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Abstract

We give a detailed analysis of the interaction of two NLS-described wave packets with
di Lerknt carrier waves for a nonlinear wave equation. By separating the internal dynamics
of each wave packet from the dynamics caused by the interaction we prove that there is
almost no interaction of such wave packets. We also prove the validity of a formula for
the envelope shift caused by the interaction of well-prepared pulses and invalidate this
formula by numerical experiments in case of non-well prepared pulses.
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1 Introduction

We consider the nonlinear wave equation

Qu=@u u+u° (1)
with t  0;x 2 R, andu = u(x;t) 2 R. For this equation the ansatz
u(x;t) = "AX; T)E®™ "M rce.+ O("%); X ="(x ct);, T="% 2)

wherek;! 2 R satisfy the linear dispersion relation 2 = k2 + 1, where c = d!=dk = k=! is
the linear group velocity, and where & " 1 is a small perturbation parameter, leads to the
Nonlinear Schiodinger (NLS) equation

20@rA=(1 @A +3jAjPA

describing slow modulations in time and space of the underlyingarrier wave < 't). This
procedure is common in nonlinear optics and allows to redutiee dimension of the problem in
numerical simulations by a factor up to 18, cf. [Ag01]. In modern ber optics, however, not
only a single carrier wave, but a number of di erent carrier wees is used, cf. [HK95].

In the particular case of two di erent carrier waves, i.e.ka 6 kg, the ansatz is given by
u(x;t) = "A "(x cat);"?t dkax tab 4 mB o (x cgt): "%t @lkex 'eY tcc.+ O(");
leading to a system oftoupled NLS equations

2 \@A = (1 GA)@,A+3AJAj*+6A|Bj%;
2lg@B = (1 <3)@, B +3BjBj*+6BjAj*

SinceXp, = "(x cat)="(x cgt) "(ca cg)t= Xz 22T and since the group velocities
ca 6 cg of the wave packets are di erent, this system has still the mulgile scale character of
the original problem. However, the interaction of localizeevave packets will only happen on a
very short time scale, such that asymptotically the interactiorterms

(e cCa)

BA(Xa; T)iB(Xe; T)j?=6A(XA;T) B Xa T T

and

(Ca CB)T;-I-

6B (X5 T)jA(XA;T)j*=6B(Xp;T) A Xg
are negligible. As a consequence, in lowest order we have a systénmnooupledNLS equations

20,@A = (1 &)@, A+3AJAP%
2il s @B 1 &)@,B+3BjBj%

or, in other words, each band is described independently by a gla NLS equation.

In applications the neglection of the coupling terms is a camon procedure, cf [Ag01].
There exist a number of mathematical papers [PW96, BF06, CBSWDwhich validate this
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procedure rigorously. Our research is dedicated to an imprawent of existing estimates for wave
interaction aiming towards applications in optical commuication lines which use wavelength
division multiplexing technologies, cf.[HK95].

In our previous work [CBSUO7] we presented improved bounds ftwo waves modulated
by NLS 1-solitons (in the following called well-prepared pulsessee Figure 1). Here, we further
extend our results to waves whose envelopes @eneral localized pro lesevolving according to
the NLS equation (in the following callednon-well prepared pulsessee Figure 1). We show for
these general wave packets that the interaction leads to &(")-phase shift of the carrier wave
and to an O(")-shift of the envelope. Thus, we improve the bound for the possébenvelope
shift caused by the interaction of general localized NLS-dedoeid wave packets fromO(1),
cf. [PW96], to O(") and generalize theO(")-bound for the interaction of wave packets with
NLS 1-solitons as envelope to general NLS-described wave paskeloreover, we invalidate
by numerical experiments a formula for the envelope shift faggeneral wave packets, but prove
analytically the validity of this formula for pulses in the fam of NLS 1-solitons.

Notation.  Many possibly di erent constants which can be chosen independgnof 0 <" 1
are denoted byC. The spaceHs(mhco_nsists ofs-times weakly di Brentiable functions for
which kukysm) = ku Mkys = ([ j@(u M)jfdx)*? with  (x) = © 1+ x2is nite, where
we do not distinguish between scalar and vector-valued functis or real- and complex-valued
functionsp The spaceC; consists ofs-times continuously di erentiable functions for which
kukcs = jszo SUp, R j@Uj is nite. We sometimes write, e.g.,ku(x)kcs for the C5-norm of the
function x 7! u(x).

Acknowledgement. The authors would like to thank Kurt Busch and his working grop
at the University of Karlsruhe for raising this question. The workis partially supported
by the Deutsche Forschungsgemeinschaft DFG and the Land Badenit¥emberg through
the Graduiertenkolleg GRK 1294/1: Analysis, Simulation und Dsign nanotechnologischer
Prozesse.

2 Approximate description of internal and interaction
dynamics

In this and in the next section we derive approximation equabins in order to describe the
internal and interaction dynamics of the wave packets. In o’ to make the concept of internal
and interaction dynamics more precise Ieb; be the nonlinear evolution operator of the nonlinear
wave equation (1). The evolutionS;(us) of one single initial wave packeu, is called internal
dynamics. The solution to the sum of two single initial wave packe u, and ug evolves as
Si(ua + ug). The interaction dynamics is then the di erenceS;(ua + Uug) Si(ua) Si(up).
It is the purpose of this paper to give a precise description of ihdi erence. We are especially
interested in improved estimates for carrier and envelope stsifcaused by the interaction.



Approximate description of internal dynamics. In the case of one single wave packet
with a wavenumberk, the dynamics can be described approximately by the ansatz (2By
adding higher order terms to the ansatz the formal error, or mie precisely the later on intro-
duced residual, can be made arbitrarily small. The NLS equatiois then accompagnied by a
system of linear PDEs and algebraic equations.

Approximate description of interaction dynamics. In the case oftwo-wave propagation
the nonlinearity leads to an interaction between the wave mkets which in turn result in a

modi cation of the pure internal dynamics. We improve the anstz from [CBSUQO7] and seek
solutions of the form

" =( "A1+ ||2A2+ ||3A3)E +("B]_+ ||282+ ||3B3)F +CC+ ||3Mmixed (3)

where the termM nixeq Se€rves to cancel mixed and higher order harmonic terms in therfal
error and where

E=exp i(kax !at+" a1(Zg;T)+ "2 a2(Zg:T)) ;
F=exp i(kex !gt+" g1(Za;T)+ "% 5.2(Za;T)) ;

ZA = "(X CAt + " A(XB,T)), (4)
Zg = "(x cat+" g(Xa;T)); (5)
Aj = Aj(Za;T); Bj =Bj(Zg;T); Xa="(x cat); Xp="(x cat): (6)

The internal dynamics of the wave packets will be described ke variablesA;;B;;j = 1;2,
whereas the interaction dynamics is described by the phase $hif 5j; s;;] = 1;2 and the
envelope shifts o; g. The terms Asz; B3 play a crucial role in this work, since it turns out
that depending on the special choice foA;;B; { well- or non-well prepared { they include
contributions to the envelope shift and hence make the envele shift formulas invalid.

Well-prepared-pulse Non-well-prepared-pulse

Figure 1: Left: A well-prepared pulse. The envelope (dashechd) is a NLS 1-soliton. Right:
A non-well prepared pulse. The envelope (dashed line) can beytnng \pulse like". Here we
chose an almost rectangular envelope.

Remark 2.1 a) The ansatz (3) is more general than the one in [CBSUO7] where wssentially
choseA; and B; in the form of NLS 1-solitons. Here we allowA; and B; to be more general
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solutions of the respective NLS equation, see Figure 1. This theaquires the introduction of
"2A,E;"2B,F to describe the internal dynamics.

b) The phase shifts a.1; g:1 turn out to be real functions. In order to describe the
interaction dynamics in more detail than in [CBSUO07] we addibnally introduce phase shift
corrections a.»; g:2, Which turn out to be imaginary, and the envelope shifts o; g. These
last ones have already been introduced in earlier works lik@Y74] or [TPB04] where they are
called pulse shifts. Our aim is to validate or invalidate the fanulas for the envelope shifts not
only formally, but by rigorous estimates.

c¢) Furthermore, we change the notation: The variable¥,; Yg from [CBSUQ7] are now called
Az; B3, whereasAs; B3 from [CBSUOQ7] are here contained in the ternM nixeq -

d) Finally, in the following we replace the argumentsXg; X of A; g by Zg;ZAs. More
rigorously we may de neZa; Zg implicitly by

Zp="(x cat+ " "a(ZB)); Zg = "(x cgt+ " B(Za)): (7)

Then A and "5 resp. g and 7g dier by O(") terms which we may discard for our purposes.
Therefore, from now on we writeZg; Z5 for the arguments of 5; g, respectively. C

Remark 2.2 At this point the notion of an envelope shift is somewhat ambigous since by
Taylor-expansion w.r.t. A and g we have withX, = "(x cat); Xg = "(X cgt);

X)) = "ALXa T+ "PALXKAT) + "3(ASXaT)+ A@AL(XA;T)) E
+ "Ba(Xs;T)+ "?Ba(Xp;T)+ "*(Bs(Xs:;T)+ s@Bi(Xs;T)) F + O(":

The terms "?A, and "?B, do not contribute to envelope shifts caused by interaction siecthey
are determined by internal dynamics of the individual pulseésee (12)). The termAs is of the
same order as the envelope shift ter@A; 4, i.e., it accounts for both internal and interaction
dynamics, but it is neither clear to which amountA; describes the interaction, nor in which way
{ as phase or envelope correction. In other words, it has to beeatked, if the derived formulas
really quantify the entire envelope shift in the particular @der. The validity of the envelope
shift formula is investigated numerically in Sec. 5 and explaed analytically in Sec. 6. This
expansion obviously gives a®(")-bound for the envelope shift if we can prove a®("3)-bound
in L' for the terms indicated with O("#) and an O(1)-bound for A; and B;. Then the vertical
bound O("3) only allows a ‘horizontal error’ ofO("!). The required bounds will be proven in
Proposition 4.3 and Lemma 4.7. c

Remark 2.3 Since a.»; .2 are supposed to describe interaction dynamics we may assume
that > = .2 = 0 initially. Moreover, due to the fact that ., and g.» turn out to be
spatially localized, also after interactionE and F contain only phase shifts forjxj ! 1
i.e. a2 and g.2 play no role for the envelope shift. In detail, in Lemma 4.6 werpve the
O(1)-boundedness of o3 and g1 inL! andthat a,and g., are O(1)-bounded inH $(m).
Thus, for instance,j a2( 5;T)] CH1+ "jx cgtj)™ due to Sobolev's embedding theorem
for s > 1=2. For the same reason we hajyé\;( »;T)] CH1+ "jx catj)™ and so, for large
t, l.e. fort> 1=",

JAICA T a2( 8 T)=0O((") ™):
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Moreover, for well prepared pulse$A;( a;T)] a2( s;T) is exponentially small. According
to the last remark, jA;( a;T)] a2( s;T) has to beo("), except during interaction. Thus we
require ('t) ™ = O("¥ ™) with > O arbitrary small but xed. This yields t " (t#1=m+)

" 2form 2. In summary, for C;" @*1=m*) t  C," 2 the corrections a, and g
play no role for the envelope shifts. In case of well prepared pak this can be sharpened to
Ciln(" * t Cy* 2 c

3 Derivation of approximation equations

The so-called residual
Res()= @)+ @) ()+(")°? 8)

describes how much an ansatz fails to satisfy the nonlinear wave equation (1). Plugging in
the ansatz (3) into the residual
X

Res(') = " ResE™F" 9)
— I;m;n
leads to a number of conditions in order to make the residual asnall as possible, in particular
to Nonlinear Schiodinger equations forA; and B;.

Remark 3.1 The term Mpixea = Mmixed (A1; A2; Az;B1;B,; Bs; E; F) accounts for terms in-
volving higher order or mixed harmonics, i.e. for the frequeres which are generated by the
nonlinearity according to the formula

("A4E + "2A2E)2- "SALE + "BllF + "2B,F + "3B3F + C.C.)3

- o CAE B

I Kyl
k1+121+k12:3;kj 0 1 12

however without the nonlinear terms generated aE or F. At "3E2F for example the term
A2B; appears. To cancel this term we extend the ansatz by, "3A2B,E2F and get an algebraic
equation for ,; of the form

1+l a+ilg)2+(2iks +ikg)? 51 =3:

The procedure is essentially the same for each such term leadigetquations of the form
1+ (1M a+j B)*+(lka +jkg)* § = j:

Now M mixeq CONtains all these extensions. Thus, we can concentrate on thenaning terms of

the residual. C

Remark 3.2 SinceA;;j = 1;2,3; depend on the same variables and belong to the same
harmonic, the subsequent hierarchy of conditions (10){(15)eappears shifted in order, i.e. the
residual actually contains much more terms, for examplé( k3+!3 1)A;(Za;T)E;j =1;2;3,
which we only listed forj = 1. Hence choosing the dispersion relation as solvability condn
cancels all terms. The exact same mechanism holds for the ensgestem of equations (10){(15),
so we tacitly left all these terms out to simplify the exposition. c
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Using the notation Regy,, from (8) for the coe cients of ""EMF" we nd the subsequent
hierarchy of equations.

At "E we nd '
Res=( Ki+!% 1)A(Za;T)=0
which yields the linear dispersion relation

12 = k3 +1:

At "°E we nd ,
leegz 2i(ka Cal A)@A1(ZA;T) =0

which yields the linear group velocity

Cp = k/_\:! A

At "°E we nd
513(?: S31t+ S32

with

Sa1 20 A\@AL(ZA;T)+ (1 Q)@AL(ZA;T) +3jA1(ZA; T)J?AL(ZA; T);
Sz = 20 At ka)(Za;T)@ A;1(ZBJT)+6jBl(ZBJT)j2 A1(Za;T):

Then s3; 20 yields the NLS equation

20 A@AL(ZA;T) = (1 Q)@AL(ZA;T) +3jA1(Za; T)PAL(ZAsT); (20
and s3; =0 yields the phase shift formula
3 Z z,
. — : . 12 .
A1(Zs;T) P jB1(;T)j“d; (11)

SO a1 IS a real quantity and therefore apure phase correction

At "*E we nd

Bf_-‘os: 2V AI@A(ZAT) + (1 Ci)@AZ(ZA; T)+ Sa1+ Sap+ Saz+ Sas+ Sas+ Sus

where
St = BANZA;T)ALZA;T) +3ANZA; T)ALZA;T) Al(Za;T);
Ss2 = 2Ca@Q@A1(ZA;T);
Sz = 6 Ba(Zg;T)B1(Zs;T)+ Ba(Zs;T)B1(Zs;T) Ai(Za;T);
Saa = 20 AAL(ZAT)@ aa(Ze;T);
S5 = 21@QA1(ZA;T)((ka CB!'A)@ A(Ze:T)+(1 cCaG)@ a1(Zs:T));
S = i1 Cé)@ Aa1(Ze;T)+2@ a2(Zs:T)(! ace  Ka) A1(Za;T):
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The terms in S,3; Sa4 are interaction terms in the sense that they are products of fuions
such that both Z, and Zg appear as arguments. Thus, since we consider localized
solutions, they areO(1) only on an O(") time-scale and will, therefore, be moved into
the equations forA; at "°E.

We are now left with a linear inhomogeneous evolution equat for A,,
2 AI@AAZA;T)= (1 Ca®)@ANAZA;T) + Saz+ Sz (12)

Here, no coupling with terms involvingB -variables occurs such thaf\, describes internal
dynamics of a single pulse.

The terms in sy5 together with (11) give the envelope shift formula
z
3(1 cacs) ~ %®

. — : . 12 .
A(ZB,T)— —(CBl . kA)2 jBl( ,T)j d: (13)
The terms in sy yield the second order correction to the phase shift the form
il c3) 3i(1 &) . o
2(Zg;T)= s — 2@ a1(Zs:T) = B1(Zs; T)j% 14
A2(Zg;T) 2(kn !ACB)@ r1(Zs;T) 2(n !ACB)ZJ 1(Zp; T)j (14)

SO a2 IS purely imaginary and therefore aramplitude correction which however is alge-
braically small w.r.t. " except during collision of wave packets.

At "°E we nd

51%5: 20 Ai@A3(ZA;T)+ (1 G)@A3(Za;T)+ Ss1+ Sso+ Ssa+ Ssa+ Sss + Sse

where
Ssi = BA3(Za;T)AL(ZA;T) +3A3(Za; TALUZA;T) AL(Za;T);
Ss2 = @A1(Za;T) +2ca@@AL(ZA;T);

Sss = B6AL(Za;T)iANAZA; T

Ss4 = 6 Bs3(Zg;T)Bui(Zs;T)+ B3(Zs;T)B1i(Zs:T) Ai(Za;T);

Sss = (1 G@AL(ZA;T)@ a(Ze;T)+2(1  cals)@AL(ZA;T)@ a(Zs;T)

+2i (1 Q@)AL(ZAT)@ a2(Zs;T)+2(1  caC)@AL(ZA;T)@ A1(Zs;T) ;
2 AAL(ZAsT)@ p2(Ze;T)+ A(ZAT)@ a1(ZB;T))

+H 2 @AL(ZA;T)@ A 1(Ze;T) +2CA@AL(ZA;T)@ a1(Zs;T)
+2C A1(ZA; T)Q@ a1(Zs;T) :

The terms ss;; S5, and ss3 describe internal dynamics, whereass,; Sss and Ssg are in-

teraction terms in the same sense a&3; and sy. We chooseA; to satisfy the linear
PDE

Ss56

2 A\@A3(ZAiT) = (1 GQ)@A3(Za;T) + Mo[As; By (15)
+1(A1;A2 BBy A A)* " H(Sszt Saa)

where Mo[Az; B3] = S51 + Ss4 IS linear in its arguments andl (Aq;Az;B1;Bo; A a) =
S5+ Ss3+ Ss5+ Ss6 CONtaiNs inhomogeneous terms which a@(1) bounded on theO (1="2)-

Finally we chooseB1;B;;B3; 5:1; B:2, and g to satisfy the counterparts to (10){(15).

8



4 Validity of the approximation

As a consequence of the perturbation analysis of the last sectidmet rst non-vanishing terms
in the residual are formally of orderO("®). Below we will prove

Lemma 4.1 Let sa s+4; kA 6 kB,kA, kB > 0, and let AjT:O ; BjT=O 2 HsA (2)\ H sa+4 (O)
Then for all To > 0 there exist"o > 0;C > 0 such that for all" 2 (0;") we have

sup kRes(') kys C"¥%

12[0;To="2]

The di erence between the exponents of the formal erra® (") and O("'*?) in the lemma
follows from the scaling properties of the_2-norm. The weighted space$i$(m) are used to
describe analytically the condition that the wave packets & spatially localized. This is needed
to estimate the interaction terms like for instances,;; and Sys4.

As a direct consequence of Lemma 4.1 and of the fact that our angl system (1) does not
contain quadratic terms, with a simple application of Gronwdls inequality [KSM92] it follows
that the original system really behaves as predicted by the apgpximation.

Theorem 4.2 (similar to [CBSUQ7, Theorem 3.6]) Letsp, s+4;ka 6 kg;ka;ks > 0, and
let Ajt=o;Bjr=0 2 H%(2)\ HS%A*4(0). Then for all T, > 0 there exist"y, > 0;C > 0 such that
forall " 2 (0;"o) we have

sup ku(x;t) " ( x;t)kys C""Z

t2[0;To="2]
From Theorem 4.2 we obtain by Sobolev’'s embedding theorem

Proposition 4.3 Under the assumptions of Theorem 4.2 we have

sup ku(x;t) " ( X t)kes nr=2. (16)

t2[0;Ty 2]

As explained in Remark 2.2 this last estimate together with the dasequent Lemma 4.7
allows us to bound the magnitude of the envelope shift b§".

Hence it remains to give theProof of Lemma 4.1. The assertion obviously follows if
we prove that the approximation equations (10){(15) possess aer O(1)-bounded solutions
on the O(1="?)-time scale. We have to solve three dierent kinds of equatian The rst
set of equations, (10) and (12), describes internal dynamics. nSe these two equations are
independent of the small parameter & " 1 we have

Lemma 4.4 Foralls 2;m 0, and initial condition Aijr- 2 HS(m)\ HS*2™(0) there
exists a timeTy > 0 such that (10) has a unique solution

A, 2 C [0;Tol; HS(m)\ HS2™(0) :



Proof: We apply the variation of constant formula and use the fact that@ is the generator
of a strongly continuous semigroup irHS(m)\ Hs*2M(0), cf. [CKS95]. m

Note that T, is independent of the weight. This can be proven like in [SW0QQ.emma
6.4] such that the existence time is determined only by the lotaxistence and uniqueness in
H S-spaces.

Since (12) is a linearized NLS equation foA, with O(1)-bounded inhomogeneous terms
S41 + S4p With exactly the same arguments we nd

Lemma 4.5 Let A; 2 C([0; To]; HS(m)\ HS*?M(0)) with s 2 be a solution of (10). Then for
all initial conditions Ajjr=o 2 HS(m)\ HS*2™(0) there exists a unique solution o{12) with

A, 2 C [0; Tg]; HS(m)\ HS*2™(0) :

The second group of equations, namely (11), (13), and (14), dabes the essential interac-
tion dynamics. By pure integration we nd

Lemma 4.6 Let A;;B1 2 C([0; To]; HS(m)\ HS*2™(0)) be a solution of (10). Then
@ a1 @ 81,@, A @, B; a2 822 C(0;Tol;H3(m)\ H%2M(0));
and a1 g1 a; s 2 C([0; Tol; CS2™).

In terms of local existence and uniqueness ard(1)-boundedness of solutions the only
nontrivial equation is (15) which is a linearized NLS equatio for Az with O(1)-bounded in-
homogeneous terms and term$ 1(s,;3 + ss). Since the last terms are onlyO(" ) on an
O(")-scale w.r.t. T we nd

Lemma 4.7 For all s 2 there exists aC > 0 such that for all" 2 (0; 1] the following holds.
System(15) with zero initial data has a unique solutiomAs; B3 2 C([0; To]; HS(m)\ HS*2™M(0)).
It satis es

SUp k(A3, Bg)(T)kH s(m)\ H s+2m (0) C
0T To

Proof: [CBSUO07, Lemma 4.2] ]

5 Numerical simulations

Before we discuss the validity of the envelope shift formula (L8 case of well-prepared pulses
we provide some numerical experiments to illustrate the abowenalysis. As a result of our
experiments we invalidate the formula for the envelope shiit case of non-well prepared pulses.

The numerical scheme used is accurate enough so that the true eliences between the an-
alytical approximate solutions and the actual (numerical irthis case) solution can be detected.
The scheme also conserves energy which is necessary to have prestsaates, according to the
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lower boundju  Uapprox] 1] Uj ] Uapprox]i. Due to the multiscale character of the problem such
numerical computations are CPU and memory intensive and rega extended periods of time
to run. Therefore, the analytical approximation solution isclearly preferable to the numerical
one, which is computed here only to draw comparisons. The irati value of the numerical

Unum (Xm;0) = " ( Xm; 0); (17)

where" ( x;t) is de ned in (3). The numerical solution is generated at equly spaced values
of time t,, n 2 N, by integrating (1). In the examples belowka ; kg ; Xa, and xg are chosen such
that pulse A will travel through pulse B.

Theorem 4.2 is con rmed numerically by computing the di erece
r(tn) =sup jupum Xm;ta) " ( Xm:tn)]
m

as a function of time. Moreover, in order to numerically comyte the phase shifts and the enve-
lope shifts, the two-pulse solution is compared with the sum of twoorresponding single pulse
solutions. The phase shift was computed by nding the average dérence between adjacent
roots of the shifted (two-pulse solutions) and non-shifted solun (two single pulse solutions).
For kg = 0 the envelope shift can be estimated by looking at the positionf the maximal
amplitude. This is due to the fact that the carrier wave withkg = O will be identical to its
modulating envelope, which makes it easier to detect the a@lenvelope shift. In the case
that kg 6 O the envelope was t with an appropriate function including a parameter for the
envelope shift.

The con rmation and quanti cation of analytical results is as follows

It was shown in [CBSUOQ7] that if" is the sum of two well-prepared pulses with the
corrections" a.1;" .1 for the phase shifts taken into account, then

sup r(t) = O("%);

t2[0; 0="2]

see also the discussion following Lemma 6.2 for the relation of thasatz in [CBSUQ7]
to our ansatz" in (3). We rst numerically con rm this result and compare itt o the
standard ansatz where no phase shift corrections are taken intocaunt. In the left panel
of Figure 2 a plot ofr (t) is shown. Before interaction the di erence between the starald
and the improved solution is negligible. For times after thenteraction the approximate
solution with the g corrections isO("3) accurate and onlyO("?) without it. This
procedure was carried out for various values of in order to deduce the asymptotic
behavior as” ! 0. The results are plotted in the right panel of Figure 2, with he
improved approximation clearly superior. Figure 3 shows a cgrarison of numerically
computed shifts with those predicted by the formulas given inl(l) and (13).

We turn our attention to the case where the envelope is not desiced by a 1-soliton, but
rather an arbitrary solution to the NLS equation. These solutios are called non-well
prepared pulses, see Figure 1 for an example. Using the ansatz (3) again achieve
O("®)-order accuracy without the assumption that the envelope is ell-prepared, see the
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Figure 2: Left: Plot of error function, r(t), for " = 0:9. Right: Plot of sup,,x r(t) for various ".
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Figure 3: Plot of numerically computed phase and envelope dki{markers) and the analytical
values (lines); both shifts areO(") and the analytical shifts are close to the computed ones.

left panel of Figure 4. The phase and envelope shifts are compdtin the same way as
described above. Both exhibit anO(")-trend but the formula for the envelope shift is
invalid, see the right panel of Figure 4.

Summary. We nd an O(")-shift of the phase and of the envelope. The formula for the
phase shift is valid in case of well and non-well prepared pulses dontrast, the formula for
the envelope shift is only valid in case of well prepared pulsesjtbmakes wrong predictions in
case of non-well prepared pulses.

6 The validity of the envelope shift formula

As already alluded to in Remark 2.2, it is not clear if the corrgion term As contributes to
the description of the envelope shift or not. Therefore, in ot to distinguish between the
parts of Az, which account for internal and interaction dynamics respeiwely, we introduce the
following de nition.

12



T T 4 T
O Without Q correction O Numerical Q
0.351 £ With Q correction 1 3.5H £ Numerical ¥
——38¢? 2 —— Analytical Q
0.3 — 158 ¢3 ‘= 3H- - - Analytical W
2]
2
. 0.25 3 25
= 3]
= g 5
=3 0.2 S
2] =]
0.15 & 150
(5]
7] VAN
0.1 8 a1 A B
o N
0.05 0.5
S g
0 — L L 0 R S L L L
[0} 0.02 0.04 0.06 0.08 0.1 [0} 0.02 0.04 0.06 0.08 0.1
€ €

Figure 4: Left: Plot of error for non-well prepared pulses. Whetaking into account the phase
shift again anO("3) trend is shown. Right: Plot of numerically computed phase anénvelope
shifts (markers) and analytical values (lines) for non-well @mpared pulses; both shifts ar®("),
but only the predicted phase shift value is valid.

De nition 6.1  Let A{?;B{? be a solution to the coupled system

2 \@A3(Za;T) = (. 1)@A3(Za;T) Mo[A3Bs]l (AL A2 BB A ) " 'La;
2l g@B3(Z;T)=(cg 1)@B3(Zs;T) Mq[B3 Azl 1(B1;BaAL A 85 ) " 'Le;

wherelLp = Ss3+ S44 and Lg respectively. LetA(gu); Bé“) be a solution to the uncoupled system

2 A@As(Xa;T) = (& 1)@A3(Xa;T) Mo[A3;0] 1(A1;A0;0;0;0);
2 g@B3(Xp;T)= (& 1)@Bs(Xs;T) My[Bs;0] |(By;B2;0;0;0;0):

We call the envelope shift formula (13)alid, if
kAL APk C"; (18)

foran > 0, and respectively forB{"; B{®.

So the envelope shift formula (13) is only valid, if the corrdion terms A3; B3 only describe
internal dynamics (at least in leading order).

In [CBSUO7] we constructed well-prepared pulses as follows.

Lemma 6.2 Let s 2, ko > 0and o < 0. For suciently small " > 0 there exists a
two-dimensional family of approximate modulating pulse lstions to (1) of the form

uX;t) = "Vi(X gt + Xo;kox 't +) (29)

parameterized by the envelope shify 2 R and phase shift 2 [0;2 ), wherev is 2 -periodic
in its second argument! = ! o+ "2+ O("*) = koG, with phase velocity, = g+ 1"%+ O("?),
wherecg = 1 o=ky is the linear phase velocity, ; = ¢=ky, and with group velocityc = ko=! =
1=g,. Moreover,

"Vio(1Y) = "Apuse(" )€Y + ..+ O("%e ")) (20)
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with Apuise given by the homoclinic solution

2C, T ie
A'pulse(x) = C_2 sech Cl X) (21)
of
@A=CIA GCA% Ci= 200l &); C=351 ¢); (22)
wherecy = ko=(1 + k3)'*? is the linear group velocity and
s
Rose(X)j  Ce ™I = 200
J pulse J , 1 C% .
Finally, the residual ful lls
kRes('vi,)kys C"* (23)

Following this construction we nd ! ? = k? + 1 + ~ (")"? with ~(0) < 0. By this choice the
NLS-equation changes into

20 A\@AL(ZA;T) = (1 Q)BAL(ZA;T) +~1(0)A1 + 3jAL(Za; T)j?A1(ZA; T);

and similar in the equations forA, and Az. The well prepared pulses are constructed via the
stationary solutions of the last equations, i.e. in case of well g@pared pulses we ndss, = 0.
As a consequence, we can choode = B, = 0 such that s;3 = 0. Since @ .1 = 0 for such
pulses, we also havey, = 0. Now the coupled and uncoupled version of the evolution egtians
for Az only di er through the coupling terms, which areO(") on an O(1) time scale w.r.t. T.
Hence, the envelope shift formula is valid in this special case.

Remark 6.3 For general wave packets we hav&, 6 O, gych that we need the correction given
by A, and hence neithers,z nor s,, vanish. Since" ! OT ksys + sk d = O(1) already for
T = O(") we have that

kAY  APkes = OQ1);

also already forT = O(") and the envelope shift formula can be expected to be invalidifthe
general situation of non-well prepared pulses as our nhumeti@gperiments con rm.

Conclusions. In leading order the two-wave propagation is given by a lineaguperposition of
the individual waves as long as they are well separated. Themimear behavior appears during
collision which causes a phase shift that translates into an engele shift. Hence, the solitary
wave interaction is elastic in leading order { a scenario reminiscent of integrable equatis.
Since

"g("(x + ")) "g("x) = "g"x)"’a+ O "(*a)® = O("%)

the estimate (16) immediately shows that an envelope shift lagg than O(") is not possible.
This estimate is valid both for well- and non-well prepared pses, however, quantitatively, the
derived envelope shift formula (14) is only valid for well-@pared pulses, whereas for general
wave packets additional contributions must be taken into aaunt.
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