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Abstract

We prove a Hopf-bifurcation theorem for the vorticity fortation of the Navier-Stokes equationsid in case

of spatially localized external forcing. The difficultiereadue to essential spectrum up to the imaginary axis
for all values of the bifurcation parameter which a prioriloager allows to reduce the problem to a finite
dimensional one.

1 Introduction

The flow around some obstacle is the paradigm for the susesssturrence of bifurcations leading to
more and more complicated dynamics. For increasing Regmldhber the laminar flow undergoes
a number of bifurcations and finally becomes turbulent. @liijh a number of results are known
for the steady flow, very little is rigorously known about thiurcations cf. [Fin65, Fin73, Gal94].
One reason for this is essential spectrum up to the imagiwasyfor all Reynolds numbers. Hence,
classical methods like the center manifold theorem or thegouypov-Schmidt method a priori fail to
reduce the bifurcation problem to a finite dimensional one.

Based on the invertibility of the Oseen operator fréfito L4, with p < ¢ suitably chosen, in [Saz94]
a Hopf-bifurcation result has been established. In thigpag prove a similar result for the vorticity
formulation of the Navier-Stokes equationsRi subject to some localized external forcing. Our
work is motivated by [BKSS04] where the spatial structurdifdfircating time-periodic solutions in
reaction-diffusion convection problems with similar peofies has been analyzed. There, it turned
out that the nontrivial time-periodic part decays with soex@onential rate in space. Decayain
corresponds to smoothness in the Fourier wave nurfabEiowever, the Fourier space symbol of the
projection operator onto the divergence-free vector fisa®t smooth. Therefore, exponential decay
cannot be expected for the velocity field. Here, we obfdimlecay for the vorticity field. This yields
an L4 decay for the velocity which complements the result in [34z%ee [vB07] for a different
approach.

1.1 Thevorticity formulation
We consider the Navier-Stokes equations
U + (U -V)U = AU — Vp + fa, V-U=0, (1)

with spatial variabler € R3, time variablet € R, velocity field U(z,t) € R3, pressure field
p(z,t) € R, and external time-independent forcifig(z) € R3. We assume that the external forcing



fo depends smoothly on some parameteand that it is chosen in such a way that there exists a
stationary solutionU,, pa) = (Ua,pa)(x). Furthermore, we assume tha,(z) = U, + uq(x)

with U, = (c,0,0)7, lim| 3| —o0 Ua(r) = 0, andu,(-) has certain decay and smoothness properties
specified below.

The deviation(u, ¢) from the stationary solutio(l,, p,,) satisfies

Ou=Au—Vq—cOpu—V - (ugu?) = V- (uul) = V- (uu?), V-u=0, (2)
where we used’ - U = 0 to rewrite the nonlinear terms, and where

Oz, 911 + Oy 912 + 023013
V-G = 0,921 + 0,922 + Oy 923 for general matrices G = (g;)i,j=1,2,3- (3

01931 + 02,932 + 023933

Notation. From now on we denote with the velocity field of the fluid and withy the associated
vorticity defined byw = V xu. Similarly, we denote with; the vorticity associated with the velocity
uj, and vice versa.

In order to derive the vorticity formulation for the NaviStokes equations we use

VxV-(uul)=v-(wul —uwh)

which impliesV x V - (uqu? + uul) = V - (wou® + wul — uaw? — uwl). Therefore, we find

Ow = Bw+ 2V - Q(wq,w) + V- Q(w,w), 4)

where
Bw = Aw — 0y, w, 2Q(w1,wsy) = wgu{ + wlug — ’LLQUJ{ — ulwg.

The space of divergence-free vector fields is invariant utigeevolution of (4), i.e., additionally we
assume thaVl’ - w = 0. Note that (4) still contains the velocitywhich can be reconstructed from the
vorticity w by solving the equation¥ - « = 0 andV x u = w.

Since we work in the whole spa it turns out to be advantageous to work in Fourier space.

Notation. The Fourier transfortd and the inverse Fourier transforfi ! are given by

FD©) = FO = [ Hw)esp(ia-€)da,

~

FUD@ = f@) = [ Fe)exlic- )
R3

Fors > 0 andq > 1 let W=7 be the standard Sobolev space equipped with the rlarifys.c =

1
<Z|a\gs ||D°‘w||‘£q> “. In general, we do not distinguish between scalar and veeloed functions

or real- and complex-valued functions. We introduc&R?), p > 1, as the spatially weighted
Lebesgue spaces equipped with the ndiffj,» = ||fp°||L», wherep(z) = /14 |z|?. Forp €
[1,2], the Fourier transform is a continuous mapping frbfrinto W*4if 1/p+1/q = 1. Forp = 2,
the Fourier transform is an isomorphism between these spMany different constants are denoted
with the same symbal'.



Applying the Fourier transform to (4) yields
O = B + 2i€ - Q(@a,®) + i€ - Q(@,) (5)
where
(BO)(€) = (—|6? —ict)B(E),  2Q(@1,0n) = Go* U1 + 01 * U — U+ OF — Wy + &7,

wherex denotes the convolution, i.€z x 0) (&) = [zs w(§ — n)0(n)dn, and where, like in (3),

§1911 + 2912 + £3913
i§-G =i | &gor + &g + E3gp3 | fOr general matrices G = (gij)i j=1,2,3- (6)

§1931 + §2932 + £3933

1.2 Assumptionson thelinearized problem

Due to Lemma 2.3 below, fab,, € L% with p > 3/2 ands > 3(p — 1)/p the operator
L- = B-+2i¢- Q@a. ) @

is well defined in the spackt, with domain of definition given by.? ,. Moreover, by Lemma 2.8,
forp € (3,4), s > 3(p — 1)/p, the operatoRi{ - Q(w,, -) is a relatively compact perturbation &,
and hence the essential spectrunfcefquals the essential spectrum

essspec(B) = {A € C: A = —[¢]? —ic&y, € € R}

of B, i.e., the spectra af and B only differ by isolated eigenvalues of finite multiplicityf. [Hen81,
p.136].

Thus, for the familyU, (z) = U, + uq(z), o € [a — g, o + g, Of stationary solutions we we
assume thab,, € L%, p € (3,4), s > 3(p — 1)/p, and that:

(A1) X = 0is not an eigenvalue df for any value ofx € [, — &g, cre + o).
(A2) Fora = «a. the operatot. has two eigenvaluesgt(a) which satisfy

A (ae) = +iQ. #0, Q. >0, and % Re(\E () > 0.

a=ac

(A3) All other eigenvalues of. are strictly bounded away from the imaginary axis in the el
plane for alla € [a. — do, e + do].

1.3 TheHopf-bifurcation theorem

Even thouth has essential spectrum up to the imaginary axis, a Lyap@abtwridt reduction to a
finite-dimensional bifurcation problem is possible dueh® following reasons. First, the invertibility
of the Oseen operatd? in R? from L into someL?-space, cf. Lemma 2.7. Second, the assumption
(A1) which allows to transfer this invertibility td, cf. Lemma 2.9, and, third, the fact that for suitable



p and s the nonlinearityQ is a bilinear mapping fronL? x L? into L, cf. Corollary 2.3. To state
our Hopf-bifurcation theorem for the vorticity formulatiq5) we introduce the space

X = 0= @unez: Pl gp <0} [Blgp = 3 1ule-
neL

Under the generic assumption that the cubic coefficieintthe reduced system defined subsequently
in (10) does not vanish, we have:

Theorem 1.1 Assume (A1)—(A3) with € (3,4) ands > 3(p — 1)/p. Then there exists ap > 0
such that for alla = . + 2 with e € (0, &) there exists a time-periodic solution

WP (&, t) prer &) exp (inQt)

nez
t0 (5), with (G5 ) ez € XL, [|[Gper (- 1) ||z = O(e), andQ — Q. = O(?)

Remark 1.2 For the velocity field we obtain, using the Biot-Savart law, lcemma 2.2 below,
(@) e XP with p € [1,12/7). Sinceg € LE with p € [1,2] impliesg € W54 wherel/p+1/q = 1
it follows thatu € X*4, 1/ + 1/§ = 1, where

X5 :={w = (wn)nez : Hw” <oo}, |wllxsa = Z [[wnllws.a.
nez

In particular, by standard results on Fourier series, for

uP( Z ub® () exp (infdt)
neL

we haveuP™ € C([0,2r), W4(R3)). Fromp € [1,12/7) we haveq € (12/5,cc]. In this sense,
our result complements the result of [Saz94]. Finally, bb&ev embeddings in space we also have
uPr € C([0,27), CY(R3,R)).

2 Preliminary estimates

2.1 Sobolev'sembedding theorem in L spaces
Sobolev’s embedding i} spaces is as follows.

Lemma2.l Forp > rands > d” we have the continuous embeddiBR?) c L"(R%).
Proof. With p(¢) = /1 + |£]? and Holder’s inequality fo% =5+ we have

Ifllzr = e ler < 1 p°llzellp™ e = £z llo™ |l 2o

We estimate

—s||9 — df — = 7(15 — + 7615 —.
ol (@O+MW? L§u+mm? Amu+mw?

Obviously, the first integral is bounded. For the secondgralewe find

o) d—l 0
/ ——ﬁ—WSC/-——ﬁ%§0/ o
g>1 (L+[€2) 2 1 (1+47r2)2 et

which is bounded fosg —d +1 > 1, i.e.,ifsq > d. [ |
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2.2 Reconstruction of the velocity from the vorticity

In the following lemma we estimate in terms of the vorticityw in Fourier space, see also, e.g.,
[GWO0Z2] for estimates irr-space using the Biot-Savart law

1 (x —y) xw(y) ,

u(z) = A Jgs Jz—yf3

Y.
Lemma2.2 For& € LY(R3)3, g € [1,00], andj = 1,2, 3, we have
&tz < C|@]|za- 6y

Moreover, for every: € [1,3) andp, q € [1,00] with1/q = 1/p+ 1/r there exists & > 0 such that
the following holds. 1&5 € LP(R3)3 N L4(R3)3 thenu € L4(R3)3, and

[al| e < Clo] s + 1] 2a)-
Proof. The velocityu is defined in terms of the vorticity by solving the equations
VXu=uw and V-u=0

for w satisfyingV - w = 0. This leads in Fourier space to

0 —i3 & N w1
. u1 ~
€3 0 —i& || W
N =1 _ 1|
—ila iy 0 R w3
. u3
€1 i&e 163 0

0 i3 —iy &)
M(§) = IR -3 0 €1 &
i —i& 0 i3
With Holder's inequality we obtain

litlze < € (Ieqei<uy Miler 180z + e Ml @10 )

with 1/¢ = 1/p + 1/r. Hence it remains to estimate terms of the form
K3°(8) = X{|§|>1}% and K;(§) = X{gg}%
in the space€.>°(R?) and L"(R?), respectively. The estimate fé¢>< is obvious. Fotk; we have
rd&gC/lédep=/1%7
0o P 0o P

which is bounded for < 3. Estimate (1) follows fronfli¢ | e < [|i&; M ()| po< @l a < C|&]| Lo
|

£

13§

KOl = /

l¢1<1




2.3 Estimatesfor thebilinear term Q(&y, @)

Lemma 2.3 Forp € (3/2,00] ands > 3(p—1)/p there exists & > 0 such that for alks;, &, € L%
we have
l@1 % gz < Cllon e[| @2l 22

Proof. Using Young's inequality, Lemma 2.2 with= 1/p + 1/r, wherer € [1,3) which yields
P € (3/2,00], we have

01 * || p < O ([|01]| e U2l + €501 ||Lel[U2llpr + [|O1] 22 €502 2r)

< C(1@llr (12l r + @2 zs) + 1€ Lo (1B2ll 21 + B2l 25) + 1@ [l £ €702 v )

Now using||5ta||Lr < C||€5~ @] L» as in the proof of (1), and Sobolev’s embeddifyc L' N LP
for s > 3(p — 1)/p andp > p, yields the result. [ |

Lemma2.4 Forp € (3,4) ands > 1 there exists & > 0 such that for all,, @, € L% we have
|1 * Uz oo < Cll@n | e [|&2]] L2

Proof. By Young's inequality with1 = 1/p + 1/¢ and Lemma 2.2 withl /g = 1/G + 1/r",
r* € [1,3), we have

|61 * Uz Lo < [|@1||LellU2llre < [|©1]| e ([|02]| L + (@2l 1a)-

Then
|01 * Uzl Lo < l@n || e (|2l 12

by Sobolev’s embedding 2 ¢ L? andL? c L4. This holds forp > § ands > 3%‘7, respectively
p > gands > 3%. With 0 < § < 1,4 > 0 sufficiently small ands > 1, these conditions are

fulfilled by choosingp =3+ 6,q¢ = (34 4)/(2+9),r* =3 — O(4) and hencg = 3(3 +0)/(3 +

25) + O(5). ]

Remark 2.5 Lemma 2.3 will be used for the noncritical modes associat#éamws~ 0 in the Liapunov-
Schmidt reduction, while Lemma 2.4 will be used for= 0. The upper boung < 4 in Lemma 2.4
is not optimal but it is also obtained from Lemma 2.7 below,ahdrefore, we omit a more detailed
discussion.

Corollary 2.6 For p € (3/2,00] ands > 3(p — 1)/p there exists &' > 0 such that for allw;, &, €
LY we have

1Q @1, @)l < Cllon ] rzllwa|lre-

Moreover, forp € (3,4) ands > 0 there exists &' > 0 such that for all;, &, € L% we have
1Q(@1,W2)| L < Cllwr|Lel|@al| pe-

Proof. This is a direct consequence of Lemmas 2.3 and 2.4. [ |



2.4 Estimates for the Oseen operator B

The linear operatoé which has essential spectrum up to the imaginary axis canveeted in the
following sense.

Lemma2.7 Lets > 0. Forp > 1 we haveB~li¢; € L(LE, L?). For1 < p < 4andj = 2,3 we
haveB~1i¢; € (LE N L™, L¥).

Proof. We have

5(6) = BO 651 = e 1O

The result forj = 1 follows from the uniform boundedness Ef;iT& Forj = 2,3, we find

i

|£|27 §+ Cllfllze

Gler < Cllfllie /
|€1<1

]
€2 + icky 1€1> Loo

ObViOUSW’H\gP:%X\&\leLw is bounded for alp € [1, 00). Next we have

/ _ & pdg < # pdg d&adE
g1<1 | €7 +ic& - +ic& ST
< C |£’ ———————d&d€rdE
- \6!2p+\5\p e
1 |p 1
€% |2=€3+63 W”
1&51P /°° 1
<
—— C/ / R S
y:“gﬁz‘
&1
< C/ de*
x| <va 1§77 2
V2 27 ,r,p—i-l V2
< —— < —
< C/O /0 74213_2d<;3dr < C/O
which is bounded fop < 4. The estimates foy > 0 are exactly the same. [ |

2.5 Compactness properties

Lemma2.8 Forp € (3,4) ands > 3(p — 1)/p the operatorsL and B differ by a relatively compact
perturbation inL%.

Proof. By Corollary 2.6, the difference mags into L2_, N L>°. By the theorem of Riesz [Alt99,
Theorem 2.15], this space is compactly embeddeffin, the domain of definition of the sectorial
operatorB . [ |

2.6 Estimatesfor the operator

Combining the estimates for the operaﬁ)from Lemma 2.7 with the assumptions (A1)—(A3) allows
us to prove a similar result for the operatar



Lemma2.9 Lets > 0 and assume (A1)—(A3). For > 1 we haveL'i¢; € L(LE,LE). For
1 <p<4andj=2,3wehaveL ti¢; € L(LE N L>, L%).

Proof. We havel, = B + G with G- = 2i¢ - Q(@a, -). Then(B + G)w = i¢; f is equivalent to
B(I+ B 'Gyw=i¢;f resp. w=(I+ B *G)"'B7lig;f.

The existence off + B~'G) ! is established as follows. By Lemma 2.8, the operatot( : L —
L? is compact. Hencd, + B~'G is Fredholm with index. If (I + B~'G)w = 0 had a nontrivial
solution, thenLw = B(I + B~'G)w = 0 would also have a nontrivial solution, which would
contradict (A1). Therefore, the Fredholm property imptiesexistence of/+B~'G)~! : LY — LE.
The estimates fof, now follow from

Jwllpe < |11+ B7'G) ool B1E fll o
and Lemma 2.7. [ |

Remark 2.10 The nonlinearityi€ - @(@,@) contains all combinations of all componentséoénd
w. Therefore, below we shall nedd< p < 4 when estimatingf‘lz‘f . @(@,@) and the estimate
for Z—1i¢; is only for the sake of completeness. Similarly, it is easgde that in fact,~li¢-
L(L% n LE,L¥, ). However, the gain in weight is not helpful since the difficulties arise near
£=0.

3 Proof of the Hopf-Bifurcation theorem

For smalllae — | and |2 — .| we look for 27 /Q-time periodic solutions of (5), i.e., we look for
solutionsi of

O = Lo + i€ - Q(,) (1)
which satisfyw (¢, t) = O(€,t + 27/Q). This system has the trivial solutiah = 0. By assumption
(A2), the linear operato(rf, + iQ1),¢z is not invertible fora = a.. Therefore, the implicit function
theorem no longer applies and the necessary condition éobiflircation of time-periodic solutions
is satisfied. In order to establish a Hopf-bifurcation, we at.yapunov-Schmidt reduction to reduce
the bifurcation problem to a finite-dimensional one. Thus,make the ansatz

B(E,1) = 3 Bu(€) exp(inQt),
nez
with

(@n) € X2 = {(@n)nez : |l gp <00}, [I@ll5r =D 1@nlle-
neL

We introduce projection®,, onto then-th Fourier mode, i.e.,

27

2 /  exp(inQO)B(E, 1)dt,
0

T2

(Pa@)(€)
and split (1) into the infinitely many equations for the Feumnodess,,, namely

inQB, = L, + i€ - N,(@), n€Z, )



with
Na(@) =D Q@ )
meZ
To reduce (2) to a finite dimensional bifurcation problem weeit the linear operatofi& 2] — Lin
the biggest possible subspaces. kot +1, let P, . be the L—invariant orthogonal projection onto
the subspace spanned by the eigenvector associated welythwaluens?, letP, ; =1 - P, ., and
consider

inQB, = Loy +if-No(@), (n=%2+3..), ®3)
inGns = Lns+ Pogi- Noy@),  (n==+1), )
0 = Ldo+if- No(@), (5)
inne = Lne+ Pocif- No(@),  (n==1). (6)

Due to the spectral assumptionsfn;we have inL% the invertibility ofinQI —Lforn = +2,43,.. .,
the invertibility of (inQ2I — E)Pw for n = +1, and, moreover, the existencelof 'i¢- as a bounded
operator fromZL N L to LL if p € (1,4), cf. Lemma 2.9. By Corollary 2.6, the nonlinear terfis
mapL¥ into L% if p > 3/2 ands > 3(p—1)/p, and intoL> if p € (3,4) ands > 1. Thus we rewrite
(3)—(5) as

On = QI —L)7NE No©@), (n=+2,43...), @
Ons = (inQl — E)_lpn,slf N, (@), (n = 1), ®)
o = L7NE- No@), (9)

and expect that (7)—(9) can be solved dgr € LY, n # £1, w, s € L&, n = £1, andwy € L% in
terms ofwy . = Py cwy € LY andw_1, = Py w_1 € LE, if p € (3,4) ands > 3(p — 1)/p. In
detail, we use the following lemmas.

Lemma3.1l Let M = (1\71)162 with M, : L? — LP. Defining the action ofif on& = (0))1ez by
(M@)l = Ml@l we find
1M g < Sl’ugHMlHL’;HL’;H@HA?g'
S

Proof. ||MGl|gr = > ez Ml e < supiez [|Mil o rp Doz 1@ 2o .

Lemma3.2 Letp > 3/2ands > 3(p — 1)/p. Then there exists @ > 0 such that for € X7 we
have

1N (@, ©))nezll o < ClI]1%-

Moreover, forp € (3,4) ands > 1 we have|| Ny (&, @)~ < C||@\|f?p.

Proof. By Corollary 2.6, we have

(NG (@, D)nezllgr = D IQ@,Oillzz = Y 1> Q@53

lez l€Z jeZ
<O S NGl @y < €D I@le Y1512 = ClBIS,
I€Z jeT €7 JEZ
and theL:°-estimate is also a trivial consequence of Corollary 2.6. [ |



Lemma 3.3 There exists & > 0 such that

|(inQI — L) 7Y€ - || 1o, pr
1(inQI — L)™' B, i€ - || o pr

Ca ne Z\{_1707 1}7
C, n==+l.

ININ

Proof. L = §+2¢§.@(@C, @) is sectorial inL% sinceB is a sectorial operator ih? and2z‘§-@(@c, W)

is B relatively bounded (in fact relatively compact due to Lem2x2). Thus, for the invertibility of
inQU — T it is sufficient that the spectrum is strictly bounded awaynfrzero, which holds due to
(A3). The estimates follow from Lemma 2.9. [ |
To proceed, we abbreviate (7)—(9) Bs= F(w.,ws) = 0 where

W = (...,0,@_10,0,&51070,...) and Ws = (...,@_2,@_15,@0,@18,@2,...).
By Lemmas 3.1 to 3.3F : X” x X — X7 is well defined and smooth fgr € (3,4) ands >
3(p — 1)/p. In order to resolveF'(w.,ws) = 0 with respect tao, we have to prove(0,0) = 0
and the invertibility ofD,,, F'(0,0) : XP — XP. The first condition trivially holds, and we have
D5, F(0,0) = I. Thus, there exists a unique smooth functian= &, (@.) with &, : AP — X7
SatiSfyingH@s(@c)H)?f < CH@CH}/SP
Thus, the bifurcation problem can be reduced to a problemayferandw_; . alone which has exactly
the same properties as the one in case of a classical Hapthifon. Thus, we only sketch the
concluding arguments. Setting, = A,p,, n = *1, wherep,, € LP(s) are the eigenfunctions
associated with the eigenvalu¢s). andA4,, € C with A_; = A;, we find the reduced problem

gl(oz - OZC,Q - QC,Al,A_l) = 0,
g_l(O[—OZC,Q—QC,Al,A_l) = 0.

Since we have an autonomous problem, the reduced probleto bagvariant unded; — A; exp(i¢)
andA_; — A_j exp(—i¢). Thereforeg; andg_; are of the form

A1gi(o— e, @ — Qe |A1 ) =
A—lg—l(a — g, Q- Qca |A1|2) = 0.

=

Introducing polar coordinated; = r exp(i¢) yields

(@ —ac) +972 + O(Ja — ac + |2 = Qe? +71) = 0,

(10)
Q= Qo+ O(|r* + o —ac? + Q- Q) = 0,

which is the well-known reduced system for a Hopf-bifuroati For givem — o the second equation
can be solved with respect fo— (). and then the first equation with respect-tolherefore, we are
done. |
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