)( and bend k5) deformations. We
refer to [DOO04] for a physical interpretation of the conssah,, A\, K,, K3, ande,. The
electric fieldE = E(z,y, z,t) € R? is considered to be quasistationary, i.e.fot= 0. It is
split into an external forcing and some potential part, i.e.

E = E,(#)(0,0,1)" — V¢, where E,(t) = Ey coswyt. (57)
The tensorsi, and7v* are, respectively, the shear flow tensor
Aij = (@-vj + 83’02)/2 (58)
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and the viscous stress tensor

3 3
—T;}isc = (aqninjny Z(nlAkl) + agn;m; + agnim; (59)
k=1 =1
‘|—044Aij + Oé5’fljnkAm‘ + Oz6nmkAkj)
with coefficientsay, . . ., ag, and where
m = 0+(AAn — h) . (60)
The tensotlI is the nonlinear Ericksen stress tensor
3
of
Hi' = nl@i- (61)
The projection tensor
5ZJJ' = 52‘]’ — nyn; (62)

in (51) guarantees that| = 1 as long as the solution exists. The charge densand the
deviation of the local conductivity from 1 satisfy

P (0;+v-V)p = —=V-(uEo), (63)

(O +v-V)o = —a*n°V - (uEp) — g (0? —1 — Piap?) . (64)

Finally the system is closed by Poisson’s law
p=V-(cE). (65)

The dielectric tensot and conductivity tensar are given bye;; = d;; + €,nn; andp,;; =
d;j+o,nin;, respectively. The parametdrsandP; are Prandtl-type time scale ratios. Again
we refer [DOO04] for a physical interpretation of the conssa?, o,,, «, andr.

Using Poisson’s lawe, respectivelyy can be expressed in terms @fnd so (51)-(53)
and (63)-(64) can be rewritten as a system of dynamical emsatorn, v, p, o.

Summary: Sincen? + n3 + n3 = 1 for our purposes it is sufficient to consider andn;.
Hence we finally consider

dng = (e, —(v-V)n+wxn+d-(AAn — h)) , (66)
omg = {es,—(v-V)n+wxn+d-(AAn —h)), (67)
v = PylQ(—(v-Vv— V- (T +1I) + 7°pE) , (68)
dp = —v-Vp— PV (uEo), (69)
0o = —v-Vo—a?m*V - (uEp) — g (20 + 0® — Pim*ap?), (70)

under the boundary conditions

Ng=mn3 =0 =0 =03 =¢ =0,
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where() is the projection on the divergence-free vector fidldg V - v = 0}, see Sec. A.3,
and whereE = E(n, p, E,) is defined through (57) and (65) under the boundary condition
®|.—0r = 0, see Sec. A.2. As already said the WEM equations are invasiader arbitrary
translations inc andy and under the reflectiors, S, andS; defined in (3), (4), and (5).

Remark A.1 The right hand side of the non regularized WEM is a smooth nmgpfsom
H? into L2. In order to see this let,n,v,oc € H3. Then we havew € H? by (54), f € H?
by (56),E € H? by (57),h € H' by (55),6+ € H? by (62),A € H? by (58),m € H' by
(60), TV*¢ ¢ H' by (59), andll € H? by (61). Hence the right hand side of (51) isAft
and the right hand side of (52) is i#°. We haves € H? andu € H®. Thenp € H* and so
the right hand side of (64) is iff°. ]

A.2 The definition of £ = E(n, p, E,)

To expresd/, respectivelyy, in terms ofp we have to solve

3 3 3
p = Z ak:(gkrmEm) - Z Z ak((gl(skm + Eanknm)(EpémS - am¢))
k=1

k=1 m=1

with respect tap under the boundary conditiors,—, , = 0. We find

where

3
F(n,p, Ep) = pP— Z O ((€L0km + 5ank’nm)Ep5m3) )

3
k=1 m=1

3 3
Mé = eiAp+eadidid,  God=c0 > Y Oh(ninmOno) — ca01016.

k=1 m=1
Lemma A.2 The linear operato// ~! is bounded froni7* into H*+2.

Proof. We have to prove the invertibility of the operatdf with the boundary conditions
¢\Z_ié = 0. Thus, to solvé\/¢(z, y, z) = f(z,y, z) we use Fourier series
-2

d(z,y,2) = //(Zqg(k,l,m)eik”ﬂysin(mz)) dkdl,

meN

flz,y,2) = / / (D f(k,1,m)e™™*™ sin(mz)) dkdl.
meN
This yields(—e k2 — e, (k2 + 12 + m2))d(k,1,m) = f(k,1,m), or equivalently

~

n o f(kvlam)
ok Lm) = e R B )
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We use that théZ*-norm of a functiorw(z) = >~ >°_ v, (x)e"™" is equivalent to the?(s)-

norm of the Fourier coefficients, i.8(vim)men, |72 = 2meo [Vm[*(1 +m?)*, such that
IBll-1> = // D 18P (1+ kK + 1° +m?)**? dkdl
meN

1 2 2 5+2
_ //Zm2 + k> + 12 +m?) Jkdl
eak? + 1 (k2 + 12 4 m?2))s

1+ k*+ 12+ m?
< S| T ) ‘ //Zm (14K + 1> +m?)* dkdl

< o[ [ 1P 4wy dkd = O]

meN

HS

Hence the electric potential satisfies

whereGM ! is small forn = n — (1,0,0)” small. By using Neumann’s series we finally
obtain
¢: M_1(1+GM_1)_1F(U>p> Ep) (71)

Lemma A.3 Let||V| 5= > 0 be sufficiently small. Then the operataf— (1 + GM 1)t is
bounded fron’.? into L2,

Proof. The operatord/—':L> — H?andG:H? — L? are bounded. MoreovefGM || 2_ -
is small if || V|| z= > 0 is small. Neumann'’s series gives the boundedneg$s-efi A/ —!)~!
L* — L2 butthen alsal/ ' (1+GM~1)~!: [? — L?is bounded. |

A.3 The projection onto divergence free vector fields

In the following we restrict ourselves to the hydrodynamactpof (1). We define the projec-
tion () onto divergence free vector fields by= @) f, wherev solves

v—=Vp = f, V-v=0, v3|,0.=0. (72)
Lemma A.4 The projectior( is continuous frond™ onto{v € H™ : V-v=0, v3|,—1,/>=0}.
Proof. In order to solve (72) we consider the Fourier transformestesy
v —thkp=fi, ve—ilp=fo, wv3—0.p=f3, ikvy+ilvs+ 0,v3=0,

together with the boundary conditions. This can be solvethbyansatz

E U1,m COS mz Vo = E V2,m COS mz V3 = E U3 m sm mz
m=0

Zflmcos mz), fo= Zf2mcos mz) ngmsmmz

p= Z Pm cos(mz).

m=0
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We obtain

Vi,m — kam = fl,m; Vo,m — lem = f2,m7 V3,m — MPmy, = f3,m7

1kvy 4 ilvg  — Mgy, = 0,

which is solved formn # 0 by

V1,m fl,m
Vo | = Am(E D) | fom
U3,m f3m

m? +[? —lk —ikm fim

= m —lk m?P+k* —ilm fom

ikm ilm  k*+1? fam

The entries of the matriced,,(k, ) are bounded uniformly with respect te, £ and/,
3

i.e. there exists &' such that for alin, k, andl |v; ,,(k,1)| < C > |fjm(k,1)|. Form =0
=1

=

we obtain
V1,0 1 l2 -1k 0 f170
V20 — m —lk ]{72 0 f270
V3,0 0 0 ]{32 + l2 f370

Again the entries of the matricek (k, 1) are bounded uniformly with respect kcandl, i.e.
there exists &' such that for alk, and!

3
|Uj,0(k7l)‘ < CZ |fj,0(k7 l>|

j=1

The solution is extended to=[=0 by v; ,,, = fi.m, V2;m = fom aNdvs,, = f3,,. The asser-
tion follows by using that théZ*-norm of a functiorv(z) = >~ °_ v, (z)e™ is equivalent
to the?(s)-norm||(vm)meno |72 (5) = 2omeo [vm[*(1 +m?)* of the Fourier coefficients. W

Remark A.5 The extension td=0 can be made smoothly iR x (0,7) such that multi-
plier theory inH;", spaces can be applied in order to extend these results frersntialler

H™ spaces to the largdi;’, spaces. However, the extension is not smooth in case of two
unbounded directions. Nevertheless, in this c@§eé : H[j}jl — Hp", is still a smooth op-
eration, cf. [SS01], such that the Navier-Stokes equatitsed in R? can be solved i},
spaces, cf. [GMSO01] for a result ifi)-spaces. However, the terpi in (68) cannot be ex-
pressed as a derivative, i.e., with tRieoperator in front. Thus, this idea does not apply to
the equations of the weak electrolyte model (66)-(70). ]
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